L APPENAIX .o et 8

1.1 COMPONENTS .. .ttt ettt et e e e e e e 9
1.1.1 Component SCHPtiNg OVEIVIEWttt ittt et e e et e e e e e e e e e e e e e 10
L L 2 INPUL o e e e 12

1.1 2. L Text Field ..o 13
1.1.2.2 Numeric Text Field 20
L. 2.8 SPINNT ottt 23
1.1.2.4 Formatted Text Field 25
1.1.2.5 Password Field 28
I 2 R I A - 31
1.1.2.7 Dropdown LISt . . .ottt et e e 34
L0 2.8 SHOEr . 38
1.1.2.9 LanQUAQE SEIECION . .. ottt e e e e 46
L L B BUONS .ttt et e e e 49
L L3 L BUON .o 50
1.1.3.2 2 Stale TOgGIE oot 53
1.1.3.3 MUlti-State BUONottt e e e 56
1.1.3.4 0ONe-Shot BUttON 60
1.1.3.5 Momentary BUONo 63
1.1.3.6 T0QQIe BUIION . . .ottt e e e e 66
1.0.3.7 CheCK BOX ottt 69
1.1.3.8 RAIO BUON . . .o e 72
1030 Al SHID . oo 75
LA DISPlay . .o 78
O I o = 79
1.1.4.2 NUMeETiC Label e e 82
1.1.4.3 Multi-State INAiCatOrot e e e 84
LA A LED DiSPlIay . oot ottt 87
1.1.4.5 Moving Analog INAICALOr.ot 90
LA B IMAGE . .ot 93
L L4, 7 PrOgrESS Bar . .o 96
1.1.4.8 Cylindrical TanKot e 99
1.1 4.9 Level INAICAtOrot e 102
1.1.4.00 LIinear SCaleo 105
O I = 7= 1 T o [108
O = P 111
LA L3 COMPASS .« o .ot et et ettt et e e e e e e e e e e e 114
O I =T ¢ o 13T = 117
1.1.4.15 DOCUMENE VIBWET . . ottt et i ettt et e e e e et e e e e e e e e e e e e e e e e 120
11416 1P Camera VIBWET . . ottt it e ettt et e e e e et e e e e e e 123
L D TaADIES .t 127
0 0 300 1= o] 128
1.1.5.1. 1 Table CUSIOMIZETttt e e e e e e e e e e e e e e 139
1.1 5.2 POWEr Table .o 140
1.1.5.2.1 Power Table CUSIOMIZEr e e e e e e e e 147
0 0 T 148
L L5 A TrEE VIBW . ottt ettt e e 152
1.1.5.5 CommeNts Panel 157
1.1.5.6 Tag BrOWSE TrEE . . .ottt ittt et e e e e e e 163
L LB CNaItS .ottt e 166
.16, L EaSy CRart ..ottt 167
L1.0.8.2 CNaIt .o e 172
1.1.6.3 Sparkline Chart 175
1.1.6.4 Bar Chart e e 178
1.1.6.5 Radar Charto e 181
1.1.6.6 StatUS Chart ..o 184
1167 Pie CNart ..ot 188
1.1.6.8 Box and Whisker Chart e e e e e 191
1.1.6.9 EQUIpPMENt SChedUleo 193
1.1.6.00 Gantt Charto 198
L7 CalBNAarS . it 200
1 R 0 =T o - T 201
1.1.7.2 POPUP Calendarottt 203
1.1.7.3 Date RANGE . o ottt 205
LLT7ADAY VIBW « v vt ettt e e e e e e e e e e 209
L L 7 D WK VW . .ot e 211
L1.L.7.8 MONEh VW . .o e e 213
L L 8 AMIN o 215
1.1.8. 1 User ManagemeNntttt ettt e e e e e e e e 216
1.1.8.2 Schedule Management 219
1.1.8.3 ROStEr MANAgEMENTottt et e e e e 223
1.1.8.4 SFC MONITOT . . oottt et ettt e e e e e e e e e 226
1.1.9 Alarming COMPONENES . . o .ottt sttt et et e ettt e et e e e e e e e e e e 228
1.1.9.1 Alarm Status Table e 229
1.1.9.1.1 Alarm Row Style CUSIOMIZErottt e e e e e e e e e 233
1.1.9.2 Alarm Journal Tableot 234
L1.1.10 CONAINEIS . .ttt et et e et e e e e 238
0 0 0 1t) - {3 T 239

1.1.10.2 Template RePEaLErttt e e 242

1.1.10.3 Template CAnNVASottt e e e e e e e e 244

1.1.10.3.1 Template Canvas CUSIOMIZErttt e e e et 257

LLAL MISC . oottt e e e e e e e e 258
1.1.11.1 Paintable Canvasttt 259
0 T 262
11113 PIPE SEOMENT . ..o 264
11114 PIPE JOINt oottt e e e 266

1.1 10.5 SOUNd Player . .ot 268
00 T < 4= 270
1.1.11.7 Signal GENEIALOr oottt et et e e e e e 272
1.1.12 Reporting COMPONENES . . . ottt et e e e e et e e e e e e e e e e e e e e 274
1,112 REPOI VIBWET . . o ittt et e e e e e e e e e e e 275
1.1.02.1.0 BArCOUES . . o v ottt ettt et e e e e e e e e e e e e e 280
L1212 IMAGES . .ottt ettt et e e e e e e e 281

1102, 0.3 Labels ... 282
1.1.12.1.4 Report Drawing Shapesottt e e e 285

1.1.12.2 ROW SEIECIOr . .ot ot ittt et e e e e e 287
1.1.12.3 ColumN SEIBCIOT . . . o ottt e 289
11124 File EXPIOTEr o ettt et e e 291
L1.0.02.5 PDF VIBWET . . ottt ittt et et et et e e e e e 293

1.2 EXPression FUNCHONS oottt et et e e e e e e e e e e e e e e e e 297
1.2.1 Expression Overview and SYNaXttt 298
1.2.2 AQOIEOAIES . . ottt e 301
1.2.2.2 groUPCONCALt ettt e e 302
Li2.2.2 M@X .+ ettt e et e e e e e e 303
1.2.2.3 MAXDAE . . o .ttt 304
1224 MEAN . .ottt e e 305
1.2.2.5 Medi@aNn ..o 306

L2 2.8 MM ot 307
1.2.2.7 MINDAE . .ot 308
1.2.2.8 StADEY . .o 309

L2, 2.0 SUM e e 310
1.2.3 Alarming EXPreSSIONS . . . oottt et e e e 311
1.2.3. L iSAIAIMACHIVE . .ot 312

L 2.4 C0l0rS .t e 313
I oo |31 (= 314

1 2.4, 2 COlOr e 315

L 2.4, 3 darker . 316

1.2 4.4 gradi€nt . . . oo 317
1,25 Date and TiMe .. oottt et e e e 318
1.2.5. 1 dateArtimetiCo 319
1.2 5. 2. dateDiff . . o 320

1.2, 5.3 dateEXITaCt . . .o 321
1.2.5.4 dateFOrMatot e 322

L 2.5 D MOW o et 324
12,56 tIMEBOIWEEN . . .o 325

L 2.8 LOGIC . v vttt e 326
L1.2.8. 1 DINENC ..ottt e 327
12,8, 2 DINENUM L e e 328
di2.B.3 A . .ttt 329
1.2.6.4 COAIBSCE . ..ottt 330

1 2.8, QOB . ..o 331
1.2.6.6 hasChangedttt 332
22 T A | 333

1 2.8, 8 ISNUIl . 334

L 2.8.0 100KUD . ot e 335
12,8, 00 SWIlCN oo 336
22 0 5 337
L2 7 Mt o e 338
L2 7. L ADS o 339
T.2.7.2 BC0S . . oottt e e 340

L 2.7, 3 ASIN o e 341

L2 7.4 ALAN . ..o e e 342

L 2. 7 D Gl o 343
L2708 COS ot 344
0 S A= o T 345
0 < o T 346

L 2. 7.0 100 ot 347
L1.2.7.0010Q10 . oottt 348
2.7 00 POW ottt et 349
L1.2.7. 02 10UNG o e 350
O 0 351
0 T | 352
7 0 T - 1 o 353
0 T8 (o To =T | £ == 354
1.2.7. 07 80FA0IANS . . o o ot ettt e e e e 355

L 2.8 SN . ottt 356
7 < 1 oo o | 357

12,82 BSCAPE S L . . i 358

1.2.8.3 @SCaPEXML . .o 359

1.2.8.4 fIOMBINAIY 360
12 8 D TOMHEX .o 361
1.2.8.6 fromOCHAl 362

1 2. 8.7 INAEXOf . 363
1.2.8.8 1aStiNdeXOf . . o 364
D T8 I 1= 1 365
L2 8 A0 BN o 366
7 0 5 T 1T 367
1.2.8.12 NUMDBEIFOIMAL . . .ottt e et e e e e e e e 368

L. 2.8 A3 TEPEAL . . i 370
12,8 LA TEPIACE . .ot 371
2 0 L o | | 372
2 0 1 = o 373
1.2.8.17 StHINGFOMMAL . . . ottt e e e e e 374
1.2.8.18 SUDSIIING . ottt it et 375
12,8 10 t0BINAIY . .ottt e 376
12,8 20 IOH X oot 377
1.2.8.21 t0OCHAl . ..o e 378
L2 8 22 M oot 379
L2823 UPPEI ettt et e 380
12,0 TraNS atiON . .o 381
1 2.0, L traNSIalE .. 382

1.2 10 TYPE CaStiNg . . v oottt et ettt e e e e e e 383
1.2.00.1 t0BOOIEAN . . . ottt 384
1.2.10. 2 10BOMAET . .ttt et 385
1.2.00.3 10C0I0F . et 388
1.2.10.4 t0DAASEL 393
1.2.10.510D@E . . .o 394
1.2.10.6 10DOUDIE . . .o 395
1.2.00.7 tOFI0AL . . oo 396
12,008 H0F 0Nt . .o e 397
12,009 0Nt oo e 398
1.2.10.00 t0INtEOET . . .ot 399
1.2.00. 21 10LONG . . . oot 400

12 00, A2 tOSHr o .oteeee 401
1.2.00.13 t0SHING . . o v ettt et e e e e e e e e e 402

L2 0L USBIS ottt ettt et e e e 403
12,00 0 hASROIE . .. 404
L1202 AAVANCEA . ..ottt et 405
1.2.12.1 COIUMNREAITANGE . . o ot ot ettt ettt e e e e e e e e e e e e e e e 406
1.2.12.2 COIUMNRENAMEottt ettt et e e e e et e e e e e e e e e e 407
1.2.12.3 fOrCEQUANILY . . o . v ottt e e 408
O W 1Yo o 409
1.2.12.5 SOMDAtASEEo 411

2 12 < T - T 412

1.3 SCriPtiNg FUNCHIONS . . o oottt et e e e e e e e e e 413
1.3.1 Scripting OVEIVIEW @nd SYNTAX . . . v ottt ittt et e e e e e e e e e e e 414
1.3 2 Sy S MLl . . o e e 424
1.3.2.1 system.alarm.acknowledge 425
1.3.2.2 system.alarm.CanCelt 427
1.3.2.3 system.alarm.CreateROSIErttt 428
1.3.2.4 system.alarm.getROSIEISo 429
1.3.2.5 system.alarm.getShelvedPaths 430
1.3.2.6 system.alarm.listPipelines 431
1.3.2.7 system.alarm.queryJoUrnalt 432
1.3.2.8 system.alarm.qQUErYSTAtUSottt et e e e e 434
1.3.2.9 system.alarm.shelve 436
1.3.2.10 system.alarm.UNSNEIVEo 437
13,3 SYSIEMLAAIASE . . ottt 438
1.3.3.1 system.dataset.addColUMN 439
1.3.3.2 system.dataset.addROW 440
1.3.3.3 system.dataset.dataSetTOEXCElottt 441
1.3.3.4 system.dataset.dataSetTOHTIML it et e 442
1.3.3.5 system.dataset.deleteROWottt 443
1.3.3.6 system.dataset.deleteROWS 444
1.3.3.7 system.dataset.eXPOrtC SVot 445
1.3.3.8 system.dataset.eXPOrtEXCEl 446
1.3.3.9 system.dataset.eXPOrtHTMLottt e e e e e e 447
1.3.3.10 system.dataset.filterColumNS 448
1.3.3.11 system.dataset.fromMC SV 449
1.3.3.12 system.dataset.getColumnHEAdEIS ittt 451
1.3.3.13 system.dataset.SEtValUEt 452
1.3.3.14 system.dataset. SOt 454
1.3.3.15 SyStem.dataset.loC SV 455
1.3.3.16 system.dataset.toDAtaSEelttt 456
1.3.3.17 system.dataset.toPYDAtaSetttt 457
1.3.3.18 system.dataset.updateROW 458

1304 SY S EML AL . . ot 459

1.3.4.1 system.date.add® 460

1.3.4.2 system.date *BetWEEN 462
1.3.4.3 system.date.format 464
1.3.4.4 system.date.fromMillis 466
1.3.4.5 SY S ML At gt . o . o 467
1.3.4.6 system.date.getDate 469
1.3.4.7 system.date.getTimMeZONEottt et e et e e e 470
1.3.4.8 system.date.getTimezoneOffSett 479
1.3.4.9 system.date.getTimezoneRawOfSet 480
1.3.4.10 system.date.iS AT 481
1.3.4.11 system.date.iSBefore 482
1.3.4.12 system.date.iSBetWEENo 483
1.3.4.13 system.date.isDaylightTime 484
1.3.4.14 system.date.midnight 485
1.3.4.15 SYStEM.AALE.NOW . . . ottt et ettt et e e e e e e e e 486
1.3.4.16 SYStemM.Aate.SEITIMEttt e et e e e 487
1.3.4.17 system.date.toMilliso 488
R NS =1 (=T 14X | o 489
1.3.5.1 system.db.addDatasOUrCeottt ittt e 490
1.3.5.2 system.db.beginTransactiont 491
1.3.5.3 system.db.CloSeTranSactiont 493
1.3.5.4 system.db.commitTranSaction 494
1.3.5.5 system.db.createSProcCall 495
1.3.5.6 system.db.dateFormato 498
1.3.5.7 system.db.exeCSProcCall 500
1.3.5.8 system.db.getConnectioninfo 501
1.3.5.9 system.db.getCoNNECONSt 502
1.3.5.10 system.db.refresh . .. 503
1.3.5.11 System.db.remOVEDALASOUICEttt ettt et e e e 504
1.3.5.12 system.db.rollbackTransaction 505
1.3.5.13 System.dD.TUNPIEPQUETY . o ottt ettt et e e et e e e e e 506
1.3.5.14 system.db.rUNPIrepUPate ottt et e e 508
1.3.5.15 SysStem.db.rUNQUETY . . . oot ettt e e e e e e e e e 511
1.3.5.16 system.db.runScalarPrepQUETY 514
1.3.5.17 system.db.runSCalarQUETYttt et e e 515
1.3.5.18 system.db.rUNSFPIrepUPdatettt e e 517
1.3.5.19 system.db.runSFUPAtEQUETYttt e et e 518
1.3.5.20 system.db.runUpdateQUETY 519
1.3.5.21 system.db.setDatasourceConNECtURLttt 521
1.3.5.22 system.db.setDatasourceEnabled 522
1.3.5.23 system.db.setDatasourceMaxXxCONNECHIONSttt et ettt e et e 523
L1.3.6 SYSIEBMLABVICE . . . oottt 524
1.3.6.1 system.deviCe.addDeVICEttt 525
1.3.6.2 SYStemM.deVICE.IISIDEVICES . . . ot ittt ettt e e e e e 528
1.3.6.3 system.deviCe.refreShBIOWSEottt e e e e e e 529
1.3.6.4 system.deviCe.removEDEVICE 530
1.3.6.5 system.device.setDeviceEnabled 531
1.3.6.6 system.device.setDeVviCEHOSINAME o 532
1.3 7 Sy S ML AN .o e e 533
1.3.7.1 system.dnp3.directOperateAnalogttt 534
1.3.7.2 system.dnp3.direCtOperateBiNaryottt 535
1.3.7.3 system.dnp3.fre@ZEANAIOGS ottt 536
1.3.7.4 system.dnp3.freezeAnalogsAtTIMEo 537
1.3.7.5 system.dnp3.freezeCOUNErS 538
1.3.7.6 system.dnp3.freezeCountersAtTIMEottt 539
1.3.7.7 system.dnp3.selectOperateANalogttt e 540
1.3.7.8 system.dnp3.selectOperateBiNaryttt 541
L.3.8 SYSIBMLEAM . . .ot 542
1.3.8.1 SYStEM.EAM.GEIGIOUPS . . . o ot ettt e et e e e e e e 543
1.3.8.2 system.eam.quUEryAGeNtHISIONYttt 544
1.3.8.3 system.eam.queryAgeNISIAtUSottt e 545
1.3 0 systemLfile . . 546
1.3.9.1 SYStemMLfile filEEXISISttt 547
1.3.9.2 system.file.getTempPRileo 548
1.3.9.3 system.file.0penFile 549
1.3.9.4 system.file.readFileASBYteS 550
1.3.9.5 system.file.readFileASSIIING ot 551
1.3.9.6 system.file.saveFile 552
1.3.9.7 system.file.WrteFile .. . 553
1.3.20 SYSLEIMLQIOUPS . . o . ot ettt et et e e e e et e e e e e e e e e e e e e e 555
1.3.10.1 system.groups.loadFromEFilet 556
1.3.10.2 SysStem.groups.reMOVEGIOUPDSt vttt e et e e e e e e e e e e e e e e e e e e 557
L.3.AL SYSIEMLQUI .« o v e v ettt et e e e e e e e e e e e e e e e 558
1.3.11.1 system.gui.ChoOSECOION e 559
1.3.11.2 SYSteM.QUILCOIOT . . .ot e 560
1.3.11.3 SYSteM.QUILCONTIIM Lot 561
1.3.11.4 System.gui.CONVErtPOINTTOSCIEENottt et e e e e e e e e e e e e e e e 562
1.3.11.5 system.gui.CreatePOPUPMENU ottt e e 563

1.3.11.6 SYStEM.QUILEITOrBOX . . .ottt ittt e e e e 565

1.3.11.7 system.gui.findWINAOW oo 566

1.3.11.8 system.gui.getOpenedWindoWNamMEeS 567
1.3.11.9 system.gui.getoOpenedWiNdOWSttt et e e e 568
1.3.11.10 system.gui.getParentWindoWttt 569
1.3.11.11 SYStEM.QUILJEISCIEENS . . . o ottt ettt e e e e e e 570
1.3.11.12 system.gui.getSibliNg 571
1.3.11.13 system.gui.getWINGOW . . . oottt ettt e e e e e 572
1.3.11.14 system.gui.getWindOWNEAMESottt ettt e e e e 573
1.3.11.15 SyStem.gui.iNPUIBOXottt 574
1.3.11.16 system.gui.isTouchscreenModeEnabled 575
1.3.11.17 SysStem.gui.MeSSAGEBOXt it 576
1.3.11.18 system.gui.mOVECOMPONENT . . . ottt ittt et et e e e e et e e e 577
1.3.11.19 System.gui.opPENDIAGNOSLICS ottt e e et e e e 578
1.3.11.20 System.gui.passSWOrABOXttt ettt e e e 579
1.3.11.21 system.gui.reshapeCOmMPONENTttt e e et e e 580
1.3.11.22 system.gui.reSize@COMPONENT . . .ottt it ettt et e e e e e e 581
1.3.11.23 System.gui.SEtSCreeNINAEXottt et e 582
1.3.11.24 system.gui.setTouchscreenModeEnabled 583
1.3.11.25 system.gui.showNumericKeypadt 584
1.3.11.26 system.gui.showTouchscreenKeyboardt e e e 585
1.3.11.27 SysStem.gUILtraNSIOrM . .. 586
1.3.11.28 system.gui.warningBOX 588
1.3.12 SYSIEIM.NAVY . o .ottt e et e e e e 589
1.3.12.1 system.nav.CeNtErWINAOWottt ettt e e e e e e e e e 590
1.3.12.2 system.nav.closeParentWindOWttt et e e 591
1.3.12.3 system.nav.CloSEWINCOW ettt e e 592
1.3.12.4 system.nav.getCurrentWIiNGOWttt et e e e e e e e 593
1.3.12.5 SYStemM.NaV.QOBACKottt 594
1.3.12.6 SyStem.Nav.gOFOIWardttt et e e e e 595
1.3.12.7 system.nav.goHOME 596
1.3.12.8 System.nav.oPeNWINAOWottt et ettt et e e e e e e e e 597
1.3.12.9 system.nav.openWindOWINSIANCEottt e e e e 598
1.3.12.10 SYStEMLNAV.SWAPTO . . ottt it ettt e e e e e e e e e e 599
1.3.12.11 system.nav.SWapWIiNAOWttt 601
1303 SY S EIMLNEE . . o 603
1.3.13.1 system.net.getEXternallpAdAress i 604
1.3.13.2 system.net.getHOSINAME 605
1.3.13.3 system.net.getipAdAresS 606
1.3.13.4 system.net.getREeMOIE S EIVEIS 607
1.3.13.5 system.net.httpDElEte oo 608
1.3.13.6 SysStemM.Net.httPG eto 609
1.3.13.7 system.net. httpPOSt o 611
1.3.18.8 SyStemM.Net. NP P UL . . 613
1.3.13.9 system.net.0peNURL 615
1.3.13.10 system.net.SeNdEMAIlo 617
L.3.14 SYSIEIMLOPC . . ottt ettt e e e e 619
1.3.14.0 SYStemM.OPC. DIOWSE . . . 620
1.3.14.2 SYStemM.OPC.DrOWSE S I e . 622
1.3.14.3 SysStem.OpC.hroWSESIMPIEo 624
1.3.14.4 SystemM.OPC.JEISEIVEISo ittt ettt e e 625
1.3.14.5 SYyStem.OpPC.getSEIVEISIAtE ottt 626
1.3.14.6 System.opC.readVallet 627
1.3.14.7 System.opC.readValUBSttt et 628
1.3.14.8 System.OpPC.WILEVAIUEo ottt e 629
1.3.14.9 SyStemM.OPC.WIEEVAIUBS . . o oottt e e e e e 630
R 0 SRS S) (= 4 o]) 631
1.3.15.1 SysStem.print.CreatelMageo\ttt ettt e e e 632
1.3.15.2 system.print.createPrintJob 633
1.3.15.3 System.print.printTOIMAgGEottt et e e e e 635
1.3.16 SYSIEIMLTEPOIT . . o oot ettt e e e e e e e 637
1.3.16.1 system.report.executeAndDistribute 638
1.3.16.2 system.report.eXeCUtEREPOIT 640
1.3.16.3 system.report.getReportNamesASDataSel e 641
1.3.16.4 system.report.getReportNamMeESASLIStot 642
1.3.07 SYSIEMLSECUILY . o . ot ettt ettt e et e e e e e e e e e e e e e e e e e 643
1.3.17.1 system.security.getROIES 644
1.3.17.2 system.security.getUSEIName 645
1.3.17.3 system.security.getUSEIROIES i 646
1.3.17.4 system.security.iSSCreenLocked it 647
1.3.17.5 system.Security.loCKSCreen 648
1.3.17.6 SYSteM.SECUIY.IOQOUL . . . o ottt e e e 649
1.3.17.7 SyStem.SECUItY. SWItChUSEIot et 650
1.3.17.8 System.Security.UNIOCKSCIEENo et e e e 651
1.3.17.9 system.security.validateUser 652
L1.3.18 SYSIEM.SEIIAl . . .ottt e 653
1.3.18.1 system.serial.CloseSerialPort 654
1.3.18.2 system.serial.configureSerialPort 655
1.3.18.3 system.serial.openSerialPOrt 657

1.3.18.4 system.Serial.reatdByIeSt e 658

1.3.18.5 system.serial.readByteSASSININGttt 659

1.3.18.6 system.serial.readLine 660
1.3.18.7 system.serial.readUntil 661
1.3.18.8 system.serial.SENABreakt 662
1.3.18.9 SYSteM.SEIALWIIIE . . o 663
1.3.18.10 system.serial.WHteBYIES 664
1.3, 00 Sy S M. S C .ot 665
1.3.19.1 system.sfC.CcanCEIChAIT 666
1.3.19.2 system.sfc.getRUNNINGCRAISo e 667
1.3.19.3 system.sfc.pauseChart 668
1.3.19.4 system.sfC.resUMECRANt 669
1.3.19.5 system.sfc.setVariable 670
1.3.19.6 system.sfc.setVariables 672
1.3.19.7 system.sfe.startChart 673
1.3.20 SYSIEIMLLAG . . . vttt e e e e e e e e 674
1.3.20.1 SyStemM.tag.addTagottt ittt e e e e 675
1.3.20.1.1 Tag ALTDULESottt e e e e 679
1.3.20.2 system.tag.browseHiIstoricalTagso 682
1.3.20.3 SYStemM.tag.brOWSETAGS . . o ot ittt e 683
1.3.20.4 system.tag.browseTagsSimpPlet 685
1.3.20.5 system.tag.editAlarmCoONfigt 686
1.3.20.6 system.tag.editTagt 688
1.3.20.7 SYStemM.Iag.€aItTAGS . . . ot ottt e 690
1.3.20.8 SYStEM.IAQ. EXISIS . . ottt e 691
1.3.20.9 System.tag.getAlarMSIatESottt 692
1.3.20.10 system.tag.getAttribute - Deprecated 693
1.3.20.11 system.tag.isOverlaysEnabled 694
1.3.20.12 system.tag.loadFromEile 695
1.3.20.13 system.tag.queryTagCalCulationsttt 696
1.3.20.14 system.tag.queryTagDensity 698
1.3.20.15 system.tag.queryTagHISIO Yt 699
1.3.20.16 SYSteMLtAg.rEA0ttt e 702
1.3.20.17 system.tag.readAll 703
1.3.20.18 SyStemM.tag.reMOVETAYG ottt ettt e e e e e e 704
1.3.20.19 SYStEM.IAQ.TEMOVETAGS v v vttt e et e et et e e et e e e e e e e 705
1.3.20.20 system.tag.setOverlaysEnabled 706
1.3.20.21 system.tag.StoreTagHISIOrYottt e 707
1.3.20.22 SYSteMLtAg.WIE . . . Lo 709
1.3.20.23 system.tag. Wit Al . . .o 710
1.3.20.24 system.tag.WriteAllSYNCRIONOUSttt e e e 711
1.3.20.25 system.tag.WrteSYNCAIONOUSottt ettt e e e e e e e e e e e e 712
13,21 SYStemLtWIlio .. .o e 713
1.3.21.1 System.AWIlI0.gELACCOUNTS oottt et ettt et e e e e e e e 714
1.3.21.2 system.twilio.getACCOUNISDAIASEL\ ottt 715
1.3.21.3 system.twilio.getPhoneNUMDEISo 716
1.3.21.4 system.twilio.getPhoneNumbersDatasett 717
1.3.21.5 SyStem.AWIli0. SENUSMS . . .o ot 718
13022 SY S BIMLUSEl . .ttt e e e e e 719
1.3.22.1 system.user.addHoliday 720
1.3.22.2 system.user.addSchedule 722
1.3.22.3 system.user.editHOlIday 724
1.3.22.4 system.user.editSChedUle 726
1.3.22.5 system.user.getHolday 728
1.3.22.6 system.user.getHolidayNames 729
1.3.22.7 system.user.getHONdAaYSo 730
1.3.22.8 SYStEM.USEI.OEIROIES . . . it 731
1.3.22.9 system.user.getSchedule 732
1.3.22.10 system.user.getScheduleNames 733
1.3.22.11 system.user.getSchedules 734
1.3.22.12 SyStemMLUSEr.QetUSEr . . . oo 736
1.3.22.13 SYStEMLUSEI.GEIUSEIS . . .\ ittt ittt e et e et e e e 737
1.3.22.14 system.user.removeHoliday 738
1.3.22.15 system.user.removeSchedule 740
1.3, 28 Sy S emMLULI . .o e 742
1.3.23. 0 SYStemMLULL OO . o 743
1.3.23.2 SysteM.ULILEXECULE o e 744
1.3.28.3 SYSteML UL EXIt . oo 745
1.3.23.4 system.util.getAvailableLocales 746
1.3.23.5 system.util.getAvailableTerms 747
1.3.23.6 system.util.getClientld 748
1.3.23.7 system.util.getConnectioNMOde ot 749
1.3.23.8 system.util.getConneCtTIMEOUL ottt et e e e e e e 750
1.3.23.9 system.UtILgetEdItioN o 751
1.3.23.10 system.util.getGatewayAddress it 752
1.3.23.11 system.util.getGateWayStatUsttt e e e 753
1.3.23.12 system.util.getGlobals 754
1.3.23.13 system.util.getinactivitySECONASttt 755
1.3.23.14 system.util.getLoCale 756

1.3.23.15 SYSteMLULILGEILOGUET . . . v ot ittt e e 757

1.3.23.16 system.util.getProjJeCtNAME e 759

1.3.23.17 system.Util.getProperty 760
1.3.23.18 system.util.getReadTimeEOULttt e e e 761
1.3.23.19 system.util.getSesSIONINfOo 762
1.3.23.20 system.util.getSyStEMEFIAgSottt 764
1.3.23.21 system.util.invOKEASYNChIronNOUS 765
1.3.23.22 system.UtILiNVOKELAIEro 766
1.3.23.23 system.ULlJSONDECOTEottt et e e e 767
1.3.23.24 system.UtiLJSONENCOOEot e e 768
1.3.23.25 system.util.modifyTranslation 769
1.3.23.26 system.util.playSoundClipot 770
1.3.23.27 system.util.qUeryAUdItLOgottt 772
1.3.23.28 SYSteMLULILIEAIGEL . . . ottt e e 773
1.3.23.29 system.util.SENAMESSAGEottt 775
1.3.23.30 system.util.setConneCtioNMOOEttt e e 777
1.3.23.31 system.util.SetCoNNECITIMEOUL ot ittt ettt e e et e e e e e e e e e 778
1.3.23.32 system.ULIL.SELLOCAIE o 779
1.3.23.33 system.util.setReadTimeoUt 780

1.3.23.34 systemLULILIranSlateo 781

Appendix

The appendix is your reference. Once you become experienced in developing with Ignition you will most likely keep this page open on your desktop or
on your second screen. This page provides you the fastest route to the information you are looking for.

Components Expression Functions Scripting Functions

Components

Components are what fill up your windows with useful content. Anyone familiar with computers should already understand the basic concept of a
component - they are the widgets that you deal with every day - buttons, text areas, dropdowns, charts, and so on. The Vision module comes with a
host of useful components out of the box, many of which are specialized for industrial controls use. Other modules, like the Reporting module, add
more components for specialty purposes.

Configuring components will likely be the bulk of a designer's work when designing a Vision project. The basic workflow is to take a component from
the palette and drop it into a container on a window. From there, you can use the mouse to drag and resize the component into the correct position.
While the component is selected, you can use the Property Editor panel to alter the component's properties, which changes the component's
appearance and behavior.

Shapes are components too. Each shape may be individually selected, named, and has its own properties. Shapes have some additional capabilities
that other components don't have, such as the ability to be rotated. Shapes are created using the shape tools, not dragged from the component
palette.

To make the component do something useful, like display dynamic information or control a device register, you configure property bindings for the
component. To make the component react to user interaction, you configure event handlers for it.

Input Button Display
Tables Containers Alarming
Calendars Misc Reporting

Charts Admin

https://legacy-docs.inductiveautomation.com/display/DOC/Vision+Windows
https://legacy-docs.inductiveautomation.com/display/DOC/Components+and+Property+Binding
https://support.inductiveautomation.com/usermanuals/ignition/propertybindingoverview.htm
https://support.inductiveautomation.com/usermanuals/ignition/eventhandleroverview.htm

Component Scripting Overview

Common Component Functions

There are a number of functions that are common to all components in Ignition. These functions can called from the components event handlers.

requestFocusIinWindow()
This function requests that the designated component be given input focus.

Suppose for example that your window has two buttons. "Button 1" performs some script and you would like the focus in the window to move directly
to "Button 2" whereupon the user can simply press the enter button to run the script for "Button 2." The following would be the script that is called from
the first button's event handler.

#Previ ous code for the button that runs before the window s focus changes to Button 2
event. source. parent. get Conmponent (' Button 2').request Focusl nW ndow()

setPropertyValue(name, value)
Sets the value attribute of the named property to the specified value.

The following two scripts to the same thing. In this example the property that is being set is the name property but it could be a different property. The
first example is the preferred way because it is more in line with the python style. Whereas the second example is more like Java in it's style.
Regardless, when you see this in a project be assured that they accomplish the same result.

#Thi s set the value attribute of the conponents nane property to the string "lgnition."
event.source.nane = "lgnition"

#This al so sets the value attribute of the conponent's name property but just in a different way.
event. source. set PropertyVal ue("nane", "lgnition")

getPropertyValue(name)
Returns the value attribute of the property.

The following two scripts do the same thing. In this example the property that is being changed is the name property but it could be a different
property. The first example is the preferred way because it is more in line with the python style. Whereas the second example is more like Java in it's
style. Regardless, when you see this in a project be assured that they accomplish the same result.

#This returns the value attribute of the conponents name property.
name = event.source. nane

#This also returns the value attribute of the conponent's nane property
name = event. source. get PropertyVal ue("nanme")

Moving/Resizing Components and Windows

You can use scripting to move and resize a component at runtime. The functions system.gui.moveComponent, system.gui.reshapeComponent and
system.gui.resizeComponent are used for this.

They simply take a component, and a new size, location, or both. Locations are always measured in pixels from the upper left point of the
component's parent container.

Note that if you're moving a component that is set to relative layout, your coordinates will act as if they were coordinates to the sizes of the relevant
containers last time they were saved in the Designer, not the current real coordinates of the runtime. This is very helpful for creating animations. In
effect, what this means is that the coordinates fed into these functions "respect” the relative layout system automatically.

You can move and resize windows as well. If you have a reference to a window, you can set its size and location directly. For example, if you wanted
to move the floating window Popup3 to certain

location, you could do so like this:

try:

wi ndow = system gui . get Wndow(" Popup3") wi ndow. set Si ze(250, 600) wi ndow. set Locati on(0, 0)
except Val ueError:

ignore error with a pass keyword

pass

Input

Text Field

General

Component Palette Icon:

=1 Text Field

Description

The Text Field component is used for input of any single-line text. This component will accept any alpha-numeric input. If you're looking for a
numeric field, see the Numeric Text Field.

This field features a protected mode. When you enable the protectedMode property, the field is not editable even when it receives input focus. The
user must double click on the field or press enter in order to edit the field. When they are done (press enter again or leave the field), the field
becomes non-editable again.

The Text Field also supports the reject updates during edit feature. This feature ignores updates coming from property bindings while the
component is being edited by a user.

Properties

2l Unknown macro: 'sql'

Scripting
Scripting Functions

® Description
Returns the currently selected or highlighted text in the text field.
® Parameters
Nothing
® Return
String - Returns the currently selected or highlighted text in the text field.
® Scope

Client

Event Handlers

This event occurs when a component that can receive input, such as a text box, receives the input focus. This usually occurs when a user clicks
on the component or tabs over to it.

.source The component that fired this event.

. The other component involved in this focus change. That is, the component that lost focus in order for this one to gain it,
oppositeCompon | or vise versa.
ent

This event occurs when a component that had the input focus lost it to another component.

.source The component that fired this event

. The other component involved in this focus change. That is, the component that lost focus in order for this one to gain it,
oppositeCompon | or vise versa.
ent

An integer that indicates whether the state was changed to "Selected" (on) or "Deselected" (off). Compare this to the event object's constants to
determine what the new state is.

The component that fired this event.
S0
urce

. The key code for this event. Used with the keyPr essed and keyRel eased events. See below for the key code constants.
ke
yC
ode

The character that was typed. Used with the key Typed event.

. Returns the location of the key that originated this key event. Some keys occur more than once on a keyboard, e.g. the left and right
ke | shift keys. Additionally, some keys occur on the numeric keypad. This provides a way of distinguishing such keys. See the KEY_LOCAT
yL | ION constants, the keyTyped event always has a location of KEY_LOCATION_UNKNOWN.

. True (1) if the Alt key was held down during this event, false (0) otherwise.
alt
Do
wn

. True (1) if the Control key was held down during this event, false (0) otherwise.
co
ntr
olD
own

. True (1) if the Shift key was held down during this event, false (0) otherwise.
shi
ftD
own

https://legacy-docs.inductiveautomation.com/display/DOC/Component+Event+Handlers#ComponentEventHandlers-KeyEvents
https://legacy-docs.inductiveautomation.com/display/DOC/Component+Event+Handlers#ComponentEventHandlers-KeyEvents

Fires when a key is released and the source component has the input focus. Works for all characters, including non-printable ones, such as
SHIFT and F3.

SO
ur
ce

ke
yC
ode

ke
yC
har

ke
yL
oc
ati
on

alt
Do
wn
co
ntr
Do
wn
shi

own

The component that fired this event.

The key code for this event. Used with the keyPr essed and keyRel eased events. See below for the key code constants.

The character that was typed. Used with the key Typed event.

Returns the location of the key that originated this key event. Some keys occur more than once on a keyboard, e.g. the left and right
shift keys. Additionally, some keys occur on the numeric keypad. This provides a way of distinguishing such keys. See the KEY_LOCATI
ON constants in the documentation, the keyTyped event always has a location of KEY_LOCATION_UNKNOWN.

True (1) if the Alt key was held down during this event, false (0) otherwise.

True (1) if the Control key was held down during this event, false (0) otherwise.

True (1) if the Shift key was held down during this event, false (0) otherwise.

https://legacy-docs.inductiveautomation.com/display/DOC/Component+Event+Handlers#ComponentEventHandlers-KeyEvents
https://legacy-docs.inductiveautomation.com/display/DOC/Component+Event+Handlers#ComponentEventHandlers-KeyEvents

Fires when a key is pressed and then released when source component has the input focus. Only works for characters that can be printed on
the screen.

SO
ur
ce

ke
yC
ode

ke
yC
har

ke
yL
oc
ati
on

alt
Do
wn

co
ntr
ol
Do
wn

shi
ftD
own

The component that fired this event.

The key code for this event. Used with the keyPr essed and keyRel eased events. See below for the key code constants.

The character that was typed. Used with the key Typed event.

Returns the location of the key that originated this key event. Some keys occur more than once on a keyboard, e.g. the left and right
shift keys. Additionally, some keys occur on the numeric keypad. This provides a way of distinguishing such keys. See the KEY_LOCATI
ON constants in the documentation, the keyTyped event always has a location of KEY_LOCATION_UNKNOWN.

True (1) if the Alt key was held down during this event, false (0) otherwise.

True (1) if the Control key was held down during this event, false (0) otherwise.

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

The number of mouse clicks associated with this event.

clickCount

X The x-coordinate (with respect to the source component) of this mouse event.
y The y-coordinate (with respect to the source component) of this mouse event.

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is operating system dependent, which

popupTrig | is why this abstraction exists.

ger

.altDown True (1) if the Alt key was held down during this event, false (0) otherwise.

controlDo

wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.shiftbown | True (1) if the Shift key was held down during this event, false (0) otherwise.

https://legacy-docs.inductiveautomation.com/display/DOC/Component+Event+Handlers#ComponentEventHandlers-KeyEvents
https://legacy-docs.inductiveautomation.com/display/DOC/Component+Event+Handlers#ComponentEventHandlers-KeyEvents

This event fires when the mouse enters the space over the source component.

.source The component that fired this event.
.button The code for the button that caused this event to fire.

. The number of mouse clicks associated with this event.
clickCount

X The x-coordinate (with respect to the source component) of this mouse event.
y The y-coordinate (with respect to the source component) of this mouse event.

. Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is operating system dependent, which
popupTrig ' is why this abstraction exists.

ger

.altDown True (1) if the Alt key was held down during this event, false (0) otherwise.

. True (1) if the Control key was held down during this event, false (0) otherwise.

controlDo
wn
.shiftDown | True (1) if the Shift key was held down during this event, false (0) otherwise.
This event fires when the mouse leaves the space over the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

. The number of mouse clicks associated with this event.
clickCount

X The x-coordinate (with respect to the source component) of this mouse event.
y The y-coordinate (with respect to the source component) of this mouse event.

. Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is operating system dependent, which
popupTrig is why this abstraction exists.

ger

.altDbown True (1) if the Alt key was held down during this event, false (0) otherwise.

. True (1) if the Control key was held down during this event, false (0) otherwise.

controlDo
wn

.shiftDown | True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event.
.button The code for the button that caused this event to fire.

. The number of mouse clicks associated with this event.
clickCount

X The x-coordinate (with respect to the source component) of this mouse event.
y The y-coordinate (with respect to the source component) of this mouse event.

. Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is operating system dependent, which
popupTrig ' is why this abstraction exists.
ger

.altbown True (1) if the Alt key was held down during this event, false (0) otherwise.
. True (1) if the Control key was held down during this event, false (0) otherwise.
controlDo

wn

.shiftDown | True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source

.button

clickCount
X

Y
popupTrig
ger
.altDown
controlDo
wn

.shiftDown

The component that fired this event.
The code for the button that caused this event to fire.

The number of mouse clicks associated with this event.

The x-coordinate (with respect to the source component) of this mouse event.

The y-coordinate (with respect to the source component) of this mouse event.

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is operating system dependent, which
is why this abstraction exists.

True (1) if the Alt key was held down during this event, false (0) otherwise.

True (1) if the Control key was held down during this event, false (0) otherwise.

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source

.button

clickCount
X

Yy
popupTrig
ger
.altDbown
controlDo
wn

.shiftDown

The component that fired this event.
The code for the button that caused this event to fire.

The number of mouse clicks associated with this event.

The x-coordinate (with respect to the source component) of this mouse event.

The y-coordinate (with respect to the source component) of this mouse event.

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is operating system dependent, which
is why this abstraction exists.

True (1) if the Alt key was held down during this event, false (0) otherwise.

True (1) if the Control key was held down during this event, false (0) otherwise.

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source

.button

clickCount
X

Yy
popupTrig
ger
.altbown
controlDo
wn

.shiftDown

The component that fired this event.
The code for the button that caused this event to fire.

The number of mouse clicks associated with this event.

The x-coordinate (with respect to the source component) of this mouse event.

The y-coordinate (with respect to the source component) of this mouse event.

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is operating system dependent, which
is why this abstraction exists.

True (1) if the Alt key was held down during this event, false (0) otherwise.

True (1) if the Control key was held down during this event, false (0) otherwise.

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

.source The component that fired this event.

. The new value that this property changed to.
newValue

.oldValue ' The value that this property was before it changed.

. The name of the property that changed. NOTE: remember to always filter out these events for the property that you are looking
property | for! Components often have many properties that change.
Name

Examples

Code Snippet

#The following code will return the value of the text box's previous value into a variable.
#This code is fired on the property change scripting for this conponent.

ol dval ue = event. source. ol dval ue

Vertical Slider with Border and Blue Text

Hello World!
Property Name Value
Border Tabbed Border with Title
Font Dialog, Bold, 12

Horizontal Alignment = Center

Numeric Text Field

General

[

Component Palette Icon:

= Mumeric Text Field

Description

The Numeric Text Field is similar to the standard Text Field, except that it is specialized for use with numbers. Instead of a "text" property, it has
four numeric "value" properties. Which one you use depends on the mode of the text box.

Like the standard Text Field, this text field can operate in protected mode. When you enable the protected property, the field is not editable even
when it receives input focus. The user must double click on the field or press enter in order to edit the field. When they are done (press enter again
or leave the field), the field becomes non-editable again.

The Numeric Text Field also supports the reject updates during edit feature. This feature ignores updates coming from property bindings while the
component is being edited by a user.

Properties

2l uUnknown macro: 'sql’

Scripting
Scripting Functions

® Description
Returns the currently selected or highlighted text in the text field.
® Parameters
Nothing
® Return
String - Returns the currently selected or highlighted text in the text field.
® Scope

Client

Event Handlers

This event occurs when a component that can receive input, such as a text box, receives the input focus. This usually occurs when a user clicks

2l Unknown macro: 'sgl’
on the component or tabs over to it.

2l uUnknown macro: 'sql'
This event occurs when a component that had the input focus lost it to another component.
An integer that indicates whether the state was changed to "Selected" (on) or "Deselected" (off). Compare this to the event object's constants to

2l Unknown macro: 'sql’
determine what the new state is.

Fires when a key is released and the source component has the input focus. Works for all characters, including non-printable ones, such as
2l Unknown macro: 'sql'

SHIFT and F3.

Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l Unknown macro: 'sql'

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.

2l Unknown macro: 'sgl’
2 Unknown macro: 'sql
This event fires when the mouse enters the space over the source component.

2l Unknown macro: 'sql'
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sql'
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.
T2l Unknown macro: 'sgl’
2l Unknown macro: 'sql'
Fires when the mouse moves over a component after a button has been pushed.
2l unknown macro: 'sgl’
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l Unknown macro: 'sql'

Customizers

This component does not have any custom properties.

Examples
Code Snippet
#The followi ng script can be executed on a nouse rel eased event handl er.

#This would wite the selected text to a custom property called highlightedText.

event. source. hi ghl i ght edText = event. source. get Sel ect edText ()

Vertical Slider with Border and Blue Text

Property Name Value

Border Field Border
Number Type Float
Font Dialog, Boldltalic, 15

Decimal Format #,##0.00

Spinner

General

1=

Component Palette Icon:

& Spinner

Description

The spinner component represents a value that is part of a series of values, such as numbers and dates. It allows you to not only edit the value
directly, but to 'spin’ the value up or down, using the up and down buttons that are part of the component. When setting up property bindings, make
sure you use the value property that corresponds to the spinner mode. For example, if you chose the Double spinner mode, you should bind the
doubleValue property.

Properties

2l Unknown macro: 'sgl’

Scripting

Scripting Functions

This component does not have scripting functions associated with it. Remove the panel below if there are no scripting functions.

Extension Functions

This component does not have scripting functions associated with it.

Event Handlers

Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l uUnknown macro: 'sgl’

Customizers

This component does not have any custom properties.

Examples

Code Snippet

#The following code will return the value of the slider's previous value into a variable.
#This code is fired on the property change scripting for this conponent.

ol dval ue = event. source. ol dval ue

Vertical Slider with Border and Blue Text

212015 328 P [

Property Name Value

Spinner Mode Date

Formatted Text Field

General

[]

Component Palette Icon:

= Formatted Text Field

Description

This specialized text field is used for alphanumeric text input that must match some specific pattern or needs to be formatted in a specific way. It
operates in two modes:

Formatted Mask
In this mode, input is automatically formatted and restricted based on a format mask. For example, a format mask like: (###) ###-#### will allow

the entry of a 10-digit US phone number. The formatting characters are automatically inserted if the user does not type them in. Any other
characters are restricted. The following characters may be used in a formatted mask pattern:

Symbol Description

Any valid number, Such as 0-9.

Escape character, used to escape any of the special formatting characters.

U Any letter. All lowercase letters will be mapped to upper case automatically.
L Any letter. All upper case letters will be mapped to lower case automatically.
A Any letter or number.

? Any letter, case is preserved.

* Anything.

H Any hex character (0-9, a-f or A-F).

Regular Expression
In this mode, input is validated against a regular expression. A regular expression is a special string that defines a set of allowed strings. Any input
that matches the given regular expression is allowed, and input that doesn't match, is restricted. And yes, while powerful, regular expressions are

decidedly difficult to decipher.

Properties

2l unknown macro: 'sgl’

Scripting

Scripting Functions

This component does not have scripting functions associated with it.Remove the panel below if there are no scripting functions.

Extension Functions

This component does not have scripting functions associated with it.
Event Handlers

This event occurs when a component that can receive input, such as a text box, receives the input focus. This usually occurs when a user clicks

2l Unknown macro: 'sgl’
on the component or tabs over to it.

2l Unknown macro: 'sql'
This event occurs when a component that had the input focus lost it to another component.

An integer that indicates whether the state was changed to "Selected" (on) or "Deselected" (off). Compare this to the event object's constants to

2l Unknown macro: 'sgl’
determine what the new state is.

Fires when a key is released and the source component has the input focus. Works for all characters, including non-printable ones, such as
2l Unknown macro: 'sgl’

SHIFT and F3.

Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l Unknown macro: 'sql’

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.

2l Unknown macro: 'sql'
2 Unknown macro: 'sql'
This event fires when the mouse enters the space over the source component.

2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sgl’
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.

2 unknown macro: 'sql’

2l Unknown macro: 'sgl’
Fires when the mouse moves over a component after a button has been pushed.

2l uUnknown macro: 'sql’
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l Unknown macro: 'sql’

Customizers

This component does not have any custom properties.

Examples

Formatted Mask

Example Description
#HU-##H#/UU | A product code with a specifc format, like 28E-8213/AR
OxHHHH A hex digit, automatically prepends "0x" no the front. e.g. "Ox82FF"

#UUU#HH# A California license plate, eg. 4ABC123

Regular Expression

Example Description

\p{Upperf\p{Lower}*, \p{Upper}\p{Lower}* = A name, formatted such as Smith, John

\d{3}-\d{2}-\d{4} A US social security number, like 123-45-6789
\d{1,3\.\d{1,3\.\d{1,30\.\d{1,3} A network IPv4 address, like 67.82.120.116
Na-f0-9A-F|{6}% A six-digit hexadecimal number

Gallery

Horizontal Slider without Tickmarks

(300 266-7798

Property Name Value
Validation Mode Formatted Mask

Formatted Mask Pattern = (###) ##H-##Ht

Password Field

General

[]

Component Palette Icon:

== Password Field
Description
A password field is like a text field that doesn't display the text that is being edited. You may alter the echo character (*) if you'd like.

Properties

2l Unknown macro: 'sgl’

Scripting

Scripting Functions

This component does not have scripting functions associated with it.Remove the panel below if there are no scripting functions.

Extension Functions

This component does not have scripting functions associated with it.
Event Handlers

This event occurs when a component that can receive input, such as a text box, receives the input focus. This usually occurs when a user clicks

2l Unknown macro: 'sgl’
on the component or tabs over to it.

2l Unknown macro: 'sql'
This event occurs when a component that had the input focus lost it to another component.

An integer that indicates whether the state was changed to "Selected" (on) or "Deselected" (off). Compare this to the event object's constants to

2l Unknown macro: 'sgl’
determine what the new state is.

Fires when a key is released and the source component has the input focus. Works for all characters, including non-printable ones, such as
2l Unknown macro: 'sgl’

SHIFT and F3.

Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l Unknown macro: 'sql’

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.

2l Unknown macro: 'sql'
2 Unknown macro: 'sql'
This event fires when the mouse enters the space over the source component.

2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sgl’
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.

2 unknown macro: 'sql’

2l Unknown macro: 'sgl’
Fires when the mouse moves over a component after a button has been pushed.

2l uUnknown macro: 'sql’
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l Unknown macro: 'sql’

Customizers

This component does not have any custom properties.

Examples

Code Snippet

#The following code will return the value of the slider's previous value into a variable.
#This code is fired on the property change scripting for this conponent.

ol dval ue = event. source. ol dval ue

Vertical Slider with Border and Blue Text

Property Name Value
Forground Color 0,0,217
Echo Charactor *

Text This is my Password

Text Area

General
Textirea |i
IR

Component Palette Icon:

[*] Text Area

Description

Suitable for multi-line text display and editing. Will scroll vertically on demand. Will scroll horizontally if line wrap is off. Only supports plain-text, no
HTML formatting or styled text.

Properties

2l Unknown macro: 'sql’

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have scripting functions associated with it.

Event Handlers

This event occurs when a component that can receive input, such as a text box, receives the input focus. This usually occurs when a user clicks

2l Unknown macro: 'sgl’
on the component or tabs over to it.

2l Unknown macro: 'sql'
This event occurs when a component that had the input focus lost it to another component.

An integer that indicates whether the state was changed to "Selected" (on) or "Deselected" (off). Compare this to the event object's constants to

2l Unknown macro: 'sgl’
determine what the new state is.

Fires when a key is released and the source component has the input focus. Works for all characters, including non-printable ones, such as
2l Unknown macro: 'sgl’

SHIFT and F3.

Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l Unknown macro: 'sql’

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.

2l Unknown macro: 'sql'
2 Unknown macro: 'sql'
This event fires when the mouse enters the space over the source component.

2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sgl’
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.

2 unknown macro: 'sql’

2l Unknown macro: 'sgl’
Fires when the mouse moves over a component after a button has been pushed.

2l uUnknown macro: 'sql’
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l Unknown macro: 'sql’

Customizers

This component does not have any custom properties.

Examples

Gallery

Horizontal Slider without Tickmarks

Lorerm ipsum dolor sit amet,
consectetuer adipiscing elit.
Aliguam fermentum vestibulum
est. Cras rhoncus. Pellentesque
habitant morbi tristigue senectus
et netus et malesuada fames ac
turpis egestas. Sed quis tortor.

[(W1

e

-]

Property Name Value
Line Wrap True

Text 514 Characters

Dropdown List

General

|~:Select0ne:~ E“

Component Palette Icon:

™ Dropdown List

Description

The dropdown component is a great way to display a list of choices in a limited amount of space. The current selection is shown, and the choices
are only presented when the user clicks on the dropdown button. The choices that are shown depend on the data property. This is a dataset, which
can be typed in manually in the Designer, or (more commonly) it can be populated dynamically from a property binding, often a SQL Query binding.

It is often the case that you want to display choices to the user that are 'dressed up' versions of the actual choices. For instance, suppose that you
are selecting choices for a downtime tracking entry. The choices might be: "Operator Error", "Machine Malfunction”, and "Other". But, you really
want to map these choices to some numeric code which is how the choice is stored. So, for instance, when the user chooses "Other" you really
want to get the number 3. The dropdown component is perfect for such a use. The data property can be set up in one of three fashions, which
control how the "selected values" properties change.

The 3 ways to set up the data dataset and the corresponding behavior is as follows:

Scenario 1: One column with a set of string values

Columnl

Apples
Oranges

Bananas

Drop down displays values from the first column
Selected value is undefined

Selected String Value represents value from first column
Selected Label represents value from first column

Scenario 2: Two column with an integer and string column

Columnl Column2

201 Apples

202 Oranges

203 Bananas
® Dropdown displays values from the second column
® Selected Value represents a value from the first column
® Selected String Value represents value from first column
L]

Selected Label represents value from first column

Scenario 3: Two column with two string columns

Columnl Column2

APL Apples
ORN Oranges
BAN Bananas
® Dropdown displays values from second column
® Selected Value is undefined
® Selected String Value represents value from first column
L]

Selected Label represents value from second column

The dropdown component can operate in one of three Selection Modes. These modes affect how the dropdown's current selection (defined by the
values of its Selected Value, Selected String Value, and Selected Label properties) behave when the selection properties are set to values not
present in the choice list, or conversely, when the choice list is set to a new dataset that doesn't contain the current selection:

« Strict. Selected values must always correlate to an option in the list defined by the Data property. If an invalid selection is set (via a binding or a
script), the selection will be set to the values defined by the No Selection properties. If the Data property is set to a list that does not contain the
current selection, the current selection will be reset to the No Selection values.

« Lenient. (default) Selected values are independent of the list defined by the Data property. This mode is useful to avoid race conditions that can
cause problems in Strict mode when both the Data and the Selected Value properties are bound. If the current selection is not present in the Data
list, the read-only property Selected Index will be -1.

« Editable. The same selection rules as defined by Lenient mode, except that the dropdown itself becomes editable, allowing a user to type in their
own arbitrary value. This value will be set as the dropdown's Selected Label.

Properties

The component's properties are populated from a sql query. The following properties are from the Alarm Status Table. Change this to the correct

2 Unknown macro: 'sql'
Component.

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have scripting functions associated with it.
Event Handlers

This event occurs when a component that can receive input, such as a text box, receives the input focus. This usually occurs when a user clicks

2l Unknown macro: 'sgl’
on the component or tabs over to it.

2l Unknown macro: 'sql'
This event occurs when a component that had the input focus lost it to another component.
An integer that indicates whether the state was changed to "Selected" (on) or "Deselected" (off). Compare this to the event object's constants to

2l uUnknown macro: 'sql’
determine what the new state is.

Fires when a key is released and the source component has the input focus. Works for all characters, including non-printable ones, such as

2l Unknown macro: 'sgl’
SHIFT and F3.

Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2 unknown macro: 'sql’

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.

2l Unknown macro: 'sql'

2l Unknown macro: 'sql'
This event fires when the mouse enters the space over the source component.

2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sql’
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.

2 unknown macro: 'sql’

2l Unknown macro: 'sgl’
Fires when the mouse moves over a component after a button has been pushed.

2l Unknown macro: 'sgl’
Fires when the mouse moves over a component, but no buttons are pushed.

Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l Unknown macro: 'sql’

Customizers

This component does not have any custom properties.

Examples

Code Snippet

#The following code will return the value of the slider's previous value into a variable.
#This code is fired on the property change scripting for this conponent.

ol dval ue = event. source. ol dval ue

Vertical Slider with Border and Blue Text

=Select One= |E||

201 Apple

202 Banana

203 ki

204 Qrange

204 Flum
Property Name Value

Dropdown Display Mode @ Table

Show Table Header False

Slider

General

¢

0 25 50 75

Component Palette Icon:

oz Slider

Description

The slider component lets the user drag an indicator along a scale to choose a value in a range. The slider can be configured to orient horizontally
or vertically.

Properties

2l unknown macro: 'sgl’

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

This event occurs when a component that can receive input, such as a text box, receives the input focus. This usually occurs when a user clicks
on the component or tabs over to it.

.source The component that fired this event.

. The other component involved in this focus change. That is, the component that lost focus in order for this one to gain it,
oppositeCompon | or vise versa.
ent

This event occurs when a component that had the input focus lost it to another component.
.source The component that fired this event
The other component involved in this focus change. That is, the component that lost focus in order for this one to gain it,

oppositeCompon | or vise versa.
ent

An integer that indicates whether the state was changed to "Selected" (on) or "Deselected" (off). Compare this to the event object's constants to
determine what the new state is.

The component that fired this event.
S0
ur
ce

. The key code for this event. Used with the keyPr essed and keyRel eased events. See below for the key code constants.
ke
yC
ode

ke | The character that was typed. Used with the keyTyped event.
yC
har

. Returns the location of the key that originated this key event. Some keys occur more than once on a keyboard, e.g. the left and right
ke | shift keys. Additionally, some keys occur on the numeric keypad. This provides a way of distinguishing such keys. See the

yL KEY_LOCATION constants in the documentation. The keyTyped event always has a location of KEY_LOCATION_UNKNOWN.

oc

ati

on

. True (1) if the Alt key was held down during this event, false (0) otherwise.
alt
Do
wn

. True (1) if the Control key was held down during this event, false (0) otherwise.
co
ntr

Do
wn

. True (1) if the Shift key was held down during this event, false (0) otherwise.
shi

own

Fires when a key is released and the source component has the input focus. Works for all characters, including non-printable ones, such as
SHIFT and F3.

SO
ur
ce

ke
yC
ode

ke
yC
har

ke
yL
oc
ati
on

alt
Do
wn
co
ntr
Do
wn
shi

own

The component that fired this event.

The key code for this event. Used with the keyPr essed and keyRel eased events. See below for the key code constants.

The character that was typed. Used with the key Typed event.

Returns the location of the key that originated this key event. Some keys occur more than once on a keyboard, e.g. the left and right
shift keys. Additionally, some keys occur on the numeric keypad. This provides a way of distinguishing such keys. See the
KEY_LOCATION constants in the documentation. The keyTyped event always has a location of KEY_LOCATION_UNKNOWN.

True (1) if the Alt key was held down during this event, false (0) otherwise.

True (1) if the Control key was held down during this event, false (0) otherwise.

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when a key is pressed and then released when source component has the input focus. Only works for characters that can be printed on
the screen.

The component that fired this event.
S0
ur
ce

. The key code for this event. Used with the keyPr essed and keyRel eased events. See below for the key code constants.
ke
yC
ode

. The character that was typed. Used with the key Typed event.
ke
yC
har

. Returns the location of the key that originated this key event. Some keys occur more than once on a keyboard, e.g. the left and right
ke | shift keys. Additionally, some keys occur on the numeric keypad. This provides a way of distinguishing such keys. See the

yL KEY_LOCATION constants in the documentation. The keyTyped event always has a location of KEY_LOCATION_UNKNOWN.

oc

ati

on

. True (1) if the Alt key was held down during this event, false (0) otherwise.
alt
Do
wn

. True (1) if the Control key was held down during this event, false (0) otherwise.
co
ntr
ol

Do
wn

. True (1) if the Shift key was held down during this event, false (0) otherwise.
shi
ftD
own

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.

.source The component that fired this event.
.button The code for the button that caused this event to fire.

. The number of mouse clicks associated with this event.
clickCount

X The x-coordinate (with respect to the source component) of this mouse event.
y The y-coordinate (with respect to the source component) of this mouse event.

. Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is operating system dependent, which
popupTrig | is why this abstraction exists.
ger

.altDown True (1) if the Alt key was held down during this event, false (0) otherwise.
. True (1) if the Control key was held down during this event, false (0) otherwise.
controlDo

wn

.shiftbown | True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event.
.button The code for the button that caused this event to fire.

. The number of mouse clicks associated with this event.
clickCount

X The x-coordinate (with respect to the source component) of this mouse event.
y The y-coordinate (with respect to the source component) of this mouse event.

. Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is operating system dependent, which
popupTrig ' is why this abstraction exists.

ger

.altDown True (1) if the Alt key was held down during this event, false (0) otherwise.

. True (1) if the Control key was held down during this event, false (0) otherwise.

controlDo
wn
.shiftDown | True (1) if the Shift key was held down during this event, false (0) otherwise.
This event fires when the mouse leaves the space over the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

. The number of mouse clicks associated with this event.
clickCount

X The x-coordinate (with respect to the source component) of this mouse event.
y The y-coordinate (with respect to the source component) of this mouse event.

. Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is operating system dependent, which
popupTrig is why this abstraction exists.

ger

.altDbown True (1) if the Alt key was held down during this event, false (0) otherwise.

. True (1) if the Control key was held down during this event, false (0) otherwise.

controlDo
wn

.shiftDown | True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event.
.button The code for the button that caused this event to fire.

. The number of mouse clicks associated with this event.
clickCount

X The x-coordinate (with respect to the source component) of this mouse event.
y The y-coordinate (with respect to the source component) of this mouse event.

. Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is operating system dependent, which
popupTrig ' is why this abstraction exists.
ger

.altbown True (1) if the Alt key was held down during this event, false (0) otherwise.
. True (1) if the Control key was held down during this event, false (0) otherwise.
controlDo

wn

.shiftDown | True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source

.button

clickCount
X

Y
popupTrig
ger
.altDown
controlDo
wn

.shiftDown

The component that fired this event.
The code for the button that caused this event to fire.

The number of mouse clicks associated with this event.

The x-coordinate (with respect to the source component) of this mouse event.

The y-coordinate (with respect to the source component) of this mouse event.

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is operating system dependent, which
is why this abstraction exists.

True (1) if the Alt key was held down during this event, false (0) otherwise.

True (1) if the Control key was held down during this event, false (0) otherwise.

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source

.button

clickCount
X

Yy
popupTrig
ger
.altDbown
controlDo
wn

.shiftDown

The component that fired this event.
The code for the button that caused this event to fire.

The number of mouse clicks associated with this event.

The x-coordinate (with respect to the source component) of this mouse event.

The y-coordinate (with respect to the source component) of this mouse event.

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is operating system dependent, which
is why this abstraction exists.

True (1) if the Alt key was held down during this event, false (0) otherwise.

True (1) if the Control key was held down during this event, false (0) otherwise.

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source

.button

clickCount
X

Yy
popupTrig
ger
.altbown
controlDo
wn

.shiftDown

The component that fired this event.
The code for the button that caused this event to fire.

The number of mouse clicks associated with this event.

The x-coordinate (with respect to the source component) of this mouse event.

The y-coordinate (with respect to the source component) of this mouse event.

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is operating system dependent, which
is why this abstraction exists.

True (1) if the Alt key was held down during this event, false (0) otherwise.

True (1) if the Control key was held down during this event, false (0) otherwise.

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

.source The component that fired this event.

. The new value that this property changed to.
newValue

.oldValue ' The value that this property was before it changed.
The name of the property that changed. NOTE: remember to always filter out these events for the property that you are looking

property | for! Components often have many properties that change.
Name

Examples

Code Snippet

#The following code will return the value of the slider's previous value into a variable.
#This code is fired on the property change scripting for this conponent.

ol dval ue = event. source. ol dval ue

Vertical Slider with Border and Blue Text

Slider
5 — 0
- a0
(P -
=100
- 140
- 200
- - 250
Property Name Value
Maximum Value 250

Minor Tick Spacing @ 25
Foreground Color 0,0,255

Major Tick Spacing = 50

Horizontal Slider without Tickmarks

L IF‘I 1
L J
0 100
Property Name Value
Paint Ticks? False

Minor Tick Spacing 0

Major Tick Spacing = 100

Language Selector

General

English [~]

Component Palette Icon:

@ Language Selector

Description

The Language Selector component gives an easy way to set the user's locale to control display of dates, times, numbers, and the language used
for translations.

Properties

2l Unknown macro: 'sgl’

Scripting

Scripting Functions

This component does not have scripting functions associated with it.Remove the panel below if there are no scripting functions.

Extension Functions

This component does not have scripting functions associated with it.

Event Handlers
This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.
2l uUnknown macro: 'sgl’
2 Unknown macro: 'sql'

This event fires when the mouse enters the space over the source component.

T2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sql'
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.
2l Unknown macro: 'sgl’
2l Unknown macro: 'sql'
Fires when the mouse moves over a component after a button has been pushed.
2l Unknown macro: 'sql'
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

T2l Unknown macro: 'sgl’

Customizers

This component does not have any custom properties.

Examples

Vertical Slider with Border and Blue Text

English IEl
English
espafiol

Property Name

No property changes made to this component for this example.

Buttons

Button

General

| BEutton

Component Palette Icon:

o | Buttan

Description

The Button component is a versatile component, often used for things like opening/closing windows, writing to tags, and triggering any sort of
scripting logic. It can be used for showing status, as well. For example, if you have three buttons, Hand, Off, and Auto, not only can they set those
modes, but their background color can display the current mode, although you'd be better off using the Multi-State Button for this.

To get buttons to do things, you add an event handler to the actionPerformed event. Many new users to the 1.0.0 module will configure an event
handler for the mouseClicked event instead. While this will work, it is better to use the actionPerformed event. Why? Buttons can also be activated

by tabbing over to them and hitting the space key, or they could be activated by pressing Alt and the button's mnemonic character. So, to make
sure that your button works in all of these cases, configure your event handler on the actionPerformed event, not the mouseClicked event.

Properties

2l Unknown macro: 'sql’

Scripting

Scripting Functions

This component does not have scripting functions associated with it.Remove the panel below if there are no scripting functions.

.doClick()

® Description
Virtually "clicks" the button, meaning that its actionPerformed event handler will run.
® Parameters
Nothing
® Return
Nothing
® Scope

Client

Event Handlers

2l uUnknown macro: 'sgl’

This event occurs when a component that can receive input, such as a text box, receives the input focus. This usually occurs when a user clicks
on the component or tabs over to it.
This event occurs when a component that can receive input, such as a text box, receives the input focus. This usually occurs when a user clicks

2l Unknown macro: 'sgl’
on the component or tabs over to it.

2l Unknown macro: 'sql'
This event occurs when a component that had the input focus lost it to another component.

An integer that indicates whether the state was changed to "Selected" (on) or "Deselected" (off). Compare this to the event object's constants to
2l Unknown macro: 'sgl’
determine what the new state is.
Fires when a key is released and the source component has the input focus. Works for all characters, including non-printable ones, such as
2l Unknown macro: 'sgl’
SHIFT and F3.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l Unknown macro: 'sql’

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.

2l Unknown macro: 'sql'

2 Unknown macro: 'sql'
This event fires when the mouse enters the space over the source component.

2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sgl’
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.

2 unknown macro: 'sql’

2l Unknown macro: 'sgl’
Fires when the mouse moves over a component after a button has been pushed.

2l uUnknown macro: 'sql’
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l Unknown macro: 'sql’

Customizers

This component does not have any custom properties.

Examples

Styled Button

w Press Me!

Property Name Value

Border Etched

Font Dialog, Bold, 18

Text Press Mel

Image Path Builtin/icons/48/check2.png

Styled Button

Property Name Value
Border No Border
Fill Area? False
Border Painted? False
Text None

Image Path Builtin/icons/48/stop.png

2 State Toggle

General

Component Palette Icon:

& 2-State Toggle

Description

This button is similar to the basic Toggle Button, but more finely tuned to work in realistic controls environments. Use this button any time you want
to toggle a value between two states, such as On/Off, Stop/Run, etc. If you have more than two states (for example, Hand/Off/Auto, use the Multi-
State Button).

If you have a tag whose value you want to toggle between 2 values (like zero and one), you can simply drag and drop the tag onto the button. This
will bind both the Control Value and Indicator Valueproperties to that tag. Now set the State 1 Value and State 2 Value to your two states (they
default to zero and one, respectively). Lastly, use the Styles Customizer to define the styles for your two states.

This button has four integer values that you use to set it up: the Control Value, the Indicator Value, and values that define the 2 different states: Sta
te 1 Value and State 2 Value. Every time you press the button, one of the state values is written to the control value. The Indicator Value is used to
determine which state you're in. For example, suppose that State 1 Value was zero and State 2 Value is one. If Indicator Value is zero and you
press the button, it'll write a one to the Control Value. The Style of the component is typically driven by the read-only property Current State.
Current State equals zero when Indicator Value=State 1 Value and one otherwise.

Properties

2l Unknown macro: 'sgl’

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have scripting functions associated with it.

Event Handlers

This event occurs when a component that can receive input, such as a text box, receives the input focus. This usually occurs when a user clicks

2l Unknown macro: 'sgl’
on the component or tabs over to it.

This event occurs when a component that can receive input, such as a text box, receives the input focus. This usually occurs when a user clicks

2l uUnknown macro: 'sgl’
on the component or tabs over to it.

2l Unknown macro: 'sql'
This event occurs when a component that had the input focus lost it to another component.

An integer that indicates whether the state was changed to "Selected" (on) or "Deselected" (off). Compare this to the event object's constants to

2l Unknown macro: 'sgl’
determine what the new state is.

Fires when a key is released and the source component has the input focus. Works for all characters, including non-printable ones, such as

2l Unknown macro: 'sql’
SHIFT and F3.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l Unknown macro: 'sql'

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.

T2l Unknown macro: 'sgl’
2l Unknown macro: 'sql'
This event fires when the mouse enters the space over the source component.

2l unknown macro: 'sgl’
This event fires when the mouse leaves the space over the source component.

2 unknown macro: 'sql’
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.
2l Unknown macro: 'sql'
2l Unknown macro: 'sql’
Fires when the mouse moves over a component after a button has been pushed.
2l Unknown macro: 'sql’
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2 unknown macro: 'sql’

Customizers

This component does not have any custom properties.

Examples

Vertical Slider with Border and Blue Text

STARTING

Property Name Dataset

Styles state | animationlndesx |animati0nDurati...| text | huttonBG | foreground |
o 0 &0 OFF . - ©
1 o 500N e ¢ I ©
3 1] A0|STARTING ~ © I ¢

Multi-State Button

General
Hand ‘
Auto ‘

Component Palette Icon:

| Multi-State Button

Description

This button is really a series of two or more buttons, arranged in a column, row, or grid. Each button represents an integer-valued state. Each state
defines two styles for a button: the selected style, and the unselected style. Each button is automatically displayed with the correct style based on
the current state (the value of Indicator Value). When a button is pressed then released, its state's value is written to the Control Value.

To configure a Multi-State Button, simply drag a tag that represents your state onto the Multi-State Button. This will bind both the Control Value
and Indicator Value to that tag. Now open up the Multi-State Button customizer, and define your states: their order, values and styles. Lastly
choose if you want the buttons to be a column, row, or grid by setting the Display Style property.

Properties

2l Unknown macro: 'sql'

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have scripting functions associated with it.

Event Handlers

An integer that indicates whether the state was changed to "Selected" (on) or "Deselected" (off). Compare this to the event object's constants to

T2l Unknown macro: 'sql’
determine what the new state is.

Fires when a key is released and the source component has the input focus. Works for all characters, including non-printable ones, such as

2l uUnknown macro: 'sgl’
SHIFT and F3.

Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l Unknown macro: 'sql’

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.

2 unknown macro: 'sql’

2 Unknown macro: ‘sql'
This event fires when the mouse enters the space over the source component.

2l Unknown macro: 'sgl’
This event fires when the mouse leaves the space over the source component.

2l uUnknown macro: 'sgl’
This event fires when a mouse button is pressed down on the source component.

This event fires when a mouse button is released, if that mouse button's press happened over this component.
2l Unknown macro: 'sql’

2l uUnknown macro: 'sql’
Fires when the mouse moves over a component after a button has been pushed.

2l Unknown macro: 'sgl’
Fires when the mouse moves over a component, but no buttons are pushed.

Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l Unknown macro: 'sgl’

Customizers

The multi-state button customizer provides a way to edit the states dataset in the component's property.

Multi-5tate Button Customizer 28
Preview
Hand
Auto
Edit
States Selected Style Unselected Style
2 * Text Text
a ® Hand | |Hang |
1 ﬁ Background Calar Background Calar
= ~ @ ~ @
b Foreground Color Foreground Color
I © B ©
Border Border
[Bevel {anereﬂ@ _| Bevel (Raised) EDJ
lmage Path lmage Fath
| Q| || Q
| (8] I | Zancel

Examples

Stylized Multi-State Button

Starved

Running

Blocked

Unscheduled

Maintenance

Cleaning

Changeowver

Setup

Property Name
Display Style

Styles

Value

Grid

valug

selectedText | unselectedTen | selectedBackar.

Dowin Down I ©
1 Running Running - ©
2 Blocked Blocked I ¢
3 Starved Starved > ©
4Unscheduled Unscheduled IS @
SMaintenance |Maintenance ~ ©
6 Cleaning Cleaning > ®
7|Changeover Changeaver -~ @
8/Setup Setup . ¢

-

44444404

unselectedBack. [selectedF oreuro.|unselectedF ore..

) Ibarder(nevel;1)
@ horderirevel;1)
@ worder(oevel;1)
@ border(revel;1)
@ norderevel;1)
@ horder(hevel;1)
@ horderirevel;1)
@ worder(oevel;1)
@ norder(hevel1)

8960888869
996880988

border{bevel .0}
horderthesel,0)
border(hevel .0}
horder(hevel,0)
borderthevel0)
border{bevel .0}
horderthesel,0)
border(hevel .0}
border(bevel.0)

Builtinficons/32/
Builtinficons/aa)
Builtinficons/332/
Builtinficons/32/.
Builtinicons/az)
Builtinficons/32/
Builtinficons/aa)
Builtinficons/332/
Builtinficons/32/

One-Shot Button

General

One-Shot Button ‘

Component Palette Icon:

One-Shot Button

Description

The One-Shot button is great for telling a PLC to do something. It simply writes a value, and then waits for it to be reset by the PLC before it is
available again. Note that this is only applicable when the PLC is programmed to reset the value after reading it. If your PLC expects the HMI to
reset the bit, use the Momentary Button. Also note that this component is considered safer than the momentary button, because it receives positive
feedback from the PLC that the signal was received, avoiding the timing dangers associated with a Momentary Button.

To use the One-Shot button, bind an OPC tag bidirectionally to the button's Value property. When clicked, the button will write the value in its Set
Value property to the Value property. Typically, Set Value is 1, and Value is 0 in a ready state, although the logic could be reversed or change

simply by altering Set Value. The button can disable itself when it is writing, and will display different text. Note that the button considers itself to be
writing whenever Value equals Set Value - you must make sure that the PLC resets this value, otherwise the button will remain in a writing state.

Properties

T2l Unknown macro: 'sql’

Scripting

Scripting Functions

This component does not have scripting functions associated with it.Remove the panel below if there are no scripting functions.

Extension Functions

This component does not have scripting functions associated with it.
Event Handlers

This event occurs when a component that can receive input, such as a text box, receives the input focus. This usually occurs when a user clicks

2l Unknown macro: 'sgl’
on the component or tabs over to it.

2l Unknown macro: 'sql'
This event occurs when a component that had the input focus lost it to another component.

An integer that indicates whether the state was changed to "Selected" (on) or "Deselected" (off). Compare this to the event object's constants to

2l Unknown macro: 'sgl’
determine what the new state is.

Fires when a key is released and the source component has the input focus. Works for all characters, including non-printable ones, such as
2l Unknown macro: 'sgl’

SHIFT and F3.

Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l Unknown macro: 'sql’

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.

2l Unknown macro: 'sql'
2 Unknown macro: 'sql'
This event fires when the mouse enters the space over the source component.

2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sgl’
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.

2 unknown macro: 'sql’

2l Unknown macro: 'sgl’
Fires when the mouse moves over a component after a button has been pushed.

2l uUnknown macro: 'sql’
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l Unknown macro: 'sql’

Customizers

This component does not have any custom properties.

Examples

One Shot Button

Start Motor

A One-Shot button,
waiting to be pressed

Starting...

A One-Shot button,
waiting for a PLC reset

Momentary Button

General

Momentary Buttan

Component Palette Icon:

4 Momentary Button

Description

Momentary buttons are used to set a value for either a fixed amount of time, or however long the
button remains held down, whichever is longer. Once the button is released, or the minimum time
expires, the value is reset.

The momentary button uses its Control Value property to affect the underlying data. Typically, this
property uses a bidirectional tag binding to an OPC tag. When pressed, it will write its On Value toCont
rol Value. When released, it will either write Off Value to Control Value immediately, or wait until On
Time has elapsed (since the pressed event).

The button's Indicator Value, which is typically bound to the same OPC tag as Control Value, is used
to draw an "active" indication border around the button. This gives the operator positive feedback that

the value has written successfully. It also lets an operator at one terminal know if an operator at a
different terminal is using the button currently.

Properties

2l Unknown macro: 'sql'

@ Note that you may want to

use the Oneshot Button inste
ad of the Momentary Button
if you simply need to send a
signal to a PLC, and the
PLC is able to reset the
value. This lets the PLC
reset the value, avoiding the
potential for the bit to be left
high. This is possible with
the Momentary Button if, for
example, the power to the
client was cut while the
button was held down.

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have scripting functions associated with it.
Event Handlers

This event occurs when a component that can receive input, such as a text box, receives the input focus. This usually occurs when a user clicks

2l Unknown macro: 'sgl’
on the component or tabs over to it.

2l Unknown macro: 'sql'
This event occurs when a component that had the input focus lost it to another component.

An integer that indicates whether the state was changed to "Selected" (on) or "Deselected" (off). Compare this to the event object's constants to

2l Unknown macro: 'sgl’
determine what the new state is.

Fires when a key is released and the source component has the input focus. Works for all characters, including non-printable ones, such as
2l Unknown macro: 'sgl’

SHIFT and F3.

Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l Unknown macro: 'sql’

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.

2l Unknown macro: 'sql'
2 Unknown macro: 'sql'
This event fires when the mouse enters the space over the source component.

2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sgl’
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.

2 unknown macro: 'sql’

2l Unknown macro: 'sgl’
Fires when the mouse moves over a component after a button has been pushed.

2l uUnknown macro: 'sql’
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l Unknown macro: 'sql’

Customizers

This component does not have any custom properties.

Examples

Vertical Slider with Border and Blue Text

START l START I

Activated Momentary

Momentary Button Button

waiting to be pressed

Toggle Button

General

‘ Toggle Button ‘

Component Palette Icon:

o Toggle Button

Description

The toggle button represents a bit: on (selected) or off (not selected). Visually the button looks down or depressed when it is selected, and up when
it is not selected. Logically, this component is very similar to the Check Box component. Note that for implementing a controls screen, the 2 State
Toggle is usually more appropriate than this component.

Properties

2l unknown macro: 'sgl’

https://support.inductiveautomation.com/usermanuals/ignition/buttons_pmi2statebutton.htm
https://support.inductiveautomation.com/usermanuals/ignition/buttons_pmi2statebutton.htm

Scripting

Scripting Functions

This component does not have scripting functions associated with it.Remove the panel below if there are no scripting functions.

Extension Functions

This component does not have scripting functions associated with it.

Event Handlers

This event occurs when a component that can receive input, such as a text box, receives the input focus. This usually occurs when a user clicks

2l Unknown macro: 'sgl’
on the component or tabs over to it.

2l Unknown macro: 'sql'
This event occurs when a component that had the input focus lost it to another component.

An integer that indicates whether the state was changed to "Selected" (on) or "Deselected" (off). Compare this to the event object's constants to

2l Unknown macro: 'sgl’
determine what the new state is.

Fires when a key is released and the source component has the input focus. Works for all characters, including non-printable ones, such as
2l Unknown macro: 'sgl’

SHIFT and F3.

Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l Unknown macro: 'sql’

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.

2l Unknown macro: 'sql'
2 Unknown macro: 'sql'
This event fires when the mouse enters the space over the source component.

2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sgl’
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.

2 unknown macro: 'sql’

2l Unknown macro: 'sgl’
Fires when the mouse moves over a component after a button has been pushed.

2l uUnknown macro: 'sql’
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l Unknown macro: 'sql’

Customizers

This component does not have any custom properties.

Examples

l Toggle Me l

Check Box

General

[check Box

Component Palette Icon:

#= Check Box

Description

A CheckBox is a familiar component that represents a bit - it is either on (selected) or off (not selected). It is functionally equivalent to the Toggle
Button component.

Properties

2l Unknown macro: 'sql'

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have scripting functions associated with it.
Event Handlers

This event occurs when a component that can receive input, such as a text box, receives the input focus. This usually occurs when a user clicks

2l Unknown macro: 'sgl’
on the component or tabs over to it.

2l Unknown macro: 'sql'
This event occurs when a component that had the input focus lost it to another component.

An integer that indicates whether the state was changed to "Selected" (on) or "Deselected" (off). Compare this to the event object's constants to

2l Unknown macro: 'sgl’
determine what the new state is.

Fires when a key is released and the source component has the input focus. Works for all characters, including non-printable ones, such as
2l Unknown macro: 'sgl’

SHIFT and F3.

Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l Unknown macro: 'sql’

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.

2l Unknown macro: 'sql'
2 Unknown macro: 'sql'
This event fires when the mouse enters the space over the source component.

2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sgl’
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.

2 unknown macro: 'sql’

2l Unknown macro: 'sgl’
Fires when the mouse moves over a component after a button has been pushed.

2l uUnknown macro: 'sql’
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l Unknown macro: 'sql’

Customizers

This component does not have any custom properties.

Examples

[] Show Defective
[Show Narmal
] Sort By Shift

Radio Button

General

() Radio Buttan

Component Palette Icon:

#= Radio Buttan

Description

The radio button is similar to the CheckBox component, except for one special property. All radio buttons in the same Container (including the Root
Container) will automatically be mutually exclusive. This means that only one radio button can be selected at a time. Radio buttons are a good way
to let the user choose just one of a number of options. Dropdown Lists are another good way to do this.

Properties

T2l Unknown macro: 'sql’

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have scripting functions associated with it.
Event Handlers

This event occurs when a component that can receive input, such as a text box, receives the input focus. This usually occurs when a user clicks

2l Unknown macro: 'sgl’
on the component or tabs over to it.

2l Unknown macro: 'sql'
This event occurs when a component that had the input focus lost it to another component.

An integer that indicates whether the state was changed to "Selected" (on) or "Deselected" (off). Compare this to the event object's constants to

2l Unknown macro: 'sgl’
determine what the new state is.

Fires when a key is released and the source component has the input focus. Works for all characters, including non-printable ones, such as
2l Unknown macro: 'sgl’

SHIFT and F3.

Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l Unknown macro: 'sql’

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.

2l Unknown macro: 'sql'
2 Unknown macro: 'sql'
This event fires when the mouse enters the space over the source component.

2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sgl’
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.

2 unknown macro: 'sql’

2l Unknown macro: 'sgl’
Fires when the mouse moves over a component after a button has been pushed.

2l uUnknown macro: 'sql’
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l Unknown macro: 'sql’

Customizers

This component does not have any custom properties.

Examples

Vertical Slider with Border and Blue Text

Selection
() Radio Buttan
() Radio Buttan

(@ Radio Buttan

Radio buttons inside a container will be exclusive therefore selecting one radio button will de-select the other radio buttons.

Tab Strip

General

I w2 [Tan3

Component Palette Icon:

= Tab Strip

Description

In general, a tab strip is just a single-selection multiple choice component. In practice it is used anywhere that a user needs to be able to select
between multiple windows or screens. It is most commonly used in a docked window to provide automatic window navigation. To support this
typical use-case, the tab strip has two navigation modes:

1. Swap to Window. (default) The tab strip will automatically call system.nav.swapTo() with the name of the selected tab. This facilitates
very easy navigation for most common projects.

2. Disabled. The tab strip doesn't do anything when the tab selection changes. Users can implement their own via property bindings or by
responding to the propertyChange scripting event.

The tab strips visual style is highly customizable. There are different rendering styles, and things such as fonts, colors, line thicknesses, hover
colors, and gradients are customizable within each rendering style. Use the Tab Strip's customizer to come up with a style that suits your project,
as well as to manage the tabs that are present. The tabs and their styles are all stored in a dataset property (called Tab Data), so they can be
modified at runtime as well.

Properties

2l Unknown macro: 'sql'

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have scripting functions associated with it.

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.

2l uUnknown macro: 'sgl’
2 Unknown macro: 'sql'
This event fires when the mouse enters the space over the source component.

T2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sql'
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.

2l Unknown macro: 'sgl’

2l Unknown macro: 'sql'
Fires when the mouse moves over a component after a button has been pushed.
2l Unknown macro: 'sql'

Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

T2l Unknown macro: 'sgl’

Customizers

This component has a customizer that allows you to change its appearance. The result of these changes are available in the Tab Data dataset
property.

Tab Strip Customizer @
Properties Preview
Drientatian General Wheh Selected When Unselacted
[Lert E“ Tab 1 Tah Narme Background Colar Background Colar
Navigation Mode Tah 1 E _ @ >~ @
‘@ Swap Windows E“ Display Mame Foreground Color Fareground Color
-o N e
‘AUlUma“C E“ Mouseover Text Font Font
Style Tab 2 \ | [Dialog | | Dialog |
‘Fancy E“ Haover Calor Gradient Start Color Gradient Start Color
| ©addTab | |63 Remove Tan| - @ L ®
Gradient End Color Gradient End Color

‘ <= Move Left J | =) Move Right I pu P

Tab 3 - -

[Juse Gradient & Use Gradient
Intertab Space Text Padding Tab lcan Tab Icon
‘ 1] | i [EanTabicon | | EsitTablcan
Rounding Radius
F—
| of mooyToan |
ok J ‘ Cancel
= =

Examples

Vertical Slider with Border and Blue Text

Tab 2

Tab 3

Property Name Value
Renderer Fancy
Orientation Left

Tab Data Dataset customized with the tab strip customizer.

Display

Label

General

Label

Component Palette Icon:

ket | abel

Description

The Label is one of the most versatile components. It can display text, images, or both. Its text can be HTML formatted (like most components). It
can even be made to respond to user interaction through its events.

Labels are one of the most common components that you will want to add dynamic properties to. For instance, you can put an integer dynamic
property "state" on a label, and then bind the text to be "On" when the state=1 and "Off" otherwise, using an expression binding. Bind the
background color to be red when the state is 0, and green when the state is 1 using a property binding. Now you have a re-usable binary state
indicator. While you could have used the Multi-State Indicator to achieve the same effect, the exercise is good practice for creating custom
components. You can see how the flexibility of bindings and dynamic properties make the Label extremely versatile.

Properties

2l Unknown macro: 'sgl’

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have scripting functions associated with it.

Event Handlers
This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.
2l uUnknown macro: 'sgl’
2 Unknown macro: 'sql'

This event fires when the mouse enters the space over the source component.

T2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sql'
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.
2l Unknown macro: 'sgl’
2l Unknown macro: 'sql'
Fires when the mouse moves over a component after a button has been pushed.
2l Unknown macro: 'sql'
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

T2l Unknown macro: 'sgl’

Customizers

This component does not have any custom properties.

Examples

Stylized Label Inside a Popup Window

Procedure 10a:
React to a Reactor Shutdown.

1. Inspect cameras for potential safety incident.
2. Contact Superisor and Floor Coardinatar.
3. Continue to Sub Process 1a: Reactor Reset.

Property Name Value

Image Path Builtin/icons/48/edit.png

Text <htmlI><p><center><h2>Procedure 10a:

React to a Reactor Shutdown.</h2></center></p>

Inspect cameras for potential safety incident.
Contact Supervisor and Floor Coordinator.
Continue to Sub Process la: Reactor Reset.

</htmI>

Numeric Label

General

0

Component Palette Icon:

wa Mumeric Label

Description

This component is a specialized label designed to display a number. It can include units, and has an integrated number format string. By default
the number is displayed bold and the units are not. This can be customized, see the Prefix and Suffix expert properties. This label's text is
constructed as follows:

Prefix + numberFormat(Value, Pattern) + Suffix + Units

It is important to note that you could customize the standard Label component using custom properties and bindings to mimic this component
exactly. If this component doesn't do something that you need, you can make your own numeric label and use it everywhere in your project.

Properties

2l Unknown macro: 'sql’

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have scripting functions associated with it.

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.

2l uUnknown macro: 'sgl’

2 Unknown macro: 'sql'
This event fires when the mouse enters the space over the source component.

T2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sql'
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.

2l Unknown macro: 'sgl’

2l Unknown macro: 'sql'
Fires when the mouse moves over a component after a button has been pushed.

2l Unknown macro: 'sql'
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

T2l Unknown macro: 'sgl’

Customizers

This component does not have any custom properties.

Examples

Numeric label with red background and percent sign

Property Name Value
Units %

Background Color = 255,0,0

Multi-State Indicator

General

Off

Component Palette Icon:

E=E Multi-State Indicator

Description

This component is a specialized label used to display a discrete state. The state must be represented by an integer, but the values and number of
different states is customizable. Use the component's styles customizer to configure the different states.

Properties

The component's properties are populated from a sql query. The following properties are from the Alarm Status Table. Change this to the correct

2 Unknown macro: 'sql'
component.

Scripting

Scripting Functions

This component does not have scripting functions associated with it.Remove the panel below if there are no scripting functions.

Extension Functions

This component does not have scripting functions associated with it.

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.

2l uUnknown macro: 'sgl’

2 Unknown macro: 'sql'
This event fires when the mouse enters the space over the source component.

T2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sql'
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.

2l Unknown macro: 'sgl’
2l Unknown macro: 'sql'
Fires when the mouse moves over a component after a button has been pushed.
2l Unknown macro: 'sql'
Fires when the mouse moves over a component, but no buttons are pushed.

Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

T2l Unknown macro: 'sgl’

Customizers

This component does not have a customizer however this component relies on custom styles. The example below has the styles defined here:

R e
./ Style for Multi-State Indicator 2%
Driving Property Styled Properties
Drata Guality Hwailahle Properties: Used Properies:
Irmage Path Antialias 4 Backoround Colar
State Cursor Border
et Data Quality | — |Foreground Color
Misible Dizahled Image Path |3| Text
Enabled =
Font o
Haorizontal Alignment
Warizantal Tavt Bocitineg b

Styles
Value Preview

2 Manual

-

x XK RXX

€| K|«

I [RIIE

Lo]is l I Cancel]

Examples

Vertical Slider with Border and Blue Text

Property Name Value

Styles As defined by the style customizer.

LED Display

General

Component Palette Icon:

EE | ED Display

Description

The LED display is a stylized numeric or alphanumeric label. It has three different visual styles which all correspond to a kind of physical display: 7-
segment, 14-segment, and 5x7 matrix. By default this component is in numeric mode, which means you should use its Value property. If you need
to display characters as well, switch the mode to alphanumeric, and use the Text property.

Properties

2l Unknown macro: 'sql'

Scripting

Scripting Functions

This component does not have scripting functions associated with it.Remove the panel below if there are no scripting functions.

Extension Functions

This component does not have scripting functions associated with it.

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.

2l uUnknown macro: 'sgl’

2 Unknown macro: 'sql'
This event fires when the mouse enters the space over the source component.

T2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sql'
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.

2l Unknown macro: 'sgl’

2l Unknown macro: 'sql'
Fires when the mouse moves over a component after a button has been pushed.

2l Unknown macro: 'sql'
Fires when the mouse moves over a component, but no buttons are pushed.

Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

T2l Unknown macro: 'sgl’

Customizers

This component does not have any custom properties.

Examples

Custom LED Component

Property Name Value
Mode Alphanumeric
Text ERR-28
Background Color = 0,0,0
LED Lit 255,0,0

LED Unlit 0,0,0

Custom LED Component

Property Name Value
Mode Alphanumeric
Text Hello World

Horizontal Alignment | Center

Custom LED Component

85403 LS

Property Name Value

Border Line Border
Mode Alphanumeric
Text 852.23 Ibs
Style 7 Segment

Background Color = 255,255,255
LED Lit 0,0,0

LED Unlit 255,255,255

Custom LED Component

Property Name Value

Style 5x7 Matrix

Background Color = 64,64,64

Moving Analog Indicator.

General

>

Component Palette Icon:

|*|] Maoving Analog Indicator

Description

The moving analog indicator is a component that displays an analog value in context with other information about that value. The current value is
shown as an arrow pointing at a bar with segments showing the desired operating range, low and high alarm ranges, and interlock ranges.

This component allows for extremely fast information delivery: at a glance it is obvious to an operator whether or not the value is where it should
be, or if it needs attention. If the value is in one of its alarm ranges, then that range changes color to get attention.

To switch this component between a horizontal vs vertical orientation, simply change the size so that it is either wide or tall, respectively. Typical
setup of this component involves setting the ranges, and binding the Process Value property to a tag's value. Some properties may be cleared out
(null value) in order to disable them. For example, you may indicate where the current setpoint is by setting the Setpoint Value property. If you don't
want to display the setpoint, simply clear this value out.

Properties

2l Unknown macro: 'sql’

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have scripting functions associated with it.

Event Handlers
This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.
2l uUnknown macro: 'sgl’
2 Unknown macro: 'sql'

This event fires when the mouse enters the space over the source component.

T2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sql'
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.
2l Unknown macro: 'sgl’
2l Unknown macro: 'sql'
Fires when the mouse moves over a component after a button has been pushed.
2l Unknown macro: 'sql'
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

T2l Unknown macro: 'sgl’

Customizers

This component does not have any custom properties.

Examples

Moving Analog Indicator Expanded Horizontally

v

Property Name Value

None n/a

Stylized Moving Analog Indicator

<

20

Property Name Value
Show Value True
Reverse Indicator = True

Stroke Width 0.0

Image

General

s %

=
-
iy

-
a

- --g-

Component Palette Icon:

| Image

Description

The image component is a deceptively powerful component. While you can use other components, like the Label, to display images as well, this
component gives you much more flexibility. In particular, this component has 4 important features for displaying images:

. Scaling

Rotation - Rotate to create spinning animations by binding to a timer component.

. Color Tinting - Dynamically apply a color tint to an image to allow it to display real-time status

. Color Swapping - Color swapping to change one specific color in an image to another in real time.

FNFANNIE

To choose an image, simply press the browse button () next to this component's Image Path property. You can drag new images (*.png, *.gif,
*jpg, *.bmp) into the Image Management window to upload them.

Images are stored on the Gateway, not in your window or project. This means that you can alter an image globally, and it will affect all windows
in all projects. It also means that you must be careful to migrate custom images if you do project backups (as opposed to Gateway backups, which
will automatically include both projects and images)

Properties

2l Unknown macro: 'sgl’

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have scripting functions associated with it.

Event Handlers
This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.
2l uUnknown macro: 'sgl’
2 Unknown macro: 'sql'

This event fires when the mouse enters the space over the source component.

T2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sql'
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.
2l Unknown macro: 'sgl’
2l Unknown macro: 'sql'
Fires when the mouse moves over a component after a button has been pushed.
2l Unknown macro: 'sql'
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

T2l Unknown macro: 'sgl’

Customizers

This component does not have any custom properties.

Examples

Vertical Slider with Border and Blue Text

Property Name

Value

Image Path

Builtin/Air Flow/Air Flow 9.png

Progress Bar

General

Component Palette Icon:

== Progress Bar

Description

Visually indicates the progress of some task. Can be used to display any value that has an upper and lower bound.

Properties

2l Unknown macro: 'sgl’

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have scripting functions associated with it.

Event Handlers
This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.
2l uUnknown macro: 'sgl’
2 Unknown macro: 'sql'

This event fires when the mouse enters the space over the source component.

T2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sql'
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.
2l Unknown macro: 'sgl’
2l Unknown macro: 'sql'
Fires when the mouse moves over a component after a button has been pushed.
2l Unknown macro: 'sql'
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

T2l Unknown macro: 'sgl’

Customizers

This component does not have any custom properties.

Examples

Vertical Slider with Border and Blue Text

Frogress

Property Name Value
Border Titled Border
Value 85
Foreground Color = 0,0,255

Horizontal? True

Gallery

Horizontal Slider without Tickmarks

FProgress

Property Name Value
Border Titled Border
Value 85
Foreground Color @ 0,0,255

Horizontal? False

Cylindrical Tank

General

Component Palette Icon:

B cylindrical Tank

Description

A component that looks like a 3D cylindrical tank, with some liquid inside. The liquid rises and falls as the Value property changes.

Properties

2l Unknown macro: 'sql'

Scripting

Scripting Functions

This component does not have scripting functions associated with it.Remove the panel below if there are no scripting functions.

Extension Functions

This component does not have scripting functions associated with it.

Event Handlers
This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.
2l uUnknown macro: 'sgl’
2 Unknown macro: 'sql'

This event fires when the mouse enters the space over the source component.

T2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sql'
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.
2l Unknown macro: 'sgl’
2l Unknown macro: 'sql'
Fires when the mouse moves over a component after a button has been pushed.
2l Unknown macro: 'sql'
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

T2l Unknown macro: 'sgl’

Customizers

This component does not have any custom properties.

Examples

Cylindrical Tank

Property Name Value
Value 800
Show Value True

Show Percentage @ False

Level Indicator

General

Component Palette Icon:

ks Level Indicator

Description

A component that looks like a 3D cylindrical tank, with some liquid inside. The liquid rises and falls as the Value property changes.

Properties

T2l Unknown macro: 'sql’

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have scripting functions associated with it.

Event Handlers
This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.
2l uUnknown macro: 'sgl’
2 Unknown macro: 'sql'

This event fires when the mouse enters the space over the source component.

T2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sql'
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.
2l Unknown macro: 'sgl’
2l Unknown macro: 'sql'
Fires when the mouse moves over a component after a button has been pushed.
2l Unknown macro: 'sql'
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

T2l Unknown macro: 'sgl’

Customizers

This component does not have any custom properties.

Examples

Level Indicator

Property Name

Border
Value

Units

Show Value
Gradient

Filled Color

Value

Line Border
75

Gallons
True

False

0,100,240

Linear Scale

General

Component Palette Icon:

3 Linear Scale

Description

The linear scale component has two main purposes. The first is to display a series of tick marks and labels that visually represent a linear range
between a minimum value and a maximum value. The second purpose is to display indicators that represent a value or range of values, correctly
positioned in on the linear scale. In the example above, two linear scales are used to flank a level indicator. The scale on the left has only tick
marks, and no indicators. The scale on the right is used to display three indicators and no tick marks.

To configure the indicators, you use the Linea Scale's "Scale Indicators" customizer. To configure the tick marks, you use the scale's various
properties that determine the minimum value, maximum value, and the various tick mark spans.

Properties

2l uUnknown macro: 'sql’

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have scripting functions associated with it.

Event Handlers
This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.
2l uUnknown macro: 'sgl’
2 Unknown macro: 'sql'

This event fires when the mouse enters the space over the source component.

T2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sql'
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.
2l Unknown macro: 'sgl’
2l Unknown macro: 'sql'
Fires when the mouse moves over a component after a button has been pushed.
2l Unknown macro: 'sql'
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

T2l Unknown macro: 'sgl’

Customizers

This component does not have any custom properties.

Examples

Vertical Slider with Border and Blue Text

100 —

High

75—
Feally High!

L i

25 —

Really Low!

Property Name Value
Indicators [Style [Valug [Extent | Length | width | Color | Label | LabelColor | Labelsngle |
Line 70 5 30 2 © Really High! I ¢ i
Line a5 5 30 2/ € High I ¢ i
Line 40 0 30 2/ @ Low I ¢ 0
Line 20 0 30 2 @ Really Low! | K 0

Barcode

General

Component Palette Icon:

|1} Barcode

Description

The barcode component displays some text as a barcode. The supported formats are:

Code 128

Code 39

Extended Code 39
Codabar
Interleaved Code 25
MSI

EAN-13

EAN-8

Aztec*

Data Matrix*
PDF-417*

QR Code*
UPC-A*

* Introduced in Ignition 7.8.0

Properties

T2l Unknown macro: 'sql’

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have scripting functions associated with it.

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.

2l uUnknown macro: 'sgl’

2 Unknown macro: 'sql'
This event fires when the mouse enters the space over the source component.

T2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sql'
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.

2l Unknown macro: 'sgl’

2l Unknown macro: 'sql'
Fires when the mouse moves over a component after a button has been pushed.

2l Unknown macro: 'sql'
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

T2l Unknown macro: 'sgl’

Customizers

This component does not have any custom properties.

Examples

Barcode

1234567849

Property Name Value
Code 123456789
Barcode Format Extended Code 39 (narrow)

Show Text? True

Meter

General

Component Palette Icon:

=3 Meter

Description

A meter display shows a value on a needle-gauge. The gauge's range can be broken up into five intervals. The intervals can have their own edge
and background colors.How the meter looks is affected by its appearance properties.

You can modify colors, thicknesses, start and extend angles, needle size, etc to get the meter that you want. For example, the meter on the far
right of the example has a Meter Angle Extent of 90°, a Meter Angle of 45°, a reversed range, and 2 intervals.

Properties

[l Unknown macro: 'sgl

Scripting

Scripting Functions

This component does not have scripting functions associated with it.Remove the panel below if there are no scripting functions.

Extension Functions

This component does not have scripting functions associated with it.

Event Handlers
This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.
2l uUnknown macro: 'sgl’
2 Unknown macro: 'sql'

This event fires when the mouse enters the space over the source component.

T2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sql'
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.

2l Unknown macro: 'sgl’

2l Unknown macro: 'sql'
Fires when the mouse moves over a component after a button has been pushed.

2l Unknown macro: 'sql'
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

T2l Unknown macro: 'sgl’

Customizers

This component does not have any custom properties.

Examples

Updated fonts

Property Name Value
Value 35
Unit m/s
Value Label Font ' Vijaya, Bold, 15

Tick Label Font Vijaya, Bold, 15

Chord Meter with modified value intervals

Property Name Value
Value 35
Units ‘None'
Arc Width 10

Meter Angle Extent = 220

Dial Shape Chord
Interval 1 High 40
Interval 2 Low 40

Interval 3 Low 70

Compass

General

Component Palette Icon:

%) Compass

Description

The compass is a component that displays up to three needles at once on a cardinal direction compass. This can be useful for plotting anything
that has a cardinal direction, such as the wind direction.

Each needle can be one of 9 different styles. Use the "Disabled" style to turn off any needle.

Properties

2l Unknown macro: 'sql'

Scripting

Scripting Functions

This component does not have scripting functions associated with it.Remove the panel below if there are no scripting functions.

Extension Functions

This component does not have scripting functions associated with it.

Event Handlers
This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.
2l uUnknown macro: 'sgl’
2 Unknown macro: 'sql'

This event fires when the mouse enters the space over the source component.

T2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sql'
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.
2l Unknown macro: 'sgl’
2l Unknown macro: 'sql'
Fires when the mouse moves over a component after a button has been pushed.
2l Unknown macro: 'sql'
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

T2l Unknown macro: 'sgl’

Customizers

This component does not have any custom properties.

Examples

Vertical Slider with Border and Blue Text

Property Name

Value 1
Value 1 Needle
Value 2
Value 2 Needle
Value 3

Value 3 Needle

Value

140
Arrow
90
Long
180

Plum

Thermometer

General

°C
7N
100 |
a0 |

&0 1

Component Palette Icon:

4 Thermometer

Description

This component displays a temperature value depicted as a level in a mercury thermometer. Three temperature intervals can optionally be defined
with their own colors. The mercury will change color based on the range that it is in.

Properties

2l Unknown macro: 'sgl’

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have scripting functions associated with it.

Event Handlers
This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.
2l uUnknown macro: 'sgl’
2 Unknown macro: 'sql'

This event fires when the mouse enters the space over the source component.

T2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sql'
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.
2l Unknown macro: 'sgl’
2l Unknown macro: 'sql'
Fires when the mouse moves over a component after a button has been pushed.
2l Unknown macro: 'sql'
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

T2l Unknown macro: 'sgl’

Customizers

This component does not have any custom properties.

Examples

Vertical Slider with Border and Blue Text

A

Property Name Value
Units Fahrenheit
Value 192

Use Range Color = True

Interval 1 Low 187
Interval 1 High 212
Interval 2 Low 0
Interval 2 High 187
Interval 3 Low 0

Interval 3 High 187

Document Viewer

General

Component Palette Icon:

=F Document Viewer

Description

The document viewer is capable of loading and displaying a document that is available over the network at a URL. It is capable of displaying
simple HTML and RTF documents. Although HTML links will be followed, it is not a fully functional interactive web browser. lts HTML support is
rudimentary at best, and there is no JavaScript support. See the system.net.openURL function for a more robust solution for launching webpages,
PDFs, etc.

This is component is useful for viewing machine manuals or operator protocol in HTML or RTF format. Note that in addition to HTML URLSs (like "htt
p://lwww.google.com"), you can load files as well using the URL format for files. Some examples:

* file://localhost/C:/myfolder/file.txt
® file://MyFileServer/resources/manuals/instructions.rtf

Properties

2l Unknown macro: 'sql'

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have scripting functions associated with it.

Event Handlers

This event occurs when a component that can receive input, such as a text box, receives the input focus. This usually occurs when a user clicks

2l Unknown macro: 'sgl’
on the component or tabs over to it.

2l Unknown macro: 'sql'
This event occurs when a component that had the input focus lost it to another component.

An integer that indicates whether the state was changed to "Selected" (on) or "Deselected" (off). Compare this to the event object's constants to

2l Unknown macro: 'sgl’
determine what the new state is.

An integer that indicates whether the state was changed to "Selected" (on) or "Deselected" (off). Compare this to the event object's constants to

2l Unknown macro: 'sgl’
determine what the new state is.

Fires when a key is released and the source component has the input focus. Works for all characters, including non-printable ones, such as

2l Unknown macro: 'sql’
SHIFT and F3.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l Unknown macro: 'sql'

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.

T2l Unknown macro: 'sgl’
2l Unknown macro: 'sql'
This event fires when the mouse enters the space over the source component.

2l unknown macro: 'sgl’
This event fires when the mouse leaves the space over the source component.

2 unknown macro: 'sql’
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.
2l Unknown macro: 'sql'
2l Unknown macro: 'sql’
Fires when the mouse moves over a component after a button has been pushed.
2l Unknown macro: 'sql’
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2 unknown macro: 'sql’

Customizers

This component does not have any custom properties.

Examples

Vertical Slider with Border and Blue Text

9.3.5 Bi-Plane Laminar Valve Exchange Procedure

Context

The bi-plane latninar valwe ensures proper flow of media into the discharge sector
Tools Reguired

1. Mone

Partz Required

1. Bi-Plane Latninar Valve
Estimated Time of Completion
1. 30 personminutes

Safety

1. Follow lockout procedures

2. Wear gloves

Procedure

1. Lockout the hi-plane laminar walve mfieed.

Property Name Value

Page URL http://localhost:8088/main/system/webdev/test/Procedures/example.html

IP Camera Viewer

General

Wideo URL not set,

Component Palette Icon:

T'!_'E, IP Camera Viewer

Description

The IP camera viewing component displays a video stream from a network camera directly in one of your windows. This can be a very powerful
tool for allowing operators to view remote or inaccessible locations. Cameras can provide positive feedback about the state and position of
machinery, weather, and other factors.
This component is capable of displaying two types of video:
®* MJPEG (a.k.a. Motion JPEG) is a streaming video protocol that compresses video frames using standard JPEG compression.
Compression rates are quite good, requiring low network bandwidth utilization. Framerates depend greatly on the dimensions of the video,
but typically range from 1-20 frames per second.
® JPEG stills is not a true video protocol, but is rather the practice of continually refreshing an image that a camera is constantly overwriting.

Its simplicity means that many cameras support it (usually along with another protocol). Frame rates are typically lower than MIPEG
because a new connection must be opened for each frame.

Most network cameras on the market support one, if not both of these protocols. Even better, if you have an existing CCTV camera system, video
server devices are available that CCTV camera inputs and provide MJPEG streams the network.

Finding the URL for your network camera's video stream is usually the only challenge in connecting this component. Most, if not all, network
cameras have an internal web server, allowing viewers to use web browsers to view their video stream. If you go to that webpage, and look at the
HTML source of the page, you should be able to find the URL of the MJPEG or JPEG still stream.

@ High Resolution Streams

When viewing a feed from a High Resolution camera, the Camera Buffer Size property may need to be increased to contain all of the
data from the stream.

Some examples:

Axis 2100 (MIPEG)

http://ip.address. here/ axi s-cgi/ njpg/ vi deo. cgi ?r esol uti on=640x480

Panasonic BL-C10A (MJPEG)

http://ip.address. here/ nphMti onJpeg?Resol uti on=640x480&Qual i t y=St andar d

StarDot Netcam (JPEG stills)

http://ip. address. here/ netcam j pg

Property Editor o B X

g o= =R R -

Marme IP Camers Viewer =
= Behavil

Use Authentication? []false

LIzername

Password

LIRL hitp:ifip.address herefnetcam jpog

Properties

T2l Unknown macro: 'sql’

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have scripting functions associated with it.

Event Handlers
This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.

2l Unknown macro: 'sgl’

2 Unknown macro: 'sql'
This event fires when the mouse enters the space over the source component.

2l Unknown macro: 'sgl’
This event fires when the mouse leaves the space over the source component.

T2l Unknown macro: 'sgl’
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.
2l uUnknown macro: 'sgl’
T2l Unknown macro: 'sql’
Fires when the mouse moves over a component after a button has been pushed.
2l Unknown macro: 'sql'
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l Unknown macro: 'sgl’

Customizers

This component does not have any custom properties.

Examples

IP Camera Viewer

Property Name Value

URL http://trackfield.webcam.oregonstate.edu/mjpg/video.mjpg

Tables

Table

General

{No Data)

Component Palette Icon:

[Table

Description

The Table component is very powerful and easy to configure. It is very flexible, allowing you to easily display your tabular data in a variety of ways.
Important features include:

Column Sorting. Your users can easily sort the data by clicking on the column headers. The sorting is a 3-mode sort: Ascending,
Descending, and "Natural", which uses the default order of the data.

Mapped Row Coloring. Map the background color of each row to a particular column. This allows you to give powerful visual indication of
different types of rows in you tables, such as differentiating between alarm states.

Column Translation. Allow the table component to handle all code mapping, such as mapping 0 to "Off" and 1 to "On". No fancy SQL
knowledge required.

Images. Map values to images, allowing intuitive visual cues.

Progress Bar Indication. Display numeric data as progress bars inside cells, providing fast visual reference for bounded amounts.
Number and Date formatting. Format numbers and dates to your exact specification.

Column Hiding. Hide columns from view that contain identifying data used by the row coloring or by other components.

Printing. Print tables directly to multi-paged printouts.

Editing. Columns can be made editable. Changes will be reflected in the underlying dataset, at which point they can be mapped back to a
database.

Basic Usage

The basic usage of the Table is to use a SQL Query binding on its Data property to let the table display data from a database. Often this query will
by dynamic or indirect. See the Property Binding section for more information.

Binding to Selected Data

It is common to want to bind other components to values in the selected row of the table. In order to do this safely, you need to write an expression
binding that protects against the case when nothing is selected or there are no rows. An expression like this would bind a label to the selected
row's value for a column named "ProductCode™:

Expression Binding

i f({Root Container. WTabl e. sel ectedRow} = -1,

"n/a", // this is the fail case

{Root Cont ai ner. WyTabl e. dat a} [{ Root Cont ai ner. MyTabl e. sel ect edRow} ,

" Product Code"]

If you're binding to an integer, date, or other non-String type value thats inside a dateset, you'll need to cast the value to the correct type to make
the expression parser happy. This binding would cast the selected "Quantity” column to an integer:

Expression Binding

i f({Root Container. WTabl e. sel ectedRow} = -1,
-1, // this is the fail case
tolnt ({Root Contai ner. MyTabl e. dat a} [{ Root Cont ai ner. MyTabl e. sel ect edRow},

"Quantity"])

Changing the Column Widths

To change a table's column's widths, simply switch into preview mode and use your mouse to resize the columns, and then switch back to design
mode. To insure that the changes to the column widths appear in the client, right-click on the table to open the table customizer and click OK
without clicking anywhere else in the customizer. Clicking anywhere else in the customizer before clicking OK will reset the table column widths.
Editable Table

By setting any column to editable in the Table's customizer, the user will be able to double-click in the cell and edit the data. You can the respond
to the resulting cellEdited event with an event handler and persist the data. See the Event Types section for more information.

Exporting to HTML

You can export the table to an HTML file that retain's the table's formatting. To do this, use a script like this: (more about the table's export HTML
function is here.)

Python Scripting

Cet a reference to the table
tabl e = event. source. parent. get Conponent (" Tabl e")

Pronmpt user to save the exported file
tabl e. export HTML("MW/Tabl e. ht i ", "M Tabl e Header", 500)

Exporting to CSV
You can export the table's raw data to a CSV file. To do this, use a script like this: (more about the fpmi.db.exportCSV function is here.)

Python Scripting

Cet a reference to the table
tabl e = event. source. parent. get Conponent (" Tabl e")
syst em dat aset . export CSV("nydata. csv", 1, table.data)

Printing

Printing a table is a snap! Simply use the table's built in print function like this: table = event.source.parent.getComponent("Table") # Get a
reference to the table table.print()

Python Scripting

tabl e = event. source. parent. get Conponent ("Tabl e") # Get a reference to the table table.print()

Properties

2l unknown macro: 'sgl’

Scripting

Scripting Functions

https://support.inductiveautomation.com/usermanuals/ignition/event_types.htm#cell

Description
Adds a new row to the end of the table's dataset
Parameters

PySequence newRow - A sequence containing the values for the new row. The length of the sequence must match the number of
columns in the table, and each value must be coercible into the correct datatype of the corresponding column.

Return
Nothing
Scope
Client
Description
Deletes a row from the table's dataset.
Parameters
int rowIndex - The index of the row to delete.
Return
Nothing
Scope
Client
Description
Prompts the user to save the table's data as a CSV file.
Parameters
String filename - A suggested filename for the user. For example: "table_data.csv"
boolean showHeaders - If true, include headers in CSV file.
Return
String - The path to the saved file, or null if the operation was cancelled.
Scope
Client
Description
Creates an HTML page as a string in memory. This can then be written to a file, a database, emailed, etc.
Parameters
String title - The title for the HTML page.
int width - The width (in pixels) for the "table" element in the resulting html page.
Return
String - A string containing an HTML-formatted version of the table's data.
Scope

Client

Description
Returns a list of ints that represent the underlying dataset's rows as they appear in the current sort order that the user is viewing.
Parameters
none
Return
List of Integers
Scope
Client
Description
Returns the index of the currently selected column, or -1 if none is selected.
Parameters
none
Return
int
Scope
Client
Description
Returns the number of columns that are currently selected.
Parameters
none
Return
int
Scope
Client
Description
Returns the index of the currently selected row, or -1 if none is selected.
Parameters
none
Return
int
Scope
Client
Description
Returns a list of the indexes of the selected row, or none if none is selected.
Parameters
none
Return
List, None
Scope

Client

Description
Returns the number of rows that are currently selected.
Parameters
none
Return
int
Scope
Client
Description
Tests whether the cell at the given row and column is currently selected or not.
Parameters
int row
int column
Return
boolean
Scope
Client
Description
Tests whether the given column is currently selected or not.
Parameters
int column
Return
boolean
Scope
Client
Description
Tests whether the given row is currently selected or not.
Parameters
int row
Return
boolean
Scope

Client

® Description
This specialized print function will paginate the table onto multiple pages.This function accepts keyword-style invocation.
® Keyword Args

fitwidth- If true, the table's width will be stretched to fit across one page's width. Rows will still paginate normally. If false, the table
will paginate columns onto extra pages. (default = true) [optional]

HeaderFormat- A string to use as the table's page header. The substring "{0}" will be replaced with the current page number.
(default = None) [optional]

footerFormat- A string to use as the table's page footer. The substring "{0}" will be replaced with the current page number. (default
= "Page {0}") [optional]

showDialog- Whether or not the print dialog should be shown to the user. Default is true. [optional]
landscape- Used to specify portrait (0) or landscape (1) mode. Default is portrait (0). [optional]
® Return
boolean- True if the print job was successful.
® Scope
Client
® Description
Used to set a column's header label to a new string at runtime.
® Parameters
int column
String label
® Return
nothing
® Scope
Client
® Description
Sets the given range of columns to be selected. If indexO==index1, it will select a single column.
® Parameters
int index0
int index1
® Return
boolean - True if selection range is valid.
® Scope
Client
® Description
Used to set a column's width at runtime.
® Parameters
int column
int width
® Return
nothing
® Scope

Client

Description

Sets the given range of rows to be selected. If index0O==index1, it will select a single row.
Parameters

int index0

int index1
Return

boolean - True if selection range is valid.
Scope

Client
Description

Sets the given column to be the selected column.
Parameters

int column
Return

nothing
Scope

Client
Description

Sets the given row to be the selected row.
Parameters

int row
Return

nothing
Scope

Client
Description

Sets the value in the specified cell, altering the table's Data property. Will fire a propertyChange event for the "data" property, as
well as a cellEdited event.

Parameters
int row - The index of the row to set the value at.
int column - The index or name of the column to set a value at.
PyObiject value - The new value to use at the given row/column location.
Return
nothing
Scope

Client

® Description

Instructs the table to sort the data by the named column.
® Parameters

String columnName
boolean asc - 1 means ascending, 0 means descending. (default = 1) [optional]

® Return

nothing
® Scope

Client
® Description

Instructs the table to clear any custom sort columns and display the data as it is sorted in the underlying dataset.
® Parameters

nothing
® Return

nothing
® Scope

Client
® Description

Updates an entire row of the table's dataset.
® Parameters

int rowIndex - The index of the row to update.

PyDictionary changes - A sequence containing the updated values for the row. The length of the sequence must match the
number of columns in the table, and each value must be coercible into the correct datatype of the corresponding column.

® Return
nothing
® Scope

Client

Extension Functions

Description

Called for each cell, returns the appropriate background color. Do not block, sleep, or execute any I/O; called on painting thread.
Parameters

Self- A reference to the component that is invoking this function.

row-The row index of the cell.

col-The column index of the cell.

isSelected: A boolean representing if the cell is currently selected.

value-The value in the table's dataset at index [row, col].

defaultColor-The color the table would have chosen if this function was not implemented.
Return

Color
Scope

Client
Description

Called for each cell, returns the appropriate foreground (text) color. Do not block, sleep, or execute any 1/O; called on painting
thread.

Parameters
Self- A reference to the component that is invoking this function.
row-The row index of the cell.
col-The column index of the cell.
isSelected: A boolean representing if the cell is currently selected.
value-The value in the table's dataset at index [row, col].
defaultColor-The color the table would have chosen if this function was not implemented.
Return
Color
Scope
Client
Description

Called for each cell, returns the appropriate foreground (text) color. Do not block, sleep, or execute any I/O; called on painting
thread.

Parameters

Self- A reference to the component that is invoking this function.

row-The row index of the cell.

col-The column index of the cell.

isSelected: A boolean representing if the cell is currently selected.

value-The value in the table's dataset at index [row, col].

defaultColor-The color the table would have chosen if this function was not implemented.
Return

Color
Scope

Client

Event Handlers

This event occurs when a component that can receive input, such as a text box, receives the input focus. This usually occurs when a user clicks

2l unknown macro: 'sgl’
on the component or tabs over to it.

This event occurs when a component that can receive input, such as a text box, receives the input focus. This usually occurs when a user clicks

2l Unknown macro: 'sgl’
on the component or tabs over to it.

2l uUnknown macro: 'sgl’
This event occurs when a component that had the input focus lost it to another component.
An integer that indicates whether the state was changed to "Selected" (on) or "Deselected" (off). Compare this to the event object's constants to
2l Unknown macro: 'sql'
determine what the new state is.
Fires when a key is released and the source component has the input focus. Works for all characters, including non-printable ones, such as
2l Unknown macro: 'sgl’
SHIFT and F3.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l uUnknown macro: 'sgl’

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.

2l Unknown macro: 'sql’

2 Unknown macro: ‘sql'
This event fires when the mouse enters the space over the source component.

2l Unknown macro: 'sgl’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sgl’
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.

2l uUnknown macro: 'sgl’

T2l Unknown macro: 'sql’
Fires when the mouse moves over a component after a button has been pushed.

T2l Unknown macro: 'sql’
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l Unknown macro: 'sgl’

Customizers

This component has a customizer to manage the column configurations and the background color mapping.

Examples

Code Snippet

#The following would add a row to the table.
#Note that this function takes a |ist
#And that the property types of the list are the sane as the table.

nane = "Mtor 1"
state = 2
anps = 35

list = [nane, state, anps]
tabl e = event. source. parent. get Conponent (' Tabl e')
tabl e. addRow(| i st)

Table Customizer

Column Configuration

Header - Provide a custom name to the column header.

Hide? - Hides the column

Editable - Allows the editing of the cell pertaining to the column.

Sortable - Allows the user to sort the table according to the selected column
Horiz Align - Aligns the contents of the column.

Vert Align - Aligns the contents of the column.

Hdr Horiz Align - Aligns the contents of the column.

Prefix - A custom text that proceeds the contents of each cell.

Suffix - A custom text that follows the contents of each cell.

Number Format - A format of the cell is the contents of the cell are number types.
Boolean? - Changes the contents of the cell to reflect a 'check box' look and feel.
Progress Bar? - A graphical bar is represented in the cell instead of a number.
Progress Bar Range - Sets the min and max range of the progress bar.

Hide Text Over P-Bar? - Makes the value and text that controls the progress bar visible or invisible.
P-Bar Color - The color of the progress bar.

P-Bar Background - The color of the cell that has a progress bar.

Translation List Column - This works in conjunction with the Translation List. The key is provided by a named column resulting in the cells being translated
according to the list that contains the key pairs.

Translation List - Defines the key/Translation pairs and translates the contents of the cell accordingly.

Image Path Column - This works in conjunction with the Image Path List. The key is provided by a named column resulting in the cells being translated
according to the list that contains the key pairs.

Image Path List - Defines the key/Translation pairs and translates the contents of the cell accordingly.

Background Color Column - This works in conjunction with the Background Color List. The key is provided by a named column resulting in the cells being
translated according to the list that contains the key pairs.

Background Color List - Defines the key/Translation pairs and translates the contents of the cell accordingly.

Foreground Color Column - This works in conjunction with the Foreground Color List. The key is provided by a named column resulting in the cells being
translated according to the list that contains the key pairs.

Foreground Color List - Defines the key/Translation pairs and translates the contents of the cell accordingly.

Font Map Column - This works in conjunction with the Foreground Color List. The key is provided by a named column resulting in the cells being
translated according to the list that contains the key pairs.

Font Map - Defines the key/Translation pairs and translates the contents of the cell accordingly. An example of a font translation could look like this
"Dialog, Bold, 12"

Background Color Mapping

By setting the table's Background property to ‘Mapped', you can choose a column to govern the background color of each row. The column is specified in
the Mapping Column dropdown selector. The column must be a numeric type.

The number to color translation works with the contents of the mapping column rows to format the cells in accordance with the selected color.

Power Table

General

‘| String Column FioatColumn ¥ Boolean Column Date Co
0EC44CCTO 074 0Oct5, 2015
0 41F485FF 08 oct5, 2015
1 DOES270 052 oct5, 2015
1 95058081 038 octs, 2015
1 E2830442 093 oct5, 2015
1 SEBT74CF 087 oct5, 2015
2 2567FD4A 087 oct5, 2015
373886102 088 oct5, 2015
3 F45F36T1 034 octs, 2015
3 802E7508 003 oct5, 2015
5 C1BADCF4 07
6 0ED022F5 077
6.A7B50520 098
6 DEEEDE4F 057
7 DIDBYEFE 1
8 3BE188EB 087
8 F6AG28D5 o
91011763F 087
9240C7789 038
928271738 0.44
9 DB2A2ECS 1
10 DBIDEBSF 088
11 2F25FDEF 080
11 E498FA42 055

Component Palette Icon:

Int Column

oct5, 2015
oct5, 2015
oct5, 2015
Oct5, 2015
oct5, 2015
octs, 2015
octs, 2015
oct5, 2015
Oct6, 2016
oct5, 2015
oct5, 2015
octs, 2015
oct5, 2015
0ct5, 2015

RONOEONEEONEEROORO0ORO®OO0O

[7] Power Table

Description

The power table is a much more customizable version of the table component, and has many more features. The power table contains advanced
features such as drag-and-drop rows, multi-column sorting, column filtering, and cell-spanning. Customization comes through extensive use of exte
nsion functions, which are available to configure how each cell of the table looks, how the headers look, etc.

Basic Usage

The basics are just like the classic table - you simply bind the table's "data" property to your data, most often by using a SQL query binding. Note
that many of the options built into the classic table have been moved to extension functions in the power table.

Power Table Features

® Multi-column sorting. To sort multiple columns, select the header of the first column, hold down the Control key, then select the header
of the next column. Click on the header again to reverse the sort order, and click a third time to remove sorting on the column.

® Column filtering. Columns can be temporarily hidden from view using column filtering. Right-click on the header of the table, and
uncheck columns that you would like to hide. You can disable this feature by disabling the Column Chooser Menu property on the table.

® Column reordering. You can switch the locations of columns on the table using column reordering. Drag the header of the column that
you would like to move to a new location on the table. You can disable this feature by disabling the Columns Re-Orderable property on
the table.

® Cell spanning. A cell can be spanned across multiple columns and rows. Keep in mind that you must explicitly define the locations of
cells that must be spanned. This means that if you would like to use cell spanning, any other table features that change how the table is
displayed will be disabled automatically (such as sorting, column filtering and column reordering). Click on the Cell Span Data dataset to
configure spanning. Within the dataset, add a row for each new span. The "row" column controls the row in the table where the span will
start. The "column" column controls the column where the span will start. The "width" column controls how many columns the span will
cover. The "height" column controls how many rows the span will cover. Adding a row where "row=4, column=1, width=2, height=3"
results in a span starting on the fifth row of the table and the second column (using 0-based indexing). The span will cover the second and
third columns in the row and will also cover two rows below the fifth row, as shown below.

® Drag and Drop. This feature allows you to drag rows from one power table to another power table. In order to perform drag and drop, you
must implement the onRowsDropped() extension function on the destination table. This is so that you can adapt the data from one table to
the other within the function. You must also enable the Row Dragging Enabled property on both tables.

Properties

2l Unknown macro: 'sgl’

Scripting

Scripting Functions

Description
Returns a list of ints representing the currently selected columns.
Parameters
none
Return
List of Integers
Scope
Client
Description
Returns a list of ints representing the currently selected rows.
Parameters
none
Return
List of Integers
Scope
Client
Description
This specialized print function will paginate the table onto multiple pages.This function accepts keyword-style invocation.
Keyword Args

fitwidth- If true, the table's width will be stretched to fit across one page's width. Rows will still paginate normally. If false, the table
will paginate columns onto extra pages. (default = true) [optional]

HeaderFormat- A string to use as the table's page header. The substring "{0}" will be replaced with the current page number.
(default = None) [optional]

footerFormat- A string to use as the table's page footer. The substring "{0}" will be replaced with the current page number. (default
= "Page {0}") [optional]

showDialog- Used to determine if the print dialog should be shown to the user. Default is true. [optional]
landscape- Used to specify portrait (0) or landscape (1) mode. Default is portrait (0). [optional]
Return
boolean- True if the print job was successful.
Scope
Client
Description
Used to set a column's width at runtime.
Parameters
int Column
int width
Return
Nothing
Scope

Client

Extension Functions

® Description
Provides a chance to configure the contents of each cell. Returns a dictionary of name-value pairs with the desired attributes.
Available attributes (and their Java types) include: 'background' (color), 'border' (border), font' (font), ‘foreground' (color),
‘horizontalAlignment' (int), 'iconPath’ (string), 'text’ (string), 'toolTipText' (string), 'verticalAlignment' (int).
® Parameters
self - A reference to the component that is invoking this function.
value - The value in the dataset at this cell.
selected - A boolean indicating whether this cell is currently selected.
rowlndex - The index of the row in the underlying dataset
colindex - The index of the column in the underlying dataset
colName - The name of the column in the underlying dataset
rowView - The index of the row, as it appears in the table view (affected by sorting)
colView - The index of the column, as it appears in the table view (affected by column re-arranging and hiding)
® Return
Dictionary of Attributes
® Scope
Client
® Description
Provides a change to configure how each column is edited. Returns a dictionary of name-value pairs with desired editor attributes.
Visual attributes to modify existing editors include: ‘background’, 'border’, ‘font', ‘foreground’, ‘horizontalAlignment', 'toolTipText',

and 'verticalAlignment'

If the attribute 'options' is specified, it is expected to be a list of tuples representing (value, label). The editor in this case will
become a dropdown list.

If the attribute 'editor' is specified, it is expected to be an instance of javax.swing.table. TableCellEditor, and other attribute will be
ignored.

® Parameters
self - A reference to the component that is invoking this function
colindex - The index of the column in the underlying dataset
colName - The name of the column in the underlying dataset

® Return
Dictionary of name value pairs

® Scope

Client

Description
Provides a chance to configure the style of each column header. Return a dictionary of name-value pairs with the designed
attributes. Availible attributes include: 'background’, 'border’, ‘font', 'foreground’, 'horizontalAlignment’, 'toolTipText',
‘verticalAlignment'
Parameters
self - A reference to the component that is invoking this function
colindex - The index of the column in the underlying dataset
colName - The name of the column in the underlying dataset
Return
Dictionary of name value pairs
Scope
Client

Description

Called when the window containing this table is opened, or the template containing it is loaded. Provides a change to initialize the
table further, for example, selecting a specific row.

Parameters
self - A reference to the component that is invoking this function

Return

Scope
Client
Description

Called when the user has edited a cell in the table. It is up to the implementation of this function to alter the underlying data that
drives the table. This might mean altering the dataset directly, or running a SQL UPDATE query to update data in the database.

Parameters
self - A reference to the component that is invoking this function
rowIndex - Index of the row that was edited, relative to the underlying dataset
colindex - Index of the column that was edited, relative to the underlying dataset
colName - Name of the column in the underlying dataset
oldValue - The old value at the location, before it was edited
newValue - The new value value input by the user
Return
Nothing
Scope

Client

® Description
Called when the user double-clicks on a table cell.
® Parameters
self - A reference to the component that is invoking this function
rowlndex - Index of the row, starting at O, relative to the underlying dataset
colindex - Index of the column starting at O, relative to the underlying dataset
value - The value at the location clicked on
event - The MouseEvent object that caused this double-click event
® Return
Nothing
® Scope
Client
® Description
Called when the user right-clicks on a table cell. This would be the appropriate time to create and display a popup menu.
® Parameters
self - A reference to the component that is invoking this function
rowlndex - Index of the row, starting at O, relative to the underlying dataset
colindex - Index of the column starting at O, relative to the underlying dataset
value - The value at the location clicked on
event - The MouseEvent object that caused this double-click event
® Return
Nothing
® Scope
Client
® Description

Called when the user has droppoed rows on this table. Note that the rows may have come from this table or another table. The
source table must have dragging enabled.

® Parameters
self - A reference to the component that is invoking this function
sourceTable - A reference to the table that the rows were dragged and dropped in the same table.
rows - An array of the rows indices that were dragged, in the order they were selected
rowData - A dataset containing the rows that were dragged
droplndexLocation - Row index where the rows were dropped
® Return
Nothing
® Scope

Client

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.

2l Unknown macro: 'sql'

2l Unknown macro: 'sql'
This event fires when the mouse enters the space over the source component.

2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sqg|
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.

2 unknown macro: 'sql’

2l Unknown macro: 'sgl’
Fires when the mouse moves over a component after a button has been pushed.

2l uUnknown macro: 'sql’
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l Unknown macro: 'sql’

Customizers

This component has a table customizer that allows customization of the individual columns including hiding columns, enabling editing, changing
format, etc. It is important to note that when editing cells directly in the Power Table, it doesn't modify the underlying Dataset. You can use the
onCellEdited extension function and uncomment the sample code to make table edits change the underlying Dataset, or even the original source of
data (ie: if using a SQL Query).

Examples

Code Snippet

#Exanpl e of an onRowsDropped() extension script for two power tables with identical colums:

def onRowsDropped(sel f, sourceTable, rows, rowbData, droplndexLocation):
if self I'= sourceTable:

dest Dat aset = sel f.getData()
pyRowDat a = syst em dat aset . t oPyDat aSet (r owDat a)
Loop thru all the rows that have been sel ected and dragged to the
destination table.
for row in pyRowDat a:

newRow = []

for colum in row

newRow. append(col um)

dest Dat aset = system dat aset. addRow dest Dat aset, dropl ndexLocati on, newRow)
Adds the rows to the destination table.
sel f. set Dat a(dest Dat aset)
Optional. Deletes the dragged rows fromthe source table.
sour ceDat aset = system dat aset . del et eRows(sourceTabl e. get Data(), rows)
sour ceTabl e. set Dat a(sour ceDat aset)

el se:

syst em gui . nressageBox (" Dropping on to sane table not supported")
To drop onto the sane table, the new row indices nust be cal cul ated
for both the dropped and del eted rows, taking changes into account.

Power Table Customizer

Column Configuration

Header - Provide a custom name to the column header.

Hide - Hides the column

Editable - Allows the editing of the cell pertaining to the column.

Sortable - Allows the user to sort the table according to the selected column
Filterable - Allows the user to filter the table according to the selected column
Horiz Align - Aligns the contents of the column.

Vert Align - Aligns the contents of the column.

Wrap Text? - The text will wrap if its contents are longer than the width of the cell.
Prefix - A custom text that proceeds the contents of each cell.

Suffix - A custom text that follows the contents of each cell.

Number Format - A format of the cell is the contents of the cell are number types.
Date Format - A format of the cell is the contents of the cell are date types.

Boolean - Changes the contents of the cell to reflect a ‘check box' look and feel.

List

General

Component Palette Icon:

ER List

Description

The List component displays a list of options, allowing freeform selection of the items. It is powered by a Dataset, from which it displays the first
column.

Properties

2l Unknown macro: 'sql'

Scripting
Scripting Functions

® Description
Adds the options at indexes start through end (inclusive) to the selected options.
® Parameters
int start - The first index (stating at 0) to add to the selection.
int end - The last index (stating at 0) to add to the selection.
® Return
Nothing
® Scope

Client

Description
Clears the current selection, making nothing selected.
Parameters
Nothing
Return
Nothing
Scope
Client
Description
Returns a list of the selected indices in increasing order. Returns an empty list if nothing is selected.
Parameters
Nothing
Return
List of Integers
Scope
Client
Description
Returns the currently selected value, or None if the selection is empty.
Parameters
Nothing
Return
Object
Scope
Client
Description
Returns a list of the currently selected values. Returns an empty list if the selection is empty.
Parameters
Nothing
Return
Object[]
Scope
Client
Description
Checks whether or not the given index is currently selected.
Parameters
int index
Return
boolean
Scope

Client

® Description
Checks to see if anything is selected in the list or not.
® Parameters
Nothing
® Return
boolean
® Scope
Client
® Description
Sets the currently selected value to the argument, if found in the list.
® Parameters
Object value
® Return
Nothing
® Scope

Client

Extension Functions

This component does not have scripting functions associated with it.

Event Handlers

This event occurs when a component that can receive input, such as a text box, receives the input focus. This usually occurs when a user clicks

2l unknown macro: 'sgl’
on the component or tabs over to it.

=2l Unknown macro: 'sql'
This event occurs when a component that had the input focus lost it to another component.

An integer that indicates whether the state was changed to "Selected" (on) or "Deselected" (off). Compare this to the event object's constants to
2l unknown macro: 'sgl’
determine what the new state is.
Fires when a key is released and the source component has the input focus. Works for all characters, including non-printable ones, such as
2l Unknown macro: 'sql'

SHIFT and F3.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l Unknown macro: 'sgl’

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.

2l uUnknown macro: 'sgl’

2 Unknown macro: 'sql'
This event fires when the mouse enters the space over the source component.

T2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sql'
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.

2l Unknown macro: 'sgl’

2l Unknown macro: 'sql'
Fires when the mouse moves over a component after a button has been pushed.

2l Unknown macro: 'sql'
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

T2l Unknown macro: 'sgl’

Customizers

This component does not have any custom properties.

Examples

Code Snippet

#The following code will print the selected value to the console when called on the 'nmoused icked event
handl er.

val ue = event. source. get Sel ect edVal ue()

print val ue

Tree View

General

+) East Area
[
+—[LJ West Area

Component Palette Icon:

%] Tree View

Description

The Tree View component can display any tree hierarchy. It is configured by filling in a dataset. Each row in the dataset will become a node in the
tree. Each node has a path, for example, "West Area/Process/Valvel" that determines its location in the tree. The Separation Character property
(by default it is forward-slash), dictates how the paths are broken up. Any missing folder nodes needed by a leaf node are created implicitly.

The other columns in the dataset besides "Path" are used to configure the look for the node, both when it is selected and when it is not. This
component recognizes the following column titles. The references to optional column titles means that a dataset does not need to have them
present in the dataset for the tree to render and function.

Path - the path determines the node's location. Broken up into a list by splitting on the separation character.

Text - the text of the node while not selected.

Icon - a path to an icon for the node. Use the value: "default" to use the tree automatic folder/leaf icons. [optional]

Background - a string column that will be coerced into a color for the unselected background. e.g. "white" or "(255,255,255)" Use an
empty string to use the default color.[optional]

Foreground - a string representation of the unselected foreground color. [optional]

Tooltip - if not empty, will be used as the tooltip for the node.[optional]

Border - a string that will be coerced into a Border for the node while unselected. May be empty.[optional]

SelectedText - the text of the node while selected.[optional]

Selectedlicon - a path to an icon for the node while selected. Use the value: "default” to use the tree automatic folder/leaf icons.[optional]
SelectedBackground - a string representation of the selected foreground color.[optional]

SelectedForeground - a string representation of the selected foreground color.[optional]

SelectedTooltip - if not empty, will be used as the tooltip for the node while selected.[optional]

SelectedBorder - a string that will be coerced into a Border for the node while selected. May be empty.[optional]

Below is an example configuration of the treeview's items property. Notice how not all of the fields listed above are
used, because there are certain properties that are not necessary to build our treeview. Notice how | have chosen a
larger version of the same images for the Selected Icon, so that when an item gets selected, not only does the
background color change, but the size of the image changes as well.

Path Text Icon Background Foreground SelectedText Selectedlcon SelectedBackground SelectedForeground
HMI Overview Builtin color color(0,0,0,255) ' Overview Builtin/icons/24 color(250,214,138,255) color(0,0,0,255)
Screens ficons (255,255,255,25 /home.png
/16 5)
/home.
png
Administ = User Builtin color color(0,0,0,255) | User Builtin/icons/24 color(250,214,138,255) color(0,0,0,255)
ration Manage ' /icons (255,255,255,25 Management lusers3.png
/Users ment /16 5)
/users3.
png
Administ | Schedul ' Builtin color color(0,0,0,255) ' Schedule Builtin/icons/24 color(250,214,138,255) color(0,0,0,255)
ration e licons (255,255,255,25 Management /calendar.png
/Users Manage /16 5)
ment [calend
ar.png
Administ | Roster Builtin color color(0,0,0,255) ' Roster Builtin/icons/24 color(250,214,138,255) color(0,0,0,255)
ration Manage ' /icons (255,255,255,25 Management /clock.png
ment /16 5)
/clock.
png

? Unknown Attachment

Properties

T2l Unknown macro: 'sql’

Scripting

Scripting Functions

Description
Clears the current selection.
Parameters
Nothing
Return
Nothing
Scope
Client
Description
Collapses all nodes in the tree.
Parameters
Nothing
Return
Nothing
Scope
Client
Description
Expands all nodes in the tree.
Parameters
Nothing
Return
Nothing
Scope
Client
Description

Returns a list of the selected item's indexes. These are the row indexes that the selected tree nodes were found in the underlying
dataset. Implicitly created folder nodes that have no index will not be included.

Parameters
Nothing
Return
List of Integers
Scope
Client
Description
Returns a list of the selected item's paths. A path to an item is the path to its parent plus its normal (non-selected) text.
Parameters
Nothing
Return
List of Strings
Scope

Client

Extension Functions

This component does not have scripting functions associated with it.

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.
2l uUnknown macro: 'sgl’
2 Unknown macro: 'sql'

This event fires when the mouse enters the space over the source component.

T2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sql'
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.

2l Unknown macro: 'sgl’

2l Unknown macro: 'sql'
Fires when the mouse moves over a component after a button has been pushed.

2l Unknown macro: 'sql'
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

T2l Unknown macro: 'sgl’

Customizers

The tree view customizer allows for easy custom manipulation of the tree view components underlying formatting.

Examples

Expression Snippet

/1 The Selected Itemproperty will be updated as the user selects different nodes in the tree.

/11t represents the index in the Itens dataset at which the node is defined. If the selected

/I node was inplicitly created, the Selected Itemw |l be -1.

//You can use this index to get the path and nane of the selected node with an expression binding |ike
this:

if ({Root Container.Tree View selectedlten<0,"n/a",{Root Container.Tree View data}[{Root Container.Tree
Vi ew. sel ectedltent,"text"])

Script Snippet

#This script will swap to the script that was double clicked on, if this code is placed in the
nmoused i cked event handler for the treeview
#This script utilizes an extra columm called wi ndowPath that contains the full path to the w ndow You
can add an extra colum to the Itens dataset property
#as long as the colum nane doesn't natch one of the reserved colum titles |listed above.
if event.clickCount == 2:
row = event.source. sel ectedl tem
data = event.source.data
if row!=-1:
Grab the window path value out of the tree view s itens dataset
wi ndowPat h = dat a. get Val ueAt (row, "w ndowPat h")
system nav. swapTo(w ndowPat h)

Comments Panel

General

oH Adil Note

Bab
Fehb 28,15 4:32 AM

Derek
Mar 2, 15 4:53 AM

Boh
Feb 28,15 4:18 AM

Jane
Feb 26,15 710 P

Bob
Feb 24,15 1:56 PM

INDUCTIVE
NOTICE: This turba encabulatar is currently offine. Use unit 2 ifyou need U N I V E RS I 'I

unilateral phase detractors. New cardinal gram-meter on arder, should
ative in & days.

Canwe expedite this? Not having any inverse reactive current is really a
becoming a problem, starting to get some sinusoidal deplenaration.

Found it. One of the cardinal gram-meters was unsynchronized. Ordering a CO m m en tS Pan el

new one

It's happening on our shifttoo. Maybe its the hydrocoptic marzel veins?

Watch the Video

The turbo encabulator is faulting frequently..

Component Palette Icon:

55 Comments Panel

The following feature is new in Ignition version 7.8.1
Click here to check out the other new features

@ Additional information on the Comments Panel can be found on the Comments Panel Component page.

G} Looking for documentation on the legacy Comments Panel component? Please see the Legacy Comments Panel page.

Not sure which version you are looking at? The Legacy version of this component has several properties that the new one does not: "Insert
Query 1", "Insert Query 2", "Delete Query", "Unstick Query", and "Download Attachment Query".

Description

The comments panel is used to power a blog-style comments system within your project. This can be useful for ad-hoc collaboration and
communication between shifts, remote users, etc. This component is driven by a dataset that should be bound to a SQL query. Unlike most
components, this component has built-in functionality to alter an external database. This is how the default Add Note functionality works. You have
the opportunity to alter the queries that the components uses by enabling Extension Functions.

The schema that typically drives this component involves up to three tables:

® The first table (by default: Notes) stores all of the notes across the board.

® The second table (by default, ItemNotes) is used to associate notes with other things. This allows you to have different sets of notes for
different screens/objects. Typically you'd bind the data to a query that joined these tables together restricting the second identifier in the
ItemNotes table to the value appropriate for the window you're on.

* The third table (by default: users) is a user mapping table that assigns an ID to each user on the table. This is easiest to do if a database
authentication profile is used as the _users table automatically creates the required columns, but non-database authentication profiles can
be used as long as the table is manually created and maintained.

You can opt out of this three-table system by simply making use of the Extension Functions on the component. See below for more details.

By default, users can remove their own comments, and comments can have files attached. To allow attachments, make sure you have a BLOB
field in your notes table.

https://www.inductiveuniversity.com/video/comments-panel/7.8
https://docs.inductiveautomation.com/display/DOC/New+in+this+Version#NewinthisVersion-Newin7.8.1
https://legacy-docs.inductiveautomation.com/display/DOC/Comments+Panel+Component
https://legacy-docs.inductiveautomation.com/display/DOC/Legacy+Comments+Panel

Behavior Description: Three-Table Configuration vs Custom

The following is a list of the default behaviors when all Extension Functions are disabled

Behavior

Adding a note

Deleting a note

Unsticking a note

Download an
attachment from a note

Ability for users to
delete notes

Description

Runs a SELECT query against the users table to retrieve the ID value for the user that added the note. Then stores
this ID into the Notes table along with the rest of the note data

Deletes a row from the Notes table. Uses the ID value from the Notes table to determine which row should be deleted.
Does not delete a row from the ItemNotes table

Updates the sticky column for the note on the Notes table. Sets the value to 0 based on the ID of the note

Returns the binary data from the Attachment column on the Notes table.

Users may not delete notes from other users.

Enabling the Extension Functions on the component allow for custom functionality on the component. Some examples are:

® Store all note data on a single database table - simply modify each Extension Function to run queries against a single database table
® Save the attachment to a shared drive instead of a database column - modify insertNote to save the attachment to a hard drive.
® Allow users to delete all notes by role - check the role of the user in canDelete and return True if the user has a specific role

Properties

2l Unknown macro: 'sgl’

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

Description
Called when a note is added.
Parameters
component self - A reference to the component that is invoking this function
string note - The text contents of the note
string filename - The full filepath to the the attachment
string sticky - A boolean indicating whether this note should be flagged as stickied
Return
Nothing
Scope
Client
Description
Called when a user clicks the 'delete’ link on a note.
Parameters
component self - A reference to the component that is invoking this function
integer id - The id of the note
Return
Nothing
Scope
Client
Description
Called when a user clicks the 'unstick’ link on a note.
Parameters
component self - A reference to the component that is invoking this function
integer id - The id of the note
Return
Nothing
Scope
Client
Description
Called when a user attempts to download an attachment from a note.
Parameters
component self - A reference to the component that is invoking this function
integer id - The id of the note
Return
Nothing
Scope

Client

® Description
Returns whether or not a note with the given id can be deleted. Notes that return True will show a 'delete’ link.
® Parameters
component self - A reference to the component that is invoking this function
integer id - The id of the note
® Return
boolean - Notes with a True return can be deleted by the user, False return can not be deleted.
® Scope

Client

Event Handlers
This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.
2l Unknown macro: 'sgl’
2 Unknown macro: 'sql
This event fires when the mouse enters the space over the source component.

2l Unknown macro: 'sql'
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sql'
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.
T2l Unknown macro: 'sgl’
2l Unknown macro: 'sql'
Fires when the mouse moves over a component after a button has been pushed.
2l unknown macro: 'sgl’
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l Unknown macro: 'sql'

Examples

1 The following examples may need to be modifed to match the table and column names in your database.

insertNote: using default table configuration

Inserts a note using the three default tables: notes, users, and itemNotes.
Also stores only the file name in the database instead of the full path to the file
Assumes a User IDis used in the notes table

determine the ID for the | ogged in user
user = system db. runScal ar PrepQuery("SELECT id fromusers where usernane = ?", [system security.
get Usernane()])

determine if afile is being attached

if filename is None:
a file was not attached, provide a blank for the bytes
attachnent Bytes = None

el se:
get the bytes of the file at the path the user selects
attachnentBytes = systemfile.readFil eAsBytes(fil enane)

splits the file name fromthe file path. This way we can show just the file name on the
conponent

Using '\' as a delimter, but python requires 2 since it's an escape character

pathAndFile = filenane.rsplit('\\', 1)

filename = pat hAndFil e[1]

build the query and the argunents

query = "I NSERT I NTO Notes (note, whoid, tstanp, attachnment, filenane, sticky) VALUES (?, ?,
CURRENT_TI MESTAMP, 2, 2, 2)"

argunents = [note, user, attachnentBytes, filenane, sticky]

insert the note

insertld = system db. runPrepUpdat e(query, arguments)

insert a rowonto the itemNotes table

replace '"MYID with the proper code to fetch your id

nyld = ' Myl D

system db. runPrepUpdat e(" I NSERT I NTO | tenmNotes (Accountld, Noteld) VALUES (?, ?)", [nyld, insertld])

insertNote: using a single table

Simlar to the above exanple, but only a single database table is required.
Assunmes a User Nane is used in the notes table

determi ne the name for the |ogged in user
user = system security. getUsernane()

determine if a file is being attached

if filename is None:
a file was not attached, provide a blank for the bytes
attachnent Byt es = None

el se:
get the bytes of the file at the path the user selects
attachnentBytes = systemfile.readFil eAsBytes(fil enane)

splits the file name fromthe file path. This way we can show just the file name on the
conponent

Using '\' as a delimter, but python requires 2 since it's an escape character

pathAndFile = filenane.rsplit('\\', 1)

filename = pat hAndFil e[1]

insert the note

query = "I NSERT | NTO Notes (note, whoid, tstanp, attachment, filename, sticky) VALUES (?, 2,
CURRENT_TI MESTAMP, 2?2, ?, ?2)"

argunents = [note, user, attachnentBytes, filenane, sticky]

system db. runPrepUpdat e(query, argunents)

downloadAttachment

result = system db. runPrepQuery("SELECT Attachnent Name, Attachment FROM Notes WHERE |d=?", [id],
dat abase="")

fileName, data = result[0][0], result[O][1]

get the last part of the filenane

fileName = systemfile.saveFile(fileNanme.split('\\")[-1])

systemfile.witeFile(fileNane, data)

Tag Browse Tree

General

=) All Providers
1

+-] default

Component Palette Icon:

T= Tag Browse Tree

Description

The Tag Browse Tree component is similar to the Tag Browser in the Designer, allowing tags to be browsed in both the Designer and the Client,
and dragged on to other components like the Easy Chart. Unlike the Tag Browser, tags can not be edited, tag properties can not be displayed, and
UDT definitions can not be displayed. Tags in the component can be refreshed through scripting by calling refresh().

Properties

2l Unknown macro: 'sql'

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

® Description
Called for each tag loaded into tag browse tree. Return false to hide this tag from the tree.
® Parameters
Self- A reference to the component that is invoking this function.
Tag - The tag itself.
® Return
Boolean
® Scope
Client
® Description

Returns a popup menu that will be displayed when the user triggers a popup menu (right click) on the tree. Use system.gui.
createPopupMenu to create the popup menu.

® Parameters
Self- A reference to the component that is invoking this function.
clickedTag - The tag of the clicked on tree path.
selectedTags - The tags of the selected paths of the tree.
® Return
JPopupMenu
® Scope

Client

Event Handlers
This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.
2l Unknown macro: 'sgl’
2 Unknown macro: 'sql'

This event fires when the mouse enters the space over the source component.

2l Unknown macro: 'sgl’
This event fires when the mouse leaves the space over the source component.

T2l Unknown macro: 'sgl’
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.
2l uUnknown macro: 'sgl’
T2l Unknown macro: 'sql’
Fires when the mouse moves over a component after a button has been pushed.
2l Unknown macro: 'sql'
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l Unknown macro: 'sgl’

Customizers

This component does not have any custom properties.

Examples

Code Snippet

The followi ng code shows a right-click popup nenu.

Add these lines after the """ """ section of the createPopupMenu extension function.
Note how |lines below are indented, the first def conmand should line up with the
indentation of the """ """ section of the Extension Function.

def showval ue(sel f):
value = str(clickedTag. val ue. val ue)
system gui . messageBox(val ue)

def showLast Change(self):
| ast Change = str(clickedTag. val ue.ti nmestanp)
syst em gui . nressageBox(| ast Change)

itemsDict = {"Show Val ue": showval ue, "Show Last Change": showLast Change}
JPopupMenu = system gui . cr eat ePopupMenu(itensDict)
return JPopupMenu

Charts

Easy Chart

General

4[5 31015133 PM- 31915 143 P A |
————————

T e
‘émlv (200 PM 120 PM 100 PM 430 FM T

Component Palette Icon:

] Easy Chart

Description

Description

This component is used to make powerful and runtime-configurable time-series charts. It is configured by defining a set of pens and axes. Each
pen represents a series of data. Pens can be many different styles, such as line, area, bar, and shape. This chart automatically creates controls for
picking the time range and for hiding or displaying pens.

Features

Pens

Easy configuration

User-selectable set of pens

Automatic time-selection controls

SQL Query and/or SQLTags Historian data sources
Automatic SPC and calculated pen support

Zoom, Pan, X-Trace modes

Any number of Y-axes and subplots

Realtime or Historical

There are three kinds of pens in the Easy Chart:

1.
2.

3.

Tag Historian Pens. These pens pull their data from the Tag Historian system.

Database Pens. These pens will automatically create SQL SELECT queries to pull data from a database table. Typically, this is a table
that is the target of a Historical Transaction Group.

Calculated Pens. These pens display a calculated dataset based off another pen, such as a moving average or an SPC function such as
the UCL (Upper Control Limit).

Modes: Realtime vs Historical

The Easy Chart can operate in 3 different modes. These modes affect the range of data that is displayed, the controls the user is shown, and
whether or not the chart polls for data.

1.

2.

3.

Historical Mode. In this mode, the user is shown a Date Range component to pick the range of data to fetch and display. The initial values
of this component are set through properties on the chart. In historical mode, the chart does not poll.

Realtime Mode. In this mode, the user is given the opportunity to pick the amount of time in the past to display. For example, the last 5
minutes or the last 2 hours. The chart will poll at a rate according to the Poll Rate parameter.

Manual Mode. In this mode, the chart will use the values if its Start Date and End Date parameters to govern what data is displayed.
Polling is controlled by having the Poll Rate at zero (polling off) or greater than zero.

Basic Chart Configuration

The Easy Chart has many properties, like other components, that control its behavior. Things like its Mode, Polling Rate, etc are configured via
the properties. All of the setup for adding pens, axes, subplots, etc is its Customizer. You can also drag and drop Historian-enabled tags onto
the chart directly in the Designer to add those tags as chart pens.

Y-Axes

https://legacy-docs.inductiveautomation.com/display/DOC/Tag+Historian
https://legacy-docs.inductiveautomation.com/display/DOC/Understanding+Transaction+Groups
https://legacy-docs.inductiveautomation.com/display/DOC/Custom+Properties

The easy chart supports any number of Y-axes. To add an axis, go to the Axes tab of the chart customizer. When adding an axis, you get a
number of options such as the type (numeric or logarithmic), label, color, autorange vs fixed range, and auto-ticks vs fixed ticks. You can also
modify the position of the axis, but note that by default the Chart's Auto Axis Positioning property is enabled, which means that the chart will
balance the axes automatically between left and right depending on demand. As pens are turned on and off by the user, only the axes that are
used by visible pens are shown.

After you add your axes, you edit any pens that you want to use your new axes. Simply choose the new axis in the axis dropdown of the pen
editing window.

Subplots

The Subplots feature lets you break up the chart's plot area into multiple distinct subplots that share the X axis, but have their own Y axes. This
is often useful for digital data, as shown in the screenshot above. By default the chart has 1 subplot (the main plot). To add a new subplot,
simply hit the add button in the Subplots tab of the chart customizer.

Subplots have relatively few options. The Weight option determines how much room the subplot gets relative to the other subplots. For
example, in the screenshot above subplot #1's weight is 5, and subplot #2's weight is 1, leading to a 5-to-1 distribution of space. Just like axes,
once you add your subplots you should go back to your pens and modify you pens' subplot property for any pens you want to appear on the
subplot.

Pen Groups
You can put your pens in groups to break up the pens into some logical separation. For instance, in the screenshot above there are three pen

groups: C1, C2, and Valves. The group name is used as the titled border for the pens' grouping container. Groups also have another purpose,
but it is more advanced and most people won't have to worry about it. For more, read the Dynamic Pens section below.

Advanced Configuration
Dynamic Pens

In is often the case that you'll want to make one chart window that services many similar pieces of equipment. For instance, if you have 30
tanks and they all have the same datapoints, you want to be able to use one window for all 30 of them and simply pass the tank number into
the chart window as a parameter. There are actually a number of ways to accomplish this, each method suitable for different scenarios.

Database pens have 2 ways to be made dynamic. The first is the Chart's Where Clause property. This is a snippet of SQL where clause
syntax, like "machine_num = 28" that will be included for alldatabase pens in their queries. The second is to use a dynamic group. Any group
can be made a dynamic group in the customizer. For each dynamic group, the easy chart will get a special dynamic property associated with
that group. That property is another snippet of SQL where clause that will be applied to all database pens in that group.

The other way to make your pens (and anything else about the chart) dynamic at runtime is to use dynamic configuration. Read on...

Dynamic Configuration

The Easy Chart is not just meant to be easy to configure, but also very powerful. In particular, there is an emphasis on the ability to make any
configuration change dynamically in a client - not just statically in the Designer. While a bit of scripting or clever property binding may be
required, the technique is very powerful. This is achieved by storing all of the settings that you alter in the customizer in a set of expert-level
dataset properties. So altering the datasets alters the chart configuration. You can inspect these various datasets, which hold the pens, axes,
and subplot information, to see their format. They all look up information by column name (case-insensitive). So, if you have pen configuration
stored in a database, you can bind an indirect SQL Query binding to alter the chart's pen set at runtime.

Properties

2l unknown macro: 'sgl’

Scripting

Scripting Functions

® Description

This function save the chart's datasets as an Excel file. Returns a String of the complete file path chosen by the user, or None if
the user canceled the save.

® Parameters
String filename - The default file name for the Save dialog.
® Return
String
® Scope
Client
® Description
This function will print the chart.
® Parameters
Nothing
® Return
Nothing
® Scope

Client

Extension Functions

® Description
Provides an opportunity uto perform further chart configuration via scripting. Doesn't return anything.
® Parameters
self-A reference to the component that is invoking this function.
chart-A JFreeChart object. Refer to the JFreeChart documentation for API details.
® Return
Nothing
® Scope

Client

® Description

Provides an opportunity to configure the x-trace label. Return a string to override the default label.
® Parameters

self-A reference to the component that is invoking this function.

chart-A JFreeChart object. Refer to the JFreeChart documentation for API details.

penName-The name of the pen the x-trace label applies to.

yValue-The y-value of the pen at the x-trace location.
® Return

Nothing
® Scope

Client
® Description

Called when the user has dropped rows from a power table on the chart. The source table must have dragging enabled.
® Parameters

self-A reference to the component that is invoking this function.

sourceTable-A reference to the table that the rows were dragged from.

rows-An array of the row indicies that were dragged, in the order they were selected.

rowData-A dataset containing the rows that were dragged.
® Return

Nothing
® Scope

Client
® Description

Called when the user has dropped tags from the tag tree onto the chart. Normally, the chart will add pens automatically when tags
are dropped, but this default behavior will be suppressed if this extension function is implemented.

® Parameters
self-A reference to the component that is invoking this function.
paths-A list

® Return
Nothing

® Scope

Client

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.
2l Unknown macro: 'sql'
2l Unknown macro: 'sql'

This event fires when the mouse enters the space over the source component.

2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sqg|
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.

2 unknown macro: 'sql’

2l Unknown macro: 'sgl’
Fires when the mouse moves over a component after a button has been pushed.

2l uUnknown macro: 'sql’
Fires when the mouse moves over a component, but no buttons are pushed.

Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l Unknown macro: 'sql’

Customizers

This component does not have any custom properties.

Examples

There are no examples associated with this component.

Chart

General

1A

VT \

AN R |

LYW | W

10 T
‘\I ' W rl‘f"\.ll‘.VIfll

Maré Marg Mar 10 Mar 12

|— Process Temp — OutputTemp|

Component Palette Icon:

> Chart

Description

The Chart component (also called the Classic Chart when contrasted with the Easy Chart) provides a flexible way to display either timeseries or X-
Y charts that are powered by any number of datasets. Typically, these datasets are bound to SQL Query Bindings.

Features

SQL Query and/or SQLTags Historian data sources
Zoom, Pan, X-Trace modes

Any number of Y-axes and subplots

Realtime or Historical

Many different rendering styles

Configuration

The basic idea behind configuring the class chart is simple: add datasets, and fill them in with data in a format that the chart understands. You add
datasets to the chart using the chart's customizer. You then use standard property binding to put data into these charts. Commonly you'll use a SQL
Query Binding. Since these datasets are just normal dynamic properties, you can also access them via scripting.

The Customizer also lets you add additional X and Y axes. There are various types of axes, and they each have a large number of properties.
Lastly, you can configure additional properties for each dataset, such as which axes it maps to, its visual style, subplot, etc.

Datasets

Each dataset should define one or more "series" (a.k.a "pens"). The format for these datasets is quite simple. Each series in a dataset shares
common X-values, defined by the first column. Each additional column are the Y-values for a series.

Binding Techniques

The classic chart can be used to make almost any kind of chart, with some effort. Historical, realtime, dynamic pen selection, etc is all possible.
Your job is just to fill the datasets with the pertinent data, and the chart will display it. The most common idea is to make the chart dynamic by
varying the date range that the dataset's SQL Query bindings run. This is easy to do by adding a Date Range component and using Indirect
Bindings.

Chart Type: XY vs Category

The classic chart is typically in XY Plot mode. This means that the x-axis is either date or numeric, and the y-axes are numeric. If your x-axis is
categorical (names, not numbers), you can switch theChart Type property to Category Chart. Don't be surprised when you get a few errors - you'll

need to go and switch your x-axis to be a Category Axis, and fill your dataset in with valid category data, that is, String-based x-values. This is most
often used with the bar-renderer (see the Customizer).

Properties

2l Unknown macro: 'sql'

https://legacy-docs.inductiveautomation.com/display/DOC/SQL+Query+Binding
https://legacy-docs.inductiveautomation.com/display/DOC/SQL+Query+Binding
https://legacy-docs.inductiveautomation.com/display/DOC/SQL+Query+Binding
https://legacy-docs.inductiveautomation.com/display/DOC/Indirect+Tag+Binding
https://legacy-docs.inductiveautomation.com/display/DOC/Indirect+Tag+Binding

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

® Description
Provides an opportunity to perform further chart configuration via scripting.
® Parameters
Self- A reference to the component that is invoking this function.
Chart- A JFreeChart object. Refer to the JFreeChart documentation for API details.
® Return
Nothing
® Scope

Client

® Description
Provides an opportunity to configure the x-trace label. Return a string to override the default label.
® Parameters
Self- A reference to the component that is invoking this function.
Chart - A JFreeChart object. Refer to the JFreeChart documentation for API details.
penName - The name of the pen the x-trace label applies to.
yValue - The y-value of the pen at the x-trace location
® Return
Nothing
® Scope

Client

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.

2l Unknown macro: 'sql'

2l Unknown macro: 'sql'
This event fires when the mouse enters the space over the source component.

2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sgl’
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.

2 unknown macro: 'sql’

2l Unknown macro: 'sgl’
Fires when the mouse moves over a component after a button has been pushed.

2l uUnknown macro: 'sql’
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l Unknown macro: 'sql’

Customizers

This component has a customizer.

Examples

Chart with Stacktrace

70 1
&0 - [Frocess TE|I'n|:|:Ei1.EI
|
a0 4
3
™ 40 1 IH.J
= (I |I I IHLI
|
30 4 ".J |Iw‘u‘ l"|||'|
|)
20 - | N A ﬁl I
\ |',||--'I'l\‘I -Z-rutpl.ane]mp: 17.0 | th'll"‘
| | |
10 LHII"/ |||'l.'”'r | 1 Al Irr; #‘I
I\ V Mar 10, 2015
o . . 4 12:40:45IF'M .
Mar@ Mar 8 Mar 10 Mar 12
Date

|— Process Temp — Output Temp

Sparkline Chart

General

Vv

Component Palette Icon:

' Sparkline Chart

Description

The sparkline chart is a minimalistic chart component that displays a line-chart history for a single datapoint. Sparklines were invented by
Edward Tufte as a way to show a great deal of contextual information in a very small amount of space. Sparklines are typically used to display
the recent history (up to current time) of a datapoint so that the viewer can quickly discern the recent trend of a datapoint: is it rising? falling?
oscillating? etc..

To use a sparkline, bind its Data property either to a Tag Historian realtime query, or to a database query. There should be two columns in this
dataset: the first one a date column, the second a number. Each row will become a datapoint on the chart, and the dataset must be sorted by
time in ascending order.

Instead of using axes to convey scale, the sparkline can display a band of color across the back of the chart which indicates the desired
operating range of the datapoint. In this way, it is instantly obvious when a value is in its expected range, above that range, or below. The

sparkline automatically configures its internal axes based on the data given to it. To give it a fixed range, simply fill in the Range Highand Rang
e Low properties.

Properties

2l Unknown macro: 'sql'

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have scripting functions associated with it.

Event Handlers
This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.
2l uUnknown macro: 'sgl’
2 Unknown macro: 'sql'

This event fires when the mouse enters the space over the source component.

T2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sql'
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.
2l Unknown macro: 'sgl’
2l Unknown macro: 'sql'
Fires when the mouse moves over a component after a button has been pushed.
2l Unknown macro: 'sql'
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

T2l Unknown macro: 'sgl’

Customizers

This component does not have any custom properties.

Examples
Gallery

Sparkline Chart with Low and High Limits

NGt e adiaaite

Property Name Value

Range High 100
Range Low 0
Desired High 75

Desired Low 40

Bar Chart

General

Jan Feb Mar Apr Ma

W Morth Area W South Area

Energy (mWW)

m

1

Component Palette Icon:

ii] Bar Chart

Description

The Bar Chart is a very easy-to-use chart that provides a familiar bar representation of any numeric values. That is, the height of the bars is
determined by some numeric value in the underlying dataset. It is often configured to display as a category chart. A category chart is a chart
whose X-values are categories (strings, names, groupings, etc) rather than numeric values (numbers, dates).

Like most chart components (other than the Easy Chart), the Data property drives the chart. The first column in the Data dataset defines the

names of the categories. The rest of the columns define the values for each of the series (if there is more than one series per category), and

thus should be numeric. Note - if your data is 'turned on its side’, meaning that the columns define the categories and rows define the series,
then set the Extract Order to "By Column".

Properties

2l uUnknown macro: 'sql’

Scripting

Scripting Functions

This component does not have scripting functions associated with it.
Extension Functions

® Description

Provides a chance to override the color of each bar. Can be used to have bar colors changed based upon bar value. Returning the
value None will use the default bar color for the series.

® Parameters

Component self - A reference to the component that is invoking this function.

int series - The series index for this bar.

int category - The category index for this bar.

int value - The value (a number) of this bar.

Color defaultColor - The color that the bar would be if this function wasn't invoked.
® Return

Color
® Scope

Client

Event Handlers
This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.

2l Unknown macro: 'sql'

2 Unknown macro: 'sql'
This event fires when the mouse enters the space over the source component.

2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sgl’
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.

2 unknown macro: 'sql’

2l Unknown macro: 'sgl’
Fires when the mouse moves over a component after a button has been pushed.

2l uUnknown macro: 'sql’
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l Unknown macro: 'sql’

Customizers

This component does not have any custom properties.

Examples

Extract Order Example
The following two charts demonstrate the effects of the extract order property on the given dataset

Label (Sfring) North Area (Integer) South Area (integer)
Jan 15 35
Feb 21 36
Ilar 17 23
Apr 11 39
Ilay 16 32
“Extract Order. By Row “Extract Order. By Column

=

40

35
< 1
E

& 20
15
10
5
0

Ener

Jan

Feb Mar Apr

N Morth Area ™ South Area

May

T

HNorth Area South Area

N Jan MW Feb ™ Mar [Apr T May

Radar Chart

General

Component Palette Icon:

&L Radar Chart

Description

Radar charts, also known as web charts, spider charts, spider plots, and a few other names, display a dataset as a two dimensional polygon.
The plot is arranged as a set of spokes with equal angles between them. Each spoke represents a value axis for the variable it corresponds to.
Each dataset is then drawn as a connected polygon, where the points of the polygon are arranged on the spokes according to their value.
Each row of the dataset has a minimum and maximum column -- these values are used to determine the scale of the spoke for that variable,
with the midpoint representing the desired value.

The intended use of radar plots is to display realtime information in such a way that outliers can be quickly identified. This can be an efficient
way to convey if a process is running on-spec or off-spec at a glance.

The radar chart gets its data from a dataset. Each row in the dataset will become a single variable (spoke) on the chart. The dataset must have
a columns labeled "Value", "Min", and "Max"; other columns will be ignored. To display realtime data on a radar chart, you can use a cell-
update binding to bind individual values to tag values. You can also drop tags onto a radar chart, with the EngMin binding to min and EngMax
binding to max. If there are no existing cell-update bindings, the tags will replace existing data, otherwise the tags will be added to the end of
the dataset. Alternatively, you can have realtime information stored by a transaction group to a database table, and drive the radar chart's
dataset with a query binding.

Properties

2l Unknown macro: 'sql’

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have scripting functions associated with it.

Event Handlers
This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.
2l uUnknown macro: 'sgl’
2 Unknown macro: 'sql'

This event fires when the mouse enters the space over the source component.

T2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sql'
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.
2l Unknown macro: 'sgl’
2l Unknown macro: 'sql'
Fires when the mouse moves over a component after a button has been pushed.
2l Unknown macro: 'sql'
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

T2l Unknown macro: 'sgl’

Customizers

This component does not have any custom properties.

Examples

The following shows that the Motor 4 Amps are higher than the maximum allowed for Motor 4. In this example each motor has an independent min
and max value for its amps. The radar chart allows an operator to quickly assess a group of independent variables to determine if anything is out of
its specifications.

Motar 1 Amps

hiotor 2 Amps Motor 5 Amps

Motar 3 Amps
Motar 4 Amps

Status Chart

General

Component Palette Icon:

=] Status Chart

Description

The status chart component allows you to visualize the status of one or more discrete datapoints over a time range. The X-axis is always a
timeseries axis, and the Y-axis is a category axis, with one entry per data series. The chart is populated with a single dataset, the first column of
which must be a datetime column.

Wide vs Tall Datasets.

In Wide format, all of the columns but the first must be numeric. These "series" columns' headers will be used as the names on the y-axis. In Tall
format, there should be exactly 3 columns. The first is the timestamp, the second is the series name, and the third is the value. For example:

Wide Format
t_stamp Valvel Valve2
2010-01-13 8:00:00 0 2
2010-01-13 8:02:00 0 2
2010-01-13 8:04:00 1 2
2010-01-13 8:06:00 1 1
2010-01-13 8:08:00 0 1
Tall Format
t_stamp Name Value
2010-01-13 8:00:00 & Valvel 0
2010-01-13 8:00:00 | Valve2 2
2010-01-13 8:02:00 | Valvel 0
2010-01-13 8:02:00 & Valve2 2
2010-01-13 8:04:00 = Valvel 1
2010-01-13 8:04:00 = Valve2 2
2010-01-13 8:06:00 & Valvel 1
2010-01-13 8:06:00 = Valve2 1
2010-01-13 8:08:00 & Valvel 0
2010-01-13 8:08:00 | Valve2 1

Color Mapping

Apart from getting the data into the series chart, the only other commonly configured option is the mapping of discrete values to colors. This is
done in the Series Chart Customizer. Each named series can have its own mapping of colors, if desired. These mappings are stored in the expert-
level dataset property Series Properties Data so they can be altered at runtime.

Properties

2l unknown macro: 'sgl’

Scripting

Scripting Functions

This component does not have scripting functions associated with it.
Extension Functions

® Description
Return a formatted tool tip String

® Parameters
Self- A reference to the component that is invoking this function.
seriesindex-The series index corresponding to the column in the series dataset.

selectedTimeStamp-The time stamp corresponding to the x value of the displayed tooltip. The time stamp is the numver of
seconds since the epoch.

timeDiff-The width of the current status interval measured in seconds since the epoch.
seletedStatus-The status value corresponding to the x value of the displayed tooltip.
data-The series dataset as a PyDataset.
properties-The series properties dataset as a PyDataset.
defaultString-The default tooltip string.

® Return
String defaultString

® Scope

Client

Event Handlers
This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.
T2l Unknown macro: 'sgl’
2l Unknown macro: 'sql'
This event fires when the mouse enters the space over the source component.

2l Unknown macro: 'sql'
This event fires when the mouse leaves the space over the source component.

2 unknown macro: 'sql’
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.
2l Unknown macro: 'sql'

2l unknown macro: 'sgl’
Fires when the mouse moves over a component after a button has been pushed.

2l Unknown macro: 'sql’
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l Unknown macro: 'sql'

Customizers

This component has a customizer to customize the colors of the each series.

Examples

There are no examples associated with this component.

Pie Chart

General

@ Apples ® Bananas © Kiwis @ Oranges

Grapefruit

Component Palette Icon:

& Pie Chart

Description

The Pie Chart component displays a familiar-looking pie chart. A Pie Chart displays a list of named items, each of which has a value that is part of
a total. The total is the sum of the value of each item. The key to the Pie Chart component is the Data property, which contains the items that will
be displayed as pie wedges. Typically, this dataset will be bound to a SQL Query Binding to pull dynamic data out of an external database.

Extract Order
Similar to other charts, the pie chart can actually accept data in two formats. You can tell the pie chart which format to use via its Extract Order pro

perty. The two extract orders are By Column or By Row. The following table shows the two styles for the data that created the pie chart in the
screenshot.

By Column By Row
Label Value Grapefruit Apples Bananas Kiwis
Grapefruit = 7 7 15 56 19
Apples 15

Bananas @ 56

Kiwis 19

Labels

In addition to the color-coded legend, the pie chart can annotate each wedge with a label. The format of the label is controlled via the Label Format
property.

For example, the format string used in the screenshot is "{0} = {2} ({3})"This is a pattern string that uses the following placeholders:

® {0} - the item label
® {1} - the item value
® {2} - the item percentage

https://legacy-docs.inductiveautomation.com/display/DOC/SQL+Query+Binding

Properties

The component's properties are populated from a sqgl query. The following properties are from the Alarm Status Table. Change this to the correct

2 Unknown macro: 'sql'
Component.

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have scripting functions associated with it.

Event Handlers
This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.

2l Unknown macro: 'sql'

2l Unknown macro: 'sql'
This event fires when the mouse enters the space over the source component.

2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sql’
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.

2 unknown macro: 'sql’

2l Unknown macro: 'sgl’
Fires when the mouse moves over a component after a button has been pushed.

2l Unknown macro: 'sgl’
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l Unknown macro: 'sql’

Customizers

This component does not have any custom properties.

Examples

Code Snippet

#The following code will print nand and val ue of the selected wedge to the console.
#Al ternatively this can be used to wite to a customproperty of a table that is used to create the
"Where' clause of a SQL query that populates a table.

sel ect edWedge = event. source. sel ect edDat a
print sel ect edWedge

Box and Whisker Chart

General

Box & Whisker Chart

"

Lot A Lot B

W Granite M Limestone

Ed

Walue

Component Palette Icon:

] Box and Whisker Chart

Description

A Box and Whisker chart displays pertinent statistical information about sets of data. Each box represents a set of numbers. The upper and lower
bounds of the box represent the 1st and 3rd quartiles. The line inside the box represents the median. The extends of the "whiskers" represent the
max and min outliers. For a more detailed description, see http://mathworld.wolfram.com/Box-and-WhiskerPlot.html.

The configuration for setting up a box and whisker chart, like most charts, is populating the Data property. The dataset for a box and whisker chart
contains sets of numbers. Each column defines a seriesof values, for which a "box" will be calculated. The column headers define the name for the
box. You may also have an optional first column that is a String column, which can break up the series into categories.

Properties

2l Unknown macro: 'sgl’

http://mathworld.wolfram.com/Box-and-WhiskerPlot.html

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have scripting functions associated with it.

Event Handlers
This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.
2l uUnknown macro: 'sgl’
2 Unknown macro: 'sql'

This event fires when the mouse enters the space over the source component.

T2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sql'
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.

2l Unknown macro: 'sgl’

2l Unknown macro: 'sql'
Fires when the mouse moves over a component after a button has been pushed.

2l Unknown macro: 'sql'
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

T2l Unknown macro: 'sgl’

Customizers

This component does not have any custom properties.

Examples

Equipment Schedule

General
War17-189, 2015
Tuesday 17 | ‘Wednesday 18 ‘ Th
=
Machine 2 Ord. Ot

I1g28)

Component Palette Icon:

= Equipment Schedule

Description

The equipment schedule view is a mix between the status chart, gantt chart, and a calendar view. It conveys a lot of information about equipment,
including current status, production schedule, production status, scheduled and unexpected downtime.

The equipment schedule is powered by four datasets. Information is retrieved from the datasets by column name, case-insensitive. The order of
the columns is not important. Optional columns may be omitted.

The "ltems" Dataset

Describes the "items" or "cells" to display schedules for. Each entry in this dataset will become a row of the chart.

Name Type Optional Description
ID Any N The identifier for this item. May be any type, will referenced by each entry in the Scheduled Events dataset.
Label String N The text to display in the header
Foreground Color Y Text color
Background Color Y Background color
StatusimagePath = String Y A path to an image to display to the right of the header label

The "Scheduled Items" Dataset

Lists the scheduled events for each item described in the "Items" dataset. Each scheduled event can have a colored lead, or change-over time, a
label, a background color, and a progress.

Name Type Optional Description

Eventld String Y An identifier for the event, used for event selection.

Itemid Any N The ID of the item to correlate this event with. If no such item is found, the event won't be shown.
Label String N The text ot display in the event's box

StartDate Date N The start-time for the event

EndDate Date N The end-time for the event

Foreground @ Color Y The text color of the event

Background | Color Y The background color of the event

LeadTime Integer | Y Time, in seconds, to display as lead time.

LeadColor | Color Y The color for the lead time, if any.

PctDone Number ' Y A value from 0 to 100 to be displayed as a progress bar, use -1 to hide progress bar.

The "Downtime" Dataset

Entries in this dataset will be displayed as simple colored overlays on top of the events, correlated against an item defined in the "ltems" dataset.

Name Type Optional Description
Iltemld Any N The ID of the item to correlate this downtime event with. If no such item is found, the downtime event won't be shown.
StartDate = Date N The start-time for the downtime event
EndDate = Date N The start-time for the downtime event
Color Color Y The color to use, typically transparent.
Layer Integer | Y 0 or 1, with 0 meaning that the rectangle gets painted below the events, and 1 means it will be painted above the events.

The "Breaks" Dataset

Entries in this dataset will be displayed as colored underlays beneath all events.

Name Type Optional Description
StartDate | Date N The start-time for the break event
EndDate @ Date N The start-time for the break event
Color Color Y The color to use
Properties

2l Unknown macro: 'sql'

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

® Description
Called when the user drags a segment on the schedule background.
® Parameters
Self- A reference to the component that is invoking this function.
itemID-The ID of the equipment item of the row where the user dragged.
startDate-The datetime corresponding to where the user started dragging.
endDate-The datetime corresponding to where the user ended dragging.
evnet-The mouse event.
® Return
Nothing
® Scope
Client
® Description
Called when the user clicks on a scheduled event. Use event.clickCount to detect double clicks.
® Parameters
Self- A reference to the component that is invoking this function.
itemID-The ID of the equipment item of the event that was clicked on.
eventld-The ID of the event that was clicked on.
event-The mouse event.
® Return
Nothing
® Scope
Client
® Description

Called when the user drags and drops a scheduled event. It is up to this script to actually alter the underlying data to reflect the
schedule change.

® Parameters
Self- A reference to the component that is invoking this function.
eventld-The ID of the scheduled event that was moved.
olditemld-The ID of the item this event was originally correlated against.
newltemld-The ID of the item whose schedule the event was dropped on.
oldStartDate-The original starting datetime of the event.
newStartDate-The new starting datetime of the event.
newEndDate-The new ending datetime of the event.

® Return
Nothing

® Scope

Client

Description
Called when the user right-clicks on a scheduled event. This would be the appropriate time to create and display a popup menu.
Parameters
Self- A reference to the component that is invoking this function.
itemld-The ID of the equipment item of the event that was right-clicked on.
eventld-The ID of the event that was right-clicked on.
event-The mouse event that caused the popup trigger.
Return
Nothing
Scope
Client
Description

Called when the user drags the edge of an event to resize its time span. It is up to this script to actually alter the underlying data to
reflect the schedule change.

Parameters
Self- A reference to the component that is invoking this function.
eventld-The ID of the scheduled event that was resized.
itemld-The ID of the item this event is correlated against.
oldStartDate-The original starting datetime of the event.
oldEndData-The original ending datetime of the event.
newStartDate-The new starting datetime of the event.
newEndDate-The new ending datetime of the event.

Return
Nothing

Scope
Client

Description
Called when the user right-clicks outside of an event. This would be the appropriate time to create and display a popup menu.

Parameters
Self- A reference to the component that is invoking this function.
itemld-The item ID of the equipment line that was clicked on (if any).
event-The mouse event that caused the popup trigger.

Return
Nothing

Scope

Client

Event Handlers
This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.
2l Unknown macro: 'sql'
2l Unknown macro: 'sql'
This event fires when the mouse enters the space over the source component.

2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sqg|
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.

2 unknown macro: 'sql’

2l Unknown macro: 'sgl’
Fires when the mouse moves over a component after a button has been pushed.

2l uUnknown macro: 'sql’
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l Unknown macro: 'sql’

This event is deprecated. Please use the onEventDropped extension function.

Customizers

This component does not have any custom properties.

Examples

There are no examples associated with this component.

Gantt Chart

General

Gantt Chart

Date
20-Mar 22-Mar 24-Mar 26-Mar

First Task =
Third Task [

Tasks

Component Palette Icon:

%] Gantt Chart

Description

A Gantt chart is used for task scheduling. It shows a list of named tasks, each of which have a start date, an end date, and a percentage complete.
This allows an easy way to visualize tasks, workflows, and scheduling.

The Gantt chart is configured by populating its Data property. Each row of the dataset represents a task.
There should be four columns: the task label, the start date, the end date, and the percentage (0-100)
complete.

Properties

2l Unknown macro: 'sql’

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have scripting functions associated with it.

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.

2l uUnknown macro: 'sgl’

2 Unknown macro: 'sql'
This event fires when the mouse enters the space over the source component.

T2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sql'
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.

2l Unknown macro: 'sgl’

2l Unknown macro: 'sql'
Fires when the mouse moves over a component after a button has been pushed.

2l Unknown macro: 'sql'
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

T2l Unknown macro: 'sgl’

Customizers

This component does not have any custom properties.

Examples

There are no examples associated with this component.

Calendars

Calendar

General

Mar 2015
Sun Mon Tue Wed Thu Fri 5

1 2 3 4 5 B

8 3 10 1 13 1
16 16 17 18 19 20 2
22 23 24 35 16 27 2
28 30 3

Component Palette Icon:

“‘-‘] Calendar

Description

Displays a calendar and time input directly embedded in your window. Most commonly used by including one of the two date properties (immediate
or latched) from the calendar in dynamic SQL Query Binding.

Properties

2l uUnknown macro: 'sql’

https://legacy-docs.inductiveautomation.com/display/DOC/SQL+Query+Binding

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have scripting functions associated with it.

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.

2l uUnknown macro: 'sgl’

2 Unknown macro: 'sql'
This event fires when the mouse enters the space over the source component.

T2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sql'
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.

2l Unknown macro: 'sgl’

2l Unknown macro: 'sql'
Fires when the mouse moves over a component after a button has been pushed.

2l Unknown macro: 'sql'
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

T2l Unknown macro: 'sgl’

Customizers

This component does not have any custom properties.

Examples

There are no examples associated with this component.

Popup Calendar

General

031 22015 10:34 AW [~ |

Component Palette Icon:

E'i Popup Calendar

Description

The popup calendar is a popular way to provide date/time choosing controls on a window. Similar to the Calendar component, but takes up much
less screen real estate. Most commonly used by including this component's Date property in dynamic SQL Query Binding.

Properties

2l uUnknown macro: 'sql’

https://legacy-docs.inductiveautomation.com/display/DOC/SQL+Query+Binding

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have scripting functions associated with it.

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.

2l uUnknown macro: 'sgl’

2 Unknown macro: 'sql'
This event fires when the mouse enters the space over the source component.

T2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sql'
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.

2l Unknown macro: 'sgl’

2l Unknown macro: 'sql'
Fires when the mouse moves over a component after a button has been pushed.

2l Unknown macro: 'sql'
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

T2l Unknown macro: 'sgl’

Customizers

This component does not have any custom properties.

Examples

There are no examples associated with this component.

Date Range

General

4[= TG - 31316 4

T

m " " o s 9§ v o5 7 o g =
Fab 10 Fab 20 Marz

Component Palette Icon:

.T.,‘:*_] Date Range

Description

The date range component provides an intuitive, drag-and-drop way to select a contiguous range of time. The user is shown a timeline and can
drag or stretch the selection box around on the timeline. The selected range is always a whole number of units, where the unit is determined by the
current zoom level.

Note: The Start/End dates and Outer Start/End dates will be ignored when the window opens unless the Startup Mode property is set to "None."
Data Density Histogram

As an advanced optional feature, the date range can display a data density histogram inside the timeline. This is useful for historical data with
gaps in it, so that the end user isn't hunting for data. (Tip: this is also great for demos, to make it easy to find historical data in a database that isn't
being continuously updated).

To use this feature, bind the Data Density dataset to a query that returns just the timestamps of the target table. These timestamps will be used to

fill in the histogram behind the timeline. You can use the Outer Range Start Date and Outer Range End Date properties in your query to limit the
overall return size for the query. Note: timestamps must be ordered by date (ascending) to display correctly.

Properties

2l unknown macro: 'sgl’

Scripting

Scripting Functions

® Since 7.8.1
® Description

Sets the selected range. The outer range will move if needed. Note: the start and end times are determined based on the zoom
level and may not move (or may move farther than intended) if the component is zoomed out too far for the amount of change
attempted. IE: When days are showing, moving the start time 5 minutes forward will not effect the start, and moving the end time 5
minutes forward will add one day.

® Parameters
Date start - The starting date for the new selection.
Date end - The ending date for the new selection.
® Return
Nothing
® Scope

Client

Code Snippet

This exanple noves the existing Start Date and End Date
of a Date Range conponent ahead 8 hours
fromjava.util inport Cal endar

Get the current start and end

dat eRangeConponent = event. source. par ent. get Conponent (' Dat e Range')
start Dat e = dat eRangeConponent . startDate

endDat e = dat eRangeConponent . endDat e

Calculate the new start and end dates
cal = Cal endar. getlnstance();

cal .setTime(startDate);

cal . add(Cal endar. HOUR, -8);

newStart = cal.getTine();

cal . set Ti me(endDat e) ;
cal . add(Cal endar. HOUR, -8);
newend = cal . getTine();

Set the new range for the conponent. The outer range wll
automatically expand if needed.
dat eRangeConponent . set Range(newSt art, newend)

® Since 7.8.1

® Description
Sets the outer range. The selected range will move if needed. Note: the start and end times are determined based on the zoom
level and may not move (or may move farther than intended) if the component is zoomed out too far for the amount of change
attempted. IE: When days are showing, moving the start time 5 minutes forward will not effect the start, and moving the end time 5
minutes forward will add one day.

® Parameters
Date start - The starting date for the new outer range.
Date end - The ending date for the new outer range.

® Return
Nothing

® Scope

Client

Code Snippet

This exanple noves the existing Quter Date Range
of a Date Range conponent back two days
fromjava.util inport Cal endar

Get the current start and end of the outer range

dat eRangeConponent = event. source. par ent. get Conponent (' Dat e Range')
start Dat e = dat eRangeConponent . out er RangeSt art Dat e

endDat e = dat eRangeConponent . out er RangeEndDat e

Calculate the new start and end dates for the outer range
cal = Cal endar. getlnstance();

cal .setTime(startDate);

cal . add(Cal endar . DAY_OF_MONTH, 2);

newStart = cal.getTine();

cal . set Ti me(endDat e) ;
cal . add(Cal endar. DAY_OF_MONTH, 2);
newend = cal . getTine();

Set the new outer range for the conponent.
dat eRangeConponent . set Qut er Range(newSt art, newEnd)

Extension Functions

This component does not have extension functions associated with it.

Event Handlers
This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.

2l Unknown macro: 'sql'

2l Unknown macro: 'sql'
This event fires when the mouse enters the space over the source component.

2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sgl’
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.

2 unknown macro: 'sql’

2l Unknown macro: 'sgl’
Fires when the mouse moves over a component after a button has been pushed.

2l uUnknown macro: 'sql’
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l Unknown macro: 'sql’

Customizers

This component does not have any custom properties.

Examples

Code Snippet

/I A Query binding on anot her conponent on the sane wi ndow m ght |ook like this:

SELECT Col um1, Colum2, Col um3

FROM MyTabl e WHERE
t_stanp >= {Root Container.Date Range.startDate} AND
t_stanmp <= {Root Contai ner.Date Range.endDat e}

Day View
General

2015 Thursday, March 12

o |1:00 PM - 300 PM
.I Fhone Call

Component Palette Icon:

@] Diay View

Description

This component displays a timeline for a single day, similar to what you might find in a personal planner/organizer. By filling in the Calendar Events
dataset property, the component will display events that occur on this day. Each event can have custom text and a custom display color associated
with it.

Properties

2l uUnknown macro: 'sql’

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have scripting functions associated with it.

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.

2l uUnknown macro: 'sgl’

2 Unknown macro: 'sql'
This event fires when the mouse enters the space over the source component.

T2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sql'
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.

2l Unknown macro: 'sgl’

2l Unknown macro: 'sql'
Fires when the mouse moves over a component after a button has been pushed.

2l Unknown macro: 'sql'
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

T2l Unknown macro: 'sgl’

Customizers

This component does not have any custom properties.

Examples

There are no examples associated with this component.

Week View

General

2015 Sun,March® Mon, March Tue,March 10 Wed, March 11 Thu, March 12 Fr, March 13 Sat

Component Palette Icon:

@] Week View

Description

Displays a full week's worth of events on a calendar. Configuration is achieved by populating the Calendar Events dataset. See the Day View for
details.

Properties

T2l Unknown macro: 'sql’

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have scripting functions associated with it.

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.

2l uUnknown macro: 'sgl’

2 Unknown macro: 'sql'
This event fires when the mouse enters the space over the source component.

T2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sql'
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.

2l Unknown macro: 'sgl’

2l Unknown macro: 'sql'
Fires when the mouse moves over a component after a button has been pushed.

2l Unknown macro: 'sql'
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

T2l Unknown macro: 'sgl’

Customizers

This component does not have any custom properties.

Examples

There are no examples associated with this component.

Month View

General
March 2015
Sunday Ionday Tuesday Wednesday Thursday Friday Saturday
1 2 3 4 5 & 7
B 9 10 " 12 13 14
whieeting # Anather heating
@ Email Customer
15 16 17 18 19 20 2
22 23 24 25 26 27 28
29 30 31

Component Palette Icon:

| Month View

Description

This component displays events for an entire month. By filling in the Calendar Events dataset property, the component will display events that
occur for each day of the month. Each event can have custom text and a custom display color associated with it.

Properties

2l unknown macro: 'sgl’

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have scripting functions associated with it.

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.

2l uUnknown macro: 'sgl’

2 Unknown macro: 'sql'
This event fires when the mouse enters the space over the source component.

T2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sql'
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.

2l Unknown macro: 'sgl’

2l Unknown macro: 'sql'
Fires when the mouse moves over a component after a button has been pushed.

2l Unknown macro: 'sql'
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

T2l Unknown macro: 'sgl’

Customizers

This component does not have any custom properties.

Examples

There are no examples associated with this component.

Admin

User Management
General

Users
Usemame Name. Roles Cortact Info Schedule
‘admin Administrator

Roles

Role name. # of Iembers

\Administratar

Component Palette Icon:

&% User Management

Description

The user management panel provides a built-in way to edit users and roles from a client. To use this component, you should be aware that it is
only editing the users and roles from a single User Source.By default, the component will use the user source of the containing project. You can
change this by typing in the name of another user source into the component's "User Source" property.

To make changes to the Gateway's system user source from the Designer or Client, Allow User Admin must be checked in Gateway Settings in
the Gateway Configuration page.

This component can be run in one of three modes:

Manage Users Mode: In this mode, the component manages all of the users contained in the user source. Users and roles may be added,
removed, and edited.

Edit Single Mode: In this mode, the component only edits a single user. Which user is being edited is controlled via the "User Source" and
"Username" properties.

Edit Current Mode: In this mode, the user who is currently logged into the project can edit themselves. Obviously, the ability to assign roles is not
available in this mode. This can be useful to allow users to alter their own password, adjust their contact information, and update their schedules.

Warning: Be careful to only expose this component to users who should have the privileges to alter other users. Access to this component in "Mana
ge Users" mode will allow users to edit other users' passwords and roles.

Properties

2l Unknown macro: 'sql'

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

Description

Called for each user loaded into the management table. Return false to hide this user from the management table. This code is
executed in a background thread.

Parameters
Self- A reference to the component that is invoking this function.

user-The user object itself. Call user.get('propertyName’) to inpsect. Common properties: 'username’,’ schedule', 'language’, user.
getRoles() for a list of rolenames.

Return
Boolean

Scope
Client

Description

Called for each role loaded into the management table. Return false to hide this role from the management table. This code is
executed in a background thread.

Parameters
Self- A reference to the component that is invoking this function.
Return
Boolean
Scope
Client
Description

Called for each schedule loaded into the schedule dropdown in the edit user panel. Return false to hide this schedule from the
dropdown. This code is executed in a background thread.

Parameters
Self- A reference to the component that is invoking this function.
Return
Boolean
Scope
Client
Description
Called when the save button is pressed when adding or editing a role. This code is executed in a background thread.
Parameters
Self- A reference to the component that is invoking this function.
saveContext-An object that can be used to reject the edit by calling saveContect.rejectSave('reason’).
oldName-The role name before editing. Will be None for a role being added.
newName-The new name of the edited role.
Return
Nothing
Scope

Client

® Description

Called when the save button is pressed when adding or editing a user. This code is executed in a background thread.
® Parameters

Self- A reference to the component that is invoking this function.

saveContect-An object that can be used to reject the edit by calleing saveContect.rejectSave('reason’).

user-The user that is trying to be saved. Call user.get('propertyName') to inspect. Common properties: 'username’,
'schedule’,'language’. Call user.getRoles() for a list of rolenames.

® Return
Nothing
® Scope

Client

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.

2l Unknown macro: 'sgl’

2 Unknown macro: 'sql'
This event fires when the mouse enters the space over the source component.

2l Unknown macro: 'sgl’
This event fires when the mouse leaves the space over the source component.

T2l Unknown macro: 'sgl’
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.

2l uUnknown macro: 'sgl’

T2l Unknown macro: 'sql’
Fires when the mouse moves over a component after a button has been pushed.

2l Unknown macro: 'sql'
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l Unknown macro: 'sgl’

Customizers

This component does not have any custom properties.

Examples

There are no examples associated with this component.

Schedule Management

General
Schedules
Natne Deseription e
Altem ate Weekdays Regular Day 1 Shitweekday schedule 3
Always Buitt-in schedule that is abways available: 247x365 ¥
Example 40 example ofa b-F 8am-Som schedule with a lonch break | g0
Holidays
Name L]
Christmas Eve
Christmas Day

Component Palette Icon:

' Schedule Management

Description

This component allows for management of schedules. Schedules can be defined by specifying which days of the week and which times of day they
are active on. The times of day are defined using a string of time ranges, where the times are specified in 24-hr format with dashes between the

beginning and the end. Multiple ranges can be specified by separating them with commas. Examples:

8:00-17:00 Valid from 8am to 5pm

6:00-12:00, 12:45-14:00 @ Valid from 6am to noon, and then again from 12:45pm to 2pm

0:00-24:00 Always valid.

Schedules that alternate weekly or daily can be specified by using the repetition settings. All repeating schedules need a starting day. For
example, you could have a schedule that repeats on a weekly basis, with 1-week on and 1-week off. This schedule would be active for seven days
starting on the starting day, and then inactive for the next seven days, then active for seven days, and so on. Note that the days of the week and
time settings are evaluated in addition to the repetition settings. This means that both settings must be true for the schedule to be active. Also note
that if you set "Repeat / Alternate" to a setting other than "Off" and you do not specify a starting day, the schedule will never be active.

Properties

2l Unknown macro: 'sgl’

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

Description

Called for each holiday loaded into the management table. Return false to hide this holiday from the management table. This code
is executed in a background thread.

Parameters
Self- A reference to the component that is invoking this function.
Holiday-The holiday name.

Return
Boolean

Scope

Client

Description

Called for each schedule loaded into the management table. Return false to hide this schedule from the management table. This
code is executed in a background thread.

Parameters
Self- A reference to the component that is invoking this function.
Schedule-The schedule name

Return
Boolean

Scope

Client

Description
Called when the save button is pressed when adding or editing a holiday. This code is executed in a background thread.
Parameters
Self- A reference to the component that is invoking this function.
saveContect-An object that can be used to reject the edit be calling saveContext.rejectSave('reason’)
oldName-The holiday name before editing. Will be None for a holiday being added.
newName-The new name of the edited holiday.
Return
Nothing
Scope

Client

® Description
Called when the save button is pressed when adding or editing a schedule. This code is executed in a background thread.
® Parameters
Self- A reference to the component that is invoking this function.
saveContext-An object that can be used to reject the edit by calling saveContect.rejectSave(‘'reason’).
oldName-The schedule anme before editing. Will be None for a schedule being added.
newName-The new name of the edited schedule.
® Return
Nothing
® Scope

Client

Event Handlers
This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.
2l Unknown macro: 'sql'
2l Unknown macro: 'sql'

This event fires when the mouse enters the space over the source component.

2l unknown macro: 'sgl’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sql’
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.
2l Unknown macro: 'sql'
2l Unknown macro: 'sql’
Fires when the mouse moves over a component after a button has been pushed.
2l Unknown macro: 'sgl’
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2 unknown macro: 'sql’

Customizers

This component does not have any custom properties.

Examples

Here is an example of the schedule management component and its property table.

Property Name Value
Name Schedules
Enabled True
Visible True

Touchscreen Mode | Single-Click

Data Quality -1
Schedules
Marne [Description L
Alternate Weekdays Regular Day 1 Shift weekday schedule
Always Built-in schedule that is always available: 24x7x365 ‘]
Example An example of a M-F Bam-5pm schedule with & lunch break x
Holidays
Marme o
Christmas Eve
Christmas Day |
Mermarial Day
Fourth of July x

Roster Management
General

On-Call Rosters.

Name. 1 Count

Component Palette Icon:

'B? Roster Management

Description

The user management panel provides a built-in way to edit rosters from a client.

Properties

2l uUnknown macro: 'sql’

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

Description

Called for each roster loaded into the management table. Return false to hide this roster from the management table. This code is

executed in a background thread.
Parameters
Self- A reference to the component that is invoking this function.
Roster-The name of the roster.
Return
Boolean
Scope
Client
Description

Called for each user in a user source to be shown as an available user for the roster currently being edited. Return false to hide
this user so that it cannot be added to the roster. This code is executed in a background thread.

Parameters
Self- A reference to the component that is invoking this function.
Roster-The name of the roster being edited.
userSource-The name of the user source being used to populate the list of available users.

user-The user object itself. Call user.get('propertyName’) to inspect. Common properties: 'username’,'schedule’,'language’. Call
user.getRoles() for a list of rolenames.

Return
Boolean
Scope
Client
Description
Called when the save button is pressed when editing a roster. This code is executed in a background thread.
Parameters
Self- A reference to the component that is invoking this function.
saveContext-An object that can be used to reject the edit by calling saveContext.rejectSave(‘reason’)
rosterName-The same of the roster being edited.
Return
Nothing
Scope

Client

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.
2l Unknown macro: 'sql'
2l Unknown macro: 'sql'

This event fires when the mouse enters the space over the source component.

2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sqg|
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.

2 unknown macro: 'sql’

2l Unknown macro: 'sgl’
Fires when the mouse moves over a component after a button has been pushed.

2l uUnknown macro: 'sql’
Fires when the mouse moves over a component, but no buttons are pushed.

Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l Unknown macro: 'sql’

Customizers

This component does not have any custom properties.

Examples

There are no examples associated with this component.

SFC Monitor

General

valve 2 W
Running 00:00:13 ™

&1a51986-1243-43d3-917 -

[-]

[[+]

Mame \ Walue |
chartPath wvalve 2 e
count 3
instanceld e1a5f986-1243-43d9-9ff7-faZefa
iteration 1
maxterations 2
number 1
runningTime 14
startTime Mon Mar 23 14:34:08 POT 2015 E‘

Component Palette Icon:

ara SFC Monitor

Description

A component to monitor SFC performance. In addition the component allows for the operator to control the chart instance through the charts
instance 'id' property. The chart scoped variables are available through the scope dataset property.

Properties

2l unknown macro: 'sgl’

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have scripting functions associated with it.

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.

2l uUnknown macro: 'sgl’

2 Unknown macro: 'sql'
This event fires when the mouse enters the space over the source component.

T2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sql'
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.

2l Unknown macro: 'sgl’

2l Unknown macro: 'sql'
Fires when the mouse moves over a component after a button has been pushed.

2l Unknown macro: 'sql'
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

T2l Unknown macro: 'sgl’

Customizers

This component does not have any custom properties.

Examples

There are no examples associated with this component.

Alarming Components

Alarm Status Table

General

INDUCTIVE
[Active Time Display Path Current State Printity U N I V E RS I 'I

Alarm Status Table

Watch the Video

| Acknowledge H Shelve ‘ P EB

Component Palette Icon:

|<f Alarm Status Table

Description

The alarm status table displays the current state of the alarm system. It can be configured to show active, unacknowledged, cleared, and
acknowledged alarms. By default it shows all non-cleared/non-ack'ed alarms.

Acknowledgement is handled by selecting (checking) alarms and pressing the "Acknowledge" button. If any of the selected alarms require
acknowledge notes, then a small text area will be presented in which the operator must add notes to the acknowledgement.

Shelving is supported by pressing the "Shelve" button when an alarm is selected. This will temporarily remove the alarm from the entire alarm
system (not just the local client). When the time is up, if the alarm is still active, it will pop back into the alarm system. The times shown to the user
are customizable by editing the values inside the "Shelving Times" dataset property. The alarms that have been shelved can be un-shelved by
pushing the shelf management button in the lower right-hand side of the component.

If a more simplified alarm status table is needed, many of the features of the status table can be removed, for example, the header, footer, and
multi-selection checkboxes. If a very short alarm status table is needed, turn on the "Marquee Mode" option, which will automatically scroll through
any alarms if there is not enough vertical space to show all of them at once.

To change the columns that are displayed, the order of the columns, and/or the column width, put the Designer into preview mode. Then right-click
on the table header to show/hide columns. Click and drag to re-order columns, and drag the margins of the columns to resize their width. No
further action is necessary - the column configuration will remain in place after the window is saved.

For alarms that originate from tags that have tag history turned on, users can see an automatic ad-hoc chart for the value of the source tag by
pressing the chart button.

@ An Example of configuring the Alarm Status Table can be found on the Alarm Status Component page.

Properties

2l Unknown macro: 'sql’

Scripting

https://www.inductiveuniversity.com/video/alarm-status-component/7.8
https://legacy-docs.inductiveautomation.com/display/DOC/Alarm+Status+Component

Scripting Functions

® Description
This specialized print function will paginate the table onto multiple pages. This function accepts keyword-style invocation.
® Keyword Args

fitwidth - If true, the table's width will be stretched to fit across one page's width. Rows will still paginate normally. If false, thetable
will paginate columns onto extra pages. (default = true) [optional]

headerFormat - A string to use as the table's page header. The substring "{0}" will be replaced with the current page number.
(default = None) [optional]

footerFormat - A string to use as the table's page footer. The substring "{0}" will be replaced with the current page number. (default
="Page {0}") [optional]

showDialog - Whether or not the print dialog should be shown to the user. Default is true. [optional]
landscape - Used to specify portrait (0) or landscape (1) mode. Default is portrait (0). [optional]

® Return
Boolean- True if the print job was successful.

® Scope

Client

Event Handlers

Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l Unknown macro: 'sgl’

Extension Functions

® Description

Returns a popup menu that will be displayed when the user triggers a popup menu (right click) in the table. Use system.gui.
PopupMenu() to create the popup menu.

® Parameters
Self- A reference to the component that is invoking this function.

SelectedAlarmEvents - The alarm events selected on the Alarm Status Table. For an individual alarm Event, call alarmEvent.get
(‘propertyName’) to inspect. Common properties: ‘'name’, 'source’, ‘priority’.

® Return
Object - the popup menu.
® Scope

Client

Description

Called for each event loaded into the alarm status table. Return false to hide this event from the table. This code is executed in a
background thread.

Parameters
Self- A reference to the component that is invoking this function.

SelectedAlarmEvents - The alarm event itself. Call alarmEvent.get('propertyName’) to inspect. Common properties: 'name’,
'source’,'priority".

Return
Boolean- Returns true or false for every alarm event in the table. True will show the alarm. False will not show the alarm.
Scope
Client
Description
Returns a boolean that represents whether the selected alarm can be acknowledged
Parameters
Self- A reference to the component that is invoking this function.

SelectedAlarmEvents - The alarm events selected on the Alarm Status Table. For an individual alarmEvent, call alarmEvent.get
(‘propertyName’) to inspect. Common properties: ‘'name’,'source’,'priority".

Return
Boolean- Returns true or false for every alarm event in the table.
Scope
Client
Description
Returns a boolean that represents whether the selected alarm can be shelved.
Parameters
Self- A reference to the component that is invoking this function.

SelectedAlarmEvents - The alarm events selected on the Alarm Status Table. For an individual alarmEvent, call alarmEvent.get
(‘propertyName’) to inspect. Common properties: ‘'name’,'source’,'priority".

Return
Boolean- Returns true or false for every alarm event in the table.
Scope
Client
Description
Called when an alarm is double-clicked on to provide custom functionality.
Parameters
Self- A reference to the component that is invoking this function.

SelectedAlarmEvents - The alarm event that was double clicked. For an individual alarmEvent, call alarmEvent.get
(‘propertyName’) to inspect. Common properties: 'name’,'source’,'priority".

Return
Nothing
Scope

Client

Custom Methods

Custom methods allow you to create methods that are accessible to all of the event handlers thereby eliminating the need to copy your scripting
from one handle to another.

Customizers

Alarm Row Styles

The Alarm Row Styles Customizer manages the way the Alarm Status Table renders each alarm.

Examples

Code Snippet

#The following code is an exanple of the filter alarm expression function.

#The function results in advanced filtering for the alarmtable.

#n this exanple the alarmtable will only show alarms with a name that matches the value of the
"AreaNane" property located on the container the Alarm Status Table resides in.

name = sel f.parent. AreaName

if name == al arnEvent. get (' nanme'):
return True

el se:
return Fal se

Gallery

Alarm Status Table with a Single Alarm

[] Active Time Display Path Current State Priority

Acknowledge || Shelve .p I:EI @

Alarm Row Style Customizer

/" Alarm Row Styles B .
Row Styles 3
{pri "
4
%
Expression Standard [Blink
1 IE‘ Foreground Foreground
@ @
Background Background
@ @
Font Font
il & | g
(] 0] i =
oK || cancel |
Description

The Alarm Row Styles Customizer manages the way the Alarm Status Table renders each alarm. The Alarm Row Styles Customizer allows you to
change the styles of the alarms and the logic that governs each style. The Alarm Status Table evaluates each alarm and applies the the logic of the
expression block to decide to implement a style. If the expression returns a logical "True" then the Alarm Row Style Customizer applies the color
formatting options defined in the area to the right of the Expression block. If the expression returns a logical "False" then the Alarm Row
Customizer evaluates the next expression associated with the next row style. The process continues until an expression returns a logical "True."
There can be many rows with different logic and styles. You can add and remove rows by selecting the "plus" button or "delete" button.

Alarm Journal Table

General
INDUCTIVE
Event Time Display Path EventSt.. Priority Ack'ed By Event¥alue S
IM2NE11:25 AW test Clear Lo -1 B U NIVER Il]
IM2M511:24 AW test Active Lo]
MG 11:24 AW test Clear Low -2
IM2NE11:23 AW test Active Lo 1
IM2M511:23 AW test Clear Lo -2 Alarm Journal Table
IM2M511:22 AW test Active Lowe 1
IM2NE11:22 AW test Clear Lo -1 Watch the VldeO
IM2M511:21 AW test Active Lo]
IMZNE11:21 AW test Clear Low -1
IM2MNE11:20 AW test Active Lo 1}
IM2M511:20 AW test Clear Lo -2
IM2M511:19 Am test Active Lowe 1
IM2MNE11:18 AW test Clear Lo -2
IM2M511:18 AM test Active Lo 2
MG 1118 AW test Clear Low -1
[-]
950 events o B

Component Palette Icon:

41 Alarm Journal Table

Description

The alarm journal table provides a built-in view to explore alarm history that has been stored in an alarm journal. If you only have one alarm
journal specified on your Gateway, then you do not need to specify the journal name. If you have more than one specified, then you need to
provide the name of the journal you'd like to query.

The journal table shows the alarm history that is found between the Start Date and End Date properties. When you first put an alarm journal
table on a window, these properties will be set to show the most recent few hours of journal history. Note that without further configuration, the
journal table will always show the few hours before it was created. To properly configure an alarm journal table,please bind its start and end
date properties to something what will update, such as the Date Range component or expressions involving the time now(). This way, you can
configure it so that operators can choose the time to display, or have dates will be update automatically to have it poll.

To change the columns that are displayed, the order of the columns, and/or the column width, put the Designer into preview mode. Then right-
click on the table header to show/hide columns. Click and drag to re-order columns, and drag the margins of the columns to resize their width.
No further action is necessary - the column configuration will remain in place after the window is saved.

@ Additional examples of configuring the Alarm Journal Table can be found on the Alarm Journal Component page.

Properties

2l Unknown macro: 'sgl’

Scripting

https://www.inductiveuniversity.com/video/alarm-journal-component/7.8
https://legacy-docs.inductiveautomation.com/display/DOC/Alarm+Journal+Component

Scripting Functions

® Description
This specialized print function will paginate the table onto multiple pages.This function accepts keyword-style invocation.
® Keyword Args

fitwidth - If true, the table's width will be stretched to fit across one page's width. Rows will still paginate normally. If false, the
table will paginate columns onto extra pages. (default = true) [optional]

headerFormat - A string to use as the table's page header. The substring "{0}" will be replaced with the current page number.
(default = None) [optional]

footerFormat - A string to use as the table's page footer. The substring "{0}" will be replaced with the current page number.
(default = "Page {0}") [optional]

showDialog - Whether or not the print dialog should be shown to the user. Default is true. [optional]
landscape - Used to specify portrait (0) or landscape (1) mode. Default is portrait (0). [optional]
® Return
boolean - True if the print job was successful.
® Scope

Client

Extension Functions

Description

Returns a popup menu that will be displayed when the user triggers a popup menu (right click) in the table. Use system.gui.
createPopupMenu to create the popup menu.

Parameters
self - A reference to the component that is invoking this function.

selectedAlarmEvents - The alarm events selected on the Alarm Status Table. For an individual alarmEvent, call alarmEvent.get
(‘propertyName") to inspect. Common properties: 'name’,'source’,'priority".

Return

self - A reference to the component that is invoking this function.

alarmEvent - The alarm event itself. Call alarmEvent.get('propertyName’) to inspect. Common properties: 'name’,'source’,'priority".
Scope

Client
Description

Called for each event loaded into the alarm status table. Return false to hide this event from the table. This code is executed in a
background thread.

Parameters
self - A reference to the component that is invoking this function.
alarmEvent - The alarm event itself. Call alarmEvent.get('propertyName’) to inspect. Common properties: 'name’, 'source’, 'priority’.
Return
Boolean
Scope
Client
Description
Called when an alarm is double-clicked on to provide custom functionality. Does not return a value.
Parameters
self - A reference to the component that is invoking this function.
alarmEvent - The alarm event itself. Call alarmEvent.get('propertyName') to inspect. Common properties: ‘name’, 'source’, ‘priority".
Return
Nothing
Scope

Client

Event Handlers

This event occurs when a component that can receive input, such as a text box, receives the input focus. This usually occurs when a user clicks

2l unknown macro: 'sgl’
on the component or tabs over to it.

=2l Unknown macro: 'sql'
This event occurs when a component that had the input focus lost it to another component.
An integer that indicates whether the state was changed to "Selected" (on) or "Deselected" (off). Compare this to the event object's constants to
2l unknown macro: 'sgl’
determine what the new state is.
Fires when a key is released and the source component has the input focus. Works for all characters, including non-printable ones, such as
2l Unknown macro: 'sql'
SHIFT and F3.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l Unknown macro: 'sgl’

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.

2l uUnknown macro: 'sgl’

2 Unknown macro: 'sql'
This event fires when the mouse enters the space over the source component.

T2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sql'
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.

2l Unknown macro: 'sgl’

2l Unknown macro: 'sql'
Fires when the mouse moves over a component after a button has been pushed.

2l Unknown macro: 'sql'
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

T2l Unknown macro: 'sgl’

Customizers

This component does not have any custom properties.

Examples

There are no examples associated with this component.

Containers

Container

General

Component Palette Icon:

[] container

Description

The container is a very important component. All components are always inside of a container, except for the special "Root Container" of each
window (see Anatomy of a Window). A container is different than normal components in that it can contain other components, including other
containers. Uses for containers include:

® Organization. Containers can be used to group components together. These components can then easily be moved, copied, or deleted
as a group. Furthermore, they will all be organized inside of their parent container in the project navigation tree, which makes them easier
to find.

® Re-usability. Containers allow a unique opportunity to create a complex component that is made up of multiple other components. The
Container's ability to have dynamic properties aids this greatly. For instance, if you wanted to make your own custom HOA control, you
can put three buttons inside of a container and configure them to all use a 'status' property that you add to their parent Container. Now
you have built an HOA control that can be re-used and treated like its own component. The possibilities here are endless. Create a date
range control that generates an SQL WHERE clause that can be used to control Charts and Tables. Create a label/button control that can
be used to display datapoints, and pop up a parameterized window that displays meta-data (engineering units, physical location, notes,
etc) about that datapoint. Creating re-usable controls with Containers containing multiple components is the key to rapid application
development.

® Layout. Containers are a great way to improve window aesthetics through borders and layout options.

Properties

2l Unknown macro: 'sgl’

https://legacy-docs.inductiveautomation.com/display/DOC/Anatomy+of+a+Window
https://legacy-docs.inductiveautomation.com/display/DOC/Custom+Properties

Scripting

Scripting Functions

This component does not have scripting functions associated with it.Remove the panel below if there are no scripting functions.

Extension Functions

This component does not have scripting functions associated with it.

Event Handlers
This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.
2l uUnknown macro: 'sgl’
2 Unknown macro: 'sql'

This event fires when the mouse enters the space over the source component.

T2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sql'
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.
2l Unknown macro: 'sgl’
2l Unknown macro: 'sql'
Fires when the mouse moves over a component after a button has been pushed.
2l Unknown macro: 'sql'
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

T2l Unknown macro: 'sgl’

Customizers

This component does not have any custom properties.

Examples

Customized Container with Border

Property Name Value
Border Titled

Background Color = 255,232,204

Template Repeater

General

R INDUCTIVE
UNIVERSITY

Component Palette Icon:

=~ Template Repeater
= B P Template Repeater

Watch the Video

Description

The Template Repeater repeats instances of templates any number of times. It can arrange them vertically, horizontally, or in a "flow" layout, which
can either be top-to-bottom or left-to-right. If there are too many to fit, a scrollbar will be shown. This makes it easy to quickly create screens that
represent many similar pieces of equipment. It also can be used to create screens that are dynamic, and automatically configure themselves based
on configuration stored in a database or tag structure. When first dropped on a window, the template repeater will look like any other empty
container. To select the template to repeat, configure the repeater's Template Path property. There are two ways to set how many times the

template should repeat:

® Count - The template will be repeated X times, where X is the value of "Repeat Count". The repeat count starts at zero and increments X
amount of times. Each value for X will be inserted into the custom property of the template that will be repeated. Template repeater inserts
the value of X into the custom property on the template with the same name as the template repeater's "Index Property Name." For
example, if the template has a custom property of "index" and the template repeater's Index Property Name is also "index," then the
template will be repeated X many time with the value of X being inserted into the template's custom property called "index."

® Dataset - The template will be repeated once for each row in the "Template Parameters" dataset. The template's custom properties with
the same names as the dataset's column names will assume the values of each row of the dataset.

@ An Example of configuring the Template Repeater can be found on the Template Repeater Component page.

Properties

T2l Unknown macro: 'sql’

https://www.inductiveuniversity.com/video/template-repeater/7.8
https://legacy-docs.inductiveautomation.com/display/DOC/Template+Repeater+Component

Scripting
Scripting Functions

® Description

Returns a list of templates loaded into the Template Repeater. Properties on the components within each instance can be
references by calling getComponenty().

® Parameters

None
® Return

List of Templates
® Scope

Client

Extension Functions

This component does not have any Extension Functions

Event Handlers

Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

T2l Unknown macro: 'sgl’

Customizers

This component does not have any custom properties.

Examples

Code Snippet: getLoadedTemplates()

#This script will call getlLoadedTenpl ates() on a Tenpl ate Repeater, and
#then print the text property of a Label conponent in each instance

#Store a reference to the Tenpl ate Repeater conponent in a variable
repeater = event.source. parent. get Conponent (' Tenpl ate Repeater')

#Store the list of tenplates in another variable
tenpl atelLi st = repeater. get LoadedTenpl at es()

#lterate through the |ist

for tenplate in tenplatelList:
#find a conponent named "Label" in the instance,
#and print the value of the text property
print tenpl ate. get Conponent (' Label ') .text

Template Canvas

General

INDUCTIVE
R UNIVERSITY

#ll o
|
g 3 Template Canvas
Component Palette Icon: Watch the Video

2= Template Canvas

Description

The template canvas is similar to the template repeater but allows for more control of the templates than the template repeater.
The "Templates" property on the template canvas is a dataset. Each row in this dataset represents a manifestation of a template. It can be the
same template or a different template on each row. This dataset allows for control over the size, position and layout of the template. There are two
methods of controlling the layout of each template inside the template canvas:
® Absolute Positioning: The location of the template is explicitly managed through the "X" and "Y" columns of the "Templates" property's
dataset. Consequently the columns labeled "width" and "height" control the size of the template.
® Layout Positioning: The template canvas uses "MiGLayout" to manage the location of the template. MigLayout is a common albeit
complicated layout methodology. It supports layouts that wrap the templates automatically as well as docking the template to one side of
the template canvas. You can learn more about MiG Layout at http://www.miglayout.com

In addition, control over data inside each template can be achieved by adding a column with the name "parameters" to the dataset and populating
this column with dictionary style key works and definitions.

Additional templates can be added to the template canvas by inserting an additional row to the "Templates" property's dataset. The same applies
to removing the templates but with removing the rows from the dataset.

Properties

2l unknown macro: 'sgl’

Example

The following example will create a form for users to input data.

Example

The following example will create a Form for users to input data in.

Absolute Positioning

The example uses a template named Form Input. Form Input contains a Label component and Text Field component. Form Input also has two
Template Parameteres: Label_Text and TextField_Text

® The Text property on the Label component is bound to the Label_Text parameter

https://www.inductiveuniversity.com/video/template-canvas/7.8
http://www.miglayout.com

® The Text property on the Text Field component is bound to the TextField_Text parameter bi-directionally. This will allow the user to
write to this property, and this makes reading the value later on easier.

B ralhiD RS i0-pB|feEEs QAR IESEE LAl

>roject Brawser o B X - I
[RETGE TS - Label |Text Field

[Main Window (13

= oo

[Main Window (3 ['

2+ [] Root Cortainer || N | Template Parameters
I == R T O N Marne Type Description | Drop Target | =
-3 Templates | §|Label_Text String | i

=4 Form input |||} TextField_Text String O
':w- Lahel & =lE
= TextField]

L @@ web Dey ﬁ

Both Form Input and the components inside had their height set to 20 by right clicking on the components and selecting Size and Position...
(Ctrl-P)

o/ Size & Positi..| 1230

Fosition
(L o[o)
Size
(DY T

[ox

[comea |

Once the template is in place, create a new window, place a Template Canvas Component down, and open the Template Canvas Customizer
from either the right-click menu or Ctrl-U

.'._(' Training - Ignition-TRAININ
File Edit View Project Component Alignment Shape Tools Help

B Al bR BESi0-p P - FREEAEQAQAAIEEZEE AN b o ST b -

Project Browser oo o Lt [I PR | Component Palette o R o
= L windows =] Bl 2 =l Q- Fiter
= [Template Canvas Window [-
L[] Root Container 1 w & &2 3 Input =
L B Template Carnvas : !
——-IE Templates] : : ——
—-& 2 Form Input ~] [T | |
......... - ! ! X
Displ
Tag Browser o Rox | ! + Display
1 1
RABHE - & -v@GH | SF] : ; + Tables
Tag Value Data ... | - | ! p—
+- E:' Ta — ¥ Y * afs
LE Sysit!&n;m §_ “: :“
Ctrl- + Calendar
J:f-lij Client 11— dcu ' |
+- (2] All Providers I ! Copy EtikC ! 5 Admmin
| Paste Ctrl-y !
. ! 1
: 3 Delete Delete ! + Alarming
7] ! = ! L L
......... a Ay Grou
a8 x || | h Gngr:up ! - Containers
! - L 1
- Lo - Container
-] & 4l Convert to Container ty 5
=l Common] & Lock -, Template Repeater
Mame Termplate Carny] Layout... L & Template Canvas
Wisihle [V true & Size & Position... Ctrl-F f
Border Mo BordE o «] I [customizers 3 | [1J Template Canvas Customizer Ct-u
=l Behavior [<]elcome | 8 Fo %3 Scripting... cirl-d [4J Custom Properties Ctrl-2 =
— = r-% Security CHLE |Helps configure the layout of the template canvas compaon
2 rl-
EE Template Canvas "Tenplate Canvas' (33,62 [286x286] Drag — (-3 | 100% (2105910 ml
W Tr lati ctil-T

Once open, the customizer allows us to specify the location of each template instance as well the value of any template parameters. Use the
following values for the first instance of Form Input:

Name: First Name

Template: Form Input

Position: Absolute, (0,0) [200x20]

Parameters: Label_Text = First Name, TextField_Text =" (blank)

Template Canvas Customizer

Instances
il]
Add/Edit Instance
Hame
|First Mame | &
Template
|F0rm Input |EJ|

(@ Absolute Poszitioning

L ofl_of[oo zof

9] Layout Positioning

Parameters

Label_Text [FirstName |

TetField_Text | |

| Add

Click the "Add" button to add an instance. Doing so will add an instance of Input Field. The instance will be visible in the preview section. Note

that values for the components are still using the default values for the Label_Text and TextField_Text. This is intentional. The new values will
appear once we close the customizer.

Take note of the yellow outline around the instance, and how First Name is highlighted at the top of the customizer. This means that the
instance is selected, and the customizer is in edit mode. This allows use to make changes to the selected instance (First Name). To exit edit
mode and add a new instance click on the "Cancel" button in the lower left of the window

1 Clicking on the "Cancel" button in the lower right will cancel out of the customizer.

Template Canvas Customizer

Label |Text Field

First Marme i
Add/Edit Instance

Hame

[First Name]
Template

|F0rm Input |E]|

(@ Absolute Positioning

L_of[of| oo 2o

] Layout Positioning

| Parameters

Label Tex

TextField_Text

I Apply !I Cancel l

Once out of edit mode, start adding values for a new instance:

Name: Last Name

Template: Form Input

Position: Absolute, (0,20) [200x20]

Parameters: Label_Text = Last Name, TextField_Text =" (blank)

Once entered, click the add button again.

Template Canvas Customizer

Instances

Label [TextField

=l

First Mame
Last Mame

Add/Edit Instance

Hame

|Last Name V]

Template

=

[Farm Input

@ Absolute Positioning

)

() Layout Positioning

| |
Parameters

Label_Text

I Apply H Cancel l

20| [zo0/[20]

Label [Tex Field

Cancel

Once both instances have been configured, click the "OK" button. You will see the instances appear in the canvas.

Training - Ignition-TRAINING-2 - Ignition Designer

File Edit View Project Component Alignment Shape Tools Help

B oAbl bD BWS Db

Project Browser

G R o

-~] Windowes
2 [T Template Canvas Window [
4[] Root Container
L B Template Canvas
—-u 0 Templates
L6 2 Farm Input

-

Tag Browser o

ABHEH - & -y Po 3J

Scroll Behavior Both
Layaut Constr... ins 0, fill
= Data
Templates Dataset [2R % 8C)
Data Quality -1
= Appearance

C

R T —

Tag Value Data...%
oL r_hl Tane
Froperty Editor o B X
8l = =Bl R -
L e 2=
visible W true @EJ
Eordat Mo Border E] 0y @
=l Behavior

D-EEEREeSQQR [Eseg E
1 1 1 1 |1c'J 1 1 1 1 |ﬁ:l:l| 1 1 1 300 1 1 L
1 oW £ _]
1 : First Mame :
1 | LastMame l
1
a9 |
I I
- ! 1
I I
_ 1 1
I I
ST l
7l “
- I I
I I
- ! 1
I I
_ I 1
I I
1 |
| ! 1
T L3
oo |
I I
- ! 1
] # oo § - 2
By
a
k

If a new instance needs to be added, it can be added through the customizer. However, the Template Canvas also has a Templates property.
This property stores all of the data that was entered into the customizer, so new instances can be configured directly on the Templates property.
View the dataset by clicking the Dataset Viewer button next to the Templates property.

Border Mo Border [=] [(@

= Behavior
Scroll Behavior Both E Lg_jl
Lavout Canstr.. ing 0, fill = @
=l Data
Templates Dataset [2R x 8C]
Data Cuality

=] Appearance
Background .. 23823623 + @ [

== Template Canvas "Teuplate Canvas"(

Furthermore, template instance configurations could be stored in a database table, and the template canvas could fetch the data with a SQL
Query binding on the Templates property.

Layout Positioning

Instead of having to manually enter a size and position for each instance, we can make use of layout positioning to have the template canvas
determine the best position for each instance, while also making suggestions as to where each instance is placed in relation to another. The layout
positioning uses a grid-methodology to instance placement. Each instance, unless otherwise specified, is considered a single "cell" in the grid. We
will tell the First Name instance to use the "wrap" parameter. This means the next cell in the grid should be placed on the next row.

Open the the Template Canvas Customizer again, and make the following modification to the First Name instance:

® Position: Layout Positioning
® Value: "wrap"

Click Apply, and the First Name instance will appear to overlap with the Last Name instance. This is because the grid only accounts for instances
using the Layout Positioning.

Froperty Editor o R Dataset Viewer
ai e
v | o= | BB - name [template Jlavowt] x [v | width [height | pararneters |
" crrmmmm e == Rirst Mame Form Input nia 0 0 200 20{"Label_Text""First Narme" "TexField_Text" ™}
Wisible W true @ |Last name Form Input nia o 20 200 20/"Label_Text""Last Marme""TexField_Text""™}

Template Canvas Customizer

Instances

Label [Text Fiald
Label |lextkield

First Mame
Last Mame

=1

AddEdit Instance

Hame

|First Mame

)

Template
|F0rm Input Bl

O Absolute Positioning
Lol o o o

(®) Layout Pogitioning

[wrap |

Label_Text

oo | [coen |

The easy way to fix this is to configure Last Name with Layout Positioning as well. Make the following changes to Last Name:

® Position: Layout
® Value: " (blank)

Template Canvas Customizer

nstances _ Label [Tex Field
Egim:mz = Lakel [Text Field
[
Add/Edit Instance
Hame
[Last Mams |©
Template
[Farm Input =)
) Absolute Positioning
L o[zof[zo0f[a0f
~® Layout Postaioning |
| |
R
Label_Text
TedField Tedt []
Apply Cancel

Once the changes have been applied, Click "OK". Check the Templates property again. Notice that the x, y, width, and height columns are no
longer used, but the layout column for First Name now has a value.

|

FirstName [|

: | BEutton
7 Lesthame []

|

I

I

Dataszet Viewer

b
hame | template | lawout | ¥ | i | width | height | parameters
i First Mame Farm lnput wrap 0 0 {"Label_Text""First Mame" "TextField_Teuxt" "}
Last Mame Form Input 0 0 {"Label_Text""Last Mame" " TextField_Text" "™}

Like the previous example, new rows can be added directly to this dataset. Furthermore, the "wrap" value means the next template instance will
begin on a new line. Add two new instances for Street Address and Account Name. Use either the customizer or simply add two new rows in the
dataset viewer with the following values. Note that the layout value for First Name and Last Name have been changed since the previous image:

T
W . I
o Firsthame [| Lasthame [| | =
Strestaderess [[mcomt[]
| 1 +
1

= |

Dataset Viewer

name | termplate | lawout | W | i | width | height | parameters
First Mame Farm Input I} i {"Label_Tew""First Mame" "TexdFisld_Text"™}
Last HWame Farm Input WA I} i {"Label_Tex""Last Mame" "TexdFisld_Text""™}
Street Address Form Input 1] 0] 0"Label_Text""Street Address","TextField_Texd" ™}
Account Mame Form Input WA 0 1] 0 0 {"Label_Tex""Account', TextField_Text' ™}

Read User Input

The last step is to read the user input. Put the designer into preview mode and add some values for each text field component. Once finished,
Switch the Designer back to design mode, and add a button component to the window (not the template canvas)

1 0 FistName [onn | LastName [Smith]
i Street Address {123 Main St Account |Awesome LLC.

| Eutton

I

1

I,

I

1

I

H 1
1

I

1

l
@

Add a script to the button component using the Code Snippet - Read User Input Example below in the Examples section. Place the code on the
actionPerformed event of your button.

4% Component Scripting [Button] p——

[J Event Handlers

cti [Navigation I £ Set Tag Yalue l lj SGL Update [@BetPruperm l U Script Editor
action

L @ actionPerformed Sy 4 E
) facus =
G key
% mouse 4
% mouseMotion : 2 g
4 prapertyChange 6 #This will a list of he s
iUSmm hiethods 7 templatelist = event.source.parent.getComponent ('Template Canvas').getAllTemplates()
&
9 #Initialize & list. User 1 in this variable
10 userInput = []
11

12 #Tterate through sach template instance inside the canvas

13 for template in templatelist:

14

15 #add b
18 #Lh: 'y

17 userInput.

22 system.gui.messageBox (str(userInput))

Click "OK" to close the Component Scripting window. Save the Project, put the designer in preview mode, and click the button

Alignment Shape Tools Help

iO-B0-4aEENsQQQ ElLdns|ess|lE=ET

...I.I.l‘t'u:llululuI.lzplulululularplulululu.I.I.I.I.lxplulululul

First Marme Last Name
Street Address |123 Main 5t Account |Awesome LLC

,
Information u

A

e

[John', 'Smith’, 123 Main 5t', Wwesome LLCT

<

&
T

Each value should appear in the message box. This example can easily be expanded to do something more meaningful with the input, like store to
a database table.

Scripting
Scripting Functions

® Description

Returns a list of the templates that comprise the template canvas.
® Parameters

Nothing
® Return

List - A list of VisionTemplate definitions. Each instance in the canvas will return it's definition's name. The names of each instance
can be accessed with getinstanceName(). Individual components in each instance can accessed with getComponent().

® Scope
Client
® Description
Obtains the designated template object from the template canvas.
® Parameters
name - The name of the template as defined by the "name" column of the dataset populating the template canvas.
® Return
VisionTemplate - Returns the template instance. Properties on the instance can be access by calling .propertyName
® Scope

Client
Extension Functions

® Description

This will be called once per template that is loaded. This is a good chance to do any custom initialization or setting parameters on
the template.

® Parameters

Self- A reference to the component that is invoking this function.

template - The template. The name of the template in the dataset will be available as template.instanceName
® Return

Nothing
® Scope

Client

Event Handlers

Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l uUnknown macro: 'sgl’

Customizers

This component has a customizer.

Examples

Code Snippet

#Thi s exanpl e denonstrates how to pull value information fromtenplates that are inside the tenplate
canvas.
#Thi s exanpl e assunes that each tenplate has a custom property call ed Content Val ue

#Get all the tenplate instances of the canvas.
tenpl ates = event. source. parent. get Conponent (' Tenpl ate Canvas').get Al |l Tenpl at es()

#The tenplates are a list therefore you can iterate through them
for tenplate in tenplates:

#You can access the properties of the tenplate. This exanple prints the ContentVal ue custom
property to the console.
print tenplate. ContentVal ue

Code Snippet - Seach by Name

#Thi s exanpl e denonstrates how to iterate through each tenplate in a tenplate canvas
#l ooki ng for a named instance. Once found, print the value of a property on a conponent in
#t hat instance.

#Thi s assunes that the canvas contains a tenplate instance naned "tinmer Tenpl ate" and
#a Timer conponent (nanmed Timer) is inside the instance.

#Create a reference to the Tenpl ate Canvas
canvas = event.source. parent. get Conponent (' Tenpl ate Canvas')

#Retrieve all tenplate instances in the canvas
tenpl nstance = canvas. get Al | Tenpl at es()

#lterate through each tenplate instance
for tenplate in tenplnstance:

#Conpare the nane of each instance.
if tenplate.getlnstanceName() == "tinerTenpl ate":

#Print the Value property on the Tiner conponent inside the tenplate
print tenpl ate. get Conponent ("Tiner").val ue

Code Snippet - Read User Input Example

#This script will retrieve a list of all tenplates in a tenplate canvas, and record user input.

#The code was originally design to work with the Read User |nput exanpl e above,
#but can be easily nodified to work with different tenplates.

#Ref erence the tenpl ate canvas conmponent, and call the getAl | Tenpl ates() nethod.
#This will return a list of every instance in the canvas
tenpl ateLi st = event. source. parent. get Conponent (' Tenpl ate Canvas').get Al |l Tenpl ates()

#lnitialize a list. User input fromeach text field will be stored in this variable
userlnput =[]

#lterate through each tenplate instance inside the canvas
for tenplate in tenplateList:

#add the user inputted value to the userlnput list. The values are originally returned in Unicode.
#the Python str() function is casting the Unicode values as string val ues.
user | nput . append(str(tenpl ate. TextFi el d_Text))

#Show the values in a messageBox. This could be replaced with an | NSERT query, or some other action.
#str() is used again to case the list as a string. This only required to work with the nessageBox
function

#since the function requires a string argument be passed in

system gui . nessageBox(str (userlnput))

Template Canvas Customizer

Misc

Paintable Canvas

General

Component Palette Icon:

' Paintable Canvas

Description

The Paintable Canvas component is a component that can be custom "painted” using Jython scripting. By responding to the component's repaint ev

ent, a designer can use Java2D to draw anything within the component's bounds. Whenever any dynamic properties on the component change,
the component is re-painted automatically, making it possible to create dynamic, vector-drawn components that can represent anything.

This component is an advanced component for those who are very comfortable using scripting. It is not user-friendly. The upside is that it is
extraordinarily powerful, as your imagination is the only limit with what this component can be.

When you first drop a Paintable Canvas onto a window, you'll notice that it looks like a placeholder. If you switch the Designer into preview mode,
you'll see an icon of a pump displayed. The pump is an example that comes pre-loaded into the Paintable Canvas. By editing the component's
event scripts, you can dissect how the pump was drawn. You will notice that the script uses Java2D. You can read more about Java2D here. You
will notice that as you resize the pump, it scales beautifully in preview mode. Java2D is a vector drawing library, enabling you to create
components that scale very gracefully.

Tips:
® Don't forget that you can add dynamic properties to this component, and use the styles feature. Use the values of dynamic properties in
your repaint code to create a dynamic component. The component will repaint automatically when these values change.

® You can create an interactive component by responding to mouse and keyboard events
® You can store your custom components on a custom palette and use them like standard components.

Properties

2l Unknown macro: 'sgl’

http://java.sun.com/docs/books/tutorial/2d/index.html
https://legacy-docs.inductiveautomation.com/display/DOC/Custom+Properties
https://legacy-docs.inductiveautomation.com/display/DOC/Component+Styles
https://legacy-docs.inductiveautomation.com/display/DOC/Creating+Components

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have scripting functions associated with it.

Event Handlers

This event occurs when a component that can receive input, such as a text box, receives the input focus. This usually occurs when a user clicks

2l Unknown macro: 'sgl’
on the component or tabs over to it.

2l Unknown macro: 'sql'
This event occurs when a component that had the input focus lost it to another component.

An integer that indicates whether the state was changed to "Selected" (on) or "Deselected" (off). Compare this to the event object's constants to

2l Unknown macro: 'sgl’
determine what the new state is.

Fires when a key is released and the source component has the input focus. Works for all characters, including non-printable ones, such as
2l Unknown macro: 'sgl’

SHIFT and F3.

Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l Unknown macro: 'sql’

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.

2l Unknown macro: 'sql'
2 Unknown macro: 'sql'
This event fires when the mouse enters the space over the source component.

2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sgl’
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.

2 unknown macro: 'sql’

2l Unknown macro: 'sgl’
Fires when the mouse moves over a component after a button has been pushed.

2l uUnknown macro: 'sql’
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l Unknown macro: 'sql’

Customizers

This component does not have any custom properties.

Examples

There are no examples associated with this component. However examples are available in the component itself.

The component comes prescripted to render the following pump:

Line

General

Component Palette Icon:

24

Description

The line component displays a straight line. It can run north-south, east-west, or diagonally. You can add arrows to either side. The line can be
dashed using any pattern you want. You can even draw the line like a sinusoidal wave!

Properties

2l Unknown macro: 'sql'

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have scripting functions associated with it.

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.

2l uUnknown macro: 'sgl’

2 Unknown macro: 'sql'
This event fires when the mouse enters the space over the source component.

T2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sql'
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.

2l Unknown macro: 'sgl’

2l Unknown macro: 'sql'
Fires when the mouse moves over a component after a button has been pushed.

2l Unknown macro: 'sql'
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

T2l Unknown macro: 'sgl’

Customizers

This component does not have any custom properties.

Examples

This component does not have examples associated with it.

Pipe Segment

General

Component Palette Icon:

== Pipe Segment

Description

The pipe segment component displays a quasi-3D pipe. In its basic form it looks very much like a rectangle with a round gradient. The
difference comes in its advanced rendering of its edges and endcaps. You can configure each pipe segment's end to mate perfectly with
another pipe segment butted up against it perpendicularly. The result looks like a pipe welded together in a 90° corner.

The control of the pipe's ends can be a bit confusing to a new user. It is done via 6 booleans - three per 'end'. End 1 is the top/left end, and
End 2 is the bottom/right end. You turn off each boolean if there will be another pipe butted up against that side. The following diagram should
make the naming conventions more clear:

Properties

2l unknown macro: 'sgl’

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have scripting functions associated with it.

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.

2l uUnknown macro: 'sgl’

2 Unknown macro: 'sql'
This event fires when the mouse enters the space over the source component.

T2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sql'
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.

2l Unknown macro: 'sgl’

2l Unknown macro: 'sql'
Fires when the mouse moves over a component after a button has been pushed.

2l Unknown macro: 'sql'
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

T2l Unknown macro: 'sgl’

Customizers

This component does not have any custom properties.

Examples

There are no examples associated with this component.

Pipe Joint

General

A
-

Component Palette Icon:

4k Pipe Joint

Description

The pipe joint displays a fancy joint component two join two pipe segments together. By turning off the cardinal directions, this will display a 2,3, or
4-pipe union. This component is optional, as pipes can butt up against each other and look joined.

Properties

2l Unknown macro: 'sgl’

Scripting

Scripting Functions

This component does not have scripting functions associated with it.Remove the panel below if there are no scripting functions.

Extension Functions

This component does not have scripting functions associated with it.

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.

2l uUnknown macro: 'sgl’

2 Unknown macro: 'sql'
This event fires when the mouse enters the space over the source component.

T2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sql'
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.

2l Unknown macro: 'sgl’

2l Unknown macro: 'sql'
Fires when the mouse moves over a component after a button has been pushed.

2l Unknown macro: 'sql'
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

T2l Unknown macro: 'sgl’

Customizers

This component does not have any custom properties.

Examples

There are no examples associated with this component.

Sound Player

General

Q

Component Palette Icon:

& Sound Player

Description

The Sound Player component is an invisible component that facilitates audio playback in the client. Each Sound Player component has one sound
clip associated with it, and will play that clip on demand. There is a built in triggering system, as well as facilities to loop the sound while the trigger
is set. Note that the sound clip needs to be a *.wav file, and that the clip becomes embedded within the window that the sound player is on - clients
do not need access to a shared *.wav file.

Properties

2l unknown macro: 'sgl’

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have scripting functions associated with it.

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.

2l uUnknown macro: 'sgl’

2 Unknown macro: 'sql'
This event fires when the mouse enters the space over the source component.

T2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sql'
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.

2l Unknown macro: 'sgl’

2l Unknown macro: 'sql'
Fires when the mouse moves over a component after a button has been pushed.

2l Unknown macro: 'sql'
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

T2l Unknown macro: 'sgl’

Customizers

This component does not have any custom properties.

Examples

There are no examples associated with this component.

Timer

General

2
Component Palette Icon:

4 Timer

Description

The timer button is an invisible button that can be used to create repeated events in a window. This is often used for animations or repetitive scripts
within a window. When running, the timer's Valueproperty is incremented by the Step By value, until the value tis the Bound, at which point it
repeats. It is often useful to bind other values to a timer's Value property.

For instance, if you set the timer's Bound property to 360, and bind an object's rotation to the Value property, the object will spin in a circle when
the timer is running.

How fast the timer counts is up to the Delay property, which is the time between counts in milliseconds.

Want to run a script every time the timer counts? First, make sure you don't actually want to write a project Timer Script, which will run on some
interval whenever the application is running. In contrast, a script that works via a Timer component will only run while the window that contains the
Timer is open, and the Timer is running. The way to do this is to attach an event script to the actionPerformedevent.

Properties

T2l Unknown macro: 'sql’

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have scripting functions associated with it.
Event Handlers

2l unknown macro: 'sgl’
Fires when the mouse moves over a component, but no buttons are pushed.

Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l Unknown macro: 'sql'

https://legacy-docs.inductiveautomation.com/display/DOC/Timer+Scripts

Customizers

This component does not have any custom properties.

Examples

Expression Binding Example

/1 Suppose that you have inages that nake up franes of ani mation.
/] Name your inmages: "Frane0.png", "Franel.png", "Frane2.png". Set the tinmer's Bound to be 3, then bind
the i mage path of animate conponent to the followi ng expression:
"Frane" + {Root Container.Tiner.value} + ".png

Signal Generator

General

~F

Component Palette Icon:

- Signal Generataor

Description

The signal generator is similar to the Timer component, but its value isn't simply a counter. Instead, you can choose from a variety of familiar
'signals’. You configure the frequency by setting the Periodproperty, which is in milliseconds. You configure the resolution by setting the Values
/Period property.

For example, if you choose a sine wave signal with a period of 2000 milliseconds and 10 values/period, your sine wave will have a frequency of
0.5 Hz, and its value will change 10 times every 2 seconds.

Properties

2l Unknown macro: 'sql'

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have scripting functions associated with it.
Event Handlers

2l Unknown macro: 'sql’
Fires when the mouse moves over a component after a button has been pushed.

Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l Unknown macro: 'sql'

Customizers

This component does not have any custom properties.

Examples

This component does not have any examples associated with it.

Reporting Components

Report Viewer

The following feature is new in Ignition version 7.8.0
Click here to check out the other new features

Description

This component provides a way to run and view Reports in Vision windows. Parameters added during Report creation are provided as Properties
in the Viewer and can override any default values set in the Report Resource. See the Reporting Module section for more about creating dynamic
reports to embed within Vision. To find documentation on the deprecated Report Viewer prior to Ignition 7.8, see the Legacy Report Viewer

documentation

General

1
|
1
1

Occurences Minutes
025

frrne) el tie J+m

Component Palette Icon:

Report Viewer

Properties

Name

Background
Color

Border
Font

Foreground
Color

Mouseover Text
Name
Print Mode

Retain Page on
Reload

Suggested
Filename

Visible

Description

Color that lays underneath the report.

The border surrounding this component. NOTE that the border is unaffected by rotation.
Font of text of this component

The foreground color the labels on the component.

The text that is displayed in the tooltip which pops up on mouseover of this.
The name of this component.

Sets the printing mode. Vector is fastest and high-quality for printers that support it, but Raster
mode can help spool size with older printers.

If false, always reloads report to page 1

The filename that will come up by default when the user saves the report to disk.

If disabled, the component will be hidden.

Type

Color

Border
Font

Color

String
String

Int

Boolean

String

Boolean

Scripting

.background

.border
font

.foreground

.toolTipText
.name

.printingMode

retainPageOn
Reload

suggestedFile
name

.visible

Category

Appearance

Common
Appearance

Appearance

Common
Common

Behavior

Behavior

Behavior

Common

https://docs.inductiveautomation.com/display/DOC/New+in+this+Version#NewinthisVersion-Newin7.8.0
https://support.inductiveautomation.com/usermanuals/ignition/index.html?reporting_tables_headerdetailsummary.htm

Scripting
Scripting Functions

@ The following print methods will only work if a report has finished loading on the Report Viewer component

print()

® Description

Uses the system default printer and shows a print dialog.
® Keyword Args

none

® Return

none
® Scope

Client
print(printerName)

® Description
Uses the named printer and shows a print dialog.
® Keyword Args
String printerName - The name of the printer the report should be sent to
® Return
none
® Scope

Client
print(printerName, showDialog)

® Description
Uses the named printer and determine if the print dialog window should appear or not.
* Keyword Args
String printerName - The name of the printer the report should be sent to
Boolean showDialog - True if the dialog window should appear, False if the dialog window should be skipped.
® Return
none
® Scope

Client

getBytesPDF()

The following feature is new in Ignition version 7.8.3
Click here to check out the other new features
® Description

Return the bytes of the generated report in the Report Viewer using PDF format.

® Keyword Args
® Return

Byte Array - The bytes of the report in PDF format.

1 This function will return null if the trial has expired.

® Scope

Client
getBytesPNG()

The following feature is new in Ignition version 7.8.3
Click here to check out the other new features
® Description
Return the bytes of the generated report in the Report Viewer using PNG format.
® Keyword Args
® Return

Byte Array - The bytes of the report in PNG format.

1" This function will return null if the trial has expired.

® Scope

Client
saveAsPDF(fileName)

® Description
Prompts the user to save a copy of the report as a PDF. Shows a file selection window with the extension set to PDF.
* Keyword Args
String fileName - A suggested filename to save the report as
® Return
none
® Scope

Client

https://docs.inductiveautomation.com/display/DOC/New+in+this+Version#NewinthisVersion-Newin7.8.3
https://docs.inductiveautomation.com/display/DOC/New+in+this+Version#NewinthisVersion-Newin7.8.3

saveAsPNG(fileName)

® Description

Prompts the user to save a copy of the report as a PNG. Shows a file selection window with the extension set to PNG.
® Keyword Args

String fileName - A suggested filename to save the report as.

® Return

none
® Scope

Client
Extension Functions

® Description
Called when the Report generation process has been completed.
® Keyword Args
self - A reference to the component invoking this method.
pdfBytes - The PDF formatted bytes generated by the Report.
® Return
none
® Scope

Client

Event Handlers
This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.
2l uUnknown macro: 'sgl’
2 Unknown macro: 'sql'
This event fires when the mouse enters the space over the source component.

2l Unknown macro: 'sql'
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sql'
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.
T2l Unknown macro: 'sgl’
2l Unknown macro: 'sql'
Fires when the mouse moves over a component after a button has been pushed.
2l Unknown macro: 'sql'
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l Unknown macro: 'sql'

Examples

print()
#calls print on a Report Viewer conponent |located in the sane w ndow

reportVi ewer = event.source. parent.get Conponent (' Report Vi ewer')
reportViewer. print()

print() with default printer, no dialog

#calls print on a Report Viewer conmponent |ocated in the same w ndow
#bypasses the print dialog window and uses the default printer

report Vi ewer = event.source. parent.get Conponent (' Report Viewer')
report Vi ewer. print(None, False)

saveAsPDF()

#Saves the file as a PDF to a user selected |ocation.
#The file selection w ndow defaults to a name of "Daily Report"

reportVi ewer = event.source. parent.get Conponent (' Report Vi ewer')
report Vi ewer. saveAsPDF("Dai ly Report")

Barcodes

The Barcode component allows reports to contain dynamically generated barcodes. With Reporting v3 I—“*—I

we added support for a number of 2D barcodes. -,
ProductMap.inventoryl ocation

Usag e Froperty Insne(tu; B B X
Configure Barcode | Properties |

To add a barcode to your report, simply drag the Barcode item off the Report Design Palette and drop Datakey

onto a page. You will see a placeholder barcode with its driving data key displayed, with an example E::j‘lfi:“”‘“w“““” Ja

encoding of the type specified in the Barcode Format of the Configuration area. Data Keys can be [DATAMATRX =l

dropped or typed into the configuration panel, and the driving key will be shown in its appropriate [lshow Text

barcode placeholder. The actual barcode, as well as any text to be displayed under the barcode, is et S M ——

generated and rendered when the report is executed or previewed. RS il EZAEEE) REEEIE e GEEITE 80 RG]

Barcodes are commonly embedded into unstructured Table Rows, or Labels for printing. When used in
set-driven components such as these, each barcode can be encoded to a unique value provided by the
driving data source.

Configuration

Barcodes require a Data Key or Text to encode. Note that each Format encoder has specific
requirements for what it will encode. The barcode configuration panel displays some brief information
about the selected format, but is not comprehensive.

The Show Text option of the barcode will add a String representation of the encoded data on the final
barcode. Enabling the Show Text option will allow the configuration of Font for the displayed text.

Supported Encoders
Supported barcode formats include:

Code 39
Code 128
Data Matrix
EAN 8
EAN 13
ITF

PDF 417
QR Code
UPC A

Examples

To see an example of embedding a barcode in a DataSource driven component, take a look at the Labels
component example where we embed barcodes in the repeating Labels component to dynamically
create coded labels to track items.

Images

The Image component El Image lets you embed images into your reports. Images can be
dropped as files onto reports, pulled as binary data from a data source, or even a URL.

Usage

To create a new image, either use the Image tool on the Report Design Palette or drag an image from
your desktop. If created from the toolbar, you can add the image source to the Key property of the
Image Property Inspector table. For more flexibility, you can use a Parameter that resolves to a URL to
get the image.

(]

(]

(]

]

(]

Labels

ooo

oog Labels
Labels " can be used to print out mailing labels, create name tags, or any other generic labels. You can use standard Avery label
sheets or specify your own dimensions.

Usage

The Labels component is created by selecting it and dragging it onto the Page of the Report Designer. The size of the labels component is automatically
calculated based on the number and size of the labels. The label size and spacing can be set in the Configuration panel when the Labels component is
the selected item. To edit the label itself, super-select the template label (always the top-left label in the component) and add text, shapes, data keys or
keychain expressions, Images or Barcodes. Keep in mind that any data keys or expressions within the Label component are driven by the Data Key
configured in the component (see example below).

Data Key Name of DataSet that will populate the labels

Label Formatting Choose from a list of Avery Label Formats, or create a custom sized label.
Rows/Columns Defines the number of rows and columns on the page

Label Width/Height Width and height of labels in pixels

Spacing Width/Height Distance between labels on the page in pixels

Example

Hypothetical Use Case

We are going to create a new set of custom labels for our University Research Lab to better track the DNA Primers we use in experiments. Primers are
expensive and our researchers are getting Carpal Tunnel from the extra Grant Proposals they have to write to fund replacement of Primers that Student
Interns keep losing. We have invested in a QR Code Scanner that we will use to help track the Primers. We want the labels to contain info about the

Primer and where they belong. In addition, we want the barcode to contain the name, number of the lab, and the location within the lab that the samples

below.

Our Datasource for this information lives in an SQL Table (or maybe an Excel CSV export used as a Static CSV Datasource) which has this structure:

- LJ Datasources
== PrimerLocations
LabMumber
Location
Primertlame
Sequence

Here are the steps we take to create our labels.

. Create a Labels component from the Report Design Palette by dragging the Labels item onto your Report.
. Specify the Data Key that maps to the Data Source you want to drive the label

. Choose the Appropriate Label Size (or create your own)

. Create the template for your labels in the Label Component's driving Box

. Verify Label layout using the Report Preview

abhwiNE

Here is how our finished Layout looks:

https://legacy-docs.inductiveautomation.com/display/DOC/Report+Designer#ReportDesigner-SelectionandAlignment
https://legacy-docs.inductiveautomation.com/display/DOC/Data+Keys+and+Keychain+Expressions
https://legacy-docs.inductiveautomation.com/display/DOC/Data+Keys+and+Keychain+Expressions

e0e Report - lgnition-pjones-iMac. local - Igntion Designer o
Ele Bt View Projec Componem Pages Tools Help
B5|malhin(eie B 7y s %0 W nAaq
Project E"’:ﬁ;’g 25 eport Overview) Data [Design [&d Preview [E] Schedule
T B transacon Groups P
Windows =il [acfier
% Tempites o
D Reports Primer Identification Label Components 2
B secac Ll able
LB b <. Labumbe| €Prime rNamce
1B repen g L Lot e crossTab
L % reper) osation: @locatong B Smple Table
L-Page 1 Primer Seq B8 Labels
- Lt o @Seenceq i arcode
ey Browser @ax @ image
[show Calculations
Graonsachans 3
T 5;1;323;; e Timeseris Chart
“ PrimerLocations| v xy chare
er by ar chare
© Pie chan
Sranes 2
#Tex
/ line
OlRecange
Otipse
Pr i [e
vopery spector 58 x
Configure Labels [Properties. S
pencil
la
et ormating
Costom =]
g
Rows. [Columns 2]
wnerwon [259] Labeiveigm [123)
spacng wian [22] spacng Heon [_13]
] Treemox
35 Project saved. (71 ms) 97% | 409 1 910 mo | @)

We used a Barcode embedded into the template label to create our QR Codes. Since the labels will be driven by the PrimerLocations Data Key, we can
reference the child keys within the components or keychain expressions located within the label. In this case, we formatted the string we want the barcode
to encode by adding "PrimerName, LabNumber, Location" to the Data Key field of the barcode. To make the label human readable, we added some text
shapes via selecting the shape and dragging within the super-selected template label as can be seen in the next image. We mix plain text and data keys
by using our @ symbols to surround things we want to resolve to data when the report is generated.

Fle Eat View Project Component Pages Tools Hep
Bf[ralhOp Bk® BIY
Proe s 58 %

rplaes 0|

i
& sacstaic
& Gooostaic - . R

B Report Primer identication Label |
5 Report (1 ENGE
L-page 1 he. LabNumbec@PrimerName® 4
£ Labels LR Lm%“’g{ﬁ:"g@
&-Lanel =K
]
x

$ % W Reaq

B ReportOverview € Data | [f Design (& Preview | [B Schedule

Primer Seq:
@Sequencea

Key Browser aa
Clsnow Calculations

O Parameters.
i - J Datasources

.—U Buit In

Property Inspector a8 x

EdnText [Propertes |

eprimerNanee
Lab: @LabNumber@
Location: @Location@

©~®wH P

X

x

When we are happy with our design, we can switch to the Preview to take a look at the result.

ReportOverview [Data [Design (& Preview Schedule

1607 <priseriocationss |
1608 rou-0>
1609 <Prinertiane>16F</Prineriiane>
EEE EEE 1610 <Sequence>CG6 TTA CCT TGT TAC GACT Te/Sequence>
1611 <Lablusber>2</Labtiunber>
AR 16F Ty EF-laForward 1612 <Location>Cooler 2</Location>
A L o] L1 1613 </row-0>
i Locaion: Cooler2 Location: Cooler 1 1614 phivinng
s . 1615 <PrinerNiane>EF-laForuarde/PrinerNane:
S Rtorrmoaacrt [yt 1616 Seqtence TOUGCCTUGACAGTLGTTC/Sequence>
1618 <Location>Cooler 1</Location>
EEE EHE 1619 </row-1>
1620 <row-2>
b pBabes :9& 5V40-promoter 1621 <Prinerliane>p8abes<,/Prinerliane:
Lab: 2 Lab: 1 1622 <Sequence>CTT TAT CCA GCC CTC AC</Sequence>
Location: Coolr 2 Location: Cooler 1623 <Labunber>2</LabNunbe:
. o 1624 <LocationsCooler 2</Location>
AT Geasoccronc ATTTATaCAGASGCCGAGS = Pl
1627 <PrinerNane>Sy40-pronoter</Prinerliane>
1628 <Sequence>TATTTATGCAGAGGCCGAGG</Sequence>
g EE ST
G 0K B ML3R 1630 <LocationsCooler 1'</Location>
o} Lab:2 1631 </row-3>
Locagon: Freozer Location: Cooler | 1632 <rowt>
1633 <Prinertiane>3A0X</Prineriane>
Prine Sog Primer s 1634 <Sequence>GCA AAT GGC AT (TG ACA TCC</Sequence>
GEAART GGC ATT CTG ACA TeC CAG GAAACA GCT ATG ACC = P et
1635 <Location>F reezers/Location>
1637 </row-a>
E5E [E5E 1638 Srowss
B3 EGFPCIR pGL3for 1639 <Prinerliane>t13R</Prinerliane
o] Labi2 I L3 1640 SeqvencesC G ACA GCT 6 AcCe/Sequence
! Location: Cooler 2 L Location: Walk in, Shef B 1641 <LabNunber>2</LabNumbe:
1642 SLocationcooler 14/Location
primee Soq primer s 1643 <rrows>
CAT TTT ATG TIT GAG GTT CAG GG CTAGCAAM TAG GCT GTC CC 1664 Ay
1645 <Prinerliane>EGFPCIR</Prinerane:
1646 <Sequence>CAT TTT ATG TTT CAG GTT CAG GG</Sequence
ERE 1647 <LabNusber>2</LabNunber>
% pGLfor plLrey 1648 <LocationsCooler 2¢/Location>
= Lab: 3 L 1 1649 </row-6>
% Locason: walkin, ShlfA Location: Cooler 1 1650 <row7>
1651 <Prinertiane>pGL3for</Prineriiane:
prier Soq: primer Soq 1652 SequencencTh GeA ARh TAG 6T GTC cC</Sequence g
GIATCT TAT GGT ACT GTAACT & CTTTATGTT TTT GG GTC TTC G 1653 <Labunber>3</LabNunber>
1654 <Locationsalk in, Shelf B</Location>
1655 </row-1>
1656 <row-s o
1657 i i
LR} » al] O]

Report (1) x

Finally, we can print our labels by creating a Print Action on the Schedule tab, and running it by clicking the "Run Immediately" 4 button. If we know we

get new shipments of Primers on a set schedule, we could have these labels print automatically. In this case, we want to simply print on demand, so we
disabled the schedule on the Schedule tab before setting up our printer.

Schedule | Parameters Actions|

Print

Primary Printer

||Defau|t Printer IEI c
Backup Printer

|None IE“ &
Print Mode

® vectar

=Y+

O Raster |

Copies

Options

[Print on bath sices
[Collate

¥ Use Autolandscape Made

Fage Orientation

This completes this example. Feel free to comment if you have questions or recommendations!

https://legacy-docs.inductiveautomation.com/pages/createpage.action?spaceKey=DOC&title=Scheduled+Actions+%28Version+7.7%29&linkCreation=true&fromPageId=4491624

Report Drawing Shapes

| ===

Changing stroke color. Alignment malkes this easy!

Changing rounding radius, stroke, fill, and shadow

(@]

Circle and triangle Subtract paths Combine Paths
(Select circle first)

then apply aradient fill |
E Subtract Paths

Palygon Tool Pencil Tool (other selection order)

Examples using the
Drawing Shapes

Basic drawing shapes are found under Shapes on the component pallet

located in the Design Panel

»

] Rectangle
() Ellipse
Y7 Star

(J Polygon
& Pencil

Drawing Shapes

Name

Text Shape Click and drag to create text.

Line Shape Click and drag to create a line.

Description

Rectangle
Shape

Ellipse Shape
Star Shape

Polygon
Shape

Click and drag to create a rectangle.

Click and drag to create an ellipse.
Click and drag to create a star.

The polygon shape lets you click points that will be joined with straight lines. Alternatively, you can click-drag-release to position
line segments interactively.

Editing stops under the following conditions: clicking the same point twice, clicking close to the start point or clicking a new
component in the component pallet

Pencil Shape

The pencil tool lets you click and draw free-hand path segments, automatically smoothing the curve on mouse release.

=R FENE -

Eile Edit ¥iew Project | Component Pages Tools Help
Group =% % 12 G0 QQE
ungroup
Bring to Front overview = B pata &

Froject Browser

T-@ Glabal
——D Froject

+ [Scripts
windows
- [E] Reports

=N Report
L Page1l

+- =7 Instrurnent Interface

Menu Item
Group/Ungroup
Bring to Front
/Send to Back

Align Row Top
/Center/Bottom

Align Column Left
/Center/Right

Equally Space
Row/Column

Make Same Size,
Width, Height

Combine/Subtract
Paths

d Properties
':'5 Transaction Groups

a0 Templates

Send to Back
Combine Paths
Subtract Paths

Align Selected ltems »

Align Row Top

Align Row Center
Align Row Bottom
Align Column Left
Align Column Center
Align Column Right
Equal Space Row
Equal Space Column

Make Same... 3

Function

Allows you to merge the currently selected shapes into a single shape for convenient management. Contained shapes are still
accessible, via double-click super-select. Ungroup separates grouped shapes.

All shapes have an order on the page that determines what is drawn on top when two shapes overlap. These options allow
you to alter that order.

Quickly align several shapes in a row, either by their top, center, or bottom border. Useful when shapes are of different heights.
Same as above, but for columns.

Equalizes the distance between shapes horizontally or vertically.

Make several shapes the same width, height or both.

Takes multiple overlapping shapes (such as a rectangle and an oval) and combines them into a single shape using the
combined paths. A powerful tool to construct complex shapes.

Row Selector

General
@ INDUCTIVE

o Al Data UNIVERSITY
) Feb 15

- [22nd

= 1PM Row Selector

+ (7% 23rd

+ [T 24th .

J:,_) 25th Watch the Video

+ (79 26th

+ (1 27th

+ (19 28th
- mar 15

Component Palette Icon:

*s Row Selector

Description

The row selector is a component that acts like a visual filter for datasets. It takes one dataset, chops it up into various ranges based on its
configuration, and lets the user choose the splices. Then it creates a virtual dataset that only contains the rows that match the selected splices.

The most common way to splice the data is time. You could feed the row selector an input dataset that represents a large time range, and have it
break it up by Month, Day, and then Shift, for example. Then you could power a report with the output dataset, and that would let the user
dynamically create reports for any time range via an intuitive interface.

To configure the row selector, first you set up the appropriate bindings for its input dataset. Then you use its Customizer to alter the levels that it
uses to break up the data. In the customizer, you add various filters that act upon columns in the input dataset, sorting them by various criteria. For
example, you could choose a date column, and have it break that up by quarter. Then below that, you could have it use a discrete filter on a
product code. This would let the user choose quarterly results for each product. Each level of filter you create in the customizer becomes a level in
the selection hierarchy. Note that the output data is completely unchanged other than the fact that rows that don't match the current user selection
aren't present.

This component is very handy for driving the Report Viewer, Table, and Classic Chart components, among others.

Additional information on the Row Selector can be found on the Row Selector Component page in the appendix.

Properties

2l Unknown macro: 'sgl’

https://www.inductiveuniversity.com/video/row-selector/7.8
https://legacy-docs.inductiveautomation.com/display/DOC/Row+Selector+Component

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have scripting functions associated with it.

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.

2l uUnknown macro: 'sgl’

2 Unknown macro: 'sql'
This event fires when the mouse enters the space over the source component.

T2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sql'
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.

2l Unknown macro: 'sgl’

2l Unknown macro: 'sql'
Fires when the mouse moves over a component after a button has been pushed.

2l Unknown macro: 'sql'
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

T2l Unknown macro: 'sgl’

Customizers

The row selector tree customizer allows you to customize the row filtering.

Examples

There are no examples associated with this component.

Column Selector

General

@ INDUCTIVE
UNIVERSITY

Tank Columns
¥ area
¥l displayname
V] tankcade

Column Selector

Watch the Video

Component Palette Icon:

2y Column Selector

Description

The column selector component is conceptually similar to the Row Selector, except that instead of filtering rows, it filters columns from its output
dataset. Each column from the input dataset is shown as a checkbox. As the user checks and un-checks columns, the output dataset has those
columns added or removed. This is very handy for driving the Table and Classic Chart components.

@ Addition information on the Column Selector can be found on the Column Selector Component page

Properties

2l Unknown macro: 'sgl’

https://www.inductiveuniversity.com/video/column-selector/7.8
https://legacy-docs.inductiveautomation.com/display/DOC/Column+Selector+Component

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have scripting functions associated with it.

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.

2l uUnknown macro: 'sgl’

2 Unknown macro: 'sql'
This event fires when the mouse enters the space over the source component.

T2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sql'
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.

2l Unknown macro: 'sgl’

2l Unknown macro: 'sql'
Fires when the mouse moves over a component after a button has been pushed.

2l Unknown macro: 'sql'
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

T2l Unknown macro: 'sgl’

Customizers

A customizer exist that allows you to configure the columns.

Examples

There are no examples associated with this component.

File Explorer

General

’i Deskiop

if adwanced class pictures
= Alarms

+- 1M Computer

Component Palette Icon:

0y File Explorer

Description

The File Explorer component displays a filesystem tree to the user. It can be rooted at any folder, even network folders. It can also filter the types

of files that are displayed by their file extension (For example, "pdf"). The path to the file that the user selects in the tree is exposed in the bindable
property Selected Path.

This component is typically used in conjuction with the PDF Viewer component, in order to create a PDF viewing window. This is very useful for
viewing things like maintenance manuals from within your project. To use this component to drive a PDF Viewer component, follow these steps:

® Bind the PDF Viewer's Filename property to the File Explorer's Selected Path property

® Set the File Explorer's File extension filter to "pdf"

® Set the File Explorer's Root Directory to a network folder that has your maintenance manuals in it. (Use a network folder so that all clients
will be able to access the manuals).

Properties

2l Unknown macro: 'sgl’

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have scripting functions associated with it.

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.

2l uUnknown macro: 'sgl’

2 Unknown macro: 'sql'
This event fires when the mouse enters the space over the source component.

T2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sql'
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.

2l Unknown macro: 'sgl’

2l Unknown macro: 'sql'
Fires when the mouse moves over a component after a button has been pushed.

2l Unknown macro: 'sql'
Fires when the mouse moves over a component, but no buttons are pushed.
Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

T2l Unknown macro: 'sgl’

Customizers

This component does not have any custom properties.

Examples

There are no examples associated with this component.

PDF Viewer

New in 7.8!
General
s BERE A @RS x@e

EELE

EEETS

Component Palette Icon:

@5 PDF Viewer

Description

G) Looking for documentation on the legacy PDF Viewer component? Please see the IA Labs PDF Viewer page

The PDF Viewer component displays a PDF that exists as a file in some accessible filesystem, or as a URL. Note that this component is
simply for viewing existingPDFs. To create dynamic reports, or view dynamically generated reports, use Reporting Module.

This component is typically used in conjunction with the File Explorer component, in order to create a PDF viewing window. Simply bind the
Selected Path property in the PDF Viewer to the File Explorer's Selected Path property. See the File Explorer's documentation, as well as the Fi
le Explorer and PDF Viewer page for further instructions on how to put these two components together.

Warning. Past versions of this component had some limitations on what it could present. In the Reporting Module versions 2.x, the PDF
Viewer component could only be guaranteed to correctly display reports generated by the Report Viewer. In practice, it is able to view many
PDFs, but it does have trouble with some, especially PDFs created by AutoCAD. Users unable to upgrade to Ignition 7.8 should consider
installing the PDF-Viewer module from IA-Labs. This module is the basis on which the new 7.8 version of the PDF Viewer is built.

https://legacy-docs.inductiveautomation.com/display/DOC/Reporting+Module
https://docs.inductiveautomation.com/display/DOC/File+Explorer+and+PDF+Viewer
https://docs.inductiveautomation.com/display/DOC/File+Explorer+and+PDF+Viewer
https://support.inductiveautomation.com/usermanuals/ignition/reporting_reportpanel.htm
https://legacy-docs.inductiveautomation.com/display/DOC/IA+Labs+PDF+Viewer
https://legacy-docs.inductiveautomation.com/display/DOC/IA+Labs+PDF+Viewer

Properties

Name Description Property Scripting Category
Type

Border The border surrounding this component. NOTE that the border is unaffected by rotation. Border .border Reporting
File Path Path to the .pdf file to be displayed. String filePath Reporting
Footer If false, the Footer is not displayed. Boolean . Reporting
Visible footerVisible
Name The name of this component. String .name Reporting
Page Fit Mode to fit the document within the viewer. (1 = Disabled, 2 = Actual Size, 3 = Fit Height, 4 = Fit Integer . Reporting
Mode Width) pageFitMode
Page View How to display PDF in Viewer (1 = One Page, 2 = One Column, 3 = Two Page Left, 4 = Two Col Left, = Integer . Reporting
Mode 5 = Two Page Right, 6 = Two Col Right) pageViewM

ode
Toolbar Sets the top PDF control toolbar to visible. Boolean . Reporting
Visible toolBarVisible
Utility Sets the Utility Sidebar to visible. Boolean . Reporting
Visible utilityPaneVi

sible
Visible If disabled, the component will be hidden. Boolean .visible Reporting

Scripting

Scripting Functions

® Description

This function will pass in the bytes of a PDF and load them into the PDF Viewer component. Please see Storing Files in a
Database for more details

® Parameters
string bytes - The bytes of the PDF to be displayed on the component

string name - The name of the PDF

® Return
Nothing
® Scope
Client
® Since 7.8.2
® Description
This function will print the PDF.
® Parameters
boolean- If true, shows the user a print dialog. Default is true [optional]
® Return
Nothing
® Scope
Client
® Since 7.8.2
® Description

This function will set the current zoom level of the PDF, adjusted to stay within the minimum / maximum zoom range. Will zoom in
on center of page.

® Parameters

float- Zoom factor to use. 1.0 is no zoom.
® Return

Nothing
® Scope

Client

Extension Functions

This component does not have extension functions associated with it.

https://legacy-docs.inductiveautomation.com/display/DOC/Storing+Files+in+a+Database
https://legacy-docs.inductiveautomation.com/display/DOC/Storing+Files+in+a+Database

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse release, both of
which must have occurred over the source component. Note that this event fires after the pressed and released events have fired.
2l Unknown macro: 'sql'
2l Unknown macro: 'sql'

This event fires when the mouse enters the space over the source component.

2l Unknown macro: 'sql’
This event fires when the mouse leaves the space over the source component.

2l Unknown macro: 'sqg|
This event fires when a mouse button is pressed down on the source component.
This event fires when a mouse button is released, if that mouse button's press happened over this component.

2 unknown macro: 'sql’

2l Unknown macro: 'sgl’
Fires when the mouse moves over a component after a button has been pushed.

2l uUnknown macro: 'sql’
Fires when the mouse moves over a component, but no buttons are pushed.

Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

2l Unknown macro: 'sql’

Customizers

This component does not have any custom properties.

Examples

There are no examples associated with this component.

Expression Functions

The expression language is used to define dynamic values for component properties and expression tags. Expressions often involve one or more
other values that are used to calculate a final value. Expressions don't do anything, other than return a value.

For an overview and syntax of the expression language, see Expression Language Overview and Syntax.

String Aggregates Logic
Type Casting Advanced Math
Date and Time Colors
Translation
Alarming

Users

Expression Overview and Syntax

Overview

The expression language is used to define dynamic values for component properties and expression tags
. Expressions often involve one or more other values that are used to calculate a final value. Expressions On this page...
don't do anything, other than return a value.

The classic example for an expression is to change a temperature that is stored in Celsius to Fahrenheit
in order to display it. Suppose you had a tag,Tank 6/Temp that was in Celsius. If you wanted to display
that tag in Fahrenheit on a Label, you would use an Expression Binding on the label's text property using
the following expression:

® Overview

® Syntax

Literal Values

Operators

Bound Values

Dataset Access

Expression

Functions

© Whitespace and
Comments

1.8 * {Tank 6/ Tenp} + 32

O O O O O

The expression language is used to define dynamic values for component properties and expression tags. Expressions often involve one or more
other values that are used to calculate a final value. Expressions don't do anything, other than return a value.

The classic example for an expression is to change a temperature that is stored in Celsius to Fahrenheit in order to display it. Suppose you had a tag,T
ank 6/Temp that was in Celsius. If you wanted to display that tag in Fahrenheit on a Label, you would use an Expression Binding on the label's text
property using the following expression:

Every time that the temperature tag changes, the expression will re-calculate the value and push it into the Label's text property. Now lets say that you
wanted to append a "°F" to the end of the label so that the user knew the units of the temperature. You could simply use some string concatenation in
your expression, like this:

(1.8 * {Tank 6/Temp} + 32) + " °F"

The expression language is used to define dynamic values for component properties and expression tags. Expressions often involve one or more
other values that are used to calculate a final value. Expressions don't do anything, other than return a value.

The classic example for an expression is to change a temperature that is stored in Celsius to Fahrenheit in order to display it. Suppose you had a tag,T
ank 6/Temp that was in Celsius. If you wanted to display that tag in Fahrenheit on a Label, you would use an Expression Binding on the label's text
property using the following expression:

Every time that the temperature tag changes, the expression will re-calculate the value and push it into the Label's text property. Now lets say that you
wanted to append a "°F" to the end of the label so that the user knew the units of the temperature. You could simply use some string concatenation in
your expression, like this:

Lets suppose that you wanted to give the user an option to display the value in Celsius or Fahrenheit, based on checking a checkbox. You could add
a Check Box component to th screen called DisplayFahrenheit. Then you could use this expression to dynamically display either unit, based upon the
user's selection:

i f ({Root Container.DisplayFahrenheit.selected}, (1.8 * {Tank 6/ Tenp} + 32) + " °F", {Tankf/Tenp} + " °C")

Syntax

As its name suggests, everything in the expression language is an "expression”. This means that everything returns a value. 5 is an expression. So is
5+1. So are {MyTags/TankLevel} and{MyTags/TankLevel}+1. Expressions can be combined in many powerful ways. Lets take a look at how
expressions are written.

More formally, an expression is any one of the following:

Number

Boolean

String

Bound tag

Bound property

Function call

Dataset access

Equation involving any of these

Literal Values

https://support.inductiveautomation.com/usermanuals/ignition/expression_binding.htm
https://support.inductiveautomation.com/usermanuals/ignition/expression_binding.htm
https://support.inductiveautomation.com/usermanuals/ignition/expression_binding.htm
https://support.inductiveautomation.com/usermanuals/ignition/buttons_pmicheckbox.htm

Literal values are things like numbers, booleans, and strings that are represented directly in the language. In the expression language, numbers can
by typed in directly as integers, floating point values, or using hexadecimal notation with a 0x prefix. Examples:

42
8. 456
OxFFC2

Strings are represented by surrounding them with double or single quotes. You can use the backslash character to escape quotes that you want to be
included in the string. Examples:

"This is a regular string"

' Thi s one uses single quotes'
"This string uses \"escaping\" to include quotes inside the string"

Operators

You can use these arithmetic, logical, and bit-shifting operators to combine expressions.

Operator Name Description
- Unary Minus Negates a number.
! Not Logical opposite of a boolean.
" Power Raises a number to the power of another number. a”b is ab.
% Modulus Modulus or remainder of two numbers. a%b is the remainder of a+b.
* Multiply
/ Divide
+ Add/Concatonate If both operands are numbers, this will add them together. Otherwise treats arguments as strings and

performs concatenation.

- Subtraction

& Bitwise AND
| Bitwise OR
xor Bitwise XOR
<< Left Shift A signed bitwise left shift.
>> Right Shift A signed bitwise right shift.
> Greater Than Logical greater-than test between two numbers. Returns a boolean.
< Less Than
>= Greater Than or
Equal To
<= Less Than or Equal
To
= Equal Tests for equality between two operands.
1= Not Equal Tests for equality, returning true when not equal.
&& Logical AND Returns true when both operands are true. Anything non-zero is considered true.
Il Logical OR Returns true when either operand is true. Anything non-zero is considered true.
like Fuzzy String Compares the left-hand value with the pattern on the right side. The pattern may consist of %,*, and ?
Matching wildcards.

1 Comments Allows for comments following this operator.

Bound Values

Bound values are paths to other values enclosed in braces. These will appear red in the expression editor. When you are writing an expression for a E
xpression Binding, you can reference tag values and property values using the brace notation. When you are writing an expression for an Expression

Tag, you can only reference other tag values. You can use the Insert Property () and Insert Tag Value () buttons to build these references for
you.

Dataset Access

If you have an expression that returns a dataset, you can pull a value out of the datatset using the dataset access notation, which takes one of these
forms:

Dat aset _Expressi on ["Col umm_Nane"] //returns the value fromthe first row at the given colum nane

Dat aset _Expression [Colum_Ilndex] //returns the value fromthe given colum at the first row

Dat aset _Expressi on [Row_|I ndex, "Columm_Nane"] //returns the value fromthe given row at the given col utm nane
Dat aset _Expressi on [Row_I ndex, Columm_lndex] //returns the value fromthe given row at the given colum index

For example, this expression would pull a value out of a Table at row 6 for column "ProductCode":

{Root Cont ai ner. Tabl e. data}[6, "ProductCode"]

Note that you'll often have to convince the expression system that what you're doing is safe. The expression language can't tell what the datatype will
be for a given column, so you may have to use a type-casting function to convince the expression language to accept your expression, like this:

tol nt ({ Root Contai ner. Tabl e. data}[6, "ProductCode"])

Expression Functions

The expression language's functions are where much of the real power lies. A function may take various arguments, all of which can themselves be
any arbitrary expression. This means that you can use the results of one function as the argument to another function. In general, the syntax for a
function call is:

functi onNanme(expressi onl, expression2, ...)

Whitespace and Comments

Whitespace, such as spaces, tabs and newlines, are largely ignored in the expression language. It is often helpful to break your expression up onto
multiple lines for clarity. Comments are delimited by two forward slashes. This will make the rest of that line be ignored. This example shows an if functi
on spread over 4 lines with comments annotating the arguments.

if({Root Container.UseTagVal ueOpti on. sel ect ed},
{M/Tags/ SoneVal ue}, // Use the tag val ue
"Not Sel ected", /1l Use default value if the user doesn't check the box

https://support.inductiveautomation.com/usermanuals/ignition/expression_binding.htm
https://support.inductiveautomation.com/usermanuals/ignition/expression_binding.htm
https://support.inductiveautomation.com/usermanuals/ignition/expression_sql_properties.htm
https://support.inductiveautomation.com/usermanuals/ignition/expression_sql_properties.htm

Aggregates

groupConcat
max
maxDate
mean
median

min

minDate
stdDev

sum

groupConcat

Description

Concatenates all of the values in the given column of the given dataset into a string, with each value separated by the string separator. Any null values
in the column are ignored.

Syntax

groupConcat(dataset, column, separator)

Examples
Suppose you had a table with this dataset in it:

Product Code Quality Weight

BAN_002 380 3.243
BAN_010 120 9.928
APL_000 125 1.287
FWL_220 322 7.889

Code Snippet

groupConcat ({ Root Contai ner. Table.data}, 1, " / ") //would return the string: "380 / 120 / 125 / 322"

Code Snippet

groupConcat ({ Root Cont ai ner. Tabl e. data}, "ProductCode", ", ") //would return the string: "BAN_002, BAN 010,
APL_000, FW._220"

max

Description

Finds and returns the maximum value in the given column of the given dataset, or the max value in a series of numbers specified as arguments. When
looking up the max in a dataset, the column may be specified as an index or as a column name. Any null values in the column are ignored. If there are
no rows in the dataset, zero is returned.

Syntax

max(dataset, column OR number, number...)

Examples

For example, suppose you had a table with this dataset in it:

ProductCode @ Quantity = Weight

BAN_002 380 3.243
BAN_010 120 9.928
APL_000 125 1.287
FWL_220 322 7.889

max({Root Contai ner. Table.data}, 1) //would return 380

max(0, 10/2, 3.14) //would return 5. You can also use this function to find the maxinumin fixed series of
nunbers, specified as argunents

max({SoneVal ue}, 0) //The following exanple is a great way to nake sure a val ue never goes bel ow zero:

maxDate

Description

Finds and returns the maximum date in the given column of the given dataset, or the max value in a series of dates specified as arguments. When
looking up the max date in a dataset, the column may be specified as an index or as a column name. Any null values in the column are ignored. If there
are no rows in the dataset, null is returned.

Syntax

maxDate(dataset, columnindex OR date, date...)

Examples

The following table applies to the code snippet below:

AlarmTime Path Severity
2010-01-08 7:28:04 | Tanks/Tank5/TempHiAlarm @ 4
2010-01-08 10:13:22 = Tanks/Tank38/LoLevel 2
2010-01-08 13:02:56 @ Valves/Valve2/ 2

maxDat e({ Root Cont ai ner. Tabl e. data}, "Alarnfine") //You could use this expression to get the date and tinme
for the nost recent alarm

mean

Description

Calculates the mean (a.k.a average) for the numbers in the given column of the given dataset or the mean of a series of numbers specified as
arguments. When looking up the mean in a dataset, the column may be specified as an index or as a column name. Any null values in the column are
ignored. If there are no rows in the dataset, zero is returned.

Syntax

mean(dataset, column OR number, number...)

Examples

For example, suppose you had a table with this dataset in it:

ProductCode @ Quantity = Weight

BAN_002 380 3.243
BAN_010 120 9.928
APL_000 125 1.287
FWL_220 322 7.889

nean({Root Contai ner. Tabl e. data}, "Wight") //... would return 5.58675

nean(1,2,3) //... would return 2

median

Description

Calculates the median for the numbers in the given column of the given dataset or the median of a series of numbers specified as arguments. When
looking up the median in a dataset, the column may be specified as an index or as a column name. Any null values in the column are ignored. If there
are no rows in the dataset, zero is returned.

Syntax

median(dataset, column OR number, number...)

Examples

For example, suppose you had a table with this dataset in it:

ProductCode @ Quantity = Weight

BAN_002 380 3.243
BAN_010 120 9.928
APL_000 125 1.287
FWL_220 322 7.889
nedi an({Root Cont ai ner. Tabl e. data}, "Wight") //... would return 5.566

nedi an(1,2,3,3,10) //... would return 3

min
Description

Finds and returns the minimum value in the given column of the given dataset, or the min value in a series of numbers specified as arguments. When
looking up the min in a dataset, the column may be specified as an index or as a column name. Any null values in the column are ignored. If there are
no rows in the dataset, zero is returned.

Syntax

min(dataset, column OR number, number...)

Examples

For example, suppose you had a table with this dataset in it:

ProductCode @ Quantity = Weight

BAN_002 380 3.243
BAN_010 120 9.928
APL_000 125 1.287
FWL_220 322 7.889

m n({Root Container.Table.data}, 1) //... would return 120

mn(0, 10/2, 3.14) //... would return O

m n({SonmeVal ue}, 180} //This exanple is a great way to make sure a val ue never goes above 180

minDate

Description

Finds and returns the minimum date in the given column of the given dataset, or the min value in a series of dates specified as arguments. When
looking up the min date in a dataset, the column may be specified as an index or as a column name. Any null values in the column are ignored. If there
are no rows in the dataset, null is returned.

Syntax

minDate(dataset, columnindex OR date, date...)

Examples

For example, suppose you had a Table with this dataset in it:

AlarmTime Path Severity
2010-01-08 7:28:04 | Tanks/Tank5/TempHiAlarm @ 4
2010-01-08 10:13:22 = Tanks/Tank38/LoLevel 2
2010-01-08 13:02:56 @ Valves/Valve2/ 2

m nDat e({ Root Cont ai ner. Tabl e. data}, "Alarniline") //You could use this expression to get the date and tine
for the oldest alarm

stdDev

Description

Calculates the standard deviation of the values in the given column of the given dataset, or the standard deviation for a series of numbers specified as
arguments. When looking up the standard deviation in a dataset, the column may be specified as an index or as a column name. Any null values in the
column are ignored. If there are no rows in the dataset, zero is returned.

Syntax

stdDev(dataset, column OR number, number...)

Examples

For example, suppose you had a table with this dataset in it:

ProductCode @ Quantity = Weight

BAN_002 380 3.243
BAN_010 120 9.928
APL_000 125 1.287
FWL_220 322 7.889

st dDev({Root Contai ner. Tabl e.data}, "Wight") //... would return 4.00532

sum

Description

Calculates the sum of the values in the given column of the given dataset, or the sum for a series of numbers specified as arguments. When looking up
the sum in a dataset, the column may be specified as an index or as a column name. Any null values in the column are ignored. If there are no rows in
the dataset, zero is returned.

Syntax

sum(dataset, column OR number, number...)

Examples

For example, suppose you had a table with this dataset in it.

ProductCode @ Quantity = Weight

BAN_002 380 3.243
BAN_010 120 9.928
APL_000 125 1.287
FWL_220 322 7.889
sun{{ Root Container. Table.data}, 1) //... would return 947

sum(1,2,3) //... would return 6

Alarming Expressions

iISAlarmActive

Description

Returns whether there are active alarms that match the provided criteria. The alarm name is optional, and both the tag path and alarm name support
wildcards ("*'). For example, if only the tag path was specified, this function would return whether any alarm on the tag was active. The pollRate
parameter is only applicable in the client scope.

Syntax

isAlarmActive(tagPath, [alarmName], [pollRate])

Examples

i sAl ar mAct i ve(" Tanks/ Tenp", "Tank_Tenp_Hi gh") //when the Tank_Tenp_Hi gh alarmis active then this
expression returns True.

Colors

brighter

Description

Returns a color that is one shade brighter than the color given as an argument. Note that if you pass in a fully saturated color, like (255,0,0), it cannot
be made brighter.

Syntax

brighter(color)

Examples

brighter(col or (100, 150, 250)) //returns the color (142,214, 255)

color

Description

Creates a color using the given red, green, and blue amounts, which are integers between 0-255. The optional alpha channel to the color controls
transparency.

Syntax

color(red, green, blue, [alpha])

Examples

There are no expression function examples associated with this expression function.

darker

Description

Returns a color that is one shade darker than the color given as an argument.

Syntax

darker(color)

Examples

dar ker (col or (100, 150, 250)) //returns the color (70,105, 175)

gradient

Description
Calculates a percentage given the three numeric arguments number, low, and high. Uses this percentage to create a color that is a mix between the

two colors.

Syntax

gradient(number, low, high, lowColor, highColor)

Examples

gradient (0, 0, 100, toColor("red"), toColor("blue")) //returns red.
gradi ent (100, O, 100, toColor("red"), toColor("blue")) //returns blue.
gradi ent (60, 0, 100, toColor("red"), toColor("blue")) //returns a shade of purple.

gradi ent ({ Root Cont ai ner. Tank. val ue}, 0, 100, color(255,0,0), color(0,0,255)) //will return a gradient from
red to blue based on the | evel of a tank.

Date and Time

dateArithmetic

Description

Adds or subtracts some amount of time from a date, returning the resulting date. The field argument must be a string, and must be one of these options:

ms
second
sec
minute
hour
hr

day
week
month
year

Syntax

dateArithmetic(date, number, field)

Examples

dateArithnetic(toDate("2010-01-04 8:00:00"), 5, "hour") //returns the date '2010-01-04 13:00: 00

dat eArithmeti c({Root Contai ner.DatePicker.date}, -8, "days") //returns a date eight days before the date in
a Popup Cal endar conponent.

dateDiff

Description

Calculates the difference between the two dates, returning the result as a floating point value in the units specified by field, which must be a string
matching one of these values:

ms
second
sec
minute
min
hour
hr

day
week
month
year

The return value will be a floating point value, meaning that parts of units are considered. The exception to this rule is for the months and years fields,
which will always return an integral difference. If the second date argument is after the first, the return value will be positive, otherwise it will be negative.

Syntax

dateDiff(date, date, field)

Examples

dat eDi ff (t oDat e("2008- 2-24 8:00: 00"), toDate("2008-2-24 8:15:30"), "mnute") //returns 15.5

dat eDi ff (t oDat e("2008-2-24 8:00:00"), toDate("2008-3-12 9:28:00"), "nonth") //returns 1.0

dat eDi ff (toDat e("2008-2-24 8:00:00"), toDate("2008-3-12 9:28:00"), "day") //returns 17.02

dateExtract

Description

Returns an integer value that is the value of the specified date field within the given date. The field must be a string, and must match one of these
values:

ms
second
sec
minute
min

hour

hr

day

week
month
year
dayofweek
dayofyear

Note: months are returned zero-indexed. That is, January is month 0, February is month 1, and so on. If this is inconvenient for you - just add one to the
results.

Syntax

dateExtract(date, field)

Examples

dat eExtract (t oDat e("2003-9-14 8:00:00"), "year") //returns 2003

dat eExtract (t oDat e("2009-1-15 8:00:00"), "nonth") //returns O

dat eExtract (t oDat e("2008-1-24 8:00: 00"), "nonth") + 1 //returns 1

dateFormat

Description

Returns the given date as a string, formatted according to a pattern. The pattern is a format that is full of various placeholders that will display different
parts of the date. These are case-sensitive! These placeholders can be repeated for a different effect. For example, M will give you 1-12, MM will give
you 01-12, MMM will give you Jan-Dec, MMMM will give you January-December.

The placeholders are:

Symbol Description

G Era designator

y Year

v Week year

M Month in year

w Week in year

w Week in month

D Day in year

d Day in month

E Day of week in
month

E Day name in
week

u Day number of
week

a Am/Pm marker

H Hour in day (0-
23)

h Hour in am/pm
(1-12)

K Hour in day (1-
24)

K Hour in am/pm
(0-11)

m Minute in hour

s Second in minute

s Millisecond

z Time zone

z Time zone

X Time zone

Presentation

Text

Year

Year

Month

Number

Number

Number

Number

Number

Text

Number

Text

Number

Number

Number

Number

Number

Number

Number

General time
zone

RFC 822 time
zone

ISO 8601 time
zone

Examples

G=AD

yyyy=1996; yy=96

YYYY=2009; YY=09

MYWMEJuUl y; MMM=Jul ; MM=07

27

189

10

EEEE=Tuesday; E=Tue

PM

12

24

30

55

978

zzzz=Pacific Standard Ti ne;
z=PST

Z=- 0800

X=-08; XX=-0800; XXX=-08: 00

Other Notes

Lowercase y is the most commonly used year symbol

Capital Y gives the year based on weeks (ie. changes to the new year up
to a week early)

If Dec31 is mid-week, it will be in week 1 of the next year

2nd Sunday of the month

(1 =Monday, ..., 7 = Sunday)

@ Expert Tip: This function uses the Java class java.text.SimpleDateFormat internally, and will accept any valid format string for that class.

https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#text
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#year
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#year
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#month
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#text
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#text
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#timezone
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#timezone
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#rfc822timezone
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#rfc822timezone
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#iso8601timezone
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#iso8601timezone
http://docs.oracle.com/javase/1.5.0/docs/api/java/text/SimpleDateFormat.html

Syntax

dateFormat(date, pattern)

Examples

dat eFor mat (t oDat e("2003- 9- 14 8:00: 00"), "yyyy-MMdd HH. nmss") //returns the string "2003-09-14 08: 00: 00"

This format is accepted in nost databases

dat eFor mat (t oDat e("2003-9-14 8:00: 00"), "yyyy-MMidd h a") //returns the string "2003-09-14 8 AM

dat eFor mat (t oDat e("2003-9-14 8:00:00"), "MW d, yyyy") //returns the string "Sep 14, 2003"

now

Description

Returns the current time. The host computer's system clock is used, meaning that if this expression is being evaluated in a running client, the computer
running the client's system clock is used. Note that this function is one of the few expression functions that will poll. If you do not specify a pollRate, it
will default to 1,000ms. If you do not want this function to poll, use a poll rate of zero.

Syntax

now([pollRate])

Examples

nowm) //returns the current tinme, updates every second.

dateFormat (nowm(), "MW d, h:mma") //returns a string representing the current tine, formatted like "Feb 12,
9: 54 AM'

timeBetween

Description

Checks to see if the given time is between the start and end times. The given times are expected as strings, and may include dates. Note: dates will be
parsed according to the default system culture.

Syntax

timeBetween(date,date,date)

Examples

ti neBet ween(toDat e("2003-9-14 12: 00: 00"), toDate("2003-9-14 8:00:00"),toDate("2003-9-14 18:00:00")) //returns
true

ti meBet ween("2:00: 00 pnt, "9:00:00 anf, "5:00:00 pnt') //returns true

ti meBet ween(t oDat e("2003-9-14 20:00:00"), toDate("2003-9-14 18:00:00"), toDate("2003-9-15 2:00:00"))
//returns true

Logic

binEnc

Description

This function, whose name stands for "binary encoder”, takes a list of booleans, and treats them like the bits in a binary number. It returns an integer
representing the decimal value of the number. The digits go from least significant to most significant.This can be a very handy tool to convert bits into
an integer code to drive the Component Styles feature.

Syntax

binEnc(booleanl, boolean2, ...)

Examples

bi nEnc(0,0,1,0) //returns 4 (the value of 0100)

bi nEnc(true,0,1,1,0) //returns 13 (the value of 01101)

https://support.inductiveautomation.com/usermanuals/ignition/component_styles.htm

binEnum

Description

This function, whose name stands for "binary enumeration”, takes a list of booleans, and returns the index (starting at 1) of the first parameter that
evaluates to true. This can be a very handy tool to convert bits into an integer code to drive the Component Styles feature.

Syntax

binEnum(booleanl, boolean2, ...)

Examples

bi nEnum(0, 1, 0) //returns 2

bi nEnum(0, false, 15, 0, 23) //returns 3 (the index of the 15 - any non-zero nunber is "true")

https://support.inductiveautomation.com/usermanuals/ignition/component_styles.htm

case

The following feature is new in Ignition version 7.8.1
Click here to check out the other new features

Description

This function acts like the switch statement in C-like programming languages. It takes the value argument and compares it to each of the casel through
caseN expressions. If value is equal to caseX, then case returns valueX. If value is not equal to any of the casel..N, then returnDefault is returned.

Note that case() is similar in functionality to the switch() expression function. The difference between the two is the order in which the parameters are
passed.

Syntax

case(value, casel, returnl, case2, return2, ...caseN, returnN, returnDefault)

Examples

// The following would return 46 because the value (15) matched case 3, so the third return (46) was returned.

case(

15, /1 val ue
1, /] case 1
44, /] return 1

24, /1l case 2
45, /] return 2

15, /] case 3

46, // return 3
-1) // default

/1 The follow ng would return "Running".

case(

1, /1 val ue
0, /] case 1
"OFf", /Il return 1
1, |/l case 2
"Runni ng", /Il return 2

2, |/l case 3
"Faul t", /'l return 3

forceQuality("!BAD STATE!",0)) // default

https://docs.inductiveautomation.com/display/DOC/New+in+this+Version#NewinthisVersion-Newin7.8.1

coalesce

Description

This function, which accepts any number of arguments, evaluates each in order, and returns the first non-null argument. Typically, you would call this
with two arguments - the first being something dynamic, the second being a static value to use as a guard in case the dynamic value is null. The
function itself detects its return type based on the type of the last argument.

Syntax

coalesce(valuel, value2, ...)

Examples
coal esce(null, "abc") //would return "abc"
coal esce("xyz", "abc") //would return "xyz"

coal esce({Root Contai ner. MyDat aSet}[" Col umNanme"], 0) //would return the value in the dataset if it isn't
null, but 0 if it is null.

Description
This function returns the bit value (an integer, 0 or 1) in the number at position position, according to its binary representation. The least significant bit in

a number is position 0.

Syntax

getBit(number, position)

Examples

getBit(0,0) //would return O
getBit(1,0) //would return 1

getBit(8,2) //would return O

hasChanged

Description

G} This function is only available in Transaction Group Expression Items.

This function returns True if the given value has changed since the last time the Expression Item was run. Setting the optional boolean argument
"include quality” to true means a quality change will make this function return true.

Syntax

hasChanged(value, [include quality])

Examples

hasChanged({reference to another Expression Iten}) //would return true if the referenced val ue has changed
since the last group execution

https://legacy-docs.inductiveautomation.com/display/DOC/Expression+Items

If
Description

This function evaluates the expression condition, and returns the value of trueReturn or falseReturn depending on the boolean value of condition.

Syntax

if(condition, trueReturn, falseReturn)

Examples

if(1, "Yes", "No") //would return "Yes"
if(0, "Yes", "No") //would return "No"

i f({Root Contai ner.CheckBox. sel ected}, "Selected", "Not Selected") //would return the a description of the
state of the checkbox

ISNull

Description

Tests to see whether or not the argument value is null or not. Note that you can also check for null by simply comparing the value to the null keyword. is
Null(x) is the same as x = null.

Syntax

isNull(value)

Examples

i f(isNull({Root Container. WProperty}), 0, 1) //returns O if the property is null, 1 otherw se.

lookup

Description

This looks for lookupValue in the lookupColumn of dataset. If it finds a match, it will return the value from the resultColumn on the same row as the
match. If no match is found, noMatchValue is returned. Note: The type of the value returned will always be coerced to be the same type as the noMatch
Value.

If lookupColumn is not specified, it defaults to 0. If resultColumn is not specified, it defaults to 1.

The examples are based of a table that has the following data in it:

Product Price Category

"Apples" 1.99 "Fruit”

"Carrots 35 "Vegetable"

"Walnuts" | 6.25 "Nut"
Syntax

lookup(dataset, lookupValue, noMatchValue, [lookupColumn], [resultColumn])

Examples

| ookup({Root Contai ner. Table.data}, "Carrots", -1.0) //returns 3.50

| ookup({Root Contai ner. Tabl e.data}, "Gapefruit", -1) //returns -1, the noMatchVal ue

| ookup({Root Contai ner. Tabl e. data}, "Wl nuts", "Unknown", 0O, "Category") //returns "Nut"

| ookup({Root Contai ner. Tabl e. data}, "Pecans", "Unknown", 0, 2) //returns "Unknown", the noMatchVal ue

switch

Description

This function acts like the switch statement in C-like programming languages. It takes the value argument and compares it to each of the casel through
caseN expressions. If value is equal to caseX, then switch returns valueX. If value is not equal to any of the casel..N, then returnDefault is returned.

Note that switch() is similar in functionality to the case() expression function. The difference between the two is the order in which the parameters are
passed.

Syntax

switch(value, casel, ...caseN, returni, ...returnN, returnDefault)

Examples

/1 The following would return 46 because the value (15) matched case 3, so the third return (46) was returned.
swi t ch(

15, // val ue

1, // case 1

24, |/ case 2

15, // case 3

44, |/ return 1

45, /] return 2

46, // return 3

-1) // default

/1 The followi ng would return "Running".
swi t ch(

1, // value

0, 1, 2, // cases 1-3

"Off", /] return 1

"Running", // return 2

"Fault", // return 3

forceQuality("!BAD STATE!",0)) // default

try

Description

This expression is used to swallow errors caused by other expressions. The first expression will be executed, and if it executes successfully, its value
will be used. However, if there is an error evaluating it, the value of failover will be used. When the failover is used, the data quality will be set by the
failover value. It is best to use a very simple return like -1 or " (the empty string).

Syntax

try(expression, failover)

Examples

try(tol nteger("boont), -1) // returns -1 with a quality code of 192 (good)

Math

abs

Description

Returns the absolute value of number.

Syntax

abs(number)

Examples

abs(-4) //returns 4

acos

Description

Returns the arc cosine of number, which must be a number between -1 and 1. The results will be an angle expressed in radians in the range of 0.0 throu
gh pi.

Syntax

acos(number)

Examples

acos(.38) //returns 1.181

asin
Description

Returns the arc sine of number, which must be a number between -1 and 1. The results will be an angle expressed in radians in the range of -pi/2 throug
h pi/2

Syntax

asin(number)

Examples

asin(.38) //returns 0.3898

atan

Description

Returns the arc tangent of number, which must be a number. The results will be an angle expressed in radians in the range of -pi/2 through pi/2

Syntax

atan(number)

Examples

atan(.38) //returns 0.3631

ceil
Description

Returns the smallest floating point value that is greater than or equal to the argument and is equal to a mathematical integer.

Syntax

ceil(number)

Examples

ceil(2.38) //returns 3.0

COS

Description

Returns the trigonometric cosine of number, which is interpreted as an angle expressed in radians. The results will be a floating point value.

Syntax

cos(number)

Examples

cos(1.89) //returns -0.31381

exp

Description

Returns Euler's number e raised to the power of the argument number, or eumber

Syntax

exp(number)

Examples

exp(5) //returns 148.4

floor

Description

Returns the largest floating point value that is less than or equal to the argument and is equal to a mathematical integer.

Syntax

floor(number)

Examples

floor(2.72) //returns 2.0

log

Description

Returns the natural logarithm (base e) of a number.

Syntax

log(number)

Examples

log(28) //returns 3.332

log10

Description

Returns the logarithm (base 10) of a number.

Syntax

log10(number)

Examples

1 0g10(28) // returns 1.447

pow

Description

Returns a number raised to a power.

Syntax

pow(number, number)

Examples

powm2,3) //returns 8

round

Description

Rounds a floating point number. If the decimals argument is omitted, then the number is rounded to the nearest integer value, and the result will be a
long (64-bit integer). If a number of decimal places are specified, the result will be a double (64-bit floating point value), and the result will be rounded to
the given number of decimal places.

Syntax

round(number, [decimals])

Examples

round(3.829839, 2) //returns 3.83

Sin
Description

Returns the trigonometric sine of number, which is interpreted as an angle expressed in radians. The results will be a floating point value.

Syntax

sin(number)

Examples

sin(1.89) //returns 0.9495

sqrt

Description

Returns the square root of the argument number.

Syntax

sqgrt(number)

Examples

sqrt(64) //returns 8.0

tan

Description

Returns the trigonometric tangent of number, which is interpreted as an angle expressed in radians. The results will be a floating point value.

Syntax

tan(number)

Examples

tan(1.89) //returns -3.026

todegrees

Description

Converts an angle measured in radians to an equivalent angle measured in degrees.

Syntax

todegrees(number)

Examples

toDegrees(3.14) //returns 179.9088

toradians

Description

Converts an angle measured in degrees to an equivalent angle measured in radians.

Syntax

toradians(number)

Examples

toRadi ans(180) //returns 3.141592653589793

String

concat

Description

Concatenates all of the strings passed in as arguments together. A null string passed as an argument will be evaluated as the word null. Rarely
used, as the + operator does the same thing.

Syntax

concat(stringl, string2, ...)

Examples

concat ("The answer is: ", "42") //returns "The answer is: 42"

escapeSQL

Description

Returns the given string with special SQL characters escaped. This is a fairly simplistic function - it just replaces single quotes with two single quotes,
and backslashes with two backslashes. See system.db.runPrepUpdate for a much safer way to sanitize user input.

Syntax
escapeSQL(string)
Examples

"SELECT * FROM nytabl e WHERE option = '" + escapeSQ.("Jinmls Settings") + "'" // returns SELECT * FROM
nytabl e WHERE option="Jim"'s Settings'

"SELECT * FROM nytabl e WHERE option = 'escapeSQL({Root Container.TextField.text}) + "'" //returns a query
with sanitized user input froma text field.

escapeXML

Description

Returns the given string after being escaped to be valid for inclusion in XML. This means replacing XML special characters with their XML entity
equivalents.

Syntax
escapeXML(string)
Examples

escapeXM.("Use Navigate > PB to get to the Pork&Beans section.") //returns "Use Navigate &jt; PB to get to
t he Por k&anp; Beans section."

fromBinary

Description

Returns an integer value of the binary formatted string argument. Numbers outside of the range (-231) - (231-1), and strings that are not binary
numbers, return null.

Syntax

fromBinary(string)

Examples

fronBi nary("1111") //returns 15

fronBi nary("-1111") //returns -15

fromHex

Description
Returns an integer value of the hex formatted string argument. Numbers outside of the range (-231) - (231-1), and strings that are not hex numbers,

return null.

Syntax

fromHex(string)

Examples

fronHex("ff") //return 255
fronHex("Oxff") //returns 255

fronHex("-ff") //returns -255

fromOctal

Description

Returns an integer value of the octal formatted string argument. Numbers outside of the range (-231) - (231-1), and strings that are not octal numbers,
return null.

Syntax

fromOctal(String)

Examples

fronctal ("77") //returns 63

fronctal ("-77") //returns -63

indexOf

Description

Searches for the first occurrence of the substring inside of string. Returns the index of where substring was found, or -1 if it wasn't found. The first
position in the string is position 0.

Syntax

indexOf(string, substring)

Examples

i ndexCf ("Hanburger”, "urge") //returns 4

i ndexOf ("Test", "") //returns O
i ndexOf ("Dysfunctional", "fun") //returns 3
i ndexOf ("Dysfunctional™, "marble") //returns -1

i ndexXf ("banana", "n") //returns 2

lastindex Of

Description

Searches for the last occurrence of the substring inside of string. Returns the index of where substring was found, or -1 if it wasn't found. The first
position in the string is position 0.

Syntax

lastindexOf(string, substring)

Examples

| ast | ndexCF (" Hanburger™, "urge") //returns 4

| ast I ndexOF ("Test", "") //returns 4
| ast | ndexOF ("Dysfunctional ", "fun") //returns 3
| ast I ndexOf ("Dysfunctional ", "marble") //returns -1

| ast | ndexOf ("banana", "n") //returns 4

|eft

Description

Returns count characters from the left side of string, where count and string are the arguments to the function.

Syntax

left(string, charCount)

Examples

left("hello", 2) //returns "he"
left("hello", 0) //returns ""

left("hello", 5) //returns "hello"

len

Description

Returns the length of the argument, which may be a string or a dataset. If the argument is a string, it returns the number of characters in the string. If
the argument is a dataset, it returns the number of rows in the dataset. Will return zero if the argument is null.

Syntax

len(value)

Examples

len("Hello World") //returns 11

| en({Root Container.Table.data}) //returns the nunber of rows in the table.

lower

Description

Takes a string and returns a lower-case version of it.

Syntax

lower(string)

Examples

lower("Hello Wrld") // returns "hello world"

numberFormat

Description

Returns a string version of the number argument, formatted as specified by the pattern string. This is commonly used to specify the number of decimal
places to display, but can be used for more advanced formatting as well. The pattern string is a numeric format string, which may include any of these
characters that instruct it how to format the number.

Symbol Description
0 Specifies a required digit
Specifies an optional digit

, The grouping separator
The decimal separator
- A minus sign
E Scientific notation
; Used to separate positive and negative patterns
% Multiplies the value by 100 and shows as a percent

Used to quote special characters

This table shows some numbers, and the result of using various format strings to format them.

Number Pattern Result
5 0 5
5 0.0 5.0
5 00.0 05.0
123 ###0 123
1024 #,##0 1,024
1337 ###0.# 1,337
1337.57 # ##0.# 1,337.6
87.32 #,##0.0000 87.3200
-1234 #,##0 -1,234
-1234 #4H0;(#,4##0) | (1,234)
4096 0.###EQ 4.096E3
.348 #.00% 34.80%
34.8 #0.00'%' 34.80%

Syntax

numberFormat(number, pattern)

Examples

number For mat (34.8, "#0.00'% ") //returns the string "34.80%

repeat

Description

Repeats the given string some number of times.

Syntax

repeat(string, count)

Examples

repeat ("hello", 2) //returns "hell ohello"

repeat("hello", 0) //returns ""

replace

Description

Finds all occurrences of a substring inside of a source string, and replaces them with the replacement string. The first argument is the source, the
second is the search string, and the third is the replacement.

Syntax

replace(string, string, string)

Examples
replace("Xyz", "Y', "and") //returns "XandzZ"
repl ace("bob and mary went to bob's house", "bob", "judith") //returns "judith and mary went to judith's

house"

right

Description

Returns count number of characters starting from the right side of string, where count and string are the arguments to the function.

Syntax

right(string, charCount)

Examples

right("hello", 2) //returns "l o"
right("filenane.pdf", 3) //returns "pdf"

right("hello", 0) //returns ""

split

Description

This function takes the string string and splits it into a bunch of substrings. The substrings are return as a dataset with one column called "parts". The
split occurs wherever the regular expression regex occurs.

The optional limit argument, if greater than zero, limits the number of times the regex pattern is applied to limit-1. Put another way, it limits the length of
the resulting dataset to length limit. If limit is non-positive then the regex pattern will be applied as many times as possible and the returned dataset can

have any length. If limit is zero (the default) then the pattern will be applied as many times as possible, the returned dataset can have any length, and
trailing empty strings will be discarded.

Syntax

split(string, regex, [limit])

Examples

split("hello,world", ",") //returns dataset ["hello","parts"]

split("boo:and: foo", ":") //returns dataset ["boo", "and", "fo00"]

split("boo:and: foo", ":", 2) //returns dataset ["boo", "and:fo00"]

stringFormat

Description

Returns a formatted string using the specified format string and arguments.

Syntax

stringFormat(format, args...)

Examples

stringFormat ("Hello %", "world") //returns "Hello world"
stringFormat ("%, %, %", 1, 2, 3) //returns "1, 2, 3"

stringFormat ("%, %, %", 4, 5, 6) //returns "4, 5, 6"

substring

Description

Substring will return the portion of the string from the startindex to the endindex, or end of the string if endindex is not specified. All indexes start at 0,
so in the string "Test", "s" is at index 2. The start index is inclusive, while the end index, if used, is exclusive. Indexes outside of the range of the string
throw a StringindexOutOfBoundsException. Null strings return null substrings.

Syntax

substring(string, startindex, [endIndex])

Examples

substring("unhappy", 2) //returns "happy"

substring("hanburger", 4, 8) //returns "urge"

toBinary

Description

Returns an binary formatted string representing the unsigned integer argument. If the argument is negative, the binary string represents the value plus 2
32

Syntax

toBinary(int)

Examples

toBi nary(255) //returns "11111111"

toBinary(-255) //returns "11111111111111111111111100000001"

toHex

Description

Returns a hex formatted string representing the unsigned integer argument. If the argument is negative, the hex string represents the value plus 232.

Syntax

toHex(int)

Examples

toHex(255) //returns "FF"

toHex(-255) //returns "FFFFFFO1"

toOctal

Description

Returns an octal formatted string representing the unsigned integer argument. If the argument is negative, the octal string represents the value plus 232.

Syntax

toOctal(int)

Examples

toCctal (255) //returns "377"

toCQctal (-255) //returns "37777777401"

trim
Description

Takes the argument string and trims of any leading and/or trailing whitespace, returning the result.

Syntax

trim(string)

Examples

trim("Hello Dave ") //returns "Hello Dave"

trim(" Goodbye.") //returns "Goodbye."

upper

Description

Takes a string and returns an upper-case version of it.

Syntax

upper(string)
Examples

upper("Hello World") //returns "HELLO WORLD"

Translation

translate

Description

Returns a translated string, based on the current locale. If the string does not exist in the global translations, the original string will be returned. This
function only exists in the client scope.

Syntax

translate(stringKey)

Examples

This expression function does not have any examples associated with it.

Type Casting

toBoolean

Description

Tries to convert value to a boolean, according to these rules:

1. If value is a number, 0 is false and anything else is true.

2. If value is a string, then the strings (case insensitive) "on", "true", "t", "yes", "y" are all true. The strings (case insensitive) "off", "false", "f", "no",
"n" are considered false. If the string represents a number, the first rule applies. All other strings fail type casting.

3. All other types fail type casting.

If type casting fails, an error is thrown, unless the failover argument is specified, in which case it will be used.

Syntax

toBoolean(value, [failover])

Examples

t oBool ean(1) //returns true

t oBool ean("abc", false) //returns false

toBorder

Description

This function is used specifically when binding a Border property on a component. Typically, this is used with a Container or Label component but can
be used on any component that has a Border property.

This function takes a string and converts it into a border. The string must be a semi-colon separated list of values. The first value is the name of the
border, and the other values depend on the type of border you use. The following table defines the border types and the arguments they accept.

Border Options Type Style Font
Type Justification
bevel bevelType 0 = Raised
1=
Lowered
1010 =
Double
button none
etched etchType 0 = Raised
1=
Lowered
etchedtitled title; style; fontJustification; fontPosition; fontColor; font 0 = Etched / Lowered 1= Left
1 = Etched / Raised 2 = Center

2 =Beveled / Lowered @ 3 = Right
3 = Beveled / Raised 4 = Leading

4 = Beveled / Double 5 = Trailing

5 = Standard
field none
line color; thickness
linetitled title; width; lineColor; fontJustification; fontPosition; fontColor; font 1= Left
2 = Center
3 = Right
4 = Leading
5 = Trailing
matte color; topWidth, leftWidth; bottomWidth; rightWidth
paneltitled title; style; mainColor; bgColor, shadowsSize, fontJustification; fontPosition; 1=Gradient / West-to- 1=\Left
fontColor;font East
2 = Center
2=Gradient / North-to-
South 3 = Right
3=Gradient / East-to- 4 = Leading
West
5 = Trailing
4=Solid

To use this function, you need to include the border type and then any options you want to use in the correct order. ie:

toBorder("paneltitled; title; style; nminColor; bgColor; shadowSi ze; fontJustification; fontPosition;
font Col or;font")

Syntax

toBorder(value, [failover])

Examples

toBorder ("bevel ; 1010") //returns this...

t oBor der ("button")

t oBor der (" et ched; 0")

toBorder("etchedtitled; Title;5;3;right;green;Arial")

Title

toBorder ("field")

toBorder ("line; bl ue; 2")

toBorder("linetitled;Title") //returns this...

|-TitIE —I

toBorder("matte;red; 10;1;1;1") //returns this...

E—

toBorder("paneltitled; Options; 1;grey;white;0; 3;0;green; D al og, bold, 16") //returns this...

ions

toColor

Description

This function tries to convert value to a color. It assumes that value is a string. If you have integers representing Red, Green, and Blue values see the co
lor expression. The string value is converted to a color according to these rules:

1. If value is a name of a color as defined in the table below, the corresponding color will be returned. Note that color names are case insensitive.

2. If value is a hex color string (with or without a leading "#", the color equivalent of that hex string will be used. Examples: "#FF0000", "556B2F"

3. Ifvalue is alist of 3 or 4 integers, a color will be created that uses the first three integers as red, green, and blue values, and the optional
fourth integer as an alpha channel value. All values should be between 0 and 255. The list is free-form, any non-digit characters may be used
as delimiters between the digits. Examples: "(0,0,0)", "23-99-203", "[255,255,33,127]"

Syntax

toColor(value, [failover])

Examples

/1A'l of these expressions return the color red.
toCol or ("red")

t oCol or (" #FF0000")

t oCol or (" 255, 0, 0")

/1 You can use the failover paraneter to ensure that this expression returns sonething even if the input
string fails:
t oCol or ({User Opt i ons/ Cust ontCol or}, "bl ack")

Color Options

AliceBlue #FOF8FF
AntiqueWhite #FAEBD7
Aqua #00FFFF
Aguamarine #7FFFD4
Azure #FOFFFF
Beige #F5F5DC
Bisque #FFE4C4
Black #000000
BlanchedAlmond #FFEBCD
Blue #0000FF
BlueViolet #8A2BE2
Brown #A52A2A
BurlyWood #DEB887
CadetBlue #5F9EAQ
Chartreuse #7FFFO0
Chocolate #D2691E

Clear (transparent)

Coral
CornflowerBlue
Cornsilk
Crimson

Cyan

DarkBlue
DarkCyan
DarkGoldenRod
DarkGray
DarkGreen
DarkKhaki
DarkMagenta
DarkOliveGreen
Darkorange
DarkOrchid
DarkRed
DarkSalmon
DarkSeaGreen
DarkSlateBlue
DarkSlateGray
DarkTurquoise
DarkViolet
DeepPink
DeepSkyBlue
DimGray
DodgerBlue
Feldspar
FireBrick
FloralWhite
ForestGreen
Fuchsia
Gainsboro
GhostWhite
Gold
GoldenRod
Gray

Green
GreenYellow
HoneyDew
HotPink

IndianRed

#FF7F50

#6495ED

#FFF8DC

#DC143C

#OOFFFF

#00008B

#008B8B

#B8860B

#A9A9A9

#006400

#BDB76B

#8B008B

#556B2F

#FF8CO00

#9932CC

#8B0000

#E9967A

#8FBC8F

#483D8B

#2FAFAF

#00CED1

#9400D3

#FF1493

#00BFFF

#696969

#1E90FF

#D19275

#B22222

#FFFAFQ

#228B22

#FFOOFF

#DCDCDC

#FBF8FF

#FFD700

#DAA520

#808080

#008000

#ADFF2F

#FOFFFO

#FF69B4

#CD5C5C

Indigo

Ivory

Khaki

Lavender
LavenderBlush
LawnGreen
LemonChiffon
LightBlue
LightCoral
LightCyan
LightGoldenRodYellow
LightGreen
LightGrey
LightPink
LightSalmon
LightSeaGreen
LightSkyBlue
LightSlateBlue
LightSlateGray
LightSteelBlue
LightYellow

Lime

LimeGreen

Linen

Magenta

Maroon
MediumAquaMarine
MediumBlue
MediumOrchid
MediumPurple
MediumSeaGreen
MediumSlateBlue
MediumSpringGreen
MediumTurquoise
MediumVioletRed
MidnightBlue
MintCream
MistyRose
Moccasin
NavajoWhite

Navy

#4B0082

#FFFFFO

#FOEG8C

#EGEGFA

#FFFOF5

#7CFCO00

#FFFACD

#ADDB8EG

#F08080

H#EOFFFF

#FAFAD2

#90EE90

#D3D3D3

#FFB6C1

#FFAOQ7A

#20B2AA

#87CEFA

#8470FF

#778899

#BOC4ADE

#FFFFEQ

#00FF0O0

#32CD32

#FAFOEG6

#FFOOFF

#800000

#66CDAA

#0000CD

#BA55D3

#9370D8

#3CB371

#7B68EE

#00FA9A

#48D1CC

#C71585

#191970

#FSFFFA

#FFEAEL

#FFE4B5

#FFDEAD

#000080

OldLace #FDF5E6

Olive #808000
OliveDrab #6BBE23
Orange #FFA500
OrangeRed #FF4500
Orchid #DA70D6
PaleGoldenRod #EEESAA
PaleGreen #98FB98
PaleTurquoise #AFEEEE
PaleVioletRed #D87093
PapayaWhip #FFEFD5
PeachPuff #FFDAB9
Peru #CD853F
Pink #FFCOCB
Plum #DDAODD
PowderBlue #BOEOEG6
Purple #800080
Red #FF0000
RosyBrown #BC8F8F
RoyalBlue #4169E1
SaddleBrown #8B4513
Salmon #FA8072
SandyBrown #FAA460
SeaGreen #2E8B57
SeaShell #FFF5EE
Sienna #A0522D
Silver #COCOCO
SkyBlue #87CEEB
SlateBlue #6A5ACD
SlateGray #708090
Snow #FFFAFA
SpringGreen #0OFF7F
SteelBlue #4682B4
Tan #D2B48C
Teal #008080
Thistle #D8BFD8
Tomato #FF6347
Transparent #FFFFFF
Turquoise #40EODO
Violet #EE82EE

VioletRed #D02090

Wheat
White
WhiteSmoke
Yellow

YellowGreen

#F5DEB3
#FEFFFF
#F5F5F5
#FFFFOO

#9ACD32

toDataSet

Description

Tries to coerce value into a dataset. Not many things can be coerced into datasets. Namely, only DataSets and PyDataSets can be coerced into
DataSets. This is useful for the runScript() expression, to convince the expression compiler to let you assign the return value of a scripting function to a
DataSet property.

Syntax

toDataSet(value, [failover])

Examples

t oDat aSet (runScri pt ("app. funcs. runSonmeFunction()")) //coerces the value returned by the a project scripting
function into a dataset.

toDate

Description

Tries to coerce value into a Date. If value is a number or a string that represents a number, the number is treated as the number of milliseconds since
the epoch, January 1, 1970, 00:00:00 GMT. If value is a string, it is parsed to see if it represents a date in one of these two formats: "yyyyMMdd.
HHmMmMssSSSZ" or "yyyy-MM-dd HH:mm:ss". If not, type casting fails. The failover value must be a number or string with the same restrictions.

Syntax

toDate(value, [failover])

Examples

toDat e("2007-04-12 16:28:22") //returns April 12th, 2007, 4:28:22 PM

toDouble

Description

Tries to coerce value into a double (64-bit floating point value). If value is a number, the conversion is direct. If value is a string, it is parsed to see if it
represents a double. If not, type casting fails.

Syntax

toDouble(value, [failover])

Examples

t oDoubl e("38.772") //returns 38.772

t oDoubl e({ Root Container.TextField.text}, 0.0) //returns the value in the text box as a double, or 0.0 if
the val ue doesn't represent an nunber.

toFloat

Description

Tries to coerce value into a float (32-bit floating point vaule). If value is a number, the conversion is direct. If value is a string, it is parsed to see if it
represents a float. If not, type casting fails.

Syntax

toFloat(value, [failover])

Examples

toFl oat ("38.772") //returns 38.772

t oFl oat ({ Root Container.TextField.text}, 0.0) //returns the value in the text box as a float, or 0.0 if the
val ue doesn't represent an nunber.

toFont

Description

Coerces a string into a font. The string must be in the format:
font(fontName, fontType, fontSize)

fontName is the name of the font to use. Note that special care must be taken with fonts, because of the web-launched nature of the clients. You can
only use font names that exist on the client machines. The following font names are known as logical fonts, meaning that they are guaranteed to exist
on all systems, mapped to the most appropriate real, or physical font that exists on the host system:

Serif
SansSerif
Monospaced
Dialog
Dialoglnput

fontType is a string, that should match one of these (case-insensitive):

® Plain
* Bold
® |talic
® Boldltalic

fontSize is an integer that represent the font's point size.

Syntax

toFont(value, [failover])

Examples

toFont ("font (D al og, Bol d, 12)") //returns the standard font used in nost clients.

tolnt

Description

Tries to coerce value into an integer (32-bit integer). If value is a number, the conversion is direct (with possible loss of precision). If value is a string, it
is parsed to see if it represents an integer. If not, type casting fails. Will round if appropriate.

Syntax

tolnt(value, [failover])

Examples

tolnt("38") //returns 38
tolnt("33.9") // returns 34

tolnt ({Root Container.TextField.text}, -1) //returns the value in the text box as an int, or -1 if the value
doesn't represent an nunber.

tolnteger

Description

Identical to the tolnt expression function.

Syntax

tolnteger(value, [failover])

Examples

This expression function does not have examples associated with it.

toLong

Description

Tries to coerce value into a long (64-bit integer). If value is a number, the conversion is direct. If value is a string, it is parsed to see if it represents a
long. If not, type casting fails. Will round if appropriate.

Syntax

toLong(value, [failover])

Examples

toLong("38") //returns 38
toLong("33.9") //returns 34

toLong({Root Container.TextField.text}, -1) //returns the value in the text box as an long, or -1 if the
val ue doesn't represent an nunber.

toStr

Description

Identical to the toString expression function.

Syntax

toStr(value, [failover])

Examples

There are no examples associated with this expression function.

toString

Description

Represents the value as a string. Will succeed for any type of value.

Syntax

toString(value, [failover])

Examples

toString(1/3.0) // returns "0.3333333333333333"

toString({Root Container.Table.data}) //returns sonmething |like: "Dataset [150R x 3C]"

Users

hasRole

Description

Returns true if the user has the given role. The username and usersource parameters are optional in the client scope, but required in the gateway
scope.

Syntax

hasRole(role, [username], [usersource])

Examples

/1 This is an exanple using the default user and user Source:
hasRol e("Adnmi ni strator", "admin", "default")

/1 This is an exanple using the current user and default userSource in the client scope:
hasRol e("Admi ni strator™)

Advanced

columnRearrange

Description

Returns a view of the given dataset with the given columns in the order specified. Columns may be omitted in order to filter out columns from the
original dataset. Since 7.8.1.

Syntax

columnRearrange(dataset, col, col, col...)

Examples

col umRear range(fiveCol Dat aset, "secondCol", "thirdCol", "firstCol") // returns a 3 colum Dataset, where
the colums are in the given order

columnRename

Description

Returns a view of the given dataset with the columns renamed. The number of new names must match exactly with the existing column count. Since
7.8.1.

Syntax

columnRename(dataset, newName, newName, newName...)

Examples

col umRenane(twoCol Dat aset, "col One", "col Two") // returns a Dataset with colums ["col One", "col Two"]

forceQuality

Description

Returns the given value, but overwrites the quality of that value. If the quality argument is omitted, the quality will be GOOD (192). This is a way to have
expressions opt-out of the quality overlay system. You can also force a specific quality code here by including the quality argument.

Syntax

forceQuality(value, [qualityCode])

Examples

forceQuality({Tanks/ Tank15}) /lreturns the value of the Tankl5 tag, but always with a good quality code.

forceQuality({Tanks/ Tank15}, 410) //returns the value of the Tankl5 tag, but always with a TAG DI SABLED
quality.

runScript

Description

Runs a single line of Python code as an expression. If a poll rate is specified, the function will be run repeatedly at the poll rate. This is a very powerful
way for you to add extensions to the expression language. For example, one could write a project script module function called shared.weather.
getTempAt(zip) that queried a web service for the current temperature at a given zipcode, and then bind the value of a label to the return value of that
function.

The scriptFunction is a entered as a string and the pollRate is in milliseconds. You can optionally add any function arguments after the poll rate.

1 runScript Polling in Tags

The runScript function can be used in expression tags, but the poll rate doesn't work exactly the same as in an expression binding. All Tags
have a Scan Class that dictates the minimum amount of time between each evaluation. The runScript poll rate only polls up to the rate of the
scan class set on the tag.

For example, if an Expression Tag is configured with runScript to run at a poll rate of 60 seconds and is using the "default" (1 second) scan
class, the Tag's Expression will still execute every 1 second. So a scan class rate of 60 seconds will be necessary for a runScript expression
to poll at any rate between 0 and 60 seconds.

Syntax

runScript(scriptFunction, [pollRate], [arguments...])

Examples

Code Snippet

#You coul d inpl ement shared. weat her. get TenpAt (zi p) with this Python script:
This function would query Yahoo Wat her for the tenperature at
the given zipcode and find the tenperature using a regular expression
def get TenpAt (zi pCode):

i mport system

inport re #Regul ar Expression library

try:
yahooURL = "http://xm . weat her.yahoo. coni forecastrss?p="
response = system net. httpGet(yahooURL + str(zipCode))
NOTE - if you've never seen regul ar expressions before, don't worry, they |ook
confusing even to people who use them frequently.
pattern = re.conpile('.*?<yweather:condition (.*?)/>", re. DOTALL)
mat ch = pattern. match(response)
if match:
subText = mat ch. group(1)
tenp = re.conpile('.*?tenp="(.*?)""). mtch(subText).group(1)
return int(tenp)
except :

system gui . error Box("Yahoo weat her service changed")
return -1

Expression Code Snippet

/1 run a shared function with this expression
runScri pt ("shar ed. weat her. get TenpAt (' 95818')", 15000) //This would bind a property to the tenperature in
sunny Sacranento, CA, and would refresh itself every 15 seconds.

Expression Code Snippet

/1 run a shared function dynamcally with this expression

/] using string concatenation

runScri pt ("shar ed. weat her. get TenpAt (" +{ Root Cont ai ner. Nuneric Text Field.intValue}+")", 0) // binds a
property with a dynanmic zip code and does not refresh autonatically

Expression Code Snippet

/1 run a shared function dynamcally with this expression

/1 using optional argunents

/1 Note the missing "()" at the end of the scriptFunction string

runScri pt ("shared. weat her. get TenpAt", 0, {Root Container.Numeric Text Field.intValue})

sortDataset

Description

Returns a new dataset based on the rows in the given dataset. Sort order is natural if the Class of keyColumn implements java.lang.Comparable,
otherwise sorting is done by the toString() value.

Syntax

sortDataset(dataset, keyColumn, [ascending])

Examples

sort Dat aset (dataset, 0, true) // returns a Dataset sorted ascending on colum O.

sort Dat aset (dat aset, "Colum 1", false) // returns a Dataset sorted descending on the colum naned "Col um
1".

tag

Description

Returns the value of the tag at the path specified. Normally, you'd use the expression language's built-in bound-value syntax to use a tag value in an
expression. What makes this function useful is that the path itself can be the result of an expression, meaning it can be dynamic.

Syntax

tag(tagPath)

Examples

tag(" Tanks/ Tank5") //returns Tank5's val ue.

tag(" Tanks/ Tank" + {Root Container.TankNun}) //returns the value for the tank represented by the dynamc
property TankNum on the Root Contai ner.

https://support.inductiveautomation.com/usermanuals/ignition/syntax_expressions.htm#bound_values

Scripting Functions

The Ignition scripting API, which is available under the module name "system", is full of functions that are
useful when designing projects in Ignition. From running database gueries, manipulating components, to

exporting data, scripting functions can help. Some of these functions only work in the Gateway scope,
and other only work in the Client scope, while the rest will work in any scope. @ IN DUC T I VI
UNIVERSIT]

@ FactoryPMI

"I'm upgrading from FactoryPMI - will my calls to fpmi.* still work?"

Scripting In Ignition
Yes. Ignition's scripting API is backwards compatible. You'll probably want to gradually move P g g
your "fpmi" references to "system" but you don't need to.

Watch the Video

For an overview and syntax of the scripting functions, see Scripting Overview and Syntax.

system.db system.gui system.tag
system.alarm system.util system.dataset
system.opc system.nav system.file
system.print system.report system.net

system.serial
system.user
system.sfc

system.twilio

system.dnp3

system.security
system.device

system.date

https://inductiveuniversity.com/video/scripting-in-ignition/7.8

Scripting Overview and Syntax

Overview On this page...

Scripting is used in many places in Ignition to add a significant degree of flexibility and customization

where pre-canned options fall short. There are two major scripting languages in Ignition, Python and the

Expression Language. It is important to understand the differences between the two, and to know where ® Overview

each is used. ® Basic Syntax
© Hello World
O Variables

Basic Syntax © Quotations
o]

Hello World

Lets get right to everyone's favorite example: the following script will print out " Hel | o Wor | d" to the out

put console.

print "Hello Wrld"

The pri nt keyword is a handy tool in Python, allowing you to put text into the output console. This
is useful for debugging your scripts. You can print multiple things by separating them with commas.

Variables

Variables are created by simply assigning a value to them. Variables do not need to be declared,
because Python has a dynamic type system. That means Python figures out the type of the variable on
the fly, when the script is executed.

The following script would print out: 15
X=5

y=3
print x*y

Quotations

Python makes limited distinction between single and double quotes. As long as they are used
consistently then there are few times when which type of quotation mark you use matters. Some of the
rules are shown here:

print "This is ny text"
print 'This is nmy text'

#Usi ng doubl e quotation marks
#Usi ng single quotation marks

print "This is ny text' #This will not work because python
does not allow mi xing the single and doubl e quotation marks

print "My nane is 'David " #This will print My nane is 'David'
print 'MWy nane is "David"' #This will print My nane is "David"

Strings, Numbers, and Booleans

Strings, Numbers,
and Booleans
None
List
Basic Operators
Comments
© Whitespace
Control Flow Statements
o if Statement
© while Loops
© for Loops
© break and
continue in Loops
String Formatting
Functions
© Defining Functions
© Functions
Arguments
© Keyword
Arguments
© Functions are
Objects
Scope and Import
© Definition by
Assignment
© Function Scope
© Import Keyword
Sequences and Dictionaries
O List
© Tuples
© Dictionaries
Exception Handling
Accessing Java
Subclassing Java

O O O O

Literal strings can be typed in using either double quotes or single quotes. This can be handy when your string contains one quote or the other. You

can also use the backslash character to escape special characters.

Strings that contain characters beyond 7-bit ASCII, such as é or need to be marked as unicode strings by
placing the letter u in front of the string. There is no harm in marking all strings as unicode strings. The

following prints a unicode string:

print u'été

Numbers can just be typed in normally, like 42 or 3. 14159. Python does not have a boolean type. O is false and 1 is true. For convenience, Python
also has constants named False and True which can be used in place of 0 and 1. This is an oversimplification, but should suffice for now. The

following prints out " Tr ue" .

https://legacy-docs.inductiveautomation.com/display/DOC/Using+Designer+User+Interface#UsingDesignerUserInterface-Tools>Console
https://legacy-docs.inductiveautomation.com/display/DOC/Using+Designer+User+Interface#UsingDesignerUserInterface-Tools>Console

x="isn't this grand"
y="isn\'t this grand
print x==y

None

There is a special value in Python called None (with a capital N). This is simply a special value that means: no value. This value is equivalent to
Java's nul | value.

List

In Python, lists (arrays) are a built-in type that contains multiple other values. Lists can contain any type of items, and the items in a list do not all need
to be the same type. You can create a list by enclosing multiple items in square brackets ([]), separated with commas. You can pull items out of a list
with the square-bracket list index notation. Note that lists are zero-indexed, meaning that the first item in the list is at position 0. This code will print out "
alist".

a=/["this', "is'", "alist', 8, 93.928]
print a[2]

Basic Operators
Python has all of the normal arithmetic operators you'd expect, addition(+), subtraction(-), division(/), multiplication(*), modulus(%), etc.
The comparison operators are just like in C: equals(==), not equals(!=) greater than (>), greater than or equal(>=), etc.

The logical operators are just typed in plain text: and, or, not.

Comments

Comments start with a hash sign. Add comments to your code so that when you go back to it after a long time, you know what the code is trying to do.

Prints out 'Hello World 5 tines.
for x in range(5):
print '"Hello world'

Whitespace

Perhaps its most unique feature, logical blocks are defined by indentation in Python. A colon (:) starts a new block, and the next line must be indented
(typically using a tab of 4 spaces). The block ends when the indentation level returns to the previous level. For example, the following will print out " 5
4 3 2 1 Blast-of f". The final print isnot part of the loop, because it isn't indented.

count down=5
whi | e countdown > O:
print countdown,
countdown = countdown - 1
print "Blast-off!"

Control Flow Statements

Control flow statements, that is the ifs and loops, make the language do things differently based on the various conditions. Python has all of the basic
control flow statements that you'd expect from a programming language.

i f Statement

The i f statement is familiar to anyone with a passing knowledge of programming. The idea of an i f is that you want your script to execute a block of
statements only if a certain condition is true. For example, this script won't do anything.

x =15
if x < 10:
print "this will never show'

Youcanusetheif...elseformofanif statementto do one thing if a condition is true, and something else if the condition is false. This script will
printout”"this will show "

x = 15
if x < 10:

print "this will never show'
el se:

print "this will show"

Lastly, you can use thei f. .. el i f form. This form combines multiple condition checks. el i f stands for el se i f. This form can optionally have a
catch-all el se clause at the end. For example, this script will print out "t hr ee":

x =3
if x == 1:

print "one"
elif x ==

print "two"
elif x ==

print "three"
el se:

print "not 1-3"

whi | e Loops

A whi | e loop will repeat a block of statements while a condition is true. This code will print out the contents of the items in the list. This code uses a fu
nction called | en, which is a built-in function that returns the length of a list or string.

listOfFruit = [' Apples', 'Oanges', 'Bananas']
x =0
while x < len(listOFruit):

print listOFruit[x]

X =x +1

for Loops

Python's f or loop may be a bit different than what you're used to if you've programmed any C. The f or loop is specialized to iterate over the
elements of any sequence, like a list. So, we could re-write the example above using a f or loop eliminating the counter x:

listOfFruit = ['Apples', 'Oranges', 'Bananas']
for itemin listOfFruit:
print item

Much more graceful! You'll often see the f or loop used instead of the whi | e loop, even when you simply want to iterate a given number of times. To
do this with the f or loop, you can use the built-in function r ange. The r ange function returns a variable-size list of integers starting at zero. Calling ra
nge(4) will return the list [0, 1, 2, 3]. So, to have a f or loop repeat 4 times, you can simply do:

for x in range(4):
print "this will print 4 times"

break and conti nue in Loops

You can stop a loop from repeating in its tracks by using the br eak statement. This code will print out " Loop" exactly two times, and then print " Fi n
i shed".

for x in range(10):
if x >= 2
br eak
print "Loop"
print "Finished"

You can use the cont i nue statement to make a loop stop executing its current iteration and skip to the next one. The following code will print out the
numbers 0-9, skipping 4.

for x in range(10):
if x ==
conti nue
print x

String Formatting

Although string formatting is a minor feature of Python, but it is incredibly useful in Ignition. String formatting is used to manipulate strings, specifically
to insert the values of variables inside a string without a bunch of concatenation.

The %operator is used in Python not just for modulus, but also for string formatting. Suppose we wanted to print a weather report. We could use
concatenation, like this:

tenp = 65.8

city = "Sacranento"
wi ndSpeed = 25
windDir = "east"

print city
print "Weather: " + str(tenp) + "°F, wind "+ str(w ndSpeed) + "nph fromthe "+ windDr

Yuck! This kind of concatenation is really a pain to write and to read. With string formatting, we could have written it like this:

tenp = 65.8

city = "Sacranento"
wi ndSpeed = 25
windDir = "east"

print "% weather: %°F, w nd %nph fromthe %" % (city, tenp, w ndSpeed, w ndDir)
Ah, that's much easier on the eyes. What is happening here is that the %operator is applying the variables on its right side to the format string on its
left side. It looks for placeholders (called format specifiers) inside the format string, and replaces them with corresponding values from the variables on

the right side. There are various format specifiers that can be used for different types of variable types. If you actually want a %sign inside the final
string, use the special format specifier: " 984

Format Specifier Meaning

%% Inserts a % sign into the final string.

%c A single character. Value must be a string of length 1 or an integer.
%d or %i Signed integer

%f Floating point, decimal format

%s A String, converts the value to a string using st r () .

%u Unsigned decimal

%x or %X Unsigned hexadecimal

You can also put some extra information in the format specifiers between the %and the format specifier character. The most useful thing to do is to
specify the number of decimal places to use to print floating point numbers. For example, " % 3f " would always put three digits after the decimal point.

Functions

Functions are code that can be called repeatedly from other places. Functions can have parameters passed into them, and may return a resulting
value. Some functions, like | en, are built-in. Some functions, like syst em gui . mressageBox(), are part of the scripting libraries provided by
Ignition. Some functions, like mat h. sqrt (), are provided by the Python standard library.

Functions are invoked by using their name followed by an argument list surrounded in parentheses. If there are no arguments, you still need an open
and close parenthesis.

Defining Functions

Functions are defined using the def keyword. A function needs a name and a list of the arguments that it can be passed. For example, this code
defines a function that tests whether or not a number is odd. It returns a true value (1) if the number is odd. It is then used in a loop to print out the odd
numbers between 0 and 9.

def isOdd(num:
return num %2 == 1 # uses the nodul us (or renainder) operator

for x in range(10):
if isQdd(x):
print x

Functions Arguments

When a function accepts arguments, the names of those arguments become variables in the function's namespace. Whatever value was passed to
the function when it was invoked becomes the value of those variables. In the example above, the value of x inside the f or loop gets passed to the i
sQdd function, and becomes the value of the num argument.

Arguments can have default values, which makes them optional. If an argument is omitted, then its default value will be used. The following code
defines a function cal | edcap, which will take a number, and make sure it is within an upper and lower limit. The limits default to 0 and 100.

def cap(x, m n=0, nmax=100):
if x <mn:
return mn
elif x > max:
return max
el se:
return x

This will print out "0O"
print cap(-1)

This will print out "100"
print cap(150)

this will print out "150", because it uses a max of 200
print cap(150, 0, 200)

Keyword Arguments

In Ignition, some complicated script functions are designed to take keyword arguments instead of normal parameters. In the description for those
functions, you may see the following info box in this User Manual:

G} This function accepts keyword arguments.

Arguments can also be specified by keyword instead of by position. In the example below, the only way someone would know that the 200 in the last
call to cap specified the max is by its position. This can lead to hard-to-read function invocations for functions with lots of optional arguments. You can
use keyword-style invocation to improve readability. The following code is equivalent to the last line above, using 200 for the max and the default for
the mi n.

print cap(150, nmax=200)

Because we used a keyword to specify that 200 was the max, we were able to omit the m n argument altogether, using its default.

Functions are Objects

Perhaps one of the most foreign concepts for new Python users is that in Python, functions are first-class objects. This means that functions can be
passed around to other functions (this concept is similar to the idea of function pointers in C or C++).

Lets go back to the i sOdd example above. Suppose we wanted a more general way to filter a list. Maybe sometimes we want the odd entries, while
other times we want even ones, or entries less than 3, etc. We can define a function called ext r act that takes a list and another function, and
returns only entries that "pass" through the other function.

def isOdd(num:
return num %2 ==

def isEven(num:
return num %2 ==

def isLessThan(num nax=3):
return num < nmax

def extract(filterFunction, list):
newList =[]
for entry in list:
if filterFunction(entry):
newlLi st. append(entry)
return newli st
prints out [0, 2, 4, 6, 8]

notice that isEven as not _invoked_, but passed to the filter function
print extract (i sEven, range(10))

Now, it just so happens that Python has a built-in function that does exactly what our ext r act function does - its called fil ter.

We would also be remiss at this point if we didn't mention another language feature called | i st comprehensions. This is a great little bit of syntax that
helps make new lists out of other lists. Instead of using our filter function, we could have simply done this:

def isEven(num:
return num %2 ==

print [x for x in range(10) if isEven(x)]

In Ignition, you'll most commonly see functions used as objects when using the syst em uti | . i nvokelLat er function. This function takes a function
and executes it after all pending event handling has finished processing.

Scope and Import

The concept of scope is very important in all programming, and Python is no exception. Scope defines what names are directly accessible without any
qualifiers. Another way to put this is that the scope determines what variables are defined.

Definition by Assignment

In Python, a variable is defined at the time that it is assigned. What scope it belongs to is also defined by where the assignment occurs.
doSoneWork() # on this line, there is no variable 'x' in scope

x =5 # now 'x' is defined in our scope, because we've assigned a value to it

print x # This will work just fine, because x is in scope.

Function Scope

When you define a function, that function gets its own scope. Variables that are assigned within that function body will not be available outside of the
function.

def nyFunction():
x =15 # x is local to myFunction()

print x # This will work, because it is part of the function

y = x + 10 # This will fail, because x is not available in the outer scope

Import Keyword

You can import the namespaces defined in other scopes into your scope with the i npor t keyword. Most commonly, you'll import from global library
sources, like syst em(the Ignition standard libraries), pr oj ect (your project's script library), j ava (importing from the Java standard library), and the
various python standard libraries. When you're writing component event handlers, system, shared, and project are imported for you automatically.

The import keyword can be used in a variety of forms:

® inmport X
® fromX inport Y

For example, suppose you wanted to use the j ava. uti | . Cal endar class for some date manipulations. You could import this in a number of
different ways. These examples are equivalent, printing out a date 8 hours before the current date.

inport java

cal = java.util.Cal endar.getlnstance()
cal . add(j ava. util. Cal endar. HOUR, -8)
print cal.getTinme()

fromjava.util inport Cal endar
cal = Cal endar. getlnstance()
cal . add(Cal endar . HOUR, -8)
print cal.getTinme()

Sequences and Dictionaries

Python offers a variety of sequence types. We've already seen one - the List. There are other kinds of sequences, most notably tuples and strings.
There is also the dictionary type, which contains a list of key-value pairs.

List

Lists are a very handy kind of sequence. They can hold any number of items and can be resized on the fly. After creating a list using the square
bracket notation, there are a number of functions that you can call on the list. Some common list functions are listed here.

append(x)
Takes a single argument, which will be appended to the end of the list.

insert(i,Xx)
Inserts an item x at index i

renmove(x)
Will remove the given item from the list.

i ndex(x)
Returns the index of the value x. Throws an error if the list doesn't contain the item. Use the in operator to check if an item is contained in a sequence.

sort ()
Sorts the items in the list.

nyList = ['a, 'b', 'c', 'd]
print nyList # -->[a, b, c, d]

nyLi st . append(" Q")
print nyList # -->[a, b, ¢, d, Q

nyList.insert(1, "Z")
print nyList # -->[a, Z b, ¢, d Q

nyLi st.renove("c")
print nyList # -->1[a, Z b, d Q

print nyList[2] # --> b
print nyLlIst.index("b") # --> 2

if "Z in nyList:
print "Zis in the list'

if "c' not in nyList:
print 'c was renoved fromthe |ist'

Tuples

A tuple is similar to a list, but you use parenthesis instead of square brackets to define one. The major difference between a tuple and a list is that
tuple's are immutable. That is, once created, they cannot be altered. Tuples are very useful for passing multiple things to and from functions. For
example, you could pass a point to a function using a tuple like so:

def printPoint(point):
print "x =", point[0]
print "y =", point[1]

print Point ((28,89))

This can also be handy for returning multiple values from a function. For example, if you had a mouse event, you could write a function that found the
component's center point, and return that point as a tuple. You could then use unpacking assignment to extract the values into separate values.

def findCenter(event):
w = event.source.w dth
h = event. source. hei ght
return (w2, h/2)

point will be a tuple
point = findCenter(event)

x and y will be nunbers, using unpacking assignnent
x,y = findCenter(event)

Dictionaries

A dictionary is a very useful type that holds a set of key-value pairs. You may have used these in other languages and know them as hashmaps,
maps, associative memories or associative arrays. Dictionaries are not ordered sequences - you reference any item via its key value. The keys can be
numbers, strings, or tuples of these types. Any given key may only appear once in a dictionary. Trying to set another value for that key will overwrite
any previous value for that key.

Dictionaries are created using braces ({}). Key-value pairs are separated by commas, and the keys are separated from the values with a colon. You
can use the .keys() function to have a set of the keys. For example:

nyDict = {'Bob': 89.9, 'Joe': 188.72, 'Sally': 21.44}
print nyDict['Bob'] # --> 89.9

nyDict['Amir']=45.89 # Adds a key for '"Amr’'

names = nyDict. keys()

names. sort ()
print names # --> ['Amr', 'Bob', 'Joe', 'Sally']

You can loop through dictionaries using a for loop. You can use the keys() to loop through the dictionary, and then use the key values to look up the
value. For example:

for name in nyDict.keys():
print name, nyDict[nane]

Exception Handling

Exception handling is a language feature of many high-level languages that allows you to "catch" a runtime error and deal with it as you see fit. On the
flip side, it allows you to "raise" or "throw" an error in your code, which will break out of whatever code is currently executing and jump to the nearest
enclosing catch block that knows how to handle your error.

For example, dividing by zero raises a ZeroDivisionError. You can catch this error using a try...except block, like this:

https://legacy-docs.inductiveautomation.com/display/DOC/Component+Event+Handlers#ComponentEventHandlers-mouseEvents

try:

result =8/ 0

print "this will never get called"
except ZerobDivisionError:

print "oops - can't divide by zero"

You don't have to specify a particular type of error to catch - you can use the except keyword by itself to catch any kind of exception. You can also
assign the details of the exception to a tuple of variables, which you can use in your error reporting. You can also have multiple except blocks for one
try block, each that handle different kinds of exceptions. This example shows these variations:

def soneDanger ousFunction():
rai se | CError(42,"oh no")
try:
soneDanger ousFunction()
except |1 OError, (errno, description):
print "An |/ O error occurred: "+description
except :
print "An unexpected error occurred"”

Accessing Java

When programming Python in Ignition, your code executes in the Jython implementation of Python. (See About Scripting - Python or Jython?). While
this doesn't have any great effect on the Python language itself, one of the great side benefits is that your Python code can seamlessly interact
withJava code, as if it were Python code. This means that your Python code has access to the entire Java standard library, which is saying a lot.

To use Java classes, you simple import them as if they were Python modules. For example, the following code will print out all of the files in the user's

home directory. This code uses the Java classes java.lang.System and java.io.File to look up the user's home directory and to list the files. Notice that
we can even use the Python-style for loop to iterate over a Java sequence.

fromjava.lang inport System
fromjava.io inport File

honePath = System get Property("user.home")
homeDir = Fil e(honePat h)

for filename in honeDir.list():
print filenane

You can find the reference documentation for the Java standard class libraray (also known as, the "JavaDocs") at: http://docs.oracle.com/javase/6
/docs/api/

Subclassing Java

You can even create Python classes that implement Java interfaces. If this is greek to you - don't worry, it isn't crucial. You'd need some
understanding of Java and object-oriented programming concepts, which are outside the scope of this manual.

To create a Python class that implements a Java interface, you simply use the interface as a superclass for your Python class. For example, we could
augment the example above to use the overload java.io.File.list(FilenameFilter). To do this, we'll need to create aFi | enaneFi | t er, which is an
interface in Java that defines a single function:

bool ean accept(File dir, String nane)

To implement this interface, we create a Python class that has j ava. i 0. Fi | enanmeFi | t er as its superclass, and implements that Java-style
function in a Python-esque way.

https://legacy-docs.inductiveautomation.com/display/DOC/Scripting
http://java.io/
http://docs.oracle.com/javase/6/docs/api/
http://docs.oracle.com/javase/6/docs/api/
http://java.sun.com/j2se/1.5.0/docs/api/java/io/File.html#listFiles(java.io.FilenameFilter)

fromjava.lang inport System
fromjava.io inport *

class ExtensionFilter(FilenanmeFilter):
def __init_ (self, extension=".txt"):
sel f. ext ensi on=ext ensi on. | ower ()

def accept(self, directory, nane):
make sure that the filename ends in the right extension
return nane.lower().endsw th(self.extension)

honePath = System get Property("user.home")
homeDir = Fil e(honePat h)

prints out all .txt files
for filename in honeDir.list(ExtensionFilter()):
print filename

prints out all .pdf files
for filename in honeDir.list(ExtensionFilter(".pdf")):
print filenane

system.alarm

system.alarm.acknowledge
system.alarm.cancel
system.alarm.createRoster
system.alarm.getRosters
system.alarm.getShelvedPaths
system.alarm.listPipelines
system.alarm.queryJournal
system.alarm.queryStatus
system.alarm.shelve
system.alarm.unshelve

system.alarm.acknowledge

Description

Acknowledges any number of alarms, specified by their event ids. The event id is generated for an alarm when it becomes active, and is used to
identify a particular event from other events for the same source. The alarms will be acknowledged by the logged in user making the call.
Additionally, acknowledgement notes may be included and will be stored along with the acknowledgement.

This function uses different parameters based on the scope of the script calling it. Both versions are listed below.

Syntax - Client Scripts

system.alarm.acknowledge(alarmlds, [notes])
® Parameters
String[] alarmlds - List of alarm event ids (uuids) to acknowledge.
String notes - Optional. Notes that will be stored on the acknowledged alarm events.
® Returns
Nothing
® Scope

Client

Syntax - Gateway Scripts

system.alarm.acknowledge(alarmlds, [notes], username)
® Parameters
String[] alarmlds - List of alarm event ids (uuids) to acknowledge.
String notes - Optional. Notes that will be stored on the acknowledged alarm events.

String username - The user that acknowledged the alarm. NOTE that this parameter is only used when called from a gateway scoped
script. This parameter should be omitted from any client-based scripts.

® Returns
Nothing
® Scope

Client

Examples

Code Snippet

#Thi s exanpl e shows the basic syntax for acknow edging an alarmfroma client-based script
system al arm acknow edge([' c27c06d8- 698f - 4814- af 89- 3c22944f58c5'],' Saw this alarm did sonet hing about
it.")

Code Snippet

#Thi s exanpl e shows the basic syntax for acknow edging an alarm from a gat eway- based scri pt
system al arm acknow edge([' c27c06d8- 698f - 4814- af 89- 3c22944f58c5'], ' Saw this alarm did sonet hing about
it.', "admn")

Code Snippet

#Thi s code snippet could be used as a nouseRel eased event handl er on a Tabl e conponent whose data was the
return val ue of thesystem al arm queryAl arnftatus function.

#1't woul d present a right-click menu to acknow edge the currently selected alarnms (for nore than #one,
the table nust be set to allow nultiple selection).

#Thi s exanpl e does not ask for an ack nessage, and therefore might fail if the alarnms we're attenpting to
acknowl edge require notes.
#Al so, note that the systemw || ignore any alarns that have already #been acknow edged.

if event.button==3:
rows = event. source. sel ect edRows
data = event.source. data
if len(rows)>0:
uuids = [str(data.getValueAt(r,' Eventld')) for r in rows]
def ack(event, uuids=uuids):
inport system
syst em al arm acknowl edge(uui ds, None)
nmenu = system gui.creat ePopupMenu({' Acknow edge' : ack})
menu. show(event)

system.alarm.cancel

Description

Cancels any number of alarms, specified by their event ids. The event id is generated for an alarm when it becomes active, and is used to identify a
particular event from other events for the same source. The alarm will still be active, but will drop out of alarm pipelines.

Syntax

system.alarm.cancel(alarmlds)
® Parameters
String[] alarmlds - List of alarm event ids (uuids) to cancel.
® Returns
nothing
® Scope

All
Examples

Code Snippet

#Thi s exanpl e shows the basic syntax for cancelling an alarm

system al arm cancel ([' c27c06d8- 698f - 4814- af 89- 3¢22944f 58c5'])

Code Snippet

#To cancel all currently active alarns:

ids =[]
results = system al arm querySt atus(state=["ActiveUnacked", "ActiveAcked"])
for result in results:

id=result.getld()

i ds. append(str(id))

system al arm cancel (i ds)

system.alarm.createRoster

Description

This function creates a new roster. Users may be added to the roster through the Gateway or the Roster Management component

Syntax

system.alarm.createRoster(hame, description)
® Parameters
String name - The name for the new roster
String description - A description for the new roster. Required, but can be blank.
® Returns
Nothing
® Scope

All

Code Examples

Code In Action

This exanpl e creates a new roster

nane = ' MyRoster’

description = "A roster created by scripting'
system al arm cr eat eRost er (nane, description)

system.alarm.getRosters

Description

This function returns a mapping of roster names to a list of usernames contained in the roster.

Syntax

system.alarm.getRosters()
® Parameters
None

® Returns

PyDict - A dictionary that maps roster names to a List of usernames in the roster. The List of usernames may be empty if no users
have been added to the roster.

® Scope

All

Code Examples

Code In Action

this script will get all the rosters and list the users in them
rosters = system al arm get Rosters()
for key, values in rosters.iteritens():
key is the roster nane, values is a dict of usernanes
print 'Roster', key, 'contains these users:'
for value in val ues:

print , val ue

Output

Roster Adm ns contai ns these users:
adm n

Rost er Supervisors contains these users:
asmth
j doe

system.alarm.getShelvedPaths

Description

Returns a list of ShelvedPath objects, which each represent a shelved alarm.

Syntax

system.alarm.getShelvedPaths()
® Parameters
Nothing
® Returns

List - A list of ShelvedPath objects. ShelvedPath objects can be examined with getExpiration, getHitCount, getPath, getShelveTime,
getUser, and isExpired.

® Scope

All, Client, or Gateway

Examples

Code Snippet

#The following code prints a list of the shelved alarnms paths and prints themto the console.
paths = system al arm get Shel vedPat hs()
for p in paths:

print "Path: %, Shelved by: %, expires: ¥, is expired? %" % (p.getPath(), p.getUser(), p.
get Expiration(), p.isExpired())

system.alarm.listPipelines

The following feature is new in Ignition version 7.8.1
Click here to check out the other new features

Syntax

system.alarm.listPipelines()
® Parameters
None
® Returns
List - A list of pipeline names. The list may be empty if no pipelines exist. Unsaved name changes will not be reflected in the list.
® Scope

All

Code Examples

Code In Action

This script will print a list of all alarm pipeline nanes.
pi pelines = systemalarm i stPipelines()
for pipeline in pipelines:

print pipeline

Output

Ener gency_Pi pel i ne
Test
SMS_Pi pel i ne

https://docs.inductiveautomation.com/display/DOC/New+in+this+Version#NewinthisVersion-Newin7.8.1

system.alarm.queryJournal

Description

Queries the specified journal for historical alarm events. The result is a list of alarm events, which can be queried for individual properties. The
result object also has a getDataset() function that can be used to convert the query results into a normal dataset, with the columns: Eventld,
Source, DisplayPath, EventTime, EventState, Priority, IsSystemEvent

Click here for more information on alarm properties

Syntax

system.alarm.queryJournal(startDate, endDate, journalName, priority, state, path, source, displaypath, all_properties, any_properties, defined,
includeData, includeSystem, isSystem)

® Parameters

Date startDate - The start of the time range to query. Defaults to 8 hours previous to now if omitted. Time range is inclusive.
Date endDate - The end of the time range to query. Defaults to "now" if omitted.
String journalName - The journal name to query.

String[] priority - A list of possible priorities to match. Priorities can be specified by name or number, with the values: Diagnostic(0), Low
(1), Medium(2), High(3), Critical(4).

String[] state - A list of the event state types to match. Valid values are "ClearUnacked", "ClearAcked", "ActiveUnacked", and
"ActiveAcked".

String[] path - A list of possible source paths to search at. The wildcard "*" may be used.
String[] source - A list of possible source paths to search at. The wildcard "*" may be used.

String[] displaypath - A list of display paths to search at. Display paths are separated by "/", and if a path ends in "/*", everything below
that path will be searched as well.

Object[][] all_properties - A set of property conditions, all of which must be met for the condition to pass. This parameter is a list of

tuples, in the form ("propName", "condition”, value). Valid condition values: "=""I=","<""<="">"">=", Only the first two conditions may
be used for string values.

Object[][] any_properties - A set of property conditions, any of which will cause the overall the condition to pass. This parameter is a
list of tuples, in the form ("propName", "condition”, value). Valid condition values: "=","I=","<""<="">"">="_0Only the first two conditions
may be used for string values.

String[] defined - A list of string property names, all of which must be present on an event for it to pass.

Boolean includeData - Whether or not event data should be included in the return. If this parameter is false, and if there are no
conditions specified on associated data, the properties table will not be queried.

Boolean includeSystem - Specifies whether system events are included in the return.

Boolean isSystem - Specifies whether the returned event must or must not be a system event.

® Returns

List - A list of matching AlarmEvent objects. AlarmEvent objects can be examined with getAckData, getActiveData, getClearedData,
getCount, getDisplayPath, getDisplayPathOrSource, getld, getLastEventState, getName, getNotes, getOrDefault, getOrElse,
getPriority, getProperties, getRawValueMap, getSource, getState, getValues, isAcked, isCleared, isExtended, isInherited, and
isShelved.

Important

Each item in the resulting list is a separate alarm event: an alarm becoming active is one item, while the same alarm becoming
acknowledged is a separate item. This differs from system.alarm.queryStatus() which groups each event into a single item.

® Scope

All

https://legacy-docs.inductiveautomation.com/display/DOC/Alarm+Notification+Pipelines#AlarmNotificationPipelines-AlarmProperties

Code Examples

Code Snippet

#Thi s exanpl e shows the basic syntax for querying fromthe journal in a button's actionPerformed event,
with a date range selector ("Range"), storing the results back to a table called "Table":

tabl e = event. source. parent. get Conponent (" Tabl e")
range= event. sour ce. parent. get Conponent (" Range")

results = system al arm queryJour nal (j ournal Nane="Journal ", startDate=range. startDate, endDate=range.
endDat e)
tabl e.data = resul ts. get Dataset ()

Code Snippet

#Thi s exanpl e extends the previous to only include non-acknow edged events of High or Critical severity,
who have associated data called "Departnent”, set to "maintenance". It also excludes system events
(shelving notifications, etc):

tabl e = event. source. parent. get Conponent (" Tabl e")
range= event. source. parent. get Conponent (" Range")

results = system al arm queryJour nal (j ournal Nane="Journal ", startDate=range.startDate, endDate=range.
endDate, state=['ActiveUnacked', 'd earUnacked'], all_properties=[("Departnent","=","nuintenance")],
priority=["Hi gh", "Critical"], includeSystenrFal se)

tabl e.data = results. get Dat aset ()

system.alarm.queryStatus

Description

Queries the current state of alarms. The result is a list of alarm events, which can be queried for individual properties. The result object also has a
getDataset() function that can be used to convert the query results into a normal dataset, with the columns: Eventld, Source, DisplayPath,
EventTime, State, Priority

Click here for more information on Alarm Properties

Syntax

system.alarm.queryStatus(priority, state, path, source, displaypath, all_properties, any_properties, defined, includeShelved)

® Parameters

String[] priority - A list of possible priorities to match. Priorities can be specified by name or number, with the values: Diagnostic(0), Low
(1), Medium(2), High(3), Critical(4).

String[] state - A list of states to allow. Valid values: "ClearUnacked", "ClearAcked", "ActiveUnacked", "ActiveAcked".
String[] path - A list of possible source paths to search at. The wildcard "*" may be used.
String[] source - A list of possible source paths to search at. The wildcard "** may be used.

String[] displaypath - A list of display paths to search at. Display paths are separated by "/", and if a path ends in "/*", everything below
that path will be searched as well.

Object[][] all_properties - A set of property conditions, all of which must be met for the condition to pass. This parameter is a list of
tuples, in the form ("propName", "condition”, value). Valid condition values: "=","I=","<""<="">"">="_Only the first two conditions may
be used for string values.

Object[][] any_properties - A set of property conditions, any of which will cause the overall the condition to pass. This parameter is a
list of tuples, in the form ("propName", “condition”, value). Valid condition values: "=","1=","<""<="">"">="_ Only the first two conditions
may be used for string values.

String[] defined - A list of string property names, all of which must be present on an event for it to pass.

Boolean includeShelved - A flag indicating whether shelved events should be included in the results. Defaults to "false".

® Returns

List - A list of matching AlarmEvent objects. AlarmEvent objects can be examined with getAckData, getActiveData, getClearedData,
getCount, getDisplayPath, getDisplayPathOrSource, getld, getLastEventState, getName, getNotes, getOrDefault, getOrElse,
getPriority, getProperties, getRawValueMap, getSource, getState, getValues, isAcked, isCleared, isExtended, isInherited, and
isShelved.

Important

Each item in the resulting list is a combination of each alarm event for the same alarm: details for when the alarm became active,
acknowledged, and cleared are combined into a single item. This differs from system.alarm.queryJournal() which splits these events into
separate items.

® Scope

All

https://legacy-docs.inductiveautomation.com/display/DOC/Alarm+Notification+Pipelines#AlarmNotificationPipelines-AlarmProperties

Code Examples

Code Snippet

#Thi s exanple queries the state of all tags nanmed "Hi Alarni', and puts the results in a table naned
"Table" (this assunes it's being run froma button on the sanme screen):

tabl e = event. source. parent. get Conponent (" Tabl e")

results = system al arm queryStatus(source=["*H Alarnt"])
tabl e.data = results. get Dat aset ()

system.alarm.shelve

Description

This function shelves the specified alarms for the specified amount of time. The paths may be either source paths, or display paths. The time can
be specified in minutes (timeoutMinutes) or seconds (timeoutSeconds). If an alarm is already shelved, this will overwrite the remaining time. To
unshelve alarms, this function may be used with a time of "0".

Syntax

system.alarm.shelve(path, timeoutSeconds, timeoutMinutes)
® Parameters
String[] path - A list of possible source paths to search at. If a path ends in "/*", the results will include anything below that path.

Integer timeoutSeconds - The amount of time to shelve the matching alarms for, specified in seconds. 0 indicates that matching alarm
events should now be allowed to pass.

Integer timeoutMinutes - The amount of time to shelve the matching alarms for, specified in minutes. 0 indicates that matching alarm
events should now be allowed to pass.

® Returns
Nothing
® Scope

All

Code Examples

Code In Action

#Thi s exanpl e assunmes that data has been |l oaded into a table ("Table") from system al arm queryStatus, and
it shelves the selected alarns for 5 minutes. It also assumes that it is being executed froma button's
actionPerformed event.

tabl e = event. source. parent. get Conponent (' Tabl e')

rows = table.sel ectedRows

data = table.data

if len(rows)>0:
sourcePat hs = [str(data. getValueAt(r," Source')) for r in rows]
system al arm shel ve(pat h=sour cePat hs, ti meout M nut es=5)

system.alarm.unshelve

Description

Unselves alarms in accordance with the path parameter.

Syntax

system.alarm.unshelve(path)
® Parameters
String[] path - A list of possible source paths to search at. If a path ends in "/*", the results will include anything below that path.
® Returns
Nothing
® Scope

All

Code Examples

There are not code examples for this function.

system.dataset

system.dataset.addColumn
system.dataset.addRow
system.dataset.dataSetToExcel
system.dataset.dataSetToHTML
system.dataset.deleteRow
system.dataset.deleteRows
system.dataset.exportCSV
system.dataset.exportExcel
system.dataset.exportHTML
system.dataset.filterColumns
system.dataset.fromCSV
system.dataset.getColumnHeaders
system.dataset.setValue
system.dataset.sort
system.dataset.toCSV
system.dataset.toDataSet
system.dataset.toPyDataSet
system.dataset.updateRow

system.dataset.addColumn

Description

Takes a dataset and returns a new dataset with a new column added or inserted into it. Datasets are immutable, so it is important to realize that
this function does not actually add a column to a dataset. You'll need to do something with the new dataset that this function creates to achieve
something useful. If the columnindex argument is omitted, the column will be appended to the end of the dataset.

Syntax

system.dataset.addColumn(dataset [, colindex], col, coIName, colType)
® Parameters

Dataset dataset - The starting dataset. Please be aware that this dataset will not actually be modified (datasets are immutable), but
rather will be the starting point for creating a new dataset.

int colindex - The index (starting at 0) at which to insert the new column. Will throw an IndexError if less than zero or greater than the
length of the dataset. If omitted, the new column will be appended to the end. [optional]

PySequence col - A Python sequence representing the data for the new column. Its length must equal the number of rows in the
dataset.

String colName - The name of the column.

PyType colType - The type of the of the column. The type can be the Python equivalent of String, Long, Double, Short, Integer, Float,
Boolean, null, or java.util.Date if they exist.

® Returns
Dataset - A new dataset with the new column inserted or appended.
® Scope

All

Code Examples

Code Snippet

#Thi s exanpl e takes the dataset fromBar Chart 1, adds a colum of integers called Center Area to the end
of the existing data, and displays the new dataset in Bar Chart 2.

dsl = event.source. parent.get Conponent (' Bar Chart 1').data
col Count = ds1. get Col umCount ()
columNane = "Center Area"
columbata = []
for i in range(dsl. get RowCount()):
col umbat a. append(i* 10)

ds2 = system dat aset.addCol umm(ds1, col Count, columbData, columNane, int)
event . sour ce. parent . get Conponent (' Bar Chart 2').data = ds2

system.dataset.addRow

Description

Takes a dataset and returns a new dataset with a new row added or inserted into it. Datasets are immutable, so it is important to realize that this
function does not actually add a row to a dataset. You'll need to do something with the new dataset that this function creates to achieve something
useful. If the rowIndex argument is omitted, the row will be appended to the end of the dataset.

Syntax

system.dataset.addRow(dataset [, rowIndex], row)
® Parameters

Dataset dataset - The starting dataset. Please be aware that this dataset will not actually be modified (datasets are immutable), but
rather will be the starting point for creating a new dataset.

int rowIndex - The index (starting at 0) at which to insert the new row. Will throw an IndexError if less than zero or greater than the
length of the dataset. If omitted, the new row will be appended to the end. [optional]

PySequence row - A Python sequence representing the data for the new row. Its length must equal the number of columns in the
dataset.

® Returns
Dataset - A new dataset with the new row inserted or appended.
® Scope

All

Code Examples

Code Snippet

#Thi s sni ppet would add a new option into a Dropdown conponent just |ike above, but at the begi nning:
dropdown = event. source. parent. get Conponent (" Dr opdown")

newRow = [5, "New Option"]

dropdown. data = system dat aset . addRow dr opdown. data, 0, newRow)

Code Snippet

#Thi s exanpl e woul d add a new option to a Dropdown List by adding a row to its underlying dataset. Notice
how the |l ast |ine assigns the return value of the addRow function to the dropdown's data property.
dropdown = event. source. par ent. get Conponent (" Dr opdown")

newRow = [5, "New Option"]

dropdown. data = system dat aset. addRow(dr opdown. dat a, newRow)

system.dataset.dataSetToExcel

Description

Formats the contents of one or more datasets as an excel spreadsheet, returning the results as a string. Each dataset specified will be added as a
worksheet in the Excel workbook. This function uses an xml-format for Excel spreadsheets, not the native Excel file format.

Syntax

system.dataset.dataSetToExcel(showHeaders, datasets)
® Parameters
boolean showHeaders - If true (1), the spreadsheet will include a header row.
Obiject[] datasets - A sequence of datasets, one for each sheet in the resulting workbook.
® Returns
String - An Excel-compatible XML-based workbook, with one worksheet per dataset.
® Scope

All

Code Examples

Code Snippet

#Thi s snippet would run a SQ query agai nst a database, and turn the results into a string that is XM
that Excel can open. It then wites the string to a file on the local hard drive.

results = system db. runQuery(" SELECT * FROM exanplel LIMT 100")
results = system dataset.toDataSet(results)

spreadsheet = system dat aset. dat aSet ToExcel (1, [results])
filePath = "C:\\output\\results.xls"
systemfile.witeFile(filePath, spreadsheet)

system.dataset.dataSetToHTML

Description

Formats the contents of a dataset as an HTML page, returning the results as a string. Uses the <table> element to create a data table page.

Syntax

system.dataset.dataSetToHTML(showHeaders, dataset, title)

® Parameters
boolean showHeaders - If true(1), the HTML table will include a header row.
Dataset dataset - The dataset to export
String title - The title for the HTML page.

® Returns
String - The HTML page as a string.

® Scope

All

Code Examples

Code Snippet

#Thi s snippet would run a SQ query agai nst a database, and turn the results into a string containing
HTML. It then wites the string to a file on the local hard drive.

results = system db. runQuery(" SELECT * FROM exanplel LIMT 100")
results = system dataset.toDataSet(results)

htm = system dat aset. dataSet TOHTM.(1, results, "Production Report")
filePath = "C:\\output\\results.htm"
systemfile.witeFile(filePath, htm)

system.dataset.deleteRow

Description

Takes a dataset and returns a new dataset with a row removed. Datasets are immutable, so it is important to realize that this function does not
actually remove the row from the argument dataset. You'll need to do something with the new dataset that this function creates to achieve
something useful.

Syntax

system.dataset.deleteRow(dataset, rowlndex)
® Parameters

Dataset dataset - The starting dataset. Please be aware that this dataset will not actually be modified (datasets are immutable), but
rather will be the starting point for creating a new dataset.

int rowIndex - The index (starting at 0) of the row to delete. Will throw an IndexError if less than zero or greater than len(dataset)-1.
® Returns

Dataset - A new dataset with the specified row removed.
® Scope

All

Code Examples

Code Snippet

#Thi s exanpl e woul d renove the selected row froma List component, by re-assigning the List's data
property to the new dataset returned by thedel eteRow function.

nyLi st = event. source. parent. get Conponent ("List")
row = nyLi st. sel ect edl ndex
if row!=-1: # neke sure there is sonething sel ected
nyLi st.data = system dat aset. del et eRowm nyLi st.data, row)

system.dataset.deleteRows

Description

Takes a dataset and returns a new dataset with one or more rows removed. Datasets are immutable, so it is important to realize that this function
does not actually remove the rows from the argument dataset. You'll need to do something with the new dataset that this function creates to
achieve something useful.

Syntax

system.dataset.deleteRows(dataset, rowindices)
® Parameters

Dataset dataset - The starting dataset. Please be aware that this dataset will not actually be modified (datasets are immutable), but
rather will be the starting point for creating a new dataset.

int[] rowIndices - The indices (starting at 0) of the rows to delete. Will throw an IndexError if any element is less than zero or greater
than len(dataset)-1.

® Returns
Dataset - A new dataset with the specified rows removed.
® Scope

All

Code Examples

Code Snippet

#Thi s exanpl e woul d renpve several rows froma Table conponent, by re-assigning the Table's data property
to the new dataset returned by thedel eteRows function.

ds = event.source. parent. get Conponent (' Tabl e'). data
rows = [0, 2, 3, 4]

ds = system dat aset. del et eRows(ds, rows)

event . sour ce. parent . get Conponent (' Tabl e'). data = ds

system.dataset.exportCSV

Description

Exports the contents of a dataset as a CSV file, prompting the user to save the file to disk.

Syntax

system.dataset.exportCSV(filename, showHeaders, dataset)
® Parameters
String filename - A suggested filename to save as.
boolean showHeaders - If true (1), the CSV file will include a header row.
Dataset dataset - The dataset to export.
® Returns
String - The path to the saved file, or None if the action was canceled by the user.
® Scope

Client

Code Examples

Code Snippet

#This sni ppet woul d pronpt the user to save the data currently displayed in a Table conponent to a CSV
file, and would open the file (in an external program presunably Excel) after a successful save.

tabl e = event. source. parent. get Conponent (" Tabl e")
filePath = system dat aset. export CSV("data.csv", 1, table.data)
if filePath !'= None:
system net.openURL("file:///"+filePath.replace('\\','/"))

system.dataset.exportExcel

Description

Exports the contents of a dataset as an Excel spreadsheet, prompting the user to save the file to disk. Uses the same format as the dataSetToExcel
function.

Syntax

system.dataset.exportExcel(filename, showHeaders, dataset)
® Parameters
String filename - A suggested filename to save as.
boolean showHeaders - If true (1), the spreadsheet will include a header row.
Object[] dataset - A sequence of datasets, one for each sheet in the resulting workbook.
® Returns
String - The path to the saved file, or None if the action was canceled by the user.
® Scope

Client

Code Examples

Code Snippet

#Thi s sni ppet would pronpt the user to save the data currently displayed in a Tabl e conponent to an Excel -
conpati bl e spreadsheet file, and would open the file after a successful save.

tabl e = event. source. parent. get Conponent (" Tabl e")
filePath = system dat aset. exportExcel ("data.xls", 1, table.data)
if filePath != None:

system net. openURL("file://"+filePath)

system.dataset.exportHTML

Description

Exports the contents of a dataset to an HTML page. Prompts the user to save the file to disk.

Syntax

system.dataset.exportHTML (filename, showHeaders, dataset, title)
® Parameters
String filename - A suggested filename to save as.
boolean showHeaders - If true (1), the HTML table will include a header row.
Dataset dataset - The dataset to export.
String title - The title for the HTML page.
® Returns
String - The path to the saved file, or None if the action was canceled by the user.
® Scope

Client

Code Examples

Code Snippet

#Thi s sni ppet would pronpt the user to save the data currently displayed in a Table conponent to an HTM.
file, and would open the file in the default web browser after a successful save.

tabl e = event. source. parent. get Conponent (" Tabl e")
filePath = system dataset.exportHTM.("data.htm ", 1, table.data, "Production Report")
if filePath != None:

system net. openURL("file://"+filePath)

system.dataset.filterColumns

Description

Takes a dataset and returns a view of the dataset containing only the columns found within the given list of columns. Since 7.8.1.

Syntax

system.dataset.filterColumns(dataset, columns)
® Parameters
Dataset dataset - The starting dataset.

PySequence columns - A list of columns to keep in the returned dataset. The columns may be in integer index form (starting at 0), or
the name of the columns as Strings.

® Returns
Dataset - A new dataset containing the filtered columns.
® Scope

All

Code Examples

Code Snippet

This exanple takes the dataset froma five colum Bar Chart and displays a subset of the data in two
separate tables. This is perforned in a button conponent actionPerforned script.

chartData = event. source. parent. get Conponent (' Bar Chart').data

northSouth = [1, 2] # North Area, South Area cols
east West = ["East Area", "West Area"]

filteredData = system dataset.filterColums(chartData, northSouth)
event . sour ce. parent . get Conponent (' Nort hSout hTabl e').data = filteredData

filteredData = system dataset.filterColums(chartData, eastWst)
event . sour ce. par ent . get Conponent (' East West Tabl e').data = filteredData

system.dataset.fromCSV

Description

Converts a dataset stored in a CSV formatted string to a dataset that can be immediately assignable to a dataset property in your project. Usually
this is used in conjunction with system.file.readFileAsString when reading in a CSV file that was exported using system.dataset.toCSV. The CSV
string must be formatted in a specific way:

" #NAMES"

"Col 1","Col 2","Col 3"

" #TYPES"

"I, tstrt, "D

"#RONS", " 6"

"44","Test Row 2","1.8713151369491254"
"86","Test Row 3","97.4913421614675"
"0","Test Row 8","20.39722542161364"
"78","Test Row 9", "34.57127071614745"
"20","Test Row 10", "76.41114659745085"
"21","Test Row 13", "13.880548366871926"

The first line must be "#NAMES"
The second line must list the names of the columns of the datset, each in quotes and separated by commas
The third line must be "#TYPES"

The fourth line must list the type of each column of the dataset in order

Integer ="1"
String = "str"
Double = "D"
Date = "date"
Long ="L"
Short ="S"
Float ="F"
Boolean = "B"

The fifth line must be "#ROWS" followed by a comma and then the number of rows of data in quotes (i.e. "#ROWS", "6")

The following lines will be your data, each column value surrounded in quotes and separated by a comma; each row on a separate line. The
number of rows must match what was specified on line 5

Syntax

system.dataset.fromCSV(csv)
® Parameters
String csv - A string holding a CSV dataset.
® Returns
Dataset - A new dataset.
® Scope

All

Code Examples

Code Snippet

#ln this exanple it is assumed that the CSV file being read was a dataset that was previously exported
usi ng system dat aset.toCSV:
#Specify file path

file_path = "C\\ny_dataset.csv
#Read in the file as a string
data_string = systemfile.readFileAsString(file_path)
#Convert the string to a dataset and store in a variable
data = system dataset. fronmCSV(data_string)

#Assi gn the dataset to a table

event . sour ce. parent. get Conponent (' Tabl e').data = data

system.dataset.getColumnHeaders

Description

Returns the headers from a dataset and returns a python dataset without the headers.

Syntax

system.dataset.getColumnHeaders(dataset)
® Parameters
Dataset dataset - The input dataset.
® Returns
PyList - A list of column header strings.
® Scope

All

Code Examples

There are no code examples available for this function.

system.dataset.setValue

Description

Takes a dataset and returns a new dataset with a one value altered. Datasets are immutable, so it is important to realize that this function does not
actually set a value in the argument dataset. You'll need to do something with the new dataset that this function creates to achieve something
useful.

Syntax

system.dataset.setValue(dataset, rowindex, columnName, value)

® Parameters
Dataset dataset - The starting dataset. Will not be modified (datasets are immutable), but acts as the basis for the returned dataset.
int rowIndex - The index of the row to set the value at (starting at 0)
String columnName - The name of the column to set the value at. Case insensitive.
PyObiject value - The new value for the specified row/column.

® Returns
Dataset - A new dataset, with the new value set at the given location.

® Scope

All

Syntax

system.dataset.setValue(dataset, rowIindex, columnindex, value)

® Parameters
Dataset dataset - The starting dataset. Will not be modified (datasets are immutable), but acts as the basis for the returned dataset.
int rowIndex - The index of the row to set the value at (starting at 0)
String columnindex - The index of the column to set the value at (starting at 0)
PyObject value - The new value for the specified row/column.

® Returns
Dataset - A new dataset, with the new value set at the given location.

® Scope

All

Code Examples

Code Snippet

#Thi s sni ppet could be used for a Button's actionPerforned event to change the selected cell's value in a
Tabl e conponent to zero.

tabl e = event. source. parent. get Conponent (" Tabl e")

sel Row = tabl e. get Sel ect edRow()

sel Col = table. get Sel ect edCol um()

if selRow != -1 and selCol != -1:
newDat a = system dat aset. set Val ue(tabl e. data, sel Row, sel Col, 0.0)
tabl e. data = newDat a

system.dataset.sort

Description

Sorts a dataset and returns the sorted dataset. This works on numeric, as well as alphanumeric columns. It will go character by character, going
from 0-9, A-Z, a-z.

Syntax

system.dataset.sort(dataset, keyColumn [, ascending])
® Parameters
Dataset dataset - The dataset to sort.
int keyColumn - The index or column name of the column to sort on.
boolean ascending - True for ascending order, False for descending order. If omitted, ascending order will be used. [optional]
® Returns
Dataset - A new sorted dataset.
® Scope

All

Code Examples

Code Snippet

#This code will take the data in a table conponent, sort it based on the colum wth index 1,
#and then reinsert the sorted data into the same table.

data = event.source. parent.get Conponent (' Tabl e'). data
newDat a = system dataset.sort(data, 1)
event . sour ce. parent . get Conponent (' Tabl e'). data = newDat a

Code Snippet

#This code will create a dataset in scripting, and then sort it based on the name of one of the col unmns.
#1t then inserts the sorted dataset into a table conponent.

headers = ["City", "Population", "Tinezone", "GWIOfset"]
data = []

dat a. append([" New Yor k", 8363710, "EST", -5])
dat a. append(["Los Angel es", 3833995, "PST", -8])
dat a. append([" Chi cago", 2853114, "CST", -6])

dat a. append(["Houston", 2242193, "CST", -6])

dat a. append([" Phoeni x", 1567924, "MST", -7])

cities = system dataset.toDataSet (headers, data)
newDat a = system dataset.sort(cities, "Cty")
event . sour ce. parent . get Conponent (' Tabl e'). data = newData

system.dataset.toCSV

Description

Formats the contents of a dataset as CSV (comma separated values), returning the resulting CSV as a string. If the "forExport” flag is set, then the
format will be appropriate for parsing using the system.dataset.fromCSV function.

Syntax

system.dataset.toCSV(dataset, showHeaders, forExport, localized)
® Parameters
Dataset dataset - The dataset to export to CSV.
Boolean showHeaders - If set to true(1), a header row will be present in the CSV. Default is true(1).

Boolean forExport - If set to true(1), extra header information will be present in the CSV data which is necessary for the CSV to be
compatible with the fromCSV method. Overrides showHeaders. Default is false(0).

Boolean localized - If set to true(1), the string representations of the values in the CSV data will be localized.
® Returns

String - The CSV data as a string
® Scope

All

Code Examples

Code Snippet

#This snippet would run a SQL query agai nst a database, and turn the results into a CSV string. It would
then store resulting CSVto a file on the local hard drive.

results = system db. runQuery("SELECT * FROM exanplel LIMT 100")

results = system dataset.toDataSet(results)

csv = system dat aset.toCSV(dataset = results, showHeaders = True, forExport = Fal se)
filePath = "C:\\output\\results.csv"

systemfile.witeFile(filePath, csv)

system.dataset.toDataSet

Description

This function is used to 1) convert PyDataSets to DataSets, and 2) create new datasets from raw Python lists

Syntax

system.dataset.toDataSet(dataset)
® Parameters
PyDataSet dataset - A PyDataSet object to convert.
® Returns
Dataset - The newly created dataset.
® Scope

All

Syntax

system.dataset.toDataSet(headers, data)
® Parameters
PySequence headers - The column names for the dataset to create.

PySequence data - A list of rows for the new dataset. Each row must have the same length as the headers list, and each value in a
column must be the same type.

® Returns
Dataset - The newly created dataset.
® Scope

All

Code Examples

Code Snippet

#This first exanple shows how this function can be used to convert froma PyDataSet (which is what system
db. runQuery returns) to a nornal DataSet, which is the datatype of a Table conponent's data property.

pyDat aSet = system db. runQuery("SELECT * FROM exanplel LIMT 100")
tabl e = event. source. parent. get Conponent (" Tabl e")

nor mal Dat aSet = system dat aset . t oDat aSet (pyDat aSet)

tabl e. data = nor nal Dat aSet

system.dataset.toPyDataSet

Description

This function converts from a normal DataSet to a PyDataSet, which is a wrapper class which makes working with datasets more Python-esque.

Syntax

system.dataset.toPyDataSet(dataset)
® Parameters
Dataset dataset - A DataSet object to convert into a PyDataSet.
® Returns
PyDataSet - The newly created PyDataSet.
® Scope

All

Code Examples

Code Snippet

#Thi s exanpl e script would be added to a button that is in the sane container as the table you are

wor ki ng with,

#1t grabs the data of the Tabl e conponent, and adds up the values in the colum named "Val ue", displaying
the result to the user.

Cet a Table conponent's data
tabl e = event. source. parent. get Conponent (" Tabl e")
data = system dat aset.toPyDat aSet (t abl e. dat a)

Loop through the data, summing the Value col um
value = 0.0
for row in data:

val ue += row "Val ue"]

Show the user the sum of the Value colum
system gui . nressageBox(" The value is: %" % val ue)

system.dataset.updateRow

Description

Takes a dataset and returns a new dataset with a one row altered. Datasets are immutable, so it is important to realize that this function does
not actually change the row in the argument dataset. You'll need to do something with the new dataset that this function creates to achieve
something useful.

To alter the row, this function takes a Python dictionary to represent the changes to make to the specified row. The keys in the dictionary are
used to find the columns to alter.

Syntax

system.dataset.updateRow(dataset, rowIndex, changes)
® Parameters
Dataset dataset - The starting dataset. Will not be modified (datasets are immutable), but acts as the basis for the returned dataset.
int rowlndex - The index of the row to update (starting at 0)

PyDictionary changes - A Dictionary of changes to make. They keys in the dictionary should match column names in the dataset, and
their values will be used to update the row.

® Returns
Dataset - A new dataset with the values at the specified row updated according to the values in the dictionary.
® Scope

All

Code Examples

Code Snippet

#Thi s exanpl e could be used to dynanmically change the data that an Easy Chart displays. In this sinple
exanpl e, we assune that the chart is always configured to display a single tank's |evel.
#Thi s script would update the pen being displayed using a dynam c tank nunber.

Cenerate new tag nane and tag path
tankNunber = 5

newNarme = "Tank%l Level " % tankNunber
newPat h = "Tanks/ Tank%/ Level " % t ankNunber

Consol i date changes into a dictionary
updates = {"NAME": newNane, "TAG PATH': newPat h}

Update the Easy Chart

chart = event. source. parent. get Conponent ("Easy Chart")
newPens = system dat aset. updat eRow(chart.tagPens, 0, updates)
chart.tagPens = newPens

system.date

system.date.add*
system.date.*Between
system.date.format
system.date.fromMillis
system.date.get*
system.date.getDate
system.date.getTimezone
system.date.getTimezoneOffset
system.date.getTimezoneRawOffset
system.date.isAfter
system.date.isBefore
system.date.isBetween
system.date.isDaylightTime
system.date.midnight
system.date.now
system.date.setTime
system.date.toMillis

system.date.add*

Description
This function is a set of functions that include:

Function Description

system. Add or subtract an amount of milliseconds to a given date and time.

date.

addMillis

system. Add or subtract an amount of seconds to a given date and time.

date.

addSeconds

system. Add or subtract an amount of minutes to a given date and time.

date.

addMinutes

system. Add or subtract an amount of hours to a given date and time.

date.

addHours

system. Add or subtract an amount of days to a given date and time.

date.

addDays

system. Add or subtract an amount of weeks to a given date and time.

date.

addWeeks

system. Add or subtract an amount of months to a given date and time. This function is unique since each month can have a variable number
date. of days. For example, if the date passed in is March 31st, and we add one month, April does not have a 31st day, so the returned date
addMonths | will be the proper number of months rounded down to the closest available day, in this case April 30th.
system. Add or subtract an amount of years to a given date and time.

date.
addYears

Syntax

system.date.add*(date, value)
® Parameters
Date date- The starting date.
Int value - The number of units to add, or subtract if the value is negative.
® Returns
Date - A new date object offset by the integer passed to the function.
® Scope

All

Code Examples

Code Snippet

#Thi s exanpl e woul d add two days to the date passed in.

today = system date.now)
twoDaysFronToday = system dat e. addDays(today, 2)

Code Snippet

#Thi s exanple woul d subtract twenty minutes froma date object we create.
#Even though our original date starts on the 28th, it starts at mdnight,
#so subtracting 20 minutes puts it at the previous day.

date = system date. getDate(2018, 4, 28) #This would print out |like Mon May 28 00:00: 00 PDT 2018
print system date.addM nutes(date, -20) #This will print Sun May 27 23:40:00 PDT 2018

Code Snippet

#Thi s exanpl e can be placed on the property change script of one cal endar conponent.
#lt will then automatically set a second cal endar conmponent two weeks in advanced of the first cal endars
sel ected date.
if event.propertyName == "date":
date = event.newval ue
event . sour ce. parent . get Conponent (' End Date Cal endar').date = system date. addWeks(date, 2)

system.date.*Between

Description
This function is a set of functions that include:

Function Description
system.date.millisBetween Calculates the number of whole milliseconds between two dates.
system.date.secondsBetween | Calculates the number of whole seconds between two dates.
system.date.minutesBetween = Calculates the number of whole minutes between two dates.
system.date.hoursBetween Calculates the number of whole hours between two dates.
system.date.daysBetween Calculates the number of whole days between two dates. Daylight savings changes are taken into account.
system.date.weeksBetween Calculates the number of whole weeks between two dates.
system.date.monthsBetween = Calculates the number of whole months between two dates. Daylight savings changes are taken into account.

system.date.yearsBetween Calculates the number of whole years between two dates. Daylight savings changes are taken into account.

Order does matter for the two dates passed in that we are calculating how much time has passed from date 1 to date 2. So, if date 2 is further in time
than date 1, then a positive amount of time has passed. If date 2 is backwards in time from date 1, then a negative amount of time has passed.

Syntax

system.date.*between(date_1, date_2)
® Parameters
Date date_1 - The first date to use.
Date date_2 - The second date to use.
® Returns
Int - An integer that is representative of the difference between two dates.
® Scope

All

Code Examples

Code Snippet

#Thi s exanple would grab the current time, and add 119 minutes to it, then cal culate the nunber
#of hours between the two dates.

first = system date. now()
second = system date.addM nutes(first, 119)
print system date. hoursBetween(first, second)#This would print 1 since it is only 1 whole hour.

Code Snippet

#Thi s exanple woul d create two date objects, one on the 28th of My,
#and one on the 22nd of April, both in 2018. Because the second date is
#before the first date, a negative nunber will be returned.

first = system date. get Dat e(2018, 4, 28)
second = system date. get Dat (2018, 3, 22)
print system date.daysBetween(first, second) #This will print -36

Code Snippet

#Thi s exanpl e can be placed on the action perforned event of a button.
#t will then grab the week difference of two cal endar conponents,
#and enter the value returned into a numeric text field.

first = event.source. parent.get Conponent (' Start Date Cal endar').date
second = event.source. parent.get Conponent (' End Date Cal endar'). date
event . sour ce. parent . get Conponent (' Nurmeric Text Field').intValue = system date.weeksBetween(first, second)

system.date.format

Description

Returns the given date as a string, formatted according to a pattern. The pattern is a format that is full of various placeholders that will display different
parts of the date. These are case-sensitive! These placeholders can be repeated for a different effect. For example, M will give you 1-12, MM will give
you 01-12, MMM will give you Jan-Dec, MMMM will give you January-December.

The placeholders are:

Symbol Description Presentation Examples Other Notes
G Era designator Text G=AD
y Year Year yyyy=1996; yy=96 Lowercase y is the most commonly used year symbol
v Week year Year YYYY=2009; YY=09 Capital Y gives the year based on weeks (ie. changes to the new year up
to a week early)
M Month in year Month MVYWMEJ UL y; MMM=Jul ; MM=07
w Week in year Number 27 If Dec31 is mid-week, it will be in week 1 of the next year
W Week in month Number 2
D Day in year Number 189
d Day in month Number 10
E Day of week in Number 2 2nd Sunday of the month
month
E Day name in Text EEEE=Tuesday; E=Tue
week
u Day number of Number 1 (1 = Monday, ..., 7 = Sunday)
week
a Am/Pm marker Text PM
H Hour in day (0- Number 0
23)
h Hour in am/pm Number 12
(1-12)
K Hour in day (1- Number 24
24)
K Hour in am/pm Number 0
(0-11)
m Minute in hour Number 30
s Second in minute ' Number 55
s Millisecond Number 978
z Time zone General time zzzz=Pacific Standard Ti ne;
zone z=PST
z Time zone RFC 822 time Z=- 0800
zone
X Time zone 1SO 8601 time X=-08; XX=-0800; XXX=-08: 00
zone

@ Expert Tip: This function uses the Java class java.text.SimpleDateFormat internally, and will accept any valid format string for that class.

https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#text
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#year
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#year
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#month
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#text
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#text
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#timezone
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#timezone
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#rfc822timezone
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#rfc822timezone
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#iso8601timezone
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#iso8601timezone
http://docs.oracle.com/javase/1.5.0/docs/api/java/text/SimpleDateFormat.html

Syntax

system.date.format(date, format)
® Parameters
Date date- The date to format.
String format - A format string such as "yyyy-MM-dd HH:mm:ss".
® Returns
String - A string representing the formatted datetime
® Scope

All

Code Examples

Code Snippet

#Thi s exanple would format the current date to look Iike "01/01/01"

today = system date.now()
print systemdate.fornat(today, "yy/MMdd") #This printed 16/04/01

Code Snippet

#Thi s exanple would format the current date to | ook Iike "2001-01-31 16:59: 59"
#This is a standard fornat that all databases recognize.

today = system date.now()
print systemdate.format(today, "yyyy-Midd HH nm ss")

system.date.fromMillis

Description

Creates a date object given a millisecond value

Syntax

system.date.fromMillis(millis)
® Parameters
Long millis- The number of milliseconds elapsed since January 1, 1970, 00:00:00 UTC (GMT)
® Returns
Date - A new date object
® Scope

All
Code Examples

Code Snippet

#This exanple will print out the date "Fri Aug 18 14:35:25 PDT 2017"

print systemdate.fronMI1is(1503092125000)

system.date.get*

The following feature is new in Ignition version 7.8.1
Click here to check out the other new features

Some of these functions are new in 7.8.1: getMillis, getSecond, getMinute, getHour12, getHour24, getDayOfWeek, getDayOfYear, getMonth, getQuarter,

getYear

Description

This function is a set of functions that include:

Function

system.date.getMillis
system.date.getSecond
system.date.getMinute
system.date.getHour12
system.date.getHour24
system.date.getDayOfWeek
system.date.getDayOfMonth
system.date.getDayOfYear
system.date.getMonth
system.date.getQuarter
system.date.getYear

system.date.getAMorPM

Syntax

system.date.get*(date)

® Parameters

Description
Extracts the milliseconds from a date, ranging from 0-999.
Extracts the second from a date, ranging from 0-59.
Extracts the minutes from a date, ranging from 0-59.
Extracts the hour from a date. Uses a 12 hour clock, so noon and midnight are returned as 0.
Extracts the hour from a date. Uses a 24 hour clock, so midnight is zero.
Extracts the day of the week from a date. Sunday is day 1, Saturday is day 7.
Extracts the day of the month from a date. The first day of the month is day 1.
Extracts the day of the year from a date. The first day of the year is day 1.
Extracts the month from a date, where January is month 0.
Extracts the quarter from a date, ranging from 1-4.
Extracts the year from a date.

Returns a 0 if the time is before noon, and a 1 if the time is after noon.

Date date - The date to use.

® Returns

Int - An integer that is representative of the extracted value.

® Scope

All

https://docs.inductiveautomation.com/display/DOC/New+in+this+Version#NewinthisVersion-Newin7.8.1

Code Examples

Code Snippet

#Thi s exanple would grab the current time, and print the current nonth.

date = system date. now()
print system date.getMnth(date) #This would print the current nonth.

Code Snippet

#Thi s exanple woul d create a date object, and print out the quarter of that date.

date = system date. getDate(2017, 3, 15) #This would print "Mn April 15 00:00: 00 PDT 2016"
print systemdate.getQuarter(date) #This will print 2

Code Snippet

#Thi s exanpl e can be placed on the action perforned event of a button.
#t will then grab the day of the week of the cal endar conponent,
#and enter the value returned into a nurmeric text field.

date = event.source. parent. get Conponent (' Cal endar') . date
event . sour ce. parent . get Conponent (' Nurmeric Text Field').intValue = system date. get DayOf Week(dat e)

system.date.getDate

Description

Creates a new Date object given a year, month and a day. The time will be set to midnight of that day.

Syntax

system.date.getDate(year, month, day)
® Parameters
Int year - The year for the new date.
Int month - The month of the new date. January is month 0.
Int day - The day of the month for the new date. The first day of the month is day 1.
® Returns
Date - A new date, set to midnight of that day.
® Scope

All
Code Examples

Code Snippet

#This exanple will create a new date object set to January 1st, 2017.

date = system date. getDate(2017, 0, 1)
print date

system.date.getTimezone

Description

Returns the ID of the current timezone.

*This list is subject to change depending on the exact version of java that is installed.

Africa/Abidjan

Africa/Accra
Africa/Addis_Ababa
Africa/Algiers
Africa/Asmara
Africa/Asmera
Africa/Bamako
Africa/Bangui

Africa/Banjul

Africa/Bissau
Africa/Blantyre
Africa/Brazzaville
Africa/Bujumbura
Africa/Cairo
Africa/Casablanca
Africa/Ceuta
Africa/Conakry

Africa/Dakar
Africa/Dar_es_Salaam
Africa/Djibouti
Africa/Douala
Africa/El_Aaiun
Africa/Freetown
Africa/Gaborone
Africa/Harare
Africa/Johannesburg
Africa/Juba

Africa/Kampala
Africa/Khartoum
Africa/Kigali
Africa/Kinshasa
Africa/Lagos
Africa/Libreville
Africa/Lome

Africa/Luanda
Africa/Lubumbashi
Africa/Lusaka
Africa/Malabo
Africa/Maputo
Africa/Maseru
Africa/Mbabane
Africa/Mogadishu
Africa/Monrovia
Africa/Nairobi
Africa/Ndjamena
Africa/Niamey
Africa/Nouakchott
Africa/Ouagadougou
Africa/Porto-Novo
Africa/Sao_Tome
Africa/Timbuktu
Africa/Tripoli

Africa/Tunis
Africa/Windhoek
America/Adak
America/Anchorage
America/Anguilla
America/Antigua
America/Araguaina
America/Argentina/Buenos_Aires
America/Argentina/Catamarca
America/Argentina/ComodRivadavia
America/Argentina/Cordoba
America/Argentina/Jujuy
America/Argentina/La_Rioja
America/Argentina/Mendoza
America/Argentina/Rio_Gallegos

America/Argentina/Salta
America/Argentina/San_Juan
America/Argentina/San_Luis
America/Argentina/Tucuman
America/Argentina/Ushuaia
America/Aruba
America/Asuncion
America/Atikokan
America/Atka
America/Bahia
America/Bahia_Banderas
America/Barbados
America/Belem
America/Belize
America/Blanc-Sablon
America/Boa_Vista
America/Bogota
America/Boise
America/Buenos_Aires
America/Cambridge_Bay
America/Campo_Grande
America/Cancun
America/Caracas
America/Catamarca
America/Cayenne
America/Cayman
America/Chicago
America/Chihuahua
America/Coral_Harbour
America/Cordoba
America/Costa_Rica
America/Creston
America/Cuiaba
America/Curacao
America/Danmarkshavn
America/Dawson
America/Dawson_Creek
America/Denver
America/Detroit
America/Dominica
America/Edmonton
America/Eirunepe
America/El_Salvador
America/Ensenada
America/Fort_Wayne
America/Fortaleza
America/Glace_Bay
America/Godthab
America/Goose_Bay
America/Grand_Turk
America/Grenada
America/Guadeloupe
America/Guatemala
America/Guayaquil
America/Guyana
America/Halifax
America/Havana
America/Hermosillo
America/Indiana/Indianapolis
America/Indiana/Knox
America/Indiana/Marengo
America/Indiana/Petersburg
America/Indiana/Tell_City
America/Indiana/Vevay
America/Indiana/Vincennes
America/Indiana/Winamac
America/Indianapolis
America/Inuvik
America/lgaluit
America/Jamaica
America/Jujuy
America/Juneau
America/Kentucky/Louisville
America/Kentucky/Monticello
America/Knox_IN
America/Kralendijk
America/La_Paz
America/Lima
America/Los_Angeles

America/Louisville
America/Lower_Princes
America/Maceio
America/Managua
America/Manaus
America/Marigot
America/Martinique
America/Matamoros
America/Mazatlan
America/Mendoza
America/Menominee
America/Merida
America/Metlakatla
America/Mexico_City
America/Miquelon
America/Moncton
America/Monterrey
America/Montevideo
America/Montreal
America/Montserrat
America/Nassau
America/New_York
America/Nipigon
America/Nome
America/Noronha
America/North_Dakota/Beulah
America/North_Dakota/Center
America/North_Dakota/New_Salem
America/Ojinaga
America/Panama
America/Pangnirtung
America/Paramaribo
America/Phoenix
America/Port-au-Prince
America/Port_of_Spain
America/Porto_Acre
America/Porto_Velho
America/Puerto_Rico
America/Rainy_River
America/Rankin_Inlet
America/Recife
America/Regina
America/Resolute
America/Rio_Branco
America/Rosario
America/Santa_lsabel
America/Santarem
America/Santiago
America/Santo_Domingo
America/Sao_Paulo
America/Scoresbysund
America/Shiprock
America/Sitka
America/St_Barthelemy
America/St_Johns
America/St_Kitts
America/St_Lucia
America/St_Thomas
America/St_Vincent
America/Swift_Current
America/Tegucigalpa
America/Thule
America/Thunder_Bay
America/Tijuana
America/Toronto
America/Tortola
America/Vancouver
America/Virgin
America/Whitehorse
America/Winnipeg
America/Yakutat
America/Yellowknife
Antarctica/Casey
Antarctica/Davis
Antarctica/DumontDUrville
Antarctica/Macquarie
Antarctica/Mawson
Antarctica/McMurdo
Antarctica/Palmer

Antarctica/Rothera
Antarctica/South_Pole
Antarctica/Syowa
Antarctica/Troll
Antarctica/Vostok
Arctic/Longyearbyen
Asia/Aden
Asia/Almaty
Asia/Amman
Asia/Anadyr
Asia/Agtau
Asia/Agtobe
Asia/Ashgabat
Asia/Ashkhabad
Asia/Baghdad
Asia/Bahrain
Asia/Baku
Asia/Bangkok
Asia/Beirut
Asia/Bishkek
Asia/Brunei
Asia/Calcutta
Asia/Chita
Asia/Choibalsan
Asia/Chongqing
Asia/Chungking
Asia/Colombo
Asia/Dacca
Asia/Damascus
Asia/Dhaka
Asia/Dili
Asia/Dubai
Asia/Dushanbe
Asia/Gaza
Asia/Harbin
Asia/Hebron
Asia/Ho_Chi_Minh
Asia/Hong_Kong
Asia/Hovd
Asia/lrkutsk
Asia/lstanbul
AsialJakarta
Asia/Jayapura
Asia/Jerusalem
Asia/Kabul
Asia/Kamchatka
Asia/Karachi
Asia/Kashgar
Asia/Kathmandu
Asia/Katmandu
Asia/Khandyga
Asia/Kolkata
Asia/Krasnoyarsk
Asia/Kuala_Lumpur
Asia/Kuching
Asia/Kuwait
Asia/Macao
Asia/Macau
Asia/Magadan
Asia/Makassar
Asia/Manila
Asia/Muscat
Asia/Nicosia
Asia/Novokuznetsk
Asia/Novosibirsk
Asia/Omsk
Asia/Oral
Asia/Phnom_Penh
Asia/Pontianak
Asia/Pyongyang
Asia/Qatar
Asia/Qyzylorda
Asia/Rangoon
Asia/Riyadh
Asia/Saigon
Asia/Sakhalin
Asia/Samarkand
Asia/Seoul
Asia/Shanghai

Asia/Singapore
Asia/Srednekolymsk
Asia/Taipei
Asia/Tashkent
Asia/Thilisi
Asia/Tehran
Asia/Tel_Aviv
Asia/Thimbu
Asia/Thimphu
Asia/Tokyo
Asia/Ujung_Pandang
Asia/Ulaanbaatar
Asia/Ulan_Bator
Asia/Urumqi
Asia/Ust-Nera
Asia/Vientiane
Asia/Vladivostok
Asia/Yakutsk
Asia/Yekaterinburg
Asia/Yerevan
Atlantic/Azores
Atlantic/Bermuda
Atlantic/Canary
Atlantic/Cape_Verde
Atlantic/Faeroe
Atlantic/Faroe
Atlantic/Jan_Mayen
Atlantic/Madeira
Atlantic/Reykjavik
Atlantic/South_Georgia
Atlantic/St_Helena
Atlantic/Stanley
Australia/ACT
Australia/Adelaide
Australia/Brisbane
Australia/Broken_Hill
Australia/Canberra
Australia/Currie
Australia/Darwin
Australia/Eucla
Australia/Hobart
Australia/LHI
Australia/Lindeman
Australia/Lord_Howe
Australia/Melbourne
Australia/NSW
Australia/North
Australia/Perth
Australia/Queensland
Australia/South
Australia/Sydney
Australia/Tasmania
Australia/Victoria
Australia/West
Australia/Yancowinna
Brazil/Acre
Brazil/DeNoronha
Brazil/East
Brazil/West

CET

CST6CDT
Canada/Atlantic
Canada/Central
Canada/East-Saskatchewan
Canada/Eastern
Canada/Mountain
Canada/Newfoundland
Canada/Pacific
Canada/Saskatchewan
Canada/Yukon
Chile/Continental
Chile/Easterlsland
Cuba

EET

ESTS5EDT

Egypt

Eire

Etc/GMT

Etc/GMT+0

Etc/GMT+1
Etc/GMT+10
Etc/GMT+11
Etc/GMT+12
Etc/GMT+2
Etc/GMT+3
Etc/GMT+4
Etc/GMT+5
Etc/GMT+6
Etc/GMT+7
Etc/GMT+8
Etc/GMT+9
Etc/GMT-0
Etc/GMT-1
Etc/GMT-10
Etc/GMT-11
Etc/GMT-12
Etc/GMT-13
Etc/GMT-14
Etc/GMT-2
Etc/GMT-3
Etc/GMT-4
Etc/GMT-5
Etc/GMT-6
Etc/GMT-7
Etc/GMT-8
Etc/GMT-9
Etc/GMTO
Etc/Greenwich
Etc/UCT

Etc/UTC
Etc/Universal
Etc/Zulu
Europe/Amsterdam
Europe/Andorra
Europe/Athens
Europe/Belfast
Europe/Belgrade
Europe/Berlin
Europe/Bratislava
Europe/Brussels
Europe/Bucharest
Europe/Budapest
Europe/Busingen
Europe/Chisinau
Europe/Copenhagen
Europe/Dublin
Europe/Gibraltar
Europe/Guernsey
Europe/Helsinki
Europe/Isle_of_Man
Europe/Istanbul
Europe/Jersey
Europe/Kaliningrad
Europe/Kiev
Europe/Lisbon
Europe/Ljubljana
Europe/London
Europe/Luxembourg
Europe/Madrid
Europe/Malta
Europe/Mariehamn
Europe/Minsk
Europe/Monaco
Europe/Moscow
Europe/Nicosia
Europe/Oslo
Europe/Paris
Europe/Podgorica
Europe/Prague
Europe/Riga
Europe/Rome
Europe/Samara
Europe/San_Marino
Europe/Sarajevo
Europe/Simferopol
Europe/Skopje
Europe/Sofia
Europe/Stockholm

Europe/Tallinn
Europe/Tirane
Europe/Tiraspol
Europe/Uzhgorod
Europe/Vaduz
Europe/Vatican
Europe/Vienna
Europe/Vilnius
Europe/Volgograd
Europe/Warsaw
Europe/Zagreb
Europe/Zaporozhye
Europe/Zurich

GB

GB-Eire

GMT

GMTO

Greenwich
Hongkong

Iceland
Indian/Antananarivo
Indian/Chagos
Indian/Christmas
Indian/Cocos
Indian/Comoro
Indian/Kerguelen
Indian/Mahe
Indian/Maldives
Indian/Mauritius
Indian/Mayotte
Indian/Reunion
Iran

Israel

Jamaica

Japan

Kwajalein

Libya

MET

MST7MDT
Mexico/BajaNorte
Mexico/BajaSur
Mexico/General
NZ

NZ-CHAT

Navajo

PRC

PST8PDT
Pacific/Apia
Pacific/Auckland
Pacific/Bougainville
Pacific/Chatham
Pacific/Chuuk
Pacific/Easter
Pacific/Efate
Pacific/Enderbury
Pacific/Fakaofo
Pacific/Fiji
Pacific/Funafuti
Pacific/Galapagos
Pacific/Gambier
Pacific/Guadalcanal
Pacific/Guam
Pacific/Honolulu
Pacific/Johnston
Pacific/Kiritimati
Pacific/Kosrae
Pacific/Kwajalein
Pacific/Majuro
Pacific/Marquesas
Pacific/Midway
Pacific/Nauru
Pacific/Niue
Pacific/Norfolk
Pacific/Noumea
Pacific/Pago_Pago
Pacific/Palau
Pacific/Pitcairn
Pacific/Pohnpei
Pacific/Ponape

Pacific/Port_Moresby
Pacific/Rarotonga
Pacific/Saipan
Pacific/Samoa
Pacific/Tabhiti
Pacific/Tarawa
Pacific/Tongatapu
Pacific/Truk
Pacific/Wake
Pacific/Wallis
Pacific/Yap
Poland

Portugal

ROK

Singapore
SystemV/AST4
SystemV/AST4ADT
SystemV/CST6
SystemV/CST6CDT
SystemV/EST5
SystemV/ESTS5EDT
SystemV/HST10
SystemV/MST7
SystemV/MST7MDT
SystemV/PST8
SystemV/PST8PDT
SystemV/YST9
SystemV/YSTOYDT
Turkey

UCT

US/Alaska
US/Aleutian
US/Arizona
US/Central
US/East-Indiana
US/Eastern
US/Hawaii
US/Indiana-Starke
US/Michigan
US/Mountain
US/Pacific
US/Pacific-New
US/Samoa

uTC

Universal

W-SU

WET

Zulu

EST

HST

MST

ACT

AET

AGT

ART

AST

BET

BST

CAT

CNT

CST

CTT

EAT

ECT

IET

IST

JST

MIT

NET

NST

PLT

PNT

PRT

PST

SST

VST

Syntax

system.date.getTimezone()
® Parameters
none
® Returns
String - A representation of the current timezone.
® Scope

All

Code Examples

Code Snippet

#This exanple will print out your current Timezone ID.

#1f your Cient and Gateway are in different tinmezones, the returned value will be
#dependent on where this script is run.

#IE: in a button on a client will return the client timezone. On a Gateway script will
#return the Gateway tinezone.

print system date. getTi nezone()

system.date.getTimezoneOffset

Description

Returns the current timezone's offset versus UTC for a given instant, taking Daylight Savings Time into account.

Syntax

system.date.getTimezoneOffset([date])
® Parameters
Date date- The instant in time for which to calculate the offset. Uses now() if omitted. [optional]
® Returns
Double - The timezone offset compared to UTC, in hours.
® Scope

All
Code Examples

Code Snippet

#This exanple will give the timezone of fset using the date February 22, 2017
#and the conputers current tinmezone.

date = system date. getDate(2017, 1, 22)
print system date. getTi nezoneOffset(date) # returns -8.0 (if you are in Pacific Daylight Tine)

system.date.getTimezoneRawOffset

The following feature is new in Ignition version 7.8.1
Click here to check out the other new features

Description

Returns the current timezone offset versus UTC, not taking daylight savings into account.

Syntax

system.date.getTimezoneRawOffset()
® Parameters
none
® Returns
Double - The timezone offset.
® Scope

All
Code Examples

Code Snippet

#This exanple will give the Raw timezone offset (ignoring daylight savings) for the conputer's current
tinezone.

print system date. getTi nezoneRawCf fset() # returns -8.0 (if you are in the Pacific Tinezone)

https://docs.inductiveautomation.com/display/DOC/New+in+this+Version#NewinthisVersion-Newin7.8.1

system.date.isAfter

The following feature is new in Ignition version 7.8.1
Click here to check out the other new features

Description

Compares to dates to see if date_1 is after date_2.

Syntax

system.date.isAfter(date_1, date_2)
® Parameters
Date date_1 - The first date.
Date date_2 - The second date.
® Returns
Bool - True (1) if date_1 is after date_2, false (0) otherwise.
® Scope

All
Code Examples

Code Snippet
#This will conpare if the first date is after the second date, which it is.
first = system date. get Date(2018, 4, 28)

second = system date. get Dat (2018, 3, 22)
print systemdate.isAfter(first, second) #WII print true.

https://docs.inductiveautomation.com/display/DOC/New+in+this+Version#NewinthisVersion-Newin7.8.1

system.date.isBefore

The following feature is new in Ignition version 7.8.1
Click here to check out the other new features

Description

Compares to dates to see if date_1 is before date_2.

Syntax

system.date.isBefore(date_1, date_2)
® Parameters
Date date_1 - The first date.
Date date_2 - The second date.
® Returns
Bool - True (1) if date_1 is before date_2, false (0) otherwise.
® Scope

All
Code Examples

Code Snippet
#This will conpare if the first date is before the second date, which it is not.
first = system date. get Date(2018, 4, 28)

second = system date. get Dat (2018, 3, 22)
print systemdate.isBefore(first, second) #WII print false.

https://docs.inductiveautomation.com/display/DOC/New+in+this+Version#NewinthisVersion-Newin7.8.1

system.date.isBetween

The following feature is new in Ignition version 7.8.1
Click here to check out the other new features

Description

Compares to dates to see if a target date is between two other dates.

Syntax

system.date.isBefore(target_date, start_date, end_date)
® Parameters
Date target_date - The date to compare.
Date start_date - The start of a date range.
Date end_date - The end of a date range. This date myst be after the start date.
® Returns
Bool - True (1) if target_date is >= start_date and target_date <= end_date, false (0) otherwise.
® Scope

All
Code Examples

Code Snippet

#This will conpare if the first date is between the other dates, which it is not.
#Note that if the end date is before the start date, this function will always return Fal se

target = system date. get Date(2017, 4, 28)

start = system date. getDate(2017, 3, 22)

end = system date. get Dat e(2017, 4, 22)

print systemdate.isBetween(target, start, end) #WIIl print false.

https://docs.inductiveautomation.com/display/DOC/New+in+this+Version#NewinthisVersion-Newin7.8.1

system.date.isDaylightTime

Description

Checks to see if the current timezone is using daylight savings time during the date specified.

Syntax

system.date.isDaylightTime([date])
® Parameters

Date date - The date you want to check if the current timezone is observing daylight savings time. Uses now() if omitted. [optional]
® Returns

Bool - True (1) if date is observing dalight savings time in the current timezone, false (0) otherwise.
® Scope

All
Code Examples

Code Snippet

#This will conpare if the first date is before the second date, which it is not.

date = system date. get Dat e(2018, 6, 28)
print systemdate.isDaylightTinme(date) #WIIl print True in the US Pacific Tinmezone.

system.date.midnight

Description

Returns a copy of a date with the hour, minute, second, and millisecond fields set to zero.

Syntax

system.date.midnight(date)
® Parameters
Date date- The starting date.
® Returns
Date - A new date, set to midnight of the day provided
® Scope

All
Code Examples

Code Snippet

#This exanple will print out the current date with the tinme set to m dnight.

date = system date. now()
print system date. nm dnight(date)

system.date.now

Description

Returns a java.util.Date object that represents the current time according to the local system clock.

Syntax

system.date.now()
® Parameters
none
® Returns

Date - A new date, set to the current date and time.
® Scope

All
Code Examples

Code Snippet
#This exanple will set a cal endar conponent to the current date and tine.

event . sour ce. parent . get Conponent (' Cal endar').date = system date. now()

system.date.setTime

The following feature is new in Ignition version 7.8.1
Click here to check out the other new features

Description

Takes in a date, and returns a copy of it with the time fields set as specified.

Syntax

system.date.setTime(date, hour, minute, second)
® Parameters
Date date - The starting date.
Int hour - The hours (0-23) to set.
Int minute - The minutes (0-59) to set.
Int second - The seconds (0-59) to set.
® Returns
Date - A new date, set to the appropriate time.
® Scope

All
Code Examples

Code Snippet

#This exanple will set the date object to the current date with the time set to 01:37 in the norning and 44
seconds.

date = system date. get Date(2018, 6, 29)
print systemdate.setTine(date, 1, 37, 44) #This will print Fri June 29 01:37:44 PDT 2018

https://docs.inductiveautomation.com/display/DOC/New+in+this+Version#NewinthisVersion-Newin7.8.1

system.date.toMillis

Description

Converts a Date object to its millisecond value elapsed since January 1, 1970, 00:00:00 UTC (GMT)

Syntax

system.date.toMillis(date)
® Parameters
Date date - The date object to convert.
® Returns
Long - an 8-byte integer representing the number of millisecond elapsed since January 1, 1970, 00:00:00 UTC (GMT)
® Scope

All
Code Examples

Code Snippet

#This exanple will take the date Fri Aug 18 14:35:25 PDT 2017,
#and print out 1503092125000

date = system date. get Dat e(2017, 7, 18)
datetine = systemdate. setTine(date, 14, 35, 25)
print systemdate.toMI|lis(datetine)

system.db

system.db.addDatasource
system.db.beginTransaction
system.db.closeTransaction
system.db.commitTransaction
system.db.createSProcCall
system.db.dateFormat
system.db.execSProcCall
system.db.getConnectioninfo
system.db.getConnections
system.db.refresh
system.db.removeDatasource
system.db.rollbackTransaction
system.db.runPrepQuery
system.db.runPrepUpdate
system.db.runQuery
system.db.runScalarPrepQuery
system.db.runScalarQuery
system.db.runSFPrepUpdate
system.db.runSFUpdateQuery
system.db.runUpdateQuery
system.db.setDatasourceConnectURL
system.db.setDatasourceEnabled
system.db.setDatasourceMaxConnections

system.db.addDatasource

Description

Adds a new database connection in Ignition.

Syntax

system.db.addDatasource(jdbcDriver, name, description, connectUrl, username, password, props, validationQuery, maxConnections)
® Parameters
String jdbcDriver - The name of the JDBC driver in Ignition. Required.
String name - The datasource name. Required.
String description
String connectUrl - Default is the connect URL for JDBC driver.
String username
String password
String props - The extra connection parameters.
String validationQuery - Default is the validation query for the JDBC driver.
Integer maxConnections - Default is 8.
® Returns
Nothing
® Scope

All

Code Examples

Code Snippet

#The foll owing code would add a MySQL connection to the Gateway.
syst em db. addDat asour ce(j dbcDri ver ="MySQL ConnectorJ", name="MSQ",
connect URL="j dbc: nysql : / /| ocal host: 3306/ test", username="root",
passwor d="passwor d", props="zeroDateTi mneBehavi or =convert ToNul | ;")

system.db.beginTransaction

Description

Begins a new database transaction. Database transactions are used to execute multiple queries in an atomic fashion. After executing queries, you
must either commit the transaction to have your changes take effect, or rollback the transaction which will make all operations since the last commit
not take place. The transaction is given a new unique string code, which is then returned. You can then use this code as the tx argument for other s
ystem.db.* function calls to execute various types of queries using this transaction.

An open transaction consumes one database connection until it is closed. Because leaving connections open indefinitely would exhaust the
connection pool, each transaction is given a timeout. Each time the transaction is used, the timeout timer is reset. For example, if you make a

transaction with a timeout of one minute, you must use that transaction at least once a minute. If a transaction is detected to have timed out, it will
be automatically closed and its transaction id will no longer be valid.

Syntax

system.db.beginTransaction(database, isolationLevel, timeout)
® Parameters
String database - The name of the database connection to create a transaction in.

Integer isolationLevel - The transaction isolation level to use. Use one of the four constants: system.db.READ_COMMITTED, system.
db.READ_UNCOMMITTED, system.db.REPEATABLE_READ, or system.db.SERIALIZABLE

Long timeout - The amount of time, in milliseconds, that this connection is allowed to remain open without being used. Timeout
counter is reset any time a query or call is executed against the transaction, or when committed or rolled-back.

® Returns
String - The new transaction ID. You'll use this ID as the "tx" argument for all other calls to have them execute against this transaction.
® Scope

Gateway

Syntax

system.db.beginTransaction(database, isolationLevel, timeout)
® Parameters
String database - The name of the database connection to create a transaction in. Use " for the project's default connection.

Integer isolationLevel - The transaction isolation level to use. Use one of the four constants: system.db.READ_COMMITTED, system.
db.READ_UNCOMMITTED, system.db.REPEATABLE_READ, or system.db.SERIALIZABLE

Long timeout - The amount of time, in milliseconds, that this connection is allowed to remain open without being used. Timeout
counter is reset any time a query or call is executed against the transaction, or when committed or rolled-back.

® Returns
String - The new transaction ID. You'll use this ID as the "tx" argument for all other calls to have them execute against this transaction.
® Scope

Vision Client

Isolation Level Values

The following table lists each value of the isolationLevel parameter and its associated level. Either the integer value or constant may be passed.
Note that some JDBC drivers only support some levels, so the driver's documentation should be consulted. Isolation levels are well documented
online, but the following link is a great starting point: Data Concurrency and Consistency

Isolation Level Int Value Constant
Read Uncommitted = 1 system.db.READ_UNCOMMITTED
Read Committed 2 system.db.READ_COMMITTED
Repeatable Read 4 system.db.REPEATABLE_READ
Serializable 8 system.db.SERIALIZABLE

Code Examples

Code Snippet

#Thi s exanple woul d start a transaction with a 5 second timeout against the project's default database,
using the default isolation level. Then it executes a series of update calls, and commits and cl oses the
transaction.

txld = system db. begi nTransacti on(ti neout =5000)
st at us=2

for machineld in range(8):
system db. runPrepUpdat e(" UPDATE Machi neStatus SET status=? WHERE | D=?",
args=[status, machineld], tx=txld)

system db. conmi t Transacti on(t x| d)
syst em db. cl oseTransacti on(t xI d)

https://docs.oracle.com/cd/B13789_01/server.101/b10743/consist.htm

system.db.closeTransaction

Description

Closes the transaction with the given ID. Note that you must commit or rollback the transaction before you close it. Closing the transaction will
return its database connection to the pool. The transaction ID will no longer be valid.

Syntax

system.db.closeTransaction(tx)
® Parameters
String tx - The transaction ID.
® Returns
Nothing
® Scope

All

Code Examples

There are no example available for this function.

system.db.commitTransaction

Description

Performs a commit for the given transaction. This will make all statements executed against the transaction since its beginning or since the last
commit or rollback take effect in the database. Until you commit a transaction, any changes that the transaction makes will not be visible to other
connections. Note that if you are done with the transaction, you must close it after you commit it.

Syntax

system.db.commitTransaction(tx)
® Parameters
String tx - The transaction ID.
® Returns
Nothing
® Scope

All

Code Examples

There are no code examples available for this function.

system.db.createSProcCall

Description

Creates an SProcCall object, which is a stored procedure call context. This is an object that is used to configure a call to a stored procedure. Once
configured, you'd use system.db.execSProcCall to call the stored procedure. The call context object then holds any results from the stored
procedure. The SProcCall object has the following functions used for registering parameters:

SPRoccCall.registerinParam(index OR name, typeCode, value)
SPRocCall.registerOutParam(index OR name, typeCode)
SPRocCall.registerReturnParam(typeCode)

These functions are used to register any in/out parameters for the stored procedure. Parameters can be referenced by index (starting at 1, not 0),
or by name. To register an in/out parameter, you simply register it twice - once as an input parameter with the value you'd like to pass to the stored
procedure, and once as an output parameter. N.B. not all JDBC drivers support named procedure parameters. If your function returns a value, you
must use registerReturnParam to specify the datatype of the returned value. Note that this is different from stored procedures that return a result set
, which doesn't require any setup on the SProcCall object. Some database systems call stored procedures that return a value "functions" instead of
"procedures”. For all of these functions, you'll need to specify a type code. These are codes defined by the JDBC specification. For your
convenience, the codes exist as constants in the system.db namespace. Each type code will be mapped to a database-specific type by the JDBC
driver. Not all type codes will be recognized by all IDBC drivers. The following type code constants are available for use in createSProcCall:

BIT REAL LONGVARCHAR ' LONGVARBINARY BLOB

TINYINT DOUBLE DATE NULL CLOB
SMALLINT ' NUMERIC TIME OTHER JAVA_OBJECT
INTEGER | DECIMAL TIMESTAMP SQLXML DATALINK
BIGINT CHAR BINARY NCLOB BOOLEAN
FLOAT VARCHAR | VARBINARY ARRAY ROWID

NCHAR NVARCHAR ' LONGNVARCHAR

The following type code constants are available for other uses, but are not supported by createSProcCall:

ORACLE_CURSOR | DISTINCT | STRUCT | REF

Once the call context has been executed, you can retrieve the result set, return value, and output
parameter values (if applicable) by calling the following functions:

SProcCall.getResultSet() - returns a dataset that is the resulting data of the stored procedure, if any.

SProcCall.getUpdateCount() - returns the number of rows modified by the stored procedure, or -1 if not applicable.
SProcCall.getReturnValue() - returns the return value, if registerReturnParam had been called.

SProcCall.getOutParamValue(index OR name) - returns the value of the previously registered out-parameter.

Syntax

system.db.createSProcCall(procedureName, database, tx, skipAudit)
® Parameters
String procedureName - The named of the stored procedure to call.
String database - The name of the database connection to execute against.
String tx - A transaction identifier. If omitted, the call will be executed in its own transaction.

boolean skipAudit - A flag which, if set to true, will cause the procedure call to skip the audit system. Useful for some queries that have
fields which won't fit into the audit log.

® Returns
SProcCall - A stored procedure call context, which can be configured and then used as the argument to system.db.execSProcCall.
® Scope

Gateway

Syntax

system.db.createSProcCall(procedureName, database, tx, skipAudit)
® Parameters
String procedureName - The named of the stored procedure to call.

String database - The name of the database connection to execute against. If omitted or
will be used.

, the project's default database connection

String tx - A transaction identifier. If omitted, the call will be executed in its own transaction.

boolean skipAudit - A flag which, if set to true, will cause the procedure call to skip the audit system. Useful for some queries that have
fields which won't fit into the audit log.

® Returns
SProcCall - A stored procedure call context, which can be configured and then used as the argument to system.db.execSProcCall.
® Scope

Vision Client

Code Examples

Code Snippet

#Thi s exanple would call a stored procedure naned "start_batch" against the current project's default
dat abase connection that had no input or output paraneters, and did not return any values or results:

call = systemdb.createSProcCall ("start_batch")
syst em db. execSProcCal | (cal |)

Code Snippet

#Thi s exanple would call a stored procedure "get_shift_workers" with no argunents, which returned a
result set of enployees for the current shift. It then pushes the resulting dataset into a Table
conponent :

call = system db. createSProcCall ("get_shift_workers")
syst em db. execSProcCal | (cal |)

results = call.getResultSet()
tabl e = event. source. parent. get Conponent (" Tabl e")
table.data = results

Code Snippet

#Thi s exanple would call a stored procedure that took two argunents, the first an integer and the second
a string. It also is configured to return an integer val ue.

call = system db. createSProcCal |l ("performcal cul ation")
cal | . regi sterReturnParan(system db. | NTEGER)
call.registerlnParan(1, systemdb.|NTEGER, 42)
call.registerlnParan(2, system db. VARCHAR, " DC- MODE")

system db. execSProcCal | (cal |')

#Print the result to the console
print call.getReturnVal ue()

Code Snippet

#Thi s exanple woul d do the same as the one above, except for a stored procedure that returned its val ue
using an out-paraneter. It also uses naned argunent names instead of indexed argunents.

call = system db. createSProcCal |l ("performcal cul ation")
call.registerlnParan("arg_one", systemdb.|NTEGER, 42)

cal |l .registerlnParan("arg_tw", system db. VARCHAR, "DC- MODE")
cal | .regi sterQutParan("output _arg", system db.|NTECER)

system db. execSProcCal | (cal |)

#Print the result to the console
print call.getQutParanVal ue("output_arg")

system.db.dateFormat

Description

This function is used to format Dates nicely as strings. It uses a format string to guide its formatting behavior. Learn more about date formatting in
Working with Datatypes / Dates

Expert Tip: This function uses the Java class java.text.SimpleDateFormat internally, and will accept any valid format string for that class.

Syntax

system.db.dateFormat(date, formatPattern)
® Parameters
Date date - The Date object that you'd like to format
String formatPattern - A format pattern string to apply.
® Returns
String - The date as a string formatted according to the format pattern.
® Scope

All

https://legacy-docs.inductiveautomation.com/display/DOC/Working+With+Different+Datatypes
http://java.sun.com/j2se/1.5.0/docs/api/java/text/SimpleDateFormat.html

Code Examples

Code Snippet

#This exanple will display a message box on a button press that displays the selected date (w thout the
tine) froma Cal endar conponent, in a format |like "Feb 3, 2009"

date = event.source. parent.get Conponent ("Cal endar"). | at chedDat e

toDi spl ay = system db. dat eFor mat (date, "MW d, yyyy")

system gui . nressageBox(" The date you selected is: %" %toDi splay)

Code Snippet

#Thi s exanpl e would do the same as the one above, but also display the tinme, in a format like: "Feb 3,
2009 8: 01pnt

date = event.source. parent. get Conponent (" Cal endar"). | at chedDat e

toDi spl ay = system db. dat eFor mat (date, "MW d, yyyy")

system gui . messageBox(" The date you selected is: %" %toDisplay)

Code Snippet

#Thi s exanple woul d take two dates fromtwo Popup Cal endar conponents, format themin a nanner that the
dat abase understands, and then use themin a SQ query to limt the results to a certain date range.
startDate = event. source. parent.get Conponent ("StartDate"). date

endDat e = event. source. parent. get Conponent (" EndDat e") . dat e

startDate = system db. dat eFornat (startDate, "yyyy- M dd HH nmm ss")

endDat e = system db. dat eFornat (endDate, "yyyy- MV dd HH: nm ss")

query = ("SELECT * FROM nytable WHERE t _stanp >= '%' AND t_stanp <= '9%'" % (startDate, endDate))
results = system db. runQuery(query)

event . sour ce. parent. get Conponent (" Tabl e").data = results

Code Snippet

#Thi s exanpl e woul d show how to get the current date in scripting, and extract the nonth and year into
separate variables, and
#assign themto a "Month View' cal endar object, in case you changed the viewi ng date and needed to return.

first inmport the java.util.Date object required for getting the current date

fromjava.util inmport Date
get cal endar object we will be editing (you would have to place one by this name on your w ndow)
cal = event.source. parent. parent.get Conponent (' Month View)

get current date and separate into nonth and year, using dateFormat. Month View object requires an
integer, so this is wapped in int() currentDate = Date()
currentMonth = int(system db. dat eFormat (currentDate, "M'))
current Year = int(system db. dateFormat(currentDate, "Y"))

change our Month View cal endar object to the current nonth and year (provided it was not on the current
nont h/ year)

cal .nonth = currentMonth

cal .year = current Year

system.db.execSProcCall

Description

Executes a stored procedure call. The one parameter to this function is an SProcCall - a stored procedure call context. See the description of syste
m.db.createSProcCall for more information and examples.

Syntax

system.db.execSProcCall(callContext)
® Parameters

SProcCall callContext - A stored procedure call context, with any input, output, and/or return value parameters correctly configured.
Use system.db.createSProcCall to create a call context.

® Returns
Nothing
® Scope

All

Code Examples

There are no code examples available for this function.

system.db.getConnectioninfo

Description

Returns a dataset of information about a single database connection, as specified by the name argument.

Syntax

system.db.getConnectioninfo(name)
® Parameters

String name - The name of the database connection to find information about.

® Returns

Dataset - A dataset containing information about the named database connection, or an empty dataset if the connection wasn't found.
® Scope

All

Code Examples

There are no code examples available for this function.

system.db.getConnections

Description

Returns a dataset of information about each configured database connection. Each row represents a single connection.

Syntax

system.db.getConnections()
® Parameters
None
® Returns
Dataset - A dataset, where each row represents a database connection.
® Scope

All

Code Examples

There are no code examples available for this function.

system.db.refresh

Description

This function will programmatically cause a SQL Query or DB Browse property binding to execute immediately. This is most often used for bindings
that are set to Polling - Off. In this way, you cause a binding to execute on demand, when you know that the results of its query will return a new
result. To use it, you simply specify the component and name of the property on whose binding you'd like to refresh.

Syntax

system.db.refresh(component, propertyName)
® Parameters
JComponent component - The component whose property you want to refresh
String propertyName - The name of the property that has a SQL Query binding that needs to be refreshed
® Returns
boolean - True (1) if the property was found and refreshed successfully.
® Scope

All

Code Examples

Code Snippet

#Thi s exanpl e could be placed in the actionPerforned event of a Button, to be used to refresh the data of

a Tabl e.
#Renmenber to use the scripting name of the property that you're trying to refresh, and that the property

names are case-sensitive.

tabl e = event. source. parent. get Conponent (" Tabl e")
system db. refresh(table, "data")

https://legacy-docs.inductiveautomation.com/display/DOC/SQL+Query+Binding

system.db.removeDatasource

Description

Removes a database connection from Ignition.

Syntax

system.db.removeDatasource(name)
® Parameters
String name - The name of the database connection in Ignition.
® Returns
Nothing
® Scope

All

Code Examples

Code Snippet

#This will result in the connection naned MySQL bei ng renpved
syst em db. r enoveDat asour ce(" MySQL")

system.db.rollbackTransaction

Description

Performs a rollback on the given connection. This will make all statements executed against this transaction since its beginning or since the last
commit or rollback undone. Note that if you are done with the transaction, you must also close it afterward you do a rollback on it.

Syntax

system.db.rollbackTransaction(tx)
® Parameters
String tx - The transaction ID.
® Returns
Nothing
® Scope

All

Code Examples

There are no examples available for this code function.

system.db.runPrepQuery

Description

Runs a prepared statement against the database, returning the results in a PyDataSet.. Prepared statements differ from regular queries in that they
can use a special placeholder, the question-mark character (?) in the query where any dynamic arguments would go, and then use an array of
values to provide real information for those arguments. Make sure that the length of your argument array matches the number of question-mark
placeholders in your query.

This call should be used for SELECT queries.This is a useful alternative to system.db.runQuery because it allows values in the WHERE clause,

JOIN clause, and other clauses to be specified without having to turn those values into strings. This is safer because it protects against a problem
known as a SQL injection attack, where a user can input data that affects the query's semantics.

@ The "?" placeholder refers to variables of the query statement that help the statement return the correct information. The "?" placeholder
cannot reference column names, table names, or the underlying syntax of the query. This is because the SQL standard for handling the
"?" placeholder excludes these items.

Syntax

system.db.runPrepQuery(query, args, database, tx)

® Parameters
String query - A query (typically a SELECT) to run as a prepared statement with placeholders (?) denoting where the arguments go.
Object[] args - A list of arguments. Will be used in order to match each placeholder (?) found in the query.
String database - The name of the database connection to execute against.
String tx - A transaction identifier. If omitted, the query will be executed in its own transaction.

® Returns
PyDataSet - The results of the query as a PyDataSet

® Scope

Gateway

Syntax

system.db.runPrepQuery(query, args, database, tx)
® Parameters
String query - A query (typically a SELECT) to run as a prepared statement with placeholders (?) denoting where the arguments go.
Object[] args - A list of arguments. Will be used in order to match each placeholder (?) found in the query.

String database - The name of the database connection to execute against. If omitted or ", the project's default database connection
will be used.

String tx - A transaction identifier. If omitted, the query will be executed in its own transaction.
® Returns

PyDataSet - The results of the query as a PyDataSet
® Scope

Vision Client

http://en.wikipedia.org/wiki/SQL_injection

Code Examples

Code Snippet

#Thi s exanple woul d search for all records in a LogEntry table where the nessage contained a user-entered
search term

search = event. source. parent. get Conponent (" Sear chFor") .t ext
Wap the termin %signs for LIKE-style matching
search = "% + search + '%

resul t s= system db. runPrepQuery("SELECT * FROM LogEntry WHERE EntryText LIKE ?", [search])
event . sour ce. parent. get Conponent (" Tabl e").data = results

system.db.runPrepUpdate

Description

Runs a prepared statement against the database, returning the number of rows that were affected. Prepared statements differ from regular queries
in that they can use a special placeholder, the question-mark character (?) in the query where any dynamic arguments would go, and then use an
array of values to provide real information for those arguments. Make sure that the length of your argument array matches the number of question-
mark placeholders in your query. This call should be used for UPDATE, INSERT, and DELETE queries.
This is extremely useful for two purposes:
® This method avoids the problematic technique of concatenating user input inside of a query, which can lead to syntax errors, or worse, a
nasty security problem called a SQL injection attack. For example, if you have a user-supplied string that is used in a WHERE clause, you
use single-quotes to enclose the string to make the query valid. What happens in the user has a single-quote in their text? Your query will
fail. Prepared statements are immune to this problem.

® This is the only way to write an INSERT or UPDATE query that has binary or BLOB data. Using BLOBs can be very hand for storing
images or reports in the database, where all clients have access to them.

The "?" placeholder refers to variables of the query statement that help the statement return the correct information. The "?" placeholder
cannot reference column names, table names, or the underlying syntax of the query. This is because the SQL standard for handling the
"?" placeholder excludes these items.

Syntax

system.db.runPrepUpdate(query, args, database, [tx], [getKey], [skipAudit])

® Parameters

String query - A query (typically an UPDATE, INSERT, or DELETE) to run as a prepared statement with placeholders (?) denoting
where the arguments go.

Object[] args - A list of arguments. Will be used in order to match each placeholder (?) found in the query.

String database - The name of the database connection to execute against.

String tx - Optional, A transaction identifier. If omitted, the update will be executed in its own transaction.

Boolean getKey - Optional, A flag indicating whether or not the result should be the number of rows returned (getKey=0) or the newly
generated key value that was created as a result of the update (getKey=1). Not all databases support automatic retrieval of generated

keys.

Boolean skipAudit - Optional, A flag which, if set to true, will cause the prep update to skip the audit system. Useful for some queries
that have fields which won't fit into the audit log.

® Returns
Integer - The number of rows affected by the query, or the key value that was generated, depending on the value of the getKey flag.
® Scope

Gateway

http://en.wikipedia.org/wiki/SQL_injection

Syntax

system.db.runPrepUpdate(query, args, [database], [tx], [getKey], [skipAudit])
® Parameters

String query - A query (typically an UPDATE, INSERT, or DELETE) to run as a prepared statement with placeholders (?) denoting
where the arguments go.

Object[] args - A list of arguments. Will be used in order to match each placeholder (?) found in the query.

String database - Optional, The name of the database connection to execute against. If omitted or ", the project's default database
connection will be used.

String tx - Optional, A transaction identifier. If omitted, the update will be executed in its own transaction.
Boolean getKey - Optional, A flag indicating whether or not the result should be the number of rows returned (getKey=0) or the newly
generated key value that was created as a result of the update (getKey=1). Not all databases support automatic retrieval of generated

keys.

Boolean skipAudit - Optional, A flag which, if set to true, will cause the prep update to skip the audit system. Useful for some queries
that have fields which won't fit into the audit log.

® Returns
Integer - The number of rows affected by the query, or the key value that was generated, depending on the value of the getKey flag.
® Scope

Vision Client

Code Examples

Code Snippet

#Thi s exanpl e woul d gather some user entered text and insert it into the database.

user Text = event.source. parent. get Conponent (" Text Area").text
user Nanme = system security. get User nane()
syst em db. runPrepUpdat e(" | NSERT | NTO Corments (Name, User Conment) VALUES (?,7?)", [userName, userText])

Code Snippet

#Thi s exanpl e woul d gather some user entered text and insert it into the database.

#The difference between this exanple and the previous exanple is that this exanple is explicitly
decl ari ng whi ch dat abase connection to run the query againt.

#Sonmetinmes you need to run a query against a database connection that is not the default connection.

user Text = event.source. parent. get Conponent (" Text Area") .t ext

user Nane = system security. get User nane()

dat abaseConnection = "Al ternat eDat abase"

syst em db. runPrepUpdat e(" | NSERT | NTO Corments (Name, User Conment) VALUES (?,7?)", [userName, userText],
dat abaseConnect i on)

Code Snippet

#This code would read a file and upload it to the database

filename = systemfile.openFile() # Ask the user to open a file
if filename != None:
filedata = systemfile.readFil eAsBytes(fil enane)
system db. runPrepUpdat e("I NSERT I NTO Files (file_data) VALUES (?)", [filedata])

Code Snippet

#Thi s exanple inserts a new user and gives it the "admn' role. Denobnstrates the ability to retrieve a
newy created key val ue.

#get the username/ password

name = event. source. parent. get Conponent (' Nane') .t ext

desc = event.source. parent. get Conponent (' Descri ption').text

bui I di ng = event. source. parent. get Conponent (' Bui | di ng') . sel ect edVal ue

#insert the val ue
id = system db. runPrepUpdat e("| NSERT | NTO nachi nes (nachi ne_nanme, description) VALUES (?, ?)", [nane,
desc], getKey=1)

#add a row to the user role mapping table

system db. runPrepUpdat e(" | NSERT | NTO machi ne_bui | di ng_mappi ng (nmachine_id, building) VALUES (?, ?)", [id,

bui | di ng])

system.db.runQuery

Description

Runs a SQL query, usually a SELECT query, against a database, returning the results as a dataset. If no database is specified, or the database is
the empty-string ", then the current project's default database connection will be used. The results are returned as a PyDataSet, which is a
wrapper around the standard dataset that is convenient for scripting.

Syntax

system.db.runQuery(query, database, tx)
® Parameters
String query - A SQL query, usually a SELECT query, to run.
String database - The name of the database connection to execute against.
String tx - A transaction identifier. If omitted, the query will be executed in its own transaction.
® Returns
PyDataSet - The results of the query as a PyDataSet.
® Scope

Gateway

Syntax

system.db.runQuery(query, database, tx)
® Parameters
String query - A SQL query, usually a SELECT query, to run.

String database - The name of the database connection to execute against. If omitted or ™, the project's default database connection
will be used.

String tx - A transaction identifier. If omitted, the query will be executed in its own transaction.
® Returns

PyDataSet - The results of the query as a PyDataSet.
® Scope

Vision Client

Code Examples

Assuming the following dataset:

ID Value

1 3.55
2 67.2
3 9.87

If you executed the following code:

Code Snippet

tabl e = system db. runQuery("SELECT * FROM TEST")

Table[2] would access the third row (rows are zero-indexed), and both table[2][0] and table[2]["ID"] would access the ID value of the third row. As
further example of how to use the results of runQuery, here are seven different ways to print out the table, and their results follow. Note that some
of the later methods exercise some more advanced Jython concepts such as list comprehensions and string formatting, but their intent should be
obvious. Generally speaking, the more concise Jython code becomes, the more readable it is.

Code Snippet

tabl e = system db. runQuery("SELECT * FROM Test")

print "Printing TEST Method 1..."
for rowin table:
for col in row
print col,
print ""
print ""

print "Printing TEST Method 2..."
for rowin table:

print rowf 0], row 1]
print ""

print "Printing TEST Method 3..."
for rowin table:

print row"ID'], row "VALUE"]
print ""

print "Printing TEST Method 4..."
for romdx in range(len(table)):

print "Row ",str(rowdx)+": ", table[row dx][0], table[row dx][1]
print ""

print "Printing TEST Method 5..."
print [str(row0])+", "+ str(row1]) for rowin table]
print ""

print "Printing TEST Method 6..."
print ["%, %" % (row"ID'],row "VALUE']) for row in table]
print ""

print "Printing TEST Method 7..."
print [[col for col inrow for rowin table]
print ""

The result would be:
Printing TEST Method 1...
03.55

167.2

29.87

Printing TEST Method 2...
03.55
167.2

29.87

Printing TEST Method 3...
03.55
167.2

29.87

Printing TEST Method 4...
Row 0: 0 3.55
Row 1:167.2

Row 2: 2 9.87

Printing TEST Method 5...

['0,3.55, 1, 67.2,'2,9.87]

Printing TEST Method 6...

[0, 3.55', 1, 67.2', '2, 9.87]

Printing TEST Method 7...

[0, 3.55], [1, 67.2], [2, 9.87]]

system.db.runScalarPrepQuery

Description

Runs a prepared statement against a database connection just like the runPrepQuery function, but only returns the value from the first row and
column. If no results are returned from the query, the special value None is returned.

Syntax

system.db.runScalarPrepQuery(query, args, database, tx)
® Parameters

String query - A SQL query (typically a SELECT) to run as a prepared statement with placeholders (?) denoting where the arguments
go, that should be designed to return one row and one column.

Object[] args - A list of arguments. Will be used in order to match each placeholder (?) found in the query.
String database - The name of the database connection to execute against.
String tx - A transaction identifier. If omitted, the query will be executed in its own transaction.
® Returns
Object - The value from the first row and first column of the results. Returns None if no rows were returned.
® Scope

Gateway

Syntax

system.db.runScalarPrepQuery(query, args, database, tx)
® Parameters

String query - A SQL query (typically a SELECT) to run as a prepared statement with placeholders (?) denoting where the arguments
go, that should be designed to return one row and one column.

Object[] args - A list of arguments. Will be used in order to match each placeholder (?) found in the query.

String database - The name of the database connection to execute against. If omitted or ™, the project's default database connection

will be used.

String tx - A transaction identifier. If omitted, the query will be executed in its own transaction.
® Returns

Object - The value from the first row and first column of the results. Returns None if no rows were returned.
® Scope

Vision Client

Code Examples

There are no examples associated with this scripting function.

system.db.runScalarQuery

Description

Runs a query against a database connection just like the runQuery function, but only returns the value from the first row and column. If no results
are returned from the query, the special value None is returned.

Syntax

system.db.runScalarQuery(query, database, tx)
® Parameters
String query - A SQL query that should be designed to return one row and one column.
String database - The name of the database connection to execute against.
String tx - A transaction identifier. If omitted, the query will be executed in its own transaction.
® Returns
Object - The value from the first row and first column of the results. Returns None if no rows were returned.
® Scope

Gateway

Syntax

system.db.runScalarQuery(query, database, tx)
® Parameters
String query - A SQL query that should be designed to return one row and one column.

String database - The name of the database connection to execute against. If omitted or ", the project's default database connection
will be used.

String tx - A transaction identifier. If omitted, the query will be executed in its own transaction.
® Returns

Object - The value from the first row and first column of the results. Returns None if no rows were returned.
® Scope

Vision Client

Code Examples

Code Snippet

This code woul d count the nunber of active alarns, and acknow edge themall if there is at

| east one.

numAl arns = system db. runScal ar Quer y(" SELECT COUNT(*) FROM al arnstatus " + "WHERE unacknow edged = 1")

if numAlarms > O:
There are alarnms - acknow edge all of them
syst em db. runUpdat eQuer y(" UPDATE al ar nst at us SET unacknow edged = 0")

Code Snippet

#Thi s code would read a single value froma table and show it to the user an a popup box.

I evel = system db.runScal ar Query("SELECT Level FROM Lakel nfo WHERE Lakel d=' Tahoe' ")
system gui . nressageBox("The | ake level is: % feet" %Il evel)

| akeLevel = system db.runScal ar Query(query)

system gui . messageBox("The | ake level is: % feet" %1 akelLevel)

system.db.runSFPrepUpdate

Description

Runs a prepared statement query through the store and forward system and to multiple datasources at the same time. Prepared statements differ
from regular queries in that they can use a special placeholder, the question-mark character (?) in the query where any dynamic arguments would
go, and then use an array of values to provide real information for those arguments. Make sure that the length of your argument array matches the
number of question-mark placeholders in your query. This call should be used for UPDATE, INSERT, and DELETE queries.
This is extremely useful for two purposes:
® This method avoids the problematic technique of concatenating user input inside of a query, which can lead to syntax errors, or worse, a
nasty security problem called a SQL injection attack. For example, if you have a user-supplied string that is used in a WHERE clause, you
use single-quotes to enclose the string to make the query valid. What happens in the user has a single-quote in their text? Your query will
fail. Prepared statements are immune to this problem.

® This is the only way to write an INSERT or UPDATE query that has binary or BLOB data. Using BLOBs can be very handy for storing
images or reports in the database, where all clients have access to them.

Syntax

system.db.runSFPrepUpdate(query, args, datasources)
® Parameters

String query - A query (typically an UPDATE, INSERT, or DELETE) to run as a prepared statement, with placeholders (?) denoting
where the arguments go.

Object[] args - A list of arguments. Will be used in order to match each placeholder (?) found in the query.
String[] datasources - List of datasources to run the query through.

® Returns
boolean - Returns true if successfully sent to store-and-forward system.

® Scope

All

Code Examples

Code Snippet

#Exanpl e 1: Run through single datasource
print system db. runSFPrepUpdat e("1 NSERT | NTO reci pes (nanme, spl, sp2, sp3) VALUES (?,?,?2,?)", ['A Nane',
1032, 234, 1], datasources=["M/SQ.Dat asource"])

Code Snippet

#Exanpl e 2: Run through two datasources
print system db. runSFPrepUpdat e("| NSERT | NTO reci pes (nane, spl, sp2, sp3) VALUES (?,?,?,?)", ['A Nane',
1032, 234, 1], datasources=["MSQ.Datasource", "SQ.ServerDatasource"])

system.db.runSFUpdateQuery

Description

Runs an query through the store and forward system and to multiple datasources at the same time.

Syntax

system.db.runSFUpdateQuery(query, datasources)
® Parameters
String query - A query (typically an UPDATE, INSERT, or DELETE) to run.
String[] datasources - List of datasources to run the query through.
® Returns
Boolean - Returns true if successful and false if not.
® Scope

All

Code Examples

Code Snippet

#Exanpl e 1: Run through single datasource
print system db. runSFUpdat eQuery(" |1 NSERT | NTO reci pes (nane, spl, sp2, sp3) VALUES ('A Nanme', 1032, 234,
1)", ["M/SQ.Dat asource"])

Code Snippet

#Exanpl e 2: Run through 2 datasources
print system db.runSFUpdat eQuery("| NSERT | NTO reci pes (name, spl, sp2, sp3) VALUES ('A Nane', 1032, 234,
1)", ["M/SQ.Datasource", "SQ.ServerDatasource"])

system.db.runUpdateQuery

Description

Runs a query against a database connection, returning the number of rows affected. Typically this is an UPDATE, INSERT, or DELETE query. If
no database is specified, or the database is the empty-string ", then the current project's default database connection will be used.

Note that you may want to use the runPrepUpdate query if your query is constructed with user input (to avoid the user's input from breaking your
syntax) or if you need to insert binary or BLOB data.

Syntax

system.db.runUpdateQuery(query, database, tx, getKey, skipAudit)
® Parameters
String query - A SQL query, usually an INSERT, UPDATE, or DELETE query, to run.
String database - The name of the database connection to execute against.
String tx - A transaction identifier. If omitted, the update will be executed in its own transaction.

Boolean getKey - A flag indicating whether or not the result should be the number of rows returned (getKey=0) or the newly generated
key value that was created as a result of the update (getKey=1). Not all databases support automatic retrieval of generated keys.

Boolean skipAudit - A flag which, if set to true, will cause the update query to skip the audit system. Useful for some queries that have
fields which won't fit into the audit log.

® Returns
Integer - The number of rows affected by the query, or the key value that was generated, depending on the value of the getKey flag.
® Scope

Gateway

Syntax

system.db.runUpdateQuery(query, database, tx, getKey, skipAudit)
® Parameters
String query - A SQL query, usually an INSERT, UPDATE, or DELETE query, to run.

String database - The name of the database connection to execute against. If omitted or ", the project's default database connection
will be used.

String tx - A transaction identifier. If omitted, the update will be executed in its own transaction.

Boolean getKey - A flag indicating whether or not the result should be the number of rows returned (getKey=0) or the newly generated
key value that was created as a result of the update (getKey=1). Not all databases support automatic retrieval of generated keys.

Boolean skipAudit - A flag which, if set to true, will cause the update query to skip the audit system. Useful for some queries that have
fields which won't fit into the audit log.

® Returns
Integer - The number of rows affected by the query, or the key value that was generated, depending on the value of the getKey flag.
® Scope

Vision Client

Code Examples

Code Snippet

#Thi s code woul d acknow edge all unacknow edged al arnms # and show the user how many al arns were
acknowl edged.

rowsChanged = system db. runUpdat eQuery("UPDATE al arnst at us SET unacknow edged = 0")

syst em gui . nessageBox (" Acknowl edged %l al arns" % r owsChanged)

Code Snippet

#This code would insert a new recipe step into a recipe table, after asking the user how many gall ons of
syrup shoul d be added on this recipe step.
i nput Text = system db. i nput Box("How many gal | ons?", "12.3")
Make sure the user didn't hit cancel
if inputText != None:

Make sure the input is a nunber

gal l ons = float (i nput Text)

Detect the next step nunber by adding 1 to the l|ast step nunber

next St epNum = syst em db. runScal ar Quer y(" SELECT MAX(StepNum) + 1 FROM Reci peSt eps")

Insert recipe step

syst em db. runUpdat eQuery(" | NSERT | NTO Reci peSteps (StepNum Gallons) VALUES (%, %)" % (next StepNum
gal l ons))

insertQuery = "I NSERT | NTO Reci peSteps (StepNum Gallons) VALUES (%, %)"

system db. runUpdat eQuery(i nsert Query % (next StepNum gal |l ons))

Code Snippet

#This exanple inserts a new user and gives it the 'admn' role. Denonstrates the ability to retrieve a
newy created key val ue.

#get the username/ password

nane = event.source. parent. get Conponent (' Nane') . t ext

desc = event.source. parent. get Conponent (' Descri ption').text

bui | di ng = event. source. parent. get Conponent (' Bui | di ng'). sel ect edVal ue

#insert the val ue
id = system db. runUpdat eQuery(" | NSERT | NTO nachi nes (nachi ne_nanme, description) " + "VALUES ('%', '%')"
% nane, desc), getKey=1)

#add a row to the user role mapping table
syst em db. runUpdat eQuer y(" | NSERT | NTO machi ne_bui | di ng_mapping " + "(machine_id, building) VALUES (%, %
d)" %id, building))

system.db.setDatasourceConnectURL

Description

Changes the connect URL for a given database connection.

Syntax

system.db.setDatasourceConnectURL(name, connectUrl)
® Parameters
String name - The name of the database connection in Ignition.
String connectUrl - The new connect URL.
® Returns
nothing
® Scope

All

Code Examples

Code Snippet

#Exanpl e 1:

syst em db. set Dat asour ceConnect URL("MySQL", "jdbc: mysql://1ocal host:3306/test")

system.db.setDatasourceEnabled

Description

Enables/disables a given database connection.

Syntax

system.db.setDatasourceEnabled(name, enabled)
® Parameters
String name - The name of the database connection in Ignition.
Boolean enabled
® Returns
nothing
® Scope

All

Code Examples

Code Snippet
#Exanpl e 1: Enabl e a connection

syst em db. set Dat asour ceEnabl ed("MWySQ.", 1)

Code Snippet

#Exanpl e 2: Disable a connection

syst em db. set Dat asour ceEnabl ed("MWySQ.", 0)

system.db.setDatasourceMaxConnections

Description

Sets the Max Active and Max Idle parameters of a given database connection.

Syntax

system.db.setDatasourceMaxConnections(name, maxConnections)
® Parameters
String name - The name of the database connection in Ignition.
Integer maxConnections
® Returns
nothing
® Scope

All

Code Examples

Code Snippet

#Exanpl e 1: Enabl e a connection
syst em db. set Dat asour ceMaxConnecti ons("M/SQ.", 20)

system.device

system.device.addDevice

The following feature is new in Ignition version 7.8.0
Click here to check out the other new features

Description

Adds a new device connection in Ignition. Accepts a dictionary of parameters to configure the connection. Acceptable parameters differ by device
type: i.e., a Modbus/TCP connection requires a hostname and port, but a simulator doesn't require any parameters.

@ When using this function, the arguments MUST be passed as keyword arguments.

Syntax - Using deviceType

system.device. addDevice(deviceType, deviceName, deviceProps)

® Parameters

String driverType - The device driver type. Possible values are listed in the Device Types table below.

String deviceName - The name that will be given to the the new device connection.

PyDictionary deviceProps - A dictionary of device connection properties and values. Each deviceType has different properties, but
most require at least a hostname. Keys in the dictionary are case-insensitive, spaces are omitted, and the names of the properties

that appear when manually creating a device connection.
® Returns

nothing
® Scope

All

Device Types

@ Note that this function may be called to add devices using 3rd party drivers: you simply need the driver type, which the module
developer will be able to provide.

https://docs.inductiveautomation.com/display/DOC/New+in+this+Version#NewinthisVersion-Newin7.8.0
https://legacy-docs.inductiveautomation.com/display/DOC/Scripting+Overview+and+Syntax#ScriptingOverviewandSyntax-KeywordArguments

Driver Name

Legacy Allen-
Bradley
CompactLogix

Legacy Allen-
Bradley
ControlLogix

Simulators Dairy
Demo Simulator

Driver Type

CompactLogix

ControlLogix

DairyDemoSimulator

DNP3 Driver Dnp3Driver
Allen-Bradley Logix = LogixDriver
Driver

Allen-Bradley MicroLogix
MicroLogix

Modbus RTU ModbusRtu
Modbus TCP ModbusTcp
Omron NJ Driver com.

inductiveautomation.
omron.NjDriver

Allen-Bradley PLC5 @ PLC5

Driver Name Driver

Type

Siemens S7-300 S7300
Siemens S7-400 S7400
Siemens S7-1200 S71200
Siemens S7-1500 S71500
Allen-Bradley SLC SLC

Simulators SLC Simulator SLCSimulator

Simulators Generic Simulator
Simulator

TCP Driver TCPDriver
UDP Driver UDPDriver

Device Properties

The devi cePr ops parameter is where you supply configuration values to the new connection. Value properties depend on which devi ceType
was specified. To find the valid properties for each type, simply check the OPC-UA and Device Connections section of the manual, and find the
property list. The keys in the devi cePr ops parameter are case-insensitive, and have the spaces omitted. Device properties not specified in the de
vi cePr ops parameter will fallback to default values if not specified (where applicable: i.e., "hostname" typically does not have a default value).

Modbus Example

Below we see an example using the ModbusTcp devi ceType. The left portion is from the newly created device connection on the Gateway, and
the right portion is the function that created the connection. The Hostname, Port, and Max Holding Registers Per Request properties were
specified in the call. Note the following:

® port inthe dictionary does not have to match the casing of the Port property on the device page.

® The Communication Timeout property was not specified in the dictionary, so it is set to the default value of 2000.

® Max Holding Registers Per Request was included in the dictionary with all spaces removed, and successfully configured with a value of
325.

https://legacy-docs.inductiveautomation.com/display/DOC/OPC-UA+and+Device+Connections
https://legacy-docs.inductiveautomation.com/display/DOC/Connecting+to+Modbus+Device

L gl Script Consale
Hostname 10.0.0.1
Hostname/IP address of the Modbus device. Multiline Buffer
1
Z newProps =
— 3 "Hostlame" : "10.9.8.1",
Fort Part to connect to. 4 "port™ : 1884,
(default: 502) 5 "MaxHoldingRegistersPerRequest™:325
& ¥
Communication 2000 2 system.device. addDeviceeviceType = "ModbusTcp™,
Timeout Maximum amount of time to wait for a response. 9 deviceName = "New Modbus_Connection”,’
(default: 2,000) 10 deviceProps = newProps)|

Show advanced properties

Advanced

Max Holding 325
Registers Per

Request Maximum number of Holding Registers allowed perr

(default: 125}

Code Examples

Code Snippet

#Bel ow i s an exanple of creating a new Generic Sinulator device connection.
#Note that we MUST pass a dictionary as the 3rd paraneter, even if it's enpty.

#Cal | the function
system devi ce. addDevi ce(devi ceType = "Sinul ator", deviceNane = "New Generic_Sinulator", deviceProps = {})

Code Snippet

#Add a device using the Allen-Bradley Logix Driver for firmwvare v21+ devices

devi ceProps = {}

devi ceProps["Host nane"] = "192.168. 1. 2"

syst em devi ce. addDevi ce(devi ceNane="Test 1", devi ceType="Logi xDriver", devi ceProps=devi ceProps)

Code Snippet

#Bel ow i s an exanple of creating a new S7-1500 devi ce connecti on.

#Build a Dictionary of paraneters
newProps = {
"Host Nare" : "10.0.0.1",
"Port" : 102 #<---1f adding additional paraneters, make sure to add a conma.

}

#Call the function

syst em devi ce. addDevi ce(devi ceType = "S71500", \
devi ceNane = "My_S7_1500_Devi ce",\
devi ceProps = newProps)

system.device.listDevices

Description

Returns a dataset of information about each configured device. Each row represents a single device.

Syntax

system.device.listDevices()
® Parameters
none
® Returns
Dataset - A dataset, where each row represents a device. Contains 4 columns Name, Enabled, State, and Driver.
® Scope

All

Code Examples

Code Snippet

/1 Use the follow ng expression binding on a table to show the list of devices. The binding polls every
m nut e.

runScri pt ("syst em device. | istDevices()", 60000)

system.device.refreshBrowse

Description

Forces Ignition to browse the controller. Only works for Allen-Bradley controllers.

Syntax

system.device.refreshBrowse(deviceName)
® Parameters
String deviceName - The name of the device in Ignition.
® Returns
nothing
® Scope

All

Code Examples

Code Snippet

#Exanpl e 1:
system devi ce. refreshBrowse(" CLX")

system.device.removeDevice

Description

Removes a given device from Ignition.

Syntax

system.device.removeDevice(deviceName)
® Parameters
String deviceName - The name of the device in Ignition.
® Returns
nothing
® Scope

All

Code Examples

Code Snippet

#Exanpl e 1:
syst em devi ce. renpveDevi ce(" CLX")

system.device.setDeviceEnabled

Description

Enables/disables a device in Ignition.

Syntax

system.device.setDeviceEnabled(deviceName, enabled)

® Parameters

String deviceName - The name of the device in Ignition.
Boolean enabled

® Returns
nothing

® Scope

All

Code Examples

Code Snippet

#Exanpl e 1: Enabl e a device

system devi ce. set Devi ceEnabl ed(" CLX", 1)

Code Snippet
#Exanpl e 2: Disable a device

syst em devi ce. set Devi ceEnabl ed(" CLX", 0)

system.device.setDeviceHostname

Description

Changes the hostname of a device. Used for all ethernet based drivers.

Syntax

system.device.setDeviceHostname(deviceName, hostname)
® Parameters
String deviceName - The name of the device in Ignition.
String hostname - The new IP address or hostname.
® Returns
nothing
® Scope

All

Code Examples

Code Snippet

#Exanpl e 1:

syst em devi ce. set Devi ceHost nane(" CLX", "10.10.1.20")

system.dnp3

Constants

system dnp3. NUL = 0
system dnp3. PULSE_ON = 1
system dnp3. PULSE_OFF = 2
system dnp3. LATCH ON = 3
system dnp3. LATCH OFF = 4
system dnp3. CLOSE = 1

system dnp3. TRIP = 2

Scripting Functions

system.dnp3.directOperateAnalog
system.dnp3.directOperateBinary
system.dnp3.freezeAnalogs
system.dnp3.freezeAnalogsAtTime
system.dnp3.freezeCounters
system.dnp3.freezeCountersAtTime
system.dnp3.selectOperateAnalog
system.dnp3.selectOperateBinary

system.dnp3.directOperateAnalog

Description

Issues a Select-And-Operate command to set an analog value in an analog output point.

Syntax

system.dnp3.directOperateAnalog(deviceName, index, value, [variation])
® Parameters
String deviceName-The name of the DNP3 device driver.

Integer index-The index of the object to be modified in the outstation.

Numeric value-The analog value that is requested (of type int, short, float, or double).

Integer variation-The DNP3 object variation to use in the request.
® Returns

The DNP3 status code of the response, as an integer.
® Scope

All

Code Examples

This exanple shows setting the anal og output at index O to the
Doubl e val ue 3.14

syst em dnp3. di rect Oper at eAnal og(" Dnp3", 0, 3.14)

This exanple shows setting the anal og output at index 2 to the
I nt eger val ue 300

syst em dnp3. di r ect Oper at eAnal og(" Dnp3", 2, 300)

This exanpl e shows setting the anal og output at index 15 to the
Short value 33. The value sent in the request is converted
for the object variation, 2.

syst em dnp3. di rect Oper at eAnal og(" Dnp3", 15, 33.3333, variation=2)
This exanple shows setting the anal og output at index 1 to the

Fl oat value 15.0. The value sent in the request is converted
for the object variation, 3.

syst em dnp3. di r ect Oper at eAnal og(" Dnp3", index=1, val ue=15, vari ation=3)

system.dnp3.directOperateBinary

Description

Issues a Direct-Operate command for digital control operations at binary output points (CROB).

Syntax

system.dnp3.directOperateBinary(deviceName, indexes, opType, tcCode, count, onTime, offTime)

® Parameters
String deviceName-The name of the DNP3 device driver.
List indexes-A list of indexes of the objects to be modified in the outstation.
Integer opType-The type of the operation. 0=NUL, 1=PULSE_ON, 2=PULSE_OFF, 3=LATCH_ON, 4=LATCH_OFF
Integer tcCode-The Trip-Close code, used in conjunction with the opType. 0=NUL, 1=CLOSE, 2=TRIP
Integer count-The number of times the outstation shall execute the operation.
Long onTime-The duration that the output drive remains active, in millis.
Long offTime-The duration that the output drive remains non-active, in millis.

® Returns
The DNP3 status code of the response, as an integer.

® Scope

All

Code Examples

This exanple shows |atching off 3 binary output points with the Direct-Operate command.

of f = system dnp3. LATCH _OFF
system dnp3. di rect Oper at eBi nary("Dnp3", [0, 1, 2], off)

This exanpl e shows setting a binary output point at index 3 to pulse at 5 second intervals
wth the Direct-Qperate conmmand.

pul se = system dnp3. PULSE_OFF
trip = systemdnp3. TRIP
system dnp3. di rect Oper at eBi nary("Dnp3", [3], pulse, trip, onTi mre=5000, offTi me=5000)

system.dnp3.freezeAnalogs

Description

Issues a freeze command on the given analog outputs.

Syntax

system.dnp3.freezeAnalogs(deviceName, [indexes])
® Parameters
String devi ceNane - The name of the DNP3 device driver.
Li st i ndexes - An optional list of specific indexes on which to issue the freeze command.
® Returns
Nothing
® Scope

All

Code Examples

This exanple shows a request to freeze all analog inputs in the outstation.
system dnp3. f r eezeAnal ogs(" Dnp3")

This exanple shows a request to freeze anal og inputs at indexes 1, 3, and 5.
system dnp3. freezeAnal ogs("Dnp3", [1, 3, 5])

system.dnp3.freezeAnalogsAtTime

Description

Issues a freeze command on the given analog outputs at the given time for the specified duration.

Syntax

system.dnp3.freezeAnalogsAtTime(deviceName, absoluteTime, intervalTime, indexes)
® Parameters
String devi ceNane - The name of the DNP3 device driver.
I nt eger absol ut eTi me - The absolute time at which to freeze, in millis.
I nteger interval Ti me - The interval at which to periodically freeze, in millis.
Li st i ndexes - A list of specific indexes on which to issue the freeze command. An empty list will freeze all analogs.
® Returns
Nothing
® Scope

All

Code Examples

This exanple shows a request to freeze anal og inputs at indexes 2 and 4,
5 minutes fromthe current tine, with no interval.
fromtinme inport *

fiveMkes = (60 * 1000 * 5) + int(tine() * 1000) #nms
system dnp3. freezeAnal ogsAt Ti ne("Dnp3", fiveMkes, 0, [2, 4])

system.dnp3.freezeCounters

Description

Issues a freeze command on the given counters.

Syntax

system.dnp3.freezeCounters(deviceName, [indexes])
® Parameters
String devi ceNane - The name of the DNP3 device driver.
Li st i ndexes - An optional list of specific indexes on which to issue the freeze command.
® Returns
Nothing
® Scope

All

Code Examples

This exanple shows a request to freeze all counters in the outstation.
system dnp3. freezeCount er s(" Dnp3")

This exanple shows a request to freeze counters at indexes 1, 3, and 5.
system dnp3. freezCounters("Dnp3", [1, 3, 5])

system.dnp3.freezeCountersAtTime

Description

Issues a freeze command on the given counters at the given time for the specified duration.

Syntax

system.dnp3.freezeCountersAtTime(deviceName, absoluteTime, intervalTime, indexes)
® Parameters
String devi ceNane - The name of the DNP3 device driver.
I nt eger absol ut eTi me - The absolute time at which to freeze, in millis.
I nteger interval Ti me - The interval at which to periodically freeze, in millis.
Li st i ndexes - A list of specific indexes on which to issue the freeze command. An empty list will freeze all counters.
® Returns
Nothing
® Scope

All

Code Examples

This exanple shows a request to freeze counters at indexes 2 and 4,
5 minutes fromthe current tine, with no interval.
fromtinme inport *

fiveMkes = (60 * 1000 * 5) + int(tine() * 1000) #nms
system dnp3. freezeCount er sAt Ti ne(" Dnp3", fiveMkes, 0, [2, 4])

system.dnp3.selectOperateAnalog

Description

Issues a Select-And-Operate command to set an analog value in an analog output point.

Syntax

system.dnp3.selectOperateAnalog(deviceName, index, value, [variation])
® Parameters
String deviceName - The name of the DNP3 device driver.

Integer index - The index of the object to be modified in the outstation.

Numeric value - The analog value that is requested (of type int, short, float, or double).

Integer variation - The DNP3 object variation to use in the request.
® Returns

The DNP3 status code of the response, as an integer.
® Scope

All

Code Examples

This exanple shows setting the anal og output at index O to the
Doubl e val ue 3.14

syst em dnp3. sel ect Oper at eAnal og("Dnp3", 0, 3.14)

This exanple shows setting the anal og output at index 2 to the
I nt eger val ue 300

syst em dnp3. sel ect Oper at eAnal og("Dnp3", 2, 300)

This exanpl e shows setting the anal og output at index 15 to the
Short value 33. The value sent in the request is converted
for the object variation, 2.

syst em dnp3. sel ect Oper at eAnal og(" Dnp3", 15, 33.3333, variation=2)
This exanple shows setting the anal og output at index 1 to the

Fl oat value 15.0. The value sent in the request is converted
for the object variation, 3.

syst em dnp3. sel ect Oper at eAnal og("Dnp3", index=1, val ue=15, vari ation=3)

system.dnp3.selectOperateBinary

Description

Issues a Select-And-Operate command for digital control operations at binary output points (CROB).

Syntax

system.dnp3.selectOperateBinary(deviceName, indexes, opType, tcCode, count, onTime, offTime)
® Parameters
String deviceName - The name of the DNP3 device driver.
List indexes - A list of indexes of the objects to be modified in the outstation.
Integer opType - The type of operation. 0=NUL, 1=PULSE_ON, 2=PULSE_OFF, 3=LATCH_ON, 4=LATCH_OFF
Integer tcCode - The Trip-Close code, used in conjunction with the opType. 0=NUL, 1=CLOSE, 2=TRIP
Integer count - The number of times the outstation shall execute the operation.
Integer onTime - The duration that the output drive remains active, in millis.
Integer offTime - The duration that the output drive remains non-active, in millis.
® Returns
The DNP3 status code of the response, as an integer.
® Scope

All

Code Examples

This exanple shows | atching on 3 binary output points with the Sel ect-And-Operate conmmand.

latch = system dnp3. LATCH ON
system dnp3. sel ect Oper at eBi nary("Dnp3", [0, 1, 2], latch)

This exanpl e shows setting a binary output point at index 3 to pulse at 5 second intervals
with the Sel ect-And- Qperate conmmand.

pul se = system dnp3. PULSE_ON
trip = systemdnp3. TRIP
syst em dnp3. sel ect Oper at eBi nary("Dnp3", [3], pulse, trip, count=2, onTi ne=5000, offTi me=5000)

system.eam

® system.eam.getGroups
® system.eam.queryAgentHistory
® system.eam.queryAgentStatus

system.eam.getGroups

Description

Returns the names of the defined agent organizational groups in the Gateway.

Syntax

system.eam.getGroups()
Parameters

® none
Returns

® A string list of group names
Scope

* Al

Examples

Code Snippet

groups = system eam get G oups()
for group in groups:
print group

system.eam.queryAgentHistory

Description

Returns a list of the most recent agent events

Syntax

system.eam.getAgentEvents(grouplds, agentlds, startDate, endDate, limit)

® Parameters
List grouplds - A list of groups to restrict the results to. If not specified, all groups will be included.
List agentlds - A list of agent ids to restrict the results to. If not specified, all agents will be allowed.
Date startDate - The starting time for history events. If null, defaults to 8 hours previous to now.
Date endDate - The ending time for the query range. If null, defaults to "now".
int limit - The limit of results to return. Defaults to 100. A value of 0 means "no limit".

® Returns
Dataset - A list of agent events, arranged by time ascending.

® Scope

All
Examples

Code Snippet

resul t s=syst em eam quer yAgent Hi st ory()
for rowin range(results.rowCount):
event | d=resul ts. get Val ueAt (row, "id")
agent Nane=r esul t s. get Val ueAt (row, "agent_nane")
agent Rol e=resul ts. get Val ueAt (row, "agent_role")
event Ti ne=resul t s. get Val ueAt (row, "event_tine")
event Cat egory=resul ts. get Val ueAt (row, "event_category")
event Type=resul ts. get Val ueAt (row, "event_type")
event Sour ce=resul t s. get Val ueAt (row, "event_source")
event Level =resul ts. get Val ueAt (row, "event_level")
event Level I nt =resul ts. get Val ueAt (row, "event_level _int")
message=resul ts. get Val ueAt (row, "nessage")

system.eam.queryAgentStatus

Description

Returns the current state of the matching agents.

Syntax

system.eam.queryAgentStatus(grouplds, agentlds, isConnected)
® Parameters
List grouplds - A list of groups to restrict the results to. If not specified, all groups will be included.
List agentlds - A list of agent ids to restrict the results to. If not specified, all agents will be allowed.

Boolean isConnected - If True, only returns agents that are currently connected. If False, only agents that are considered down will be
returned, and if not specified, all agents will be returned.

® Returns
Dataset - A list of AgentStatus objects.
® Scope

All
Examples

Code Snippet

resul t s=syst em eam quer yAgent St at us()
for rowin range(results.rowCount):
agent Nane=r esul t s. get Val ueAt (row, "Agent Nane")
nodeRol e=resul ts. get Val ueAt (row, "NodeRol e")
agent G oup=r esul ts. get Val ueAt (row, "Agent G oup")
| ast Cormrr esul ts. get Val ueAt (row, "Last Comruni cation")
i sConnect ed=resul ts. get Val ueAt (row, "I sConnected")
i sRunni ng=resul ts. get Val ueAt (row, "I sRunning")
runni ngSt at e=resul ts. get Val ueAt (row, "Runni ngState")
runni ngSt at el nt =resul t s. get Val ueAt (row, "RunningStatelnt")
i censeKey=resul ts. getVal ueAt (row, "LicenseKey")
pl at f or nWer si on=resul t s. get Val ueAt (row, "Version")

system.file

system.file.fileExists

Description

Checks to see if a file or folder at a given path exists.

Syntax

system file.fileExists(filepath)
® Parameters
String filepath - The path of the file or folder to check.
® Returns

boolean - True (1) if the file/folder exists, false (0) otherwise.
® Scope

All

Code Examples

Code Snippet

#Thi s basi c exanpl e shows how the fileExists function is used in its sinplest form
if systemfile.fileExists("C\\tenp_file.txt"):

system gui . messageBox("Yes, the file exists")
el se:

system gui . messageBox("No, it doesn't exist")

Code Snippet

#Thi s code uses the fileExists function, along with other systemfile.* functions, to pronpt the user to
confirmthat they want to overwite an existing file.
filename = systemfile.saveFile(nane)
if filenane != None:
reallyWite = 1
if systemfile.fileExists(filenane):
overwiteMessage = "File '%' already exists. Overwite?"
reallyWite = systemgui.confirmoverwiteMessage % fil enane)
if reallyWite:
systemfile.witeFile(filename, "This will be the contents of ny new file")

system.file.getTempkFile

Description

Creates a new temp file on the host machine with a certain extension, returning the path to the file. The file is marked to be removed when the
Java VM exits.

Syntax

system.file.getTempFile(extension)
® Parameters
String extension - An extension, like ".txt", to append to the end of the temporary file.
® Returns
String - The path to the newly created temp file.
® Scope

All

Code Examples

Code Snippet

#This code wites sone data to a tenmorary file, and then opens that file. Assume that the data variable
hol ds the contents of an excel (xIs) file.

filename = systemfile.getTenpFile("xls")
systemfile.witeFile(filenane, data)
system net.openURL("file://" + filenane)

system.file.openFile

Description

Shows an "Open File" dialog box, prompting the user to choose a file to open. Returns the path to the file that the user chose, or None if the user
canceled the dialog box. An extension can optionally be passed in that sets the filetype filter to that extension.

Syntax

system file.openFile([extension], [defaultLocation])
® Parameters
String extension - A file extension, like "pdf", to try to open. [optional]
String defaultLocation - A folder location, like "C:\MyFiles", to use as the default folder to store in. [optional] - Added in 7.8.1
® Returns
String - The path to the selected file, or None if canceled.
® Scope

All

Code Examples

Code Snippet

#Thi s code would pronpt the user to open a file of type "gif'. If None is returned, it neans the user
cancel ed the open dial og box.

path = systemfile.openFile('gif")
if path !'= None:
do something with the file

Code Snippet

#Thi s code woul d pronpt the user to open a file of type 'pdf' fromtheir stored docunents folder. If None
is returned, it neans the user canceled the open dial og box.
#Note: the conputer running this code needs to have network access to the "fileserver" conputer.
path = systemfile.openFile('pdf', "\\fileserver\PDF_Storage')
if path !'= None:
do something with the file

system.file.readFileAsBytes

Description

Opens the file found at path filename, and reads the entire file. Returns the file as an array of bytes. Commonly this array of bytes is uploaded to a
database table with a column of type BLOB (Binary Large OBject). This upload would be done through an INSERT or UPDATE SQL statement run
through the system.db.runPrepUpdate function. You could also write the bytes to another file using thesystem.file.writeFile function, or send the
bytes as an email attachment using system.net.sendEmail.

Syntax

system.file.readFileAsBytes(filepath)
® Parameters
String filepath - The path of the file to read.
® Returns
byte[] - The contents of the file as an array of bytes.
® Scope

All

Code Examples

Code Snippet

#Thi s code woul d pronpt the user to choose a file. If the user chooses a file, it would then read that
file and upload it to a database table called Files into a BLOB colum called file_data.

path = systemfile.openFile()
if path !'= None:
bytes = systemfile.readFil eAsBytes(fil enane)
system db. runPrepUpdat e("I NSERT | NTO Files (file_data) VALUES (?)", [bytes])

system.file.readFileAsString

Description

Opens the file found at path filename, and reads the entire file. Returns the file as a string. Common things to do with this string would be to load it
into the text property of a component, upload it to a database table, or save it to another file using system.file.writeFile function.

Syntax

system.file.readFileAsString(filepath)
® Parameters
String filepath - The path of the file to read.
® Returns
String - The contents of the file as a string.
® Scope

All

Syntax

system file.readFileAsString(filepath, encoding)
® Parameters
String filepath - The path of the file to read.

String encoding - The character encoding of the file to be read. Will throw an exception if the string does not represent a supported
encoding. Common encodings are "UTF-8", "ISO-8859-1" and "US-ASCII".

® Returns
String - The contents of the file as a string.
® Scope

All

Code Examples

Code Snippet

#Thi s code woul d pronpt the user to choose a text file. If the user chooses a file, it would then set a
text area on the screen to display the file.

path = systemfile.openFile("txt")
if path !'= None:
contents = systemfile.readFileAsString(path)
event . sour ce. parent. get Conponent (" Text Area").text = contents

system.file.saveFile

Description

Prompts the user to save a new file named filename. The optional extension and typeDesc arguments will be used for a file type filter, if any. If the
user accepts the save, the path to that file will be returned. If the user cancels the save, None will be returned.

Syntax

system file.saveFile(filename [, extension] [, typeDesc])
® Parameters
String filename - A file name to suggest to the user.
String extension - The appropriate file extension, like "jpeg", for the file. [optional]
String typeDesc - A description of the extension, like "JPEG Image" [optional]
® Returns
String - The path to the file that the user decided to save to, or None if they canceled.
® Scope

All

Code Examples

Code Snippet
#Thi s code woul d pronpt the user to save the text in a text area to a file.
path = systemfile.saveFile("myfile.txt")

if path = None:
systemfile.witeFile(path, event.source. parent.getConponent("Text Area").text)

system.file.writeFile

Description

Writes the given data to the file at file path filename. If the file exists, the append argument determines whether or not it is overwritten (the default)
or appended to. The data argument can be either a string or an array of bytes (commonly retrieved from a BLOB in a database or read from
another file using system. file.readFileAsBytes).

Syntax

system.file.writeFile(filepath, data [, append])
® Parameters
String filepath - The path of the file to write to.
byte[] data - The binary content to write to the file.

boolean append - If true(1), the file will be appended to if it already exists. If false(0), the file will be overwritten if it exists. The default
is false(0). [optional]

® Returns
® Scope

All

Syntax

system.file.writeFile(filepath, charData [, append])
® Parameters
String filepath - The path of the file to write to.
String charData - The character content to write to the file.

boolean append - If true(1), the file will be appended to if it already exists. If false(0), the file will be overwritten if it exists. The default
is false(0). [optional]

® Returns
® Scope

All

Code Examples

Code Snippet
#Thi s code woul d downl oad a BLOB from a database and save it to a file.

resul t Set = system db. runQuery("SELECT fil e_data FROM Fi | es WHERE i d=12")
if len(resultSet) > 0: # if the query returned anything...
data = resultSet[0][0] # grab the BLOB at the Oth row and Oth col um
filenane = systemfile.saveFil e("M/Downl oadedFi | e. xyz")
if filename != None:
systemfile.witeFile(filenanme, data)

Code Snippet
#Thi s code would wite the contents of a text area to a file.

data = event.source. parent. get Conponent (" Text Area").text
filename = systemfile.saveFile("M/Downl oadedFile.txt")
if filename != None:

systemfile.witeFile(filenane, data)

system.groups

system.groups.loadFromFile

Description

Loads the configuration froman xm export, into the specified project (creating the project if necessary).
The node paraneter dictates how overwites occur.

Syntax

system.groups.loadFromFile(filePath, projectName, mode)
® Parameters
String filePath - The path to a valid transaction group xml or csv file.
String projectName - The name of the project to load into.
int mode - How duplicates will be handled. 0 = Overwrite, 1 = Ignore, 2 = Replace the existing project with this one.
® Returns
none
® Scope

Gateway

system.groups.removeGroups

Description

Rermoves the specified groups fromthe project. The group paths are "Fol der/ Path/ To/ G oupNane", separated by
forward sl ashes.

Syntax

system.groups.removeGroups(projectName, paths)
® Parameters
String projectName - The project to remove from. If the project does not exist, throws an lllegalArgumentException

Collection<String> paths - A collection of paths to remove. The group paths are "Folder/Path/To/GroupName", separated by forward
slashes.

® Returns
none
® Scope

Gateway

system.gui

Constants

system gui . ACCL_NONE = 0

system gui . ACCL_CONSTANT = 1

system gui . ACCL_FAST_TO SLOW = 2

system gui . ACCL_SLOW TO FAST = 3

system gui . ACCLE_EASE = 4

system gui . COORD_SCREEN = 0

system gui . COORD_DESI GNER = 1

Scripting Functions

system.gui.chooseColor
system.gui.color

system.gui.confirm
system.gui.convertPointToScreen
system.gui.createPopupMenu
system.gui.errorBox
system.gui.findWindow
system.gui.getOpenedWindowNames
system.gui.getOpenedWindows
system.gui.getParentWindow
system.gui.getScreens
system.gui.getSibling
system.gui.getWindow
system.gui.getWindowNames
system.gui.inputBox
system.gui.isTouchscreenModeEnabled
system.gui.messageBox
system.gui.moveComponent
system.gui.openDiagnostics
system.gui.passwordBox
system.gui.reshapeComponent
system.gui.resizeComponent
system.gui.setScreenindex
system.gui.setTouchscreenModeEnabled
system.gui.showNumericKeypad
system.gui.showTouchscreenKeyboard
system.gui.transform
system.gui.warningBox

system.gui.chooseColor

Description

Prompts the user to pick a color using the default color-chooser dialog box.

Syntax

system.gui.chooseColor(initialColor [, dialogTitle])
® Parameters
Color initialColor - A color to use as a starting point in the color choosing popup.
String dialogTitle - The title for the color choosing popup. Defaults to "Choose Color" [optional]
® Returns
Color - The new color chosen by the user.
® Scope

All

Code Examples

Code Snippet

#This code woul d be placed in the actionPerfornmed event of a button, and woul d change the background
color of the container the button was placed in.

parent = event.source. parent
newCol or = system gui.chooseCol or (parent. background)
par ent . background = newCol or

system.gui.color

Description

Creates a new color object, either by parsing a string or by having the RGB[A] channels specified explicitly.

Syntax

system.gui.color(color)
® Parameters
String color - A string that will be coerced into a color. Can accept many formats, such as "red" or "#FF0000" or "255,0,0"
® Returns
Color - The newly created color.
® Scope

All

Syntax

system.gui.color(red, green, blue [, alpha])
® Parameters
int red - The red component of the color, an integer 0-255.
int green - The green component of the color, an integer 0-255.
int blue - The blue component of the color, an integer 0-255.
int alpha - The alpha component of the color, an integer 0-255. [optional]
® Returns
Color - The newly created color.
® Scope

All

Code Examples

Code Snippet

#Thi s exanpl e changes the background col or of a conponent to red.

nyConponent = event.source
my Conponent . background = fpmi . gui.color(255,0,0) # turn the conponent red

system.gui.confirm

Description

Displays a confirmation dialog box to the user with "Yes" and "No" options, and a custom message.

Syntax

system.gui.confirm(message [, title] [, allowCancel])
® Parameters
String message - The message to show in the confirmation dialog.
String title - The title for the confirmation dialog. [optional]
Boolean allowCancel - Show a cancel button in the dialog. [optional]
® Returns
Boolean - True (1) if the user selected "Yes", false (0) if the user selected "No", None if the user selected "Cancel".
® Scope

All

Code Examples

Code Snippet

#By using the confirmfunction in an if statement, we can let the user confirman action. In this case,
we shut down the plant if the user confirms it, otherw se, we don't do anything.

if systemgui.confirn("Are you sure you want to shutdown the plant?",
"Real | y Shutdown?"):
syst em db. runUpdat eQuer y(" UPDATE Control Tabl e SET Shut down=1")

system.gui.convertPointToScreen

Description

Converts a pair of coordinates that are relative to the upper-left corner of some component to be relative to the upper-left corner of the entire
screen.

Syntax

system.gui.convertPointToScreen(x, y, event)

® Parameters
int X - The X-coordinate, relative to the component that fired the event.
inty - The Y-coordinate, relative to the component that fired the event.
EventObject event - An event object for a component event.

® Returns
PyTuple - A tuple of (x,y) in screen coordinates.

® Scope

All

Code Examples

Code Snippet

#Thi s exanple will get the coordinates where the nouse is (fromthe corner of the nonitor) and display
themin a | abel.

#Get the screen coordinates of the pointer and wite themto a |abel.

coords = system gui.convert Poi nt ToScreen(event. x, event.y, event)

event. sour ce. get Conponent (' Label ').text = "x: % y: %" %coords[0], coords[1])

system.gui.createPopupMenu

Description

Creates a new popup menu, which can then be shown over a component on a mouse event. To use this function, first create a Python sequence w
hose entries are strings, and another sequence whose entries are function objects. The strings will be the items that are displayed in your popup
menu, and when an item is clicked, its corresponding function will be run. Passing in a function of None will cause a separator line to appear in the
popup menu, and the corresponding string will not be displayed. Your functions must accept an event object as an argument. See also: Functions to
show the popup menu, store the menu object that this function returns, and then call its show(event) function, where event is the event object for a
mousePressed or mouseReleased event on the component you wish the popup menu to be shown on. Best Practices. It is best to have the menu
object created only once via an application specific library function. Then, call the show(event) function on both the mousePressed and mouseRele
asedevents on your component. The reason for this is that different operating systems (Windows, Linux, MacOS) differ in when they like to show
the popup menu. The show(event) function detects when the right time is to show itself, either on mouse press or release. See the examples for
more.

Syntax

system.gui.createPopupMenu(itemNames, itemFunctions)
® Parameters
PySequence itemNames - A list of names to create popup menu items with.
PySequence itemFunctions - A list of functions to match up with the names.
® Returns
JPopupMenu - The javax.swing.JPopupMenu that was created.
® Scope

Client

Code Examples

https://legacy-docs.inductiveautomation.com/display/DOC/Functions

@ Event Handlers

A popup menu must be created on either the mouse released or mouse pressed event handlers. This function is not appropriate for
invoking on the property change event.

Also, the mouse motions that invoke the popup menu are dependent on the operating system and may behave differently depending on
which button you press on the mouse. Because of the different popup-trigger settings on different operating systems, the example code
may behave differently on a Linux or a Mac. The way around this is to do the same code in both themousePressed and mouseReleased
events. In order to avoid code duplication, consider placing the code in a custom method.

Code Snippet

#This first exanple is a very basic to denpnstrate the fundanentals of naeking a popup nenu. Put the
follow ng script in the nouseRel eased event of a conponent.

#This will only work on Wndows - continue on for cross-platforminstructions.

#Ri ght click on the conponent to see the resulting pop-up nmenu that is created with this code.

def sayHello(event):

system gui . messageBox("Hel o World")
menu = system gui . creat ePopupMenu(["Cick Me"], [sayHello])
menu. show(event)

Code Snippet

#The foll owi ng code denonstrates how to edit a conponent's custom property after you right clicked the

conponent .

#Thi s code nakes use of functions in order to edit the conponents custom properties.

#The foll owi ng code should be located in the nouse rel eased event handl er.

#Al so, there nust be custom properties present on the conponent in order to handl e these functions.

#For exanple, there nmust be a custom property called ' DatabaseProvider' that takes a string.

if event.button == event.BUTTON3:

def edit Dat abaseProvi der(event):

result = system gui.inputBox("Dat abase Provider", event. source. parent. Dat abasePr ovi der)
event . sour ce. parent . Dat abaseProvi der = result

def editTabl e(event):
result = system gui.inputBox("Tabl e Nanme", event. source. parent. Tabl e)
event . source. parent. Table = result

def editCol um(event):
result = system gui.inputBox("Col umm Nane", event. source. par ent. Col unm)
event. source. parent. Colutm = result

def editKeyCol um(event):
result = system gui.inputBox("Key Col umm Nane", event. source. par ent. KeyCol umm)
event . sour ce. parent. KeyCol um = resul t

nanes = ["Edit DB Provider", "Edit Table Nanme", "Edit Colum Nane", "Edit Key Col um"]
functions = [editDatabaseProvi der, editTable, editColum, editKeyColum]

menu = system gui.creat ePopupMenu(nanes, functions)

nmenu. show event)

Code Snippet

#Thi s exanpl e shows a nested popup nenu, with menus within menus. Al nmenu itens call sayHello().
def sayHell o(event):
system gui . messageBox("Hel o World")
subMenu = [["Cick Me 2", "dick Me 3"], [sayHello, sayHello]]
menu = system gui.creat ePopupMenu(["Click Me", "SubMenu"], [sayHello, subMenu])
nmenu. show event)

system.gui.errorBox

Description

Displays an error-style message box to the user.

Syntax

system.gui.errorBox(message [, title])
® Parameters
String message - The message to display in an error box.
String title - The title for the error box. [optional]
® Returns
Nothing
® Scope

Client

Code Examples

Code Snippet

#Turn on conpressor #12, but only if the user has the right credentials.

if 'Supervisor' in systemsecurity.getRoles():
updat eQuery = "UPDATE Conpressor Control SET running=1 WHERE conpNum = 12"
syst em db. runUpdat eQuer y(updat eQuery)

el se:
error Message = "Unable to turn on Conpressor 12."
error Message += " You don't have proper security privileges."

system gui . error Box(error Message)

system.gui.findWindow

Description

Finds and returns a list of windows with the given path. If the window is not open, an empty list will be returned. Useful for finding all instances of
an open window that were opened withsystem.gui.openWindowlnstance

Syntax

system.gui.findWindow(path)
® Parameters
String path - The path of the window to search for
® Returns
List - A list of window objects. May be empty if window is not open, or have more than one entry if multiple windows are open.
® Scope

Client

Code Examples

Code Snippet
#This exanple finds all of the open instances of the w ndow naned "Popup" and cl oses themall.
al | I nstances = system gui.fi ndW ndow " Popup")

for window in alllnstances:
syst em nav. cl oseW ndow(wi ndow)

system.gui.getOpenedWindowNames

Description

Finds all of the currently open windows, returning a tuple of their paths.

Syntax

system.gui.getOpenedWindowNames()
® Parameters
None
® Returns
PyTuple - A tuple of strings, representing the path of each window that is open.
® Scope

All

Code Examples

Code Snippet

#Thi s exanple prints out into the console the full path for each opened w ndow.

wi ndows = system gui . get OpenedW ndowNanes()
print 'There are % wi ndows open' % | en(w ndows)
for path in wi ndows:

print path

system.gui.getOpenedWindows

Description

Finds all of the currently open windows, returning a tuple of references to them.

Syntax

system.gui.getOpenedWindows()
® Parameters
None
® Returns
PyTuple - A tuple of the opened windows. Not their names, but the actual window objects themselves.
® Scope

Client

Code Examples

Code Snippet
#Thi s exanple prints out the path of each currently opened wi ndow to the consol e.

wi ndows = system gui . get OpenedW ndows()
print 'There are % wi ndows open' % | en(w ndows)
for window in wi ndows:

print w ndow. get Pat h()

system.gui.getParentWindow

Description

Finds the parent (enclosing) window for the component that fired an event, returning a reference to it.

Syntax

system.gui.getParentWindow(event)
® Parameters
EventObject event - A component event object.
® Returns
PyObject - The window that contains the component that fired the event.
® Scope

Client

Code Examples

Code Snippet
#Use this in an event script to change the window s title.

wi ndow = system gui . get Par ent W ndow(event)
window. title="This is a newtitle'

system.gui.getScreens

Description

Get a list of all the monitors on the computer this client is open on. Use with system.gui.setScreenindex() to move the client.

Syntax

system.gui.getScreens()
® Parameters
Nothing
® Returns
PySequence - A sequence of tuples of the form (index, width, height) for each screen device (monitor) available.
® Scope

Client

Code Examples

Code Snippet
#Thi s exanpl e fetches nonitor data and pushes it to a table in the same container

screens = system gui . get Screens()
pyData = []
for screen in screens:
pyDat a. append([screen[0], screen[1], screen[2]])

#Push data to ' Tabl e’
event . sour ce. parent . get Conponent (' Tabl e'). data = system dat aset.toDat aSet (["screen","w dth", "hei ght"],
pyDat a)

system.gui.getSibling

Description

Given a component event object, looks up a sibling component. Shortcut for event.source.parent.getComponent("siblingName"). If no such sibling
is found, the special value None is returned.

Syntax

system.gui.getSibling(event, name)
® Parameters
EventObject event - A component event object.
String name - The name of the sibling component.
® Returns
PyObject - The sibling component itself.
® Scope

Client

Code Examples

Code Snippet
#This exanple will get its sibling Text Field' s text, and use it.

textField = systemgui.getSibling(event, 'TextField (1))
if textField is None:

systemgui.errorBox("There is no text field!'")
el se:

system gui . messageBox("You typed: %" % textField. text)

system.gui.getWindow

Description

Finds a reference to an open window with the given name. Throws a ValueError if the named window is not open or not found.

Syntax

system.gui.getWindow(name)
® Parameters
String name - The path to the window to field.
® Returns
PyObject - A reference to the window, if it was open.
® Scope

Client

Code Examples

Code Snippet
#This exanple will get the wi ndow naned ' Overview and then close it.

try:
wi ndow = system gui . get Wndow(' Overvi ew)
system gui . cl oseW ndow(wi hdow)

except Val ueError:
system gui . war ni ngBox(" The Overvi ew wi ndow i sn't open")

Code Snippet
#This exanple will set a value on a | abel conponent in the 'Header' w ndow.
try:

wi ndow = system gui . get W ndow(' Header ")

wi ndow. get Root Cont ai ner (). get Conponent (' Label ').text = "Machine 1 Starting"

except Val ueError:
syst em gui . war ni ngBox(" The Header w ndow isn't open")

system.gui.getWindowNames

Description

Returns a list of the paths of all windows in the current project, sorted alphabetically.

Syntax

system.gui.getWindowNames()
® Parameters
None
® Returns
PyTuple - A tuple of strings, representing the path of each window defined in the current project.
® Scope

Client

Code Examples

Code Snippet
#Thi s exanpl e woul d open wi ndows that begin with "Mdtor" and pass in the currently selected notor nunber.

notor = event. source. parent. nunber
wi ndows = system gui.get WndowNanes()
for path in wi ndows:
if nane[:5] == "Mtor":
syst em gui . openW ndow(pat h, {"notorNunber": notor})

system.gui.inputBox

Description

Opens up a popup input dialog box. This dialog box will show a prompt message, and allow the user to type in a string. When the user is done,
they can press "OK" or "Cancel". If OK is pressed, this function will return with the value that they typed in. If Cancel is pressed, this function will
return the value None.

Syntax

system.gui.inputBox(message, defaultText)
® Parameters
String message - The message to display for the input box.
String defaultText - The default text to initialize the input box with.
® Returns
String - The string value that was entered in the input box.
® Scope

Client

Code Examples

Code Snippet

#This could go in the nouseC icked event of a label to allow the user to change the | abel's text.

txt = systemgui.inputBox("Enter text:", event.source.text)
if txt !'= None:
event.source.text = txt

system.gui.isTouchscreenModeEnabled

Description

Checks whether or not the running client's touchscreen mode is currently enabled.

Syntax

system.gui.isTouchscreenModeEnabled()
® Parameters
None
® Returns
boolean - True(1) if the client currently has touchscreen mode activated.
® Scope

All

Code Examples

Code Snippet

#Thi s exanpl e should be used in the Cient Startup Script to check if this client is being run on a touch
screen conputer (judged by an I P address) and set touchscreen node.

i pAddress = system net. getl pAddress()
query = "SELECT COUNT(*) FROM touchscreen_conputer_ips WHERE i p_address = '%"' "
i sTouchscreen = system db. runScal ar Query(query % i pAddress))
if isTouchscreen and not system gui.isTouchscreenMdeEnabl ed():
system gui . set Touchscr eenMbdeEnabl ed(1)

system.gui.messageBox

Description

Displays an informational-style message popup box to the user.
Syntax

® Parameters

String message - The message to display.

String title - A title for the message box. [optional]
® Returns

Nothing
® Scope

Client

Code Examples

Code Snippet
#This exanple will show how many hours a nmotor has been running when it is clicked.

get the notor nunber

not or Nunber = event. sour ce. get PropertyVal ue(' Mot or Nunber ')

retrieve the hours running fromthe database

query = "SELECT Hour sRunni ng FROM Mot or St at us WHERE not or =%d"
hours = system db. runScal ar Query(query % not or Nunber)

syst em gui . nessageBox(" The notor has been running for % hours" % notor Nunber)

system.gui.moveComponent

1 Deprecated

As of 7.8.1. See system.gui.transform() instead.

Description

Alters a component's position to a new pair of coordinates, (x,y), a point relative to the upper-left corner of the component's parent. Note that when
using relative layout, these coordinates are evaluated as if the component's size was the same size as the last time the component was saved in
the Designer. This effectively means that your argument coordinates will automatically scale with relative layout.

Syntax

system.gui.moveComponent(component, X, y)
® Parameters
JComponent component - The component to move.
int x - The x-coordinate to move to, relative to the upper-left corner of the component's parent container.
inty - The y-coordinate to move to, relative to the upper-left corner of the component's parent container.
® Returns
Nothing
® Scope

Client

Code Examples

Code Snippet

#This code would go in a Tiner's propertyChange script for anination.

if event.propertyNane == "val ue":
newX = event.newval ue;
rect = event.source. parent. get Conponent (" Rectangl e")
syst em gui . nroveConponent (rect, newX, 250)

system.gui.openDiagnostics

Description

Opens the client runtime diagnostics window, which provides information regarding performance, logging, active threads, connection status, and
the console.

Syntax

system.gui.openDiagnostics()
® Parameters
None
® Returns
None
® Scope

Client

Code Examples

Code Snippet

#QOpens the diagnostics windowin a running client
syst em gui . openDi agnosti cs()

system.gui.passwordBox

Description

Pops up a special input box that uses a password field, so the text isn't echoed back in clear-text to the user. Returns the text they entered, or None
if they canceled the dialog box.

Syntax

system.gui.passwordBox(message [, title] [, echoChar])
® Parameters
String message - The message for the password prompt.
String title - A title for the password prompt. [optional]
String echoChar - A custom echo character. Defaults to: * [optional]
® Returns
String - The password that was entered, or None if the prompt was canceled.
® Scope

Client

Code Examples

Code Snippet

#Thi s exanpl e would pronpt a user for a password before opening the 'Admin' Screen.

password = system gui . passwor dBox(" Pl ease enter the password.")
if password == "open sesane":
syst em nav. openW ndow(" Admi n")

system.gui.reshapeComponent

1 Deprecated

As of 7.8.1

Description

Sets a component's position and size at runtime. The coordinates work in the same way as the system.gui.moveComponent function.

Syntax

system.gui.reshapeComponent(component, x, y, width, height)

® Parameters
JComponent component - The component to move and resize
int X - The x-coordinate to move to, relative to the upper-left corner of the component's parent container.
inty - The y-coordinate to move to, relative to the upper-left corner of the component's parent container.
int width - The new width for the component
int height - The new height for the component

® Returns
Nothing

® Scope

Client

Code Examples

Code Snippet

#This code would go in a Tiner's propertyChange script for anination.

if event.propertyNane == "val ue":
newX = event.newval ue;
newW dth = int(event.newal ue*1.5)
rect = event.source. parent. get Conponent (" Rect angl e")
syst em gui . reshapeConponent (rect, newX, 150, newwdth, 80)

system.gui.resizeComponent

1 Deprecated

As of 7.8.1

Description

Sets a component's size at runtime. The coordinates work in the same way as the system.gui.moveComponent function.

Syntax

system.gui.resizeComponent(component, width, height)

® Parameters
JComponent component - The component to resize
int width - The new width for the component
int height - The new height for the component

® Returns
Nothing

® Scope

Client

Code Examples

Code Snippet

#This code would go in a Tinmer's propertyChange script for aninmation \

if event.propertyNane == "val ue":
newW dt h = event. newval ue;
rect = event.source. parent. get Conponent (" Rect angl e")
system gui . resi zeConponent (rect, newwdth, 80)

system.gui.setScreenindex

Description

Moves an open client to a specific monitor. Use with system.gui.getScreens() to identify monitors before moving.

Syntax

system.gui.setScreenindex(index)
® Parameters
integer index - The new monitor index for this client to move to. 0 based.
® Returns
Nothing
® Scope

Client

Code Examples

Code Snippet
#Thi s exanpl e could be used on a startup script to nove the client to a 2nd nonitor.

system gui . set Scr eenl ndex(1)

system.gui.setTouchscreenModeEnabled

Description

Alters a running client's touchscreen mode on the fly.

Syntax

system.gui.setTouchscreenModeEnabled(enabled)
® Parameters
boolean enabled - The new value for touchscreen mode being enabled.
® Returns
Nothing
® Scope

Client

Code Examples

Code Snippet

#Thi s exanpl e coul d be used on an input heavy wi ndow s internal FrameActi vated event to renove touch
screen node.

if systemgui.isTouchscreenMdeEnabl ed():
syst em gui . set Touchscr eenModeEnabl ed(0)

system.gui.showNumericKeypad

Description

Displays a modal on-screen numeric keypad, allowing for arbitrary numeric entry using the mouse, or a finger on a touchscreen monitor. Returns
the number that the user entered.

Syntax

system.gui.showNumericKeypad(initialValue [, fontSize][, usePasswordMode])
® Parameters
Number initialValue - The value to start the on-screen keypad with.

int fontSize - The font size to display in the keypad. [optional]

boolean usePasswordMode - If True, display a * for each digit. [optional] (since 7.8.1)
® Returns

Number - The value that was entered in the keypad.
® Scope

Client

Code Examples

Code Snippet

#This function is a holdover for backwards conpatibility. Input conponents now know when the client is in
touchscreen node and respond accordingly.
#This script would go in the Mused icked or MusePressed action of a Text Field or Nuneric Text Field.

For Integer Numeric Text Field:
if system gui.isTouchscreenMdeEnabl ed():
event. source. intValue = system gui.showNuneri cKeypad(event. source. i ntVal ue)

For Doubl e Nureric Text Field:
if systemgui.isTouchscreenMdeEnabl ed():
event . sour ce. doubl eVal ue = system gui . showNuneri cKeypad(event. sour ce. doubl eVal ue)

For Text Field:
notice the str() and int() functions used to convert the text to a nunber and
vice versa.
str() and int() are built-in Jython functions
if systemgui.isTouchscreenMdeEnabl ed():
event.source.text = str(system gui.showNunericKeypad(int(event.source.text)))

system.gui.showTouchscreenKeyboard

Description

Displays a modal on-screen keyboard, allowing for arbitrary text entry using the mouse, or a finger on a touchscreen monitor. Returns the text that
the user "typed".

Syntax

system.gui.showTouchscreenKeyboard(initialText [, fontSize] [, passwordMode])
® Parameters
String initialText - The text to start the on-screen keyboard with.
int fontSize - The font size to display in the keyboard. [optional]
boolean passwordMode - True (1) to activate password mode, where the text entered isn't echoed back clear-text. [optional]
® Returns
String - The text that was "typed" in the on-screen keyboard.
® Scope

Client

Code Examples

Code Snippet

#This function is a holdover for backwards conpatibility. Input conponents now know when the client is in

touchscreen node and respond accordingly.
#This would go in the Mused icked or MusePressed action of a Text Field or simlar conponent.

if system gui.isTouchscreenMdeEnabl ed():
event.source.text = system gui.showTouchscreenKeyboar d(event. source. text)

system.gui.transform

Description

Sets a component's position and size at runtime. Additional arguments for the duration, framesPerSecond, and acceleration of the operation exist
for animation. An optional callback argument will be executed when the transformation is complete. Note: The transformation is performed in
Designer coordinate space on components which are centered or have more than 2 anchors. Since 7.8.1.

Syntax

system.gui.transform(component [, newX, newY, newWidth, newHeight, duration, callback, framesPerSecond, acceleration, coordSpace])
® Parameters
JComponent component - The component to move or resize.
int newX - An optional x-coordinate to move to, relative to the upper-left corner of the component's parent container.
int newY - An optional y-coordinate to move to, relative to the upper-left corner of the component's parent container.
int newWidth - An optional width for the component.
int newHeight - An optional height for the component.

int duration - An optional duration over which the transformation will take place. If omitted or 0, the transform will take place
immediately.

PyObiject callback- An optional function to be called when the transformation is complete.

int framesPerSecond - An optional frame rate argument which dictates how often the transformation updates over the given
duration. The default is 60 frames per second.

int acceleration - An optional maodifier to the acceleration of the transformation over the given duration. See system.gui constants for
valid arguments.

int coordSpace- The coordinate space to use. When the default Screen Coordinates are used, the given size and position are
absolute, as they appear in the client at runtime. When Designer Coordinates are used, the given size and position are pre-runtime
adjusted values, as they would appear in the Designer. See system.gui constants for valid arguments.

® Returns
PyObject animation - An animation object that the script can use to pause(), resume(), or cancel() the transformation.

® Scope

Client

Code Examples

This exanpl e changes the size the a conponent to 100x100
This script should be run fromthe conponent that will be changed (ie: on the npuseEntered event)

system gui . transf or n{ conponent =event . source, newW dt h=100, newHei ght =100)

This exanple noves a conponent to coordinates 0,0 over the course of 1 second.
When the animation is conplete, the conponent is noved back to its original position
over the course of 2 seconds, slowing in speed as it approaches the end.

conponent = event. source. parent. get Conponent (' Text Field")
ori gX = conponent.x
origY = conponent.y

system gui . transforn(
conponent,
0, O,
dur ati on=1000,
cal | back=l anmbda: system gui.transforn(
conponent,
origX, origy,
dur ati on=2000,
accel erati on=system gui . ACCL_FAST_TO _SLOW

system.gui.warningBox

Description

Displays a message to the user in a warning style pop-up dialog.

Syntax

system.gui.warningBox(message [, title])
® Parameters
String message - The message to display in the warning box.
String title - The title for the warning box. [optional]
® Returns
Nothing
® Scope

Client

Code Examples

Code Snippet

#Thi s code show a yel |l ow popup box simlar to the system gui.nessageBox function.
Start the notor, or, warn the user if in wong node
runMbde = event. source. parent. get PropertyVal ue(' RunMbde')

Cannot start the motor in node #1
if runMbde ==

syst em gui . war ni ngBox(" Cannot start the notor, current node is VI EW MODE</ B>")
el se:

system db. runUpdat eQuer y(" UPDATE Mot or Control SET Mot or Run=1")

system.nav

system.nav.centerWindow

Description

Given a window path, or a reference to a window itself, it will center the window. The window should be floating an non-maximized. If the window
can't be found, this function will do nothing.

Syntax

system.nav.centerWindow(windowPath)
® Parameters
String windowPath - The path of the window to center.
® Returns
Nothing
® Scope

All

Syntax

system.nav.centerWindow(window)
® Parameters
FPMIWindow window - A reference to the window to center.
® Returns
Nothing
® Scope

All

Code Examples

Code Snippet

#Thi s exanpl e centers the wi ndow naned ' Overview .
syst em nav. cent er W ndow(' Over vi ew)

system.nav.closeParentWindow

Description

Closes the parent window given a component event object.

Syntax

system.nav.closeParentWindow(event)
® Parameters
EventObject event - A component event object. The enclosing window for the component will be closed.
® Returns
nothing
® Scope

Client

Code Examples

Code Snippet

This code would be placed in the actionPerformed event of a button,
and woul d cl ose the wi ndow that contained the button.
system nav. cl osePar ent W ndow event)

system.nav.closeWindow

Description

Given a window path, or a reference to a window itself, it will close the window. If the window can't be found, this function will do nothing.

Syntax

system.nav.closeWindow(window)
® Parameters
FPMIWindow window - A reference to the window to close.
® Returns
nothing
® Scope

Client

Syntax

system.nav.closeWindow(windowPath)
® Parameters
String windowPath - The path of a window to close.
® Returns
nothing
® Scope

Client

Code Examples

Code Snippet

#Thi s exanpl e woul d get the wi ndow naned ' Overview and then close it.
If the window isn't open, show a warning
try:
wi ndow = system gui . get Wndow(' Overvi ew)
syst em nav. cl oseW ndow(wi nhdow)
except Val ueError:
syst em gui . war ni ngBox(" The Overvi ew wi ndow i sn't open")

Code Snippet

#Thi s exanpl e woul d cl ose the wi ndow nanmed ' Overview in one step.
If the windowisn't open, the call to closeWndow will have no effect
syst em nav. cl oseW ndow(' Overvi ew)

system.nav.getCurrentWindow

Description

Returns the path of the current "main screen" window, which is defined as the maximized window. With the Typical Navigation Strategy, there is
only ever one maximized window at a time.

Syntax

system.nav.getCurrentWindow()
® Parameters
none
® Returns
String - The path of the current "main screen” window - the maximized window.
® Scope

Client

Code Examples

Code Snippet

This code could run in a global tiner script.

After a 5-minute timeout, navigate back to the hone screen

if systemutil.getlnactivitySeconds()>300 and system nav. get Current Wndow()! =" Hone":
system nav. swapTo(" Hone")

https://legacy-docs.inductiveautomation.com/display/DOC/Navigation+Strategies

system.nav.goBack

Description

When using the Typical Navigation Strategy, this function will navigate back to the previous main screen window.

Syntax

system.nav.goBack()
® Parameters
none
® Returns
PyObiject - The window that was returned to
® Scope

Client

Code Examples

Code Snippet

#This code would go in a button to nove to the previous screen.
syst em nav. goBack()

https://legacy-docs.inductiveautomation.com/display/DOC/Navigation+Strategies

system.nav.goForward

Description

When using the Typical Navigation Strategy, this function will navigate "forward" to the last main-screen window the user was on when they
executed a system.nav.goBack().

Syntax

system.nav.goForward()
® Parameters
none
® Returns
PyObject - The window that was returned to
® Scope

Client

Code Examples

Code Snippet

#This code would go in a button to nove to the | ast screen that used system nav. goBack().
syst em nav. goFor war d()

https://legacy-docs.inductiveautomation.com/display/DOC/Navigation+Strategies

system.nav.goHome

Description

When using the Typical Navigation Strategy, this function will navigate to the "home" window. This is automatically detected as the first main-
screen window shown in a project.

Syntax

system.nav.goHome()
® Parameters
none
® Returns
PyObject - A reference to the home window that was navigated to.
® Scope

Client

Code Examples

Code Snippet

#This code would go in a button to nove to the Hone screen.
syst em nav. goHone()

https://legacy-docs.inductiveautomation.com/display/DOC/Navigation+Strategies

system.nav.openWindow

Description

Opens the window with the given path. If the window is already open, brings it to the front. The optional params dictionary contains key:value pairs
which will be used to set the target window's root container's dynamic variables.

For instance, if the window that you are opening is named "TankDisplay" has a dynamic variable in its root container named "TankNumber", then
callingsystem.nav.openWindow("TankDisplay", {"TankNumber" : 4}) will open the "TankDisplay" window and set Root Container.TankNumber to

four. This is useful for making parameterized windows, that is, windows that are re-used to display information about like pieces of equipment. See
also: Parameterized Popup Windows.

Syntax

system.nav.openWindow(path [, params])
® Parameters
String path - The path to the window to open.

PyDictionary params - A dictionary of parameters to pass into the window. The keys in the dictionary must match dynamic property
names on the target window's root container. The values for each key will be used to set those properties. [optional]

® Returns
PyObiject - A reference to the opened window.
® Scope

Client

Code Examples

Code Snippet

This is the sinplest formof openW ndow
syst em nav. openW ndow(" SoreW ndowNane")

Code Snippet

A nore conplex exanple - a setpoint screen for nultiple valves that opens centered
titleText = "Third Val ve Setpoints"

tankNo = system nav. openW ndow(" Val veSet Pts", {"valveNuni:3, "titleText":titleText})
system nav. cent er W ndow(" Val veSet Pt s")

https://legacy-docs.inductiveautomation.com/display/DOC/Parameterized+Popup+Window

system.nav.openWindowlinstance

Description

Operates exactly like system.nav.openWindow, except that if the named window is already open, then an additional instance of the window will be
opened. There is no limit to the number of additional instances of a window that you can open.

Syntax

system.nav.openWindowlInstance(path [, params])
® Parameters
String path - The path to the window to open.

PyDictionary params - A dictionary of parameters to pass into the window. The keys in the dictionary must match dynamic property
names on the target window's root container. The values for each key will be used to set those properties. [optional]

® Returns
PyObiject - A reference to the opened window.
® Scope

Client

Code Examples

Code Snippet
#Thi s exanpl e woul d open three copies of a single HOA popup screen.
syst em nav. openW ndow nst ance(" HOA" {machi neNum 3})

syst em nav. openW ndow nst ance(" HOA" {machi neNum 4})
syst em nav. openW ndow nst ance(" HOA" {machi neNum 5})

system.nav.swapTo

Description

Performs a window swap from the current main screen window to the window specified. Swapping means that the opened window will take the
place of the closing window - in this case it will be maximized. See also: Navigation Strategies.

This function works like system.nav.swapWindow except that you cannot specify the source for the swap

Syntax

system.nav.swapTo(path [, params])
® Parameters
String path - The path of a window to swap to.

PyDictionary params - A dictionary of parameters to pass into the window. The keys in the dictionary must match dynamic property
names on the target window's root container. The values for each key will be used to set those properties. [optional]

® Returns
PyObject - A reference to the swapped-to window.
® Scope

Client

https://legacy-docs.inductiveautomation.com/display/DOC/Navigation+Strategies

Code Examples

Code Snippet

#This code would go in a button's ActionPerfornmed event to swap out of the current w ndow and into a
wi ndow named MyW ndow
system nav. swapTo(" MyW ndow")

Code Snippet

#This code would go in a button's ActionPerformed event to swap out of the current wi ndow and into a
wi ndow named MyW ndow.
#1t also | ooks at the selected value in a dropdown nenu and passes that value into the new w ndow.

MyW ndow s Root Container nust have a dynanic property naned "paranVval ue"
dropdown = event. source. parent. get Conponent (" Dr opdown")
system nav. swapTo(" MyW ndow', {"paranVal ue": dropdown. sel ect edVal ue)

Code Snippet

#Thi s code cycles through a dictionary of windows. This could be placed on a Cient Event Timer Script to
cycl e through sone wi ndows.

#The bel ow code assunes that each of the windows are in the sane folder (naned "Main Wndows")

#f the windows are in different folders, then the script would need to be nodified to prepend the
correct folder name on the last line of code.

#Build a dictionary of wi ndow names without directories.

wi ndowDi ct = {"Overview':"Mtors", "Mtors":"Alarmng", "Alarmng":"Scripting", "Scripting":"Overview'}
#Find the current w ndow

current Wn = system nav. get Current Wndow()

wi nObj = system gui.get Wndow(current Wn)

#Find the next window in the dictionary based on the name of the current w ndow (w nQbj)

next Wndow = wi ndowDi ct [wi nQbj . nane]

#Swap to the next w ndow

system nav. swapTo(" Mai n W ndows/" + next W ndow)

system.nav.swapWindow

Description

Performs a window swap. This means that one window is closed, and another is opened and takes its place - assuming its size, floating state, and
maximization state. This gives a seamless transition - one window seems to simply turn into another.

This function works like system.nav.swapTo except that you can specify the source and destination for the swap

Syntax

system.nav.swapWindow(swapFromPath, swapToPath [, params])
® Parameters
String swapFromPath - The path of the window to swap from. Must be a currently open window, or this will act like an openWindow.
String swapToPath - The name of the window to swap to.

PyDictionary params - A dictionary of parameters to pass into the window. The keys in the dictionary must match dynamic property
names on the target window's root container. The values for each key will be used to set those properties. [optional]

® Returns
PyObject - A reference to the swapped-to window.
® Scope

Client

Syntax

system.nav.swapWindow(event, swapToPath [, params])
® Parameters
EventObject event - A component event whose enclosing window will be used as the "swap-from" window.
String swapToPath - The name of the window to swap to.

PyDictionary params - A dictionary of parameters to pass into the window. The keys in the dictionary must match dynamic property
names on the target window's root container. The values for each key will be used to set those properties. [optional]

® Returns
PyObject - A reference to the swapped-to window.
® Scope

Client

Code Examples

Code Snippet

This code would go in a button's ActionPerforned event to swap out of the
wi ndow containing the button and into a wi ndow naned MyW ndow
syst em nav. swapW ndow event, "M/W ndow")

Code Snippet

This code woul d swap from w ndow naned W ndowA to a w ndow naned W ndowB
syst em nav. swapW ndow(" W ndowA", "W ndowB")

Code Snippet

This code woul d swap from w ndow naned W ndowA to a w ndow naned W ndowB.

1t also looks at the two cal endar popup controls and passes the two sel ected

dates to WndowB. WndowB's Root Container nmust have dynanic properties nanmed
"startDate" and "endDate"

datel = event.source. parent.get Conponent ("Start Date").date

date2 = event. source. parent. get Conponent ("End Date").date

syst em nav. swapW ndow("W ndowA", "W ndowB", {"startDate":datel, "endDate": date2})

system.net

system.net.getExternallpAddress

Description

Returns the client's IP address, as it is detected by the Gateway. This means that this call will communicate with the Gateway, and the Gateway
will tell the clienth what IP address its incoming traffic is coming from. If you have a client behind a NAT router, then this address will be the WAN
address of the router instead of the LAN address of the client, which is what you'd get with system.net.getlpAddress.

Syntax

system.net.getExternallpAddress()
® Parameters
None
® Returns
String - A text representation of the client's IP address, as detected by the Gateway
® Scope

Client

Code Examples

Code Snippet
#Put this script on a navigation button to restrict users fromopening a specific page.

ip = sytem net. get Ext ernal | pAddr ess()
#check if this matches the CEO s | P address
if ip=="66.102.7.104":

syst em nav. swapTo(" CEO Dashboard")
el se:

syst em nav. swapTo(" Manager Dashboard")

system.net.getHostName

Description

Returns the host name of the computer that the client is currently running on. On Windows, this is typically the "computer name". For example,
might return EAST_WING_WORKSTATION or bobs-laptop.

Syntax

system.net.getHostName()
® Parameters
none
® Returns

String - The hostname of the local machine. This is the computer that the script is being executed on - may be a Client or the Gateway
depending on the script context.

® Scope

All

Code Examples

Code Snippet

#Put this script on a navigation button to |ink dedicated machines to specific screens.
conp = system net. get Host Nane()
#check which line this client is tied to

if conp == "LinelConputer":

system nav. swapTo("Line Detail", {"line":1})
elif conp == "Line2Conputer":

system nav. swapTo("Line Detail", {"line":2})
el se:

syst em nav. swapTo("Li ne Overview")

http://system.net
http://system.net
http://system.net
http://system.net
http://system.net
http://system.net
http://system.net
http://system.net
http://system.net

system.net.getipAddress

Description

Returns the IP address of the computer the client is running on, as it appears to the client. See also: system.net.getExternallpAddress().

Syntax

system.net.getipAddress()
® Parameters
none
® Returns
String - Returns the IP address of the local machine, as it sees it.
® Scope

All

Code Examples

Code Snippet

#Put this script on a navigation button to |ink dedicated machines to specific screens.
ip = sytemnet. getl pAddress()
#check which line this client is tied to

if ip=="10.1.10.5":

system nav. swapTo("Line Detail", {"line":1})
elif ip == "10.1.10.6":

system nav. swapTo("Line Detail", {"line":2})
el se:

syst em nav. swapTo("Li ne QOverview")

system.net.getRemoteServers

Description

This function returns a List of Gateway Network servers that are visible from the local Gateway.

Syntax

system.net.getRemoteServers([runningOnly])
® Parameters

Boolean runningOnly- [Optional] If set to True, only servers on the Gateway Network that are running will be returned. Servers that
have lost contact with the Gateway Network will be filtered out.

® Returns
String[] - A List of Strings representing Gateway Network server ids.
® Scope

All

Code Examples

Code Snippet

#The following will create a |list of running servers on the Gateway Network, and show the list in a
message box.

#Col l ect the list of running servers
runni ngServers = system net. get Renpt eServers(True)

#initialize the start of the nessage
server StatusText = "The follow ng servers are running:\n
#add each running server to the nessage
for server in runningServers:
server StatusText += "% \n" % server

#Show t he nmessage
system gui . nressageBox(server St at usText)

http://system.net

system.net.httpDelete

This function is used in Python Scripting.

Description

Performs an HTTP DELETE to the given URL.

Keep in mind that JRE proxy settings will influence how these functions conduct their network activities. When using a non-bundled JRE, this is
typically set via the Java Control Panel.

Syntax

@ This function accepts keyword arguments.

system.net.httpDelete(url, [contentType], [connectTimeout], [readTimeout], [username], [password], [headerValues],
[bypassCertValidation])

® Parameters
String url - The URL to send the request to.
String contentType - [Optional] The MIME type used in the HTTP 'Content-type' header.
Int connectTimeout - [Optional] The timeout for connecting to the URL in milliseconds. Default is 10,000
Int readTimeout - [Optional] The read timeout for the operation in milliseconds. Default is 60,000.
String username - [Optional] If specified, the call will attempt to authenticate with basic HTTP authentication.
String password - [Optional] The password used for basic HTTP authentication, if the username parameter is also present.
PyDictionary headerValues - [Optional] A dictionary of name/value pairs that will be set in the HTTP header.

Boolean bypassCertValidation - [Optional] If the target address in an HTTPS address, and this parameter is TRUE, the system will
bypass all SSL certificate validation. This is not recommended, though is sometimes necessary for self-signed certificates.

® Returns
Obiject - The content returned for the DELETE operation.
® Scope

All

Code Examples

This exanple attenpts to performa DELETE operation
URL = "http://nmyURL/fol der.resource"
system net . htt pDel et e(URL)

https://www.java.com/en/download/help/proxy_setup.html
http://system.net

system.net.httpGet

Description

Retrieves the document at the given URL using the HTTP GET protocol. The document is returned as a string. For example, if you use the URL of
a website, you'll get the same thing you'd get by going to that website in a browser and using the browser's "View Source" function.

Keep in mind that JRE proxy settings will influence how these functions conduct their network activities. When using a non-bundled JRE, this is
typically set via the Java Control Panel.

Syntax

system.net.httpGet(url, connectTimeout, readTimeout, username, password, headerValues, bypassCertValidation)
® Parameters
String url - The URL to retrieve.
Integer connectTimeout - The timeout for connecting to the url. In millis. Default is 10,000.
Integer readTimeout - The read timeout for the get operation. In millis. Default is 60,000.
String username - If specified, the call will attempt to authenticate with basic HTTP authentication.
String password - The password used for basic http authentication, if the username parameter is also present.
PyDictionary headerValues - Optional - A dictionary of name/value pairs that will be set in the http header.

Boolean bypassCertValidation - Optional - If the target address is an HTTPS address, and this parameter is True, the system will
bypass all SSL certificate validation. This is not recommended, though is sometimes necessary for self-signed certificates.

® Returns
String - The content found at the given URL.
® Scope

All

https://www.java.com/en/download/help/proxy_setup.html

Code Examples

Code Snippet

This code would return the source for Google's honmepage
source = systemnet. httpGet("http://ww:. googl e. cont)
print source

Code Snippet

This code woul d query Yahoo Weather for the tenperature in Sacranmento, CA
and then find the current tenperature using a regul ar expression

response = systemnet.httpGet("http://xnl.weather.yahoo. conl forecastrss?p=95818")

inmport Python's regular expression library
inport re

NOTE - if you've never seen regul ar expressions before, don't worry, they |ook
confusing even to people who use themfrequently
pattern = re.conpile('.*?<yweather:condition (.*?)/>", re.DOTALL)
mat ch = pattern. match(response)
if match
subText = match. group(1)
condition = re.conpile('.*?text="(.*?)"").nmatch(subText).group(1)
tenp = re.conpile('.*?tenp="(.*?)"").match(subText).group(1)

print "Condition: ", condition
print "Tenperature (F): ", tenp
el se:

print 'Wather service format changed

system.net.httpPost

Description

Retrieves the document at the given URL using the HTTP POST protocol. If a parameter dictionary argument is specified, the entries in the
dictionary will encoded in "application/x-www-form-urlencoded" format, and then posted. You can post arbitrary data as well, but you'll need to
specify the MIME type. The document is then returned as a string.

Keep in mind that JRE proxy settings will influence how these functions conduct their network activities. When using a non-bundled JRE, this is
typically set via the Java Control Panel.

Syntax

system.net.httpPost(url, postParams)
® Parameters
String url - The URL to post to.
PyDictionary postParams - A dictionary of name: value key pairs to use as the post data.
® Returns
String - The content returned for the POST operation.
® Scope

All

Syntax

system.net.httpPost(url, contentType, postData, connectTimeout, readTimeout, username, password, headerValues,
bypassCertValidation)

® Parameters
String url - The URL to post to.
String contentType - Optional - The MIME type to use in the HTTP "Content-type" header.
String postData - The raw data to post via HTTP.
Integer connectTimeout - The timeout for connecting to the url. In millis. Default is 10,000.
Integer readTimeout - The read timeout for the get operation. In millis. Default is 60,000.
String username - If specified, the call will attempt to authenticate with basic HTTP authentication.
String password - The password used for basic http authentication, if the username parameter is also present.
PyDictionary headerValues - Optional - A dictionary of name/value pairs that will be set in the http header.

Boolean bypassCertValidation - Optional - If the target address is an HTTPS address, and this parameter is True,the system will
bypass all SSL certificate validation. This is not recommended, though is sometimes necessary for self-signed certificates.

® Returns
String - The content returned for the POST operation.
® Scope

All

https://www.java.com/en/download/help/proxy_setup.html

Code Examples

Code Snippet

This code posts a nane (first and last) to the post testing page at

"http://ww. snee. com xm /crud/ posttest.cgi", and returns the resulting page

as a string.

page = system net. httpPost("http://ww. snee.com xm /crud/ posttest.cgi", {"fname":"Billy", "lnanme":"Bob"})
print page

Code Snippet

This code sends an XM. nessage to a hypothetical URL.
nessage = "<MyMessage><M/El enent >here i s the el enent </ MyEl enent ></ MyMessage>"
system net. htt pPost ("http://ww. posttone. xyz/ posthere", "text/xm", nmessage)

system.net.httpPut

This function is used in Python Scripting.

Description

Performs an HTTP PUT to the given URL. Encodes the given dictionary of parameters using "applications/x-www-form-urlencoded" format.

Keep in mind that JRE proxy settings will influence how these functions conduct their network activities. When using a non-bundled JRE, this is
typically set via the Java Control Panel.

Syntax

@ This function accepts keyword arguments.

system.net.httpPut(url, [contentType], putData, [connectTimeout], [read Timeout], [username], [password], [headerValues],
[bypassCertValidation])

® Parameters
String url - The URL to put to.
String contentType - [Optional] The MIME type used in the HTTP 'Content-type' header.
String putData - The raw data to put via HTTP.
Int connectTimeout - [Optional] The timeout for connecting to the URL in milliseconds. Default is 10,000
Int readTimeout - [Optional] The read timeout for the operation in milliseconds. Default is 60,000.
String username - [Optional] If specified, the call will attempt to authenticate with basic HTTP authentication.
String password - [Optional] The password used for basic HTTP authentication, if the username parameter is also present.
PyDictionary headerValues - [Optional] A dictionary of name/value pairs that will be set in the HTTP header.

Boolean bypassCertValidation - [Optional] If the target address in an HTTPS address, and this parameter is TRUE, the system will
bypass all SSL certificate validation. This is not recommended, though is sometimes necessary for self-signed certificates.

® Returns
String - The content returned for the PUT operation.
® Scope

All

Syntax

system.net.httpPut(url, putParams)
® Parameters
String url - The URL to send the request to.
PyDictionary putParams - A dictionary of name/value key pairs to use as the put data.
® Returns
String - The content returned for the PUT operation.
® Scope

All

https://www.java.com/en/download/help/proxy_setup.html
http://system.net
http://system.net/

Code Examples

Code Example - Simple Test

The followi ng exanple uses a test URL to echo back the data used in the PUT request.

Test URL courtesy of:

http://stackoverfl ow. conl questions/ 5725430/ http-test-server-that-accepts-get-post-calls?
answer t ab=vot es#t ab-t op

Specify URL and parameters to pass in the PUT call
URL = "http://httpbin.org/put”
params = {"testkey":"testVal ue"}

Make the PUT request and print the results to the console
print system net.httpPut (URL, parans)

Code Example - Keyword Arguments

This exanple attenpts to authenticate with a usernanme and password, as well as specify a M ME type.
The Usernanme and password are static in this exanple, but could easily nmake use of other conponents to
al | ow user input

or fetch data out of a database instead.

URL = "http://httpbin.org/put”
params = {"testkey":"testVal ue"}
user = "myUser"

user Pass = "password"

Make the PUT request and print the results to the console
print systemnet.httpPut (URL, parans, usernane = user, password = userPass, contentType = "text/htm")

system.net.openURL

Description

Opens the given URL or URI scheme outside of the currently running Client in whatever application the host operating system deems
appropriate. For example, the URL:

"http://www.google.com"

... will open in the default web browser, whereas this one:
"file://C:/Report.pdf"

... will likely open in Adobe Acrobat. The Windows network-share style path like:
"\\Fileserver\resources\machine_manual.pdf"

... will work as well (in Windows).

Be careful not to use this function in a full-screen client, as launching an external program will break your full-screen exclusive mode.

Syntax

system.net.openURL(url [, useApplet])
® Parameters
String url - The URL to open in a web browser.

boolean useApplet - If set to true (1), and the client is running as an Applet, then the browser instance that launched the applet will be
used to open the URL. [optional]

® Returns
nothing
® Scope

Client

Code Examples

Code Snippet

This code woul d open a web page
system net. openURL("http://ww. googl e. cont')

Code Snippet

This code woul d open a PDF docunment |ocated at C. on the client conputer

Note the doubl e backsl ashes are needed because backsl ash is the escape character
for Python

system net.openURL("file://C\\nyPDF. pdf")

Code Snippet

This code woul d open a PDF docunent from a W ndows-based file server

Note the doubl e backsl ashes are needed because backsl ash is the escape character
for Python

system net. openURL("\\\\ MyServer\\ MyDocs\ \ docunent . pdf ")

http://system.net

system.net.sendEmail

Description

Sends an email through the given SMTP server. Note that this email is relayed first through the Gateway - the client host machine doesn't need
network access to the SMTP server.

You can send text messages to cell phones and pagers using email. Contact your cell carrier for details. If you had a Verizon cell phone with
phone number (123) 555-8383, for example, your text messaging email address would be: 1235558383@vtext.com. Try it out!

Syntax

@ This function accepts keyword arguments.

system.net.sendEmail(smtp, fromAddr, subject, body, html, to, attachmentNames, attachmentData, timeout, username, password,
priority, smtpProfile, cc, bcc, retries)

® Parameters

String smtp - The address of an SMTP server to send the email through, like "mail.example.com". A port can be specified, like "mail.
example.com:25". SSL can also be forced, like "mail.example.com:25:tls".

String fromAddr - An email address to have the email come from.

String subject - The subject line for the email

String body - The body text of the email.

Boolean html - A flag indicating whether or not to send the email as an HTML email. Will auto-detect if omitted.
String[] to - A list of email addresses to send to.

String[] attachmentNames - A list of attachment names. Attachment names must have the correct extension for the file type or an error
will occur.

byte[][] attachmentData - A list of attachment data, in binary format.

Integer timeout - A timeout for the email, specified in milliseconds. Defaults to 300,000 milliseconds (5 minutes).
String username - If specified, will be used to authenticate with the SMTP host.

String password - If specified, will be used to authenticate with the SMTP host.

String priority - Priority for the message, from "1" to "5", with "1" being highest priority. Defaults to "3" (normal) priority.

String smtpProfile - If specified, the named SMTP profile defined in the Gateway will be used. If this keyword is present, the smtp,
username, and password keywords will be ignored.

String[] cc - A list of email addresses to carbon copy. Only available if a smtpProfile is used.

String[] bce - A list of email addresses to blind carbon copy. Only available if a smtpProfile is used.

Integer retries - The number of additional times to retry sending on failure. Defaults to 0. Only available if a smtpProfile is used.
® Returns

nothing
® Scope

All

mailto:1235558383@vtext.com
http://system.net
https://legacy-docs.inductiveautomation.com/display/DOC/Scripting+Overview+and+Syntax#ScriptingOverviewandSyntax-KeywordArguments

Code Examples

Code Snippet

This code would send a sinple plain-text email to a single recipient, with no attachnents
body = "Hello, this is an email."
reci pients = ["bobsnith@ryconpany. coni']
system net . sendEnmi | (" mai | . nyconpany. cont',
"myenui | @ryconpany. cont', "Here is the email!", body, O, recipients)

Code Snippet

This code would send an HTM.-formatted email to nultiple recipients (including

cel | phones) with no attachnents

body = "<HTM.><BODY><H1>This is a bi g header </ H1>"

body += "And this text is red</BODY></ HTM.>"

reci pients = ["bobsn t h@ryconpany. cont’, "1235558383@text.cont, "sally@cne.org", "1235557272@text.coni']
myuser = "nyconpany"

nypass = "1234"

system net. sendEnai | (snt p="mai | . nyconpany. cont', fromAddr="nyemai | @yconpany. coni,

subject="Here is the email!", body=body, htm =1, to=recipients, username=myuser, password=nypass)

Code Snippet

This code ask the user for an attachnent file and attaches the file.
filePath = systemfile.openFile()
if filePath != None:

This gets the filenane without the C\folder stuff

fileNane = filePath.split("\\")[-1]

fileData = fpm.file.readFil eAsBytes(fil ePath)

smp = "mail.nmyconpany. conf

sender = "nyemai | @yconpany. cont

subject = "Here is the file you requested"

body = "Hello, this is an emil."

reci pients = ["bobsm t h@ryconpany. coni']

system net.sendEnmi | (sntp, sender, subject, body, O, recipients, [fileNane], [fileData])

Code Snippet

This code would send an HTM.-formatted email to nultiple recipients, including a cc, with no
attachnents,

using an sntp server defined in the Gateway

body = "<HTM.><BODY><H1>This is a bi g header </ H1>"

body += "And this text is red</BODY></ HTM.>"

reci pients = ["bobsnit h@ryconpany. coni’, "1235558383@t ext.coni, "sally@cne.org", "1235557272@stext.coni]
cc_recipients = ["annej ones@yconpany. coni']

snt p_server = "nySnt pServer"

system net . sendEnmi | (snt pProfil e=sntp_server, fromAddr="nyenail @yconpany.conf, subject="Here is the

emai | !'", body=body, htnl =1, to=recipients, cc=cc_recipients)

system.opc

system.opc.browse

Description

Allows browsing of the OPC servers in the runtime, returning a list of tags.
Syntax

@ This function accepts keyword arguments.

system.opc.browse(opcServer, device, folderPath, opcltemPath)
® Parameters
String opcServer - The name of the OPC server to browse
String device - The name of the device to browse
String folderPath - Filters on a folder path. Use * as a wildcard for any number of characters and a ? for a single character.
String opcltemPath - Filters on a OPC item path. Use * as a wildcard for any number of characters and a ? for a single character.
® Returns

OPCBrowseTag[] - An array of OPCBrowseTag objects. OPCBrowseTag has the following functions: getOpcServer(),
getOpcltemPath(), getType(), getDisplayName(), getDisplayPath(), getDataType().

® Scope

All

https://legacy-docs.inductiveautomation.com/display/DOC/Scripting+Overview+and+Syntax#ScriptingOverviewandSyntax-KeywordArguments

Code Examples

Code Snippet

#Exanpl e 1: Browse every OPC server
tags = system opc. browse()

for rowin tags:

print row getOpcServer(), row. getQpcltenPath(), row getType(),
print row getDi splayNane(), row. getDisplayPath(), row getDataType()

Code Snippet

#Exanpl e 2: Browse |gnition OPC UA

tags = system opc. browse(opcServer="1gnition OPC-UA Server")

Code Snippet

#Exanpl e 3: Browse Specific Device

server = "lgnition OPC-UA Server"
tags = system opc. browse(opcServer=server, device="Dairy Deno Sinulator")

Code Snippet

#Exanpl e 4: Browse Specific Folder Path (not OPC item path)

server = "lgnition OPC- UA Server"
tags = system opc. browse(opcServer=server, folderPath="*CQverview AU 1*")

system.opc.browseServer

Description

When called from a Vision Client, returns a list of OPCBrowseElement objects for the given server. Otherwise returns a list of
OPCBrowseElements.

The OPCBrowseElement object has the following methods:
® getDisplayName() - returns the display name of the object
® getElementType() - returns the element type. Element types are server, device, view, folder, object, datavariable, property and method.
® getNodeld() - returns a string representing the server node 1D
The PyOPCTag object has the following methods to retrieve information:
® getDisplayName() - returns the display name of the object

® getElementType() - returns the element type. Element types are server, device, view, folder, object, datavariable, property and method.
® getServerName() - returns the server name as a string.

Syntax

system.opc.browseServer(opcServer, nodeld)
® Parameters
String opcServer - The name of the OPC server connection.
String nodeld - The node ID to browse.
® Returns
List - A list of PyOPCTag objects.
® Scope

Gateway

Syntax - Vision Client Scope

system.opc.browseServer(opcServer, nodeld)
® Parameters
String opcServer - The name of the OPC server connection.
String nodeld - The node ID to browse.
® Returns
List - A list of OPCBrowseElement objects.
® Scope

Vision Client

Code Examples

Code Snippet

Print the nane of all devices on Ignition OPC UA
opcServer="Ignition OPC UA Server"
nodel d = "Devices"
devi ces = system opc. browseServer (opcServer, nodeld)
for device in devices:

print device. getDi spl ayNane()

http://files.inductiveautomation.com/sdk/javadoc/ignition80/8.0.12/com/inductiveautomation/ignition/common/script/builtin/AbstractOPCUtilities.PyOPCTag.html

system.opc.browseSimple

Description

Allows browsing of OPC servers in the runtime returning a list of tags. browseSimple() takes mandatory parameters, which can be null, while
browse() uses keyword-style arguments.

1 The spelling on the opcServer and device parameters must be exact.

Syntax

system.opc.browseSimple(opcServer, device, folderPath, opcltemPath)
® Parameters
String opcServer - The name of the OPC server to browse
String device - The name of the device to browse
String folderPath - Filters on a folder path. Use * as a wildcard for any number of characters and a ? for a single character.
String opcltemPath - Filters on a OPC item path. Use * as a wildcard for any number of characters and a ? for a single character.
® Returns

OPCBrowseTag][] - An array of OPCBrowseTag objects. OPCBrowseTag has the following functions: getOpcServer(),
getOpcltemPath(), getType(), getDisplayName(), getDisplayPath(), getDataType().

® Scope

All

Code Examples

Code Snippet

#This exanple will print out the the OPC itempath for each itemin a specific folder,

#Browse Ignition's OPC-UA Server. This can be changed to match any connected OPC server.
server = "lgnition OPC UA Server"

#Focus on the "SLC' device connection. This nust match a valid device connection in the OPC server.
device = "SLC'

#Specify that the folder path should contain "B3".
folderPath = "*B3*"

#This exanple is not filtering on a specific OPCltenPath, so it pass Python's None for this paraneter
opcltenPath = None

#Cal | browseSinple and store the results in a variable. Note that it may take sone tine to conplete the
browse.
pcObj ects = system opc. browseSi npl e(server, device, folderPath, opcltenPath)

#For each returned address, print out the
for address in QpcObjects:
print address. get OpcltenPat h()

system.opc.getServers

Description

Returns a list of server names.

Syntax

system.opc.getServers()
® Parameters
none
® Returns
List - A list of server name strings. If no servers are found, returns an empty list.
® Scope

All

Code Examples

Code Snippet

print a list of all server nanes found
servers = system opc. get Servers()
if not servers:
print "No servers found"
el se:
for server in servers:
print server

system.opc.getServerState

Description

Retreives the current state of the given OPC server connection. If the given server is not found, the return value will be None. Otherwise, the
return value will be one of these strings:

UNKNOWN
FAULTED
CONNECTING
CLOSED
CONNECTED
DISABLED

Syntax

system.opc.getServerState(opcServer)
® Parameters
String opcServer - The name of an OPC server connection.
® Returns
String - A string representing the current state of the connection, or None if the connection doesn't exist.
® Scope

All

Code Examples

There are not examples associated with this scripting function.

system.opc.readValue

Description

Reads a single value directly from an OPC server connection. The address is specified as a string, for example, [MyDevice]N11/N11:0The object
returned from this function has three attributes: value, quality, and timestamp. The value attribute represents the current value for the address
specified.

The quality attribute is an OPC-UA status code. You can easily check a good quality vs a bad quality by calling the isGood()function on the quality
object. The timestamp attribute is Date object that represents the time that the value was retrieved at.

Syntax

system.opc.readValue(opcServer, itemPath)
® Parameters
String opcServer - The name of the OPC server connection in which the item resides.
String itemPath - The item path, or address, to read from.
® Returns
QualifiedValue - An object that contains the value, quality, and timestamp returned from the OPC server for the address specified.
® Scope

All

Code Examples

Code Snippet

server = "lgnition OPC UA Server"

path = "[SLCSi nj _Met a: N7/ N7: 0"

qual i fi edVal ue = system opc. readVal ue(server, path)

print "Value: " + str(qualifiedVal ue.getValue())

print "Quality: " + qualifiedValue.getQuality().toString()
print "Tinmestanp: " + qualifiedVal ue. getTi mestanp().toString()

system.opc.readValues

Description

This function is equivalent to the system.opc.readValue function, except that it can operate in bulk. You can specify a list of multiple addresses to
read from, and you will receive a list of the same length, where each entry is the qualified value object for the corresponding address.

Syntax

system.opc.readValues(opcServer, itemPaths)
® Parameters
String opcServer - The name of the OPC server connection in which the items reside.
String[] itemPaths - A list of strings, each representing an item path, or address to read from.
® Returns

QualifiedValuel[] - A sequence of objects, one for each address specified, in order. Each object will contains the value, quality, and
timestamp returned from the OPC server for the corresponding address.

® Scope

All

Code Examples

There are no examples associated with this scripting function.

system.opc.writeValue

Description

Writes a value directly through an OPC server connection. Will return an OPC-UA status code object. You can quickly check if the write succeeded
by calling isGood() on the return value from this function.

Syntax

system.opc.writeValue(opcServer, itemPath, value)
® Parameters
String opcServer - The name of the OPC server connection in which the item resides.
String itemPath - The item path, or address, to write to.
Object value - The value to write to the OPC item.
® Returns
Quality - The status of the write. Use returnValue.isGood() to check if the write succeeded.
® Scope

All

Code Examples

Code Snippet

server = "lgnition OPC-UA Server"
path = "[SLCSi nj _Met a: N7/ N7: 0"
ol dQual i fi edval ue = system opc.readVal ue(server, path)
newal ue = ol dQualifiedVal ue.getValue() + 1
returnQuality = systemopc.witeVal ue(server, path, newval ue)
if returnQuality.isGood():
print "Wite was successful"
el se:
print "Wite failed"

system.opc.writeValues

Description

This function is a bulk version of system.opc.writeValue. It takes a list of addresses and a list of objects, which must be the same length. It will write
the corresponding object to the corresponding address in bulk. It will return a list of status codes representing the individual write success or failure
for each corresponding address.

Syntax

system.opc.writeValues(opcServer, itemPaths, values)
® Parameters
String opcServer - The name of the OPC server connection in which the items reside.
String[] itemPaths - A list of item paths, or addresses, to write to.
Object[] values - A list of values to write to each address specified.
® Returns
Quiality[] - An array of Quality objects, each entry corresponding in order to the addresses specified.
® Scope

All

Code Examples

There are no examples associated with this scripting function.

system.print

system.print.createlmage

Description

Advanced Function. Takes a snapshot of a component and creates a Java Bufferedimage out of it. You can use javax.imageio.ImagelO to turn this
into bytes that can be saved to a file or a BLOB field in a database.

Syntax

system.print.createlmage(component)
® Parameters
Component component - The component to render.
® Returns
Bufferedimage - A java.awt.image.Bufferedimage representing the component.
® Scope

Client

Code Examples

There are no examples associated with this scripting function.

http://java.sun.com/j2se/1.5.0/docs/api/javax/imageio/ImageIO.html

system.print.createPrintJob

Description

Provides a general printing facility for printing the contents of a window or component to a printer. The general workflow for this function is that you
create the print job, set the options you'd like on it, and then call print() on the job. For printing reports or tables, use those components' dedicated

print() functions.

The PrintJob object that this function returns has the following properties that can be set:

Property

showPrintDialog

fitToPage

zoomFactor

orientation

pageWidth
pageHeight

leftMargin,
rightMargin,

topMargin,
bottomMargin

Description

If true (1), then the print dialog window will be shown before printing. This allows users to specify printing options like
orientation, printer, paper size, margins, etc. [default: 1]

If the component is too wide or tall to fit on a page, it will be proportionately zoomed out until it fits into the page. [default:
1]

If greater than zero, this zoom factor will be used to zoom the printed image in or out. For example, if this is 0.5, the
printed image will be half size. If used, this zoom factor overrides the fitToPage parameter. [default: -1.0]

Either system.print. PORTRAIT or system.print. LANDSCAPE
[default: system.print. PORTRAIT]
The width of the paper in inches. [default: 8.5]

The height of the paper in inches. [default: 11]

The margins, specified in inches. [default: 0.75]

You can set all of the margins at once with job.setMargins(number), and you initiate the printing with job.print().

Syntax

system.print.createPrintJob(component)

® Parameters

Component component - The component that you'd like to print.

® Returns

JythonPrintJob - A print job that can then be customized and started.

® Scope

Client

Code Examples

Code Snippet

#Put this code on a button to print out an inmage of the container the button is in
job = system print.createPrintJob(event.source. parent)

j ob. set Mar gi ns(0. 5)

job. zoonFactor = 0.75

job.print()

system.print.printTolmage

Description

This function prints the given component (such as a graph, container, entire window, etc) to an image file, and saves the file where ever the
operating system deems appropriate. A filename and path may be provided to determine the name and location of the saved file.

While not required, it is highly recommended to pass in a filename and path. The script may fail if the function attempts to save to a directory that
the client does not have access rights to.

Syntax

system.print.printTolmage(component)
® Parameters
Component component - The component to render.
® Returns
nothing
® Scope

Client

Syntax

system.print.printTolmage(component [, filename])
® Parameters
Component component - The component to render.
String filename - A filename to save the image as. [optional]
® Returns
nothing
® Scope

Client

Code Examples

Code Snippet

#Thi s code would go on a button and save an inmage of the container that it is in.
system print. printTol mage(event. source. parent, "C \\tenp\\Screen.jpg")

Code Snippet - User Selected Location

#Agai n, this exanple would save an inage of the container, but pronmpts the user for a location and filenane
with systemfile.saveFile()

#Ask the user for a location. Uses a default filenane of "inage.png"
path = systemfile.saveFile("inmage. png")

#1f the path is not None...
if path !'= None:
#Save the file
system print. printTol rage(event. sour ce. parent, path)

system.report

system.report.executeAndDistribute

Description

Executes and distributes a report.

The action parameter supports the following keys as strings:

email
print

save
ftp

The action settings parameter supports an optional dictionary of settings particular to the action. Missing values will use the default value for that

action.

®* email
0]

o

® print

® save

Syntax

Setting Keys: "smtpServerName", "from", "subject”, "body", "attachmentName", "retries”, "fileType", "to", "cc", "bcc", "useRoles",
"roles", "userSource".

Note: To, cc, and bcc must be Python lists. If useRoles is True, to, cc and bcc will be ignored and all email addresses for all
users matching roles in userSource (which defaults to the project's current user source) will be in the to field. If useRoles is true
but no roles are listed, all user email addresses in userSource will be in the to field. fileType can be pdf, html, csv, rtf, jpeg, png,
or xml and is not case-sensitive. If omitted, fileType defaults to pdf. smtpServerName refers not to the actual name of a SMTP
server, but the name given to a SMTP server profile set up in the Gateway.

Setting Keys: "primaryPrinterName", "backupPrinterName", "copies", "printBothSides", "collate", "useRaster", "rasterDPI",
"useAutoLandscape", "pageOrientation”.

Note: primaryPrinterName defaults to the default printer. backupPrinterName defaults to "none", but can also have the special
value of "default". printBothSides, collate, and useRaster are booleans which default to false. rasterDPI is only used if useRaster
is true. useAutoLandscape defaults to true. If useAutoLandscape is false, pageOrientation, which can have values of "portrait" or
"landscape" (default is "portrait"), is used.

Setting Keys: "path”, "fileName" and "format".
Note: Since the script is sent to the gateway for execution, path and fileName must be relative to the gateway.

Setting Keys: "server", "port", "username”, "password", "useSSL", "path”, "fileName", and "format".
Note: Server and fileName are required. If omitted, fileType defaults to pdf, port defaults to 21, and useSSL defaults to false.

@ This function accepts keyword arguments.

system.report.executeAndDistribute(path, project, [parameters], action, [actionSettings])

® Parameters

String path - The path to the existing report.

String project - The name of the project where the report is located. Optional in client scope.

PyDictionary parameters - A optional dictionary of parameter overrides, in the form name:value.

String action - The name of the distribution action to use.

PyDictionary actionSettings - An optional dictionary of settings particular to the action. Missing values will use the default value for
that action.

® Returns

None

® Throws

lllegalArgumentException - Thrown when any of the following occurs: If the file type is not recognized, path does not exist, project
does not exist, or a key is not valid.

® Scope

All

https://legacy-docs.inductiveautomation.com/display/DOC/Scripting+Overview+and+Syntax#ScriptingOverviewandSyntax-KeywordArguments

Code Examples

Code Snippet

#Executes and distributes the report to an enmil|l address.
system report.execut eAndDi stri but e(path="My Report Path", project="My Project", action= "email",

actionSettings = {"to":["pl ant nanager @wypl ant.conl'], "sntpServerNane": " nypl ant Mai | Server", "froni:"

reporting@uypl ant.cont', "subject":"Production Report"})

Code Snippet

#Executes and distributes the report to all users in the default user source who are Supervisors or

Manager s.
systemreport.execut eAndD stri bute(path="My Report Path", project="My Project”, action= "email",
actionSettings = {"useRol es":True, "roles":["Supervisor", "Manager"], "sntpServerName":"

nypl ant Mai | Server”, "froni:"reporting@ypl ant.conf, "subject":"Production Report"})

Code Snippet

#Executes and distributes the report to an ftp server

settings = {"server":"10.20.1.80", "port":22, "usernane":"lgnition", "password":"Secret", "useSSL":
Fal se, "path":"C\\FTP", "fileNanme":"Ignition Report", and "fornmat":"pdf"}

systemreport.execut eAndDi stribute(path="My Report Path", project="My Project", action= "ftp",
actionSettings = settings)

Code Snippet

#Executes and distributes the report to save a PDF

settings = {"path":"C\\Ignition Reports", "fileName":"Report.pdf", "format":"pdf"}
systemreport.execut eAndDi stribute(path="My Report Path", project="My Project", action="save",
actionSettings=settings)

system.report.executeReport

Description

Immediately executes an existing report and returns a byte[] of the output.
Syntax

@ This function accepts keyword arguments.

system.report.executeReport(path, project, [parameters], fileType)
® Parameters
String path - The path to the existing report.
String project - The name of the project where the report is located. Optional in client scope.
PyDictionary parameters - A optional dictionary of parameter overrides, in the form name:value.

String fileType - The file type the resulting byte array should represent. Acceptable values are "pdf", "html", "csv", "rtf", "jpeg", "png",
or "xml". Defaults to "pdf". Not case-sensitive

® Returns
byte[] - A byte array of the resulting report.
® Throws

lllegalArgumentException - Thrown when any of the following occurs: If the file type is not recognized, path does not exist, project
does not exist.

® Scope

All

Code Examples

Code Snippet

#Executes the report, overriding two paraneters

overrides = {"nyStringParan':"Hello world", "nylntParani: 3}

byt esArray = systemreport.executeReport(path="M Path", project="My Project", paraneters=overrides,
fileType="pdf")

https://legacy-docs.inductiveautomation.com/display/DOC/Scripting+Overview+and+Syntax#ScriptingOverviewandSyntax-KeywordArguments

system.report.getReportNamesAsDataset

Description

Gets a data of all reports for a project. This dataset is particularly suited for display in a Tree View component

Syntax

Since 7.8.1

@ This function accepts keyword arguments.

system.report.getReportNamesAsDataset(project)
® Parameters
String project - The name of the project where the reports are located. Optional in client scope.
® Returns
List - A dataset of report paths and names for the project. Returns an empty dataset if the project has no reports.
® Throws

lllegalArgumentException - Thrown when any of the following occurs: If the project name is omitted in the Gateway scope, project
does not exist.

® Scope

All

Code Examples

Code Snippet

Gets a dataset of reports for the current project and displays
themin a Tree View conponent.

event . sour ce. parent. get Conponent (' Tree View).data = system report. get Report NanesAsDat aset ()

https://legacy-docs.inductiveautomation.com/display/DOC/Scripting+Overview+and+Syntax#ScriptingOverviewandSyntax-KeywordArguments

system.report.getReportNamesAsList

Description

Gets a list of all reports for a project.

Syntax

Since 7.8.1

@ This function accepts keyword arguments.

system.report.getReportNamesAsList(project)
® Parameters
String project - The name of the project where the reports are located. Optional in client scope.
® Returns
List - A list of report paths for the project. Returns an empty list if the project has no reports.
® Throws

lllegalArgumentException - Thrown when any of the following occurs: If the project name is omitted in the Gateway scope, project
does not exist.

® Scope

All

Code Examples

Code Snippet

Gets a list of reports for the current project and prints it
reports = systemreport. get Report NanmesAsLi st ()
for report in reports:

print report

Output

Conpari sons

Li ne Reports/Line 1/ Defect rates
Li ne Reports/Line 1/Production
Li ne Reports/Line 2/ Defect Rates

https://legacy-docs.inductiveautomation.com/display/DOC/Scripting+Overview+and+Syntax#ScriptingOverviewandSyntax-KeywordArguments

system.security

system.security.getRoles

Description

Finds the roles that the currently logged in user has, returns them as a Python tuple of strings.

Syntax

system.security.getRoles()
® Parameters
None
® Returns
PyTuple - A list of the roles (strings) that are assigned to the current user.
® Scope

All

Code Examples

Code Snippet
#This would run on a button to prevent certain users from opening a w ndow

if "Supervisor" in systemsecurity.getRoles():
syst em nav. openW ndow(" Managenent Onl y")
el se:
system gui . errorBox("You don't have sufficient privileges to continue")

system.security.getUsername

Description

Returns the currently logged-in username.

Syntax

system.security.getUsername()
® Parameters
none
® Returns
String - The current user name.
® Scope

All

Code Examples

Code Snippet

#This code would run on a startup script and does special |ogic based upon who was |ogging in
name = system security. getUsernane()

if name == 'Bob':
syst em nav. openW ndow(" BobsHonepage")
el se:

syst em nav. openW ndow(" Nor mal Honepage")

system.security.getUserRoles

Description

Fetches the roles for a user from the Gateway. This may not be the currently logged in user. Requires the password for that user. If the
authentication profile name is omitted, then the current project's default authentication profile is used.

Syntax

system.security.getUserRoles(username, password, authProfile, timeout)

® Parameters
String username - The username to fetch roles for
String password - The password for the user
String authProfile - The name of the authentication profile to run against. Optional. Leaving this out will use the project's default profile.
Integer timeout - Timeout for client-to-gateway communication. (default: 60,000ms)

® Returns
PyTuple - A list of the roles that this user has, if the user authenticates successfully. Otherwise, returns None.

® Scope

All

Code Examples

Code Snippet

#Fetch the roles for a given user, and check to see if the role "Admin" is in them

reqRol e = "Adm n"
usernane = "Billy"
password= "Secret"
roles = system security. get User Rol es(usernane, password)
if reqRole in roles:
do sonmething requiring "Adnin" role.

system.security.isScreenLocked

Description

Returns whether or not the screen is currently locked.

Syntax

system.security.isScreenLocked()
® Parameters
none
® Returns
boolean - A flag indicating whether or not the screen is currently locked.
® Scope

All

Code Examples

Code Snippet

#This would run in a tinmer script to lock the screen after 15 seconds of inactivity, and then |log the
user out after 30 seconds of inactivity.

if systemutil.getlnactivitySeconds() > 15 and not system security.isScreenLocked():
system security. | ockScreen()

elif systemutil.getlnactivitySeconds() > 30:
system security. | ogout ()

system.security.lockScreen

Description

Used to put a running client in lock-screen mode. The screen can be unlocked by the user with the proper credentials, or by scripting via thesystem.
security.unlockScreen() function.

Syntax

system.security.lockScreen([obscure])
® Parameters
boolean obscure - If true(1), the locked screen will be opaque, otherwise it will be partially visible. [optional]
® Returns
nothing
® Scope

Client

Code Examples

Code Snippet

#This would run in a tiner script to lock the screen after 15 seconds of inactivity, and then log the
user out after 30 seconds of inactivity.

if systemutil.getlnactivitySeconds() > 15 and not system security.isScreenLocked():
system security. |l ockScreen()

elif systemutil.getlnactivitySeconds() > 30:
system security. | ogout ()

system.security.logout

Description

Shuts-down the currently running client and brings the client to the login screen.

Syntax

system.security.logout()
® Parameters
none
® Returns
nothing
® Scope

All

Code Examples

Code Snippet

#This would run in a tinmer script to log the user out after 30 seconds of inactivity.
if systemutil.getlnactivitySeconds() > 30:
system security. | ogout ()

system.security.switchUser

Description

Attempts to switch the current user on the fly. If the given username and password fail, this function will return false. If it succeeds, then all
currently opened windows are closed, the user is switched, and windows are then re-opened in the states that they were in.

If an event object is passed to this function, the parent window of the event object will not be re-opened after a successful user switch. This is to
support the common case of having a switch-user screen that you want to disappear after the switch takes place.

Syntax

system.security.switchUser(username, password, event, hideError)

® Parameters
String username - The username to try and switch to.
String password - The password to authenticate with.
EventObiject event - If specified, the enclosing window for this event's component will be closed in the switch user process.
Boolean hideError - If true (1), no error will be shown if the switch user function fails. (default: 0)

® Returns
boolean - false(0) if the switch user operation failed, true (1) otherwise.

® Scope

Client

Code Examples

Code Snippet

#This script would go on a button in a popup w ndow used to switch users without |ogging out of the
client.

Pull the username and password fromthe input conponents
unane = event. source. parent. get Conponent (" User nane") . t ext
pwd = event. source. parent. get Conponent (" Password") .t ext

Call sw tchUser. The event object is passed to this
function so that if the username and password work,
this window will be closed before the switch occurs.
success= system security.sw tchUser (unane, pwd, event)

1f the login didn't work, give input focus back to the
username conponent, so that the user can try again
if not success:
event. sour ce. par ent. get Conponent (" User nane") . r equest Focusl nW ndow()

system.security.unlockScreen

Description

Unlocks the client, if it is currently in lock-screen mode.

Syntax

system.security.unlockScreen()
® Parameters
none
® Returns
nothing
® Scope

Client

Code Examples

Code Snippet

#This code would go in a global script to automatically unlock the screen on a specific conputer

conp = system net. get Host Nane()
if comp == "Line 1':
system security. unl ockScreen()

system.security.validateUser

Description

Tests credentials (username and password) against an authentication profile. Returns a boolean based upon whether or not the authentication
profile accepts the credentials. If the authentication profile name is omitted, then the current project's default authentication profile is used.

Syntax

system.security.validateUser(username, password, authProfile, timeout)

® Parameters
String username - The username to validate
String password - The password for the user
String authProfile - The name of the authentication profile to run against. Optional. Leaving this out will use the project's default profile.
Integer timeout - Timeout for client-to-gateway communication. (default: 60,000ms)

® Returns
boolean - false(0) if the user failed to authenticate, true(1) if the username/password was a valid combination.

® Scope

Client

Syntax

system.security.validateUser(username, password, authProfile, timeout)
® Parameters
String username - User name to validate. Required.
String password - User's password. Required.
String authProfile - Authorization profile to user for validation.
Integer timeout - Not used in gateway scripts.
® Returns
boolean - True if valid username/password combination.
® Scope

Gateway

Code Examples

Code Snippet

#This woul d require the current user to enter their password agai n before proceeding.

currentUser = system security.get Usernane()
password = system gui . passwor dBox(" Confirm Password")
valid = system security.validateUser(currentUser, password)
if valid:
do sonet hing
el se:
system gui . errorBox("lncorrect password")

system.serial

system.serial.closeSerialPort

Description

Closes a previously opened serial port. Returns without doing anything if the named serial port is not currently open. Will throw an exception if the
port is open and cannot be closed.

Syntax

system.serial.closeSerialPort(port)
® Parameters
String port - The name of the serial port, e.g., "COML1" or "dev/ttyS0".
® Returns
Nothing
® Scope

All

Code Examples

There are no examples associated with this scripting function.

system.serial.configureSerialPort

Description

Configure a serial port for use in a later call. This only needs to be done once unless the configuration has changed after the initial call. All access
to constants must be prefixed by "system.serial.".

Syntax

@ This function accepts keyword arguments.

system.serial.configureSerialPort(port, bitRate, dataBits, handshake, hardwareFlowControl, parity, stopBits)
® Parameters
String port - The name of the serial port, e.g., "COML1" or "/dev/ttyS0". This parameter is required.
Integer bitRate - Configure the bit rate.Valid values are defined by the following constants: BIT_RATE_110, BIT_RATE_150,
BIT_RATE_300, BIT_RATE_600, BIT_RATE_1200, BIT_RATE_2400, BIT_RATE_4800, BIT_RATE_9600, BIT_RATE_19200,
BIT_RATE_38400, BIT_RATE_57600, BIT_RATE_115200, BIT_RATE_230400, BIT_RATE_460800, BIT_RATE_921600.

Integer dataBits - Configure the data bits.Valid values are defined by the following constants: DATA_BITS_5, DATA_BITS_B6,
DATA_BITS_7, DATA_BITS_8.

Integer handshake - Configure the handshake.Valid values are defined by the following constants: HANDSHAKE_CTS_DTR,
HANDSHAKE_CTS_RTS, HANDSHAKE_DSR_DTR, HANDSHAKE_HARD_IN, HANDSHAKE_HARD_OUT, HANDSHAKE_NONE,
HANDSHAKE_SOFT_IN, HANDSHAKE_SOFT_OUT, HANDSHAKE_SPLIT_MASK, HANDSHAKE_XON_XOFF.

Boolean hardwareFlowControl - Configure hardware flow control. On or off.

Integer parity - Configure parity.Valid values are defined by the following constants: PARITY_EVEN, PARITY_ODD, PARITY_MARK,
PARITY_SPACE, PARITY_NONE.

Integer stopBits - Configure stop bits.Valid values are defined by the following constants: STOP_BITS_1, STOP_BITS_2.
® Returns

SerialConfigurator - A SerialConfigurator that can be used to configure the serial port instead of or in addition to the given keyword
arguments.

® Scope

All

https://legacy-docs.inductiveautomation.com/display/DOC/Scripting+Overview+and+Syntax#ScriptingOverviewandSyntax-KeywordArguments

Code Examples

Code Snippet

#Configure a serial port using keyword args.
#The "port" keyword is nmandatory.

system serial . configureSerial Port (\
port="COML", \

bi t Rat e=syst em seri al . Bl T_RATE_9600, \
dat aBi t s=system seri al . DATA BI TS 8, \
handshake=syst em seri al . HANDSHAKE_NONE, \
har dwar eFl owCont r ol =Fal se, \
parity=system seri al . PARI TY_NONE, \

st opBi t s=system seri al . STOP_BI TS_1)

Code Snippet

#Configure a serial port using a Serial Configurator (returned by configureSerial Port()):

system serial . configureSerial Port("COML")\
.setBit Rate(system seri al . Bl T_RATE_9600) \
.setDat aBi t s(system seri al . DATA BI TS_8)\

. set Handshake(syst em seri al . HANDSHAKE_NONE) \
. set Har dwar eFl owCont r ol (Fal se)\
.setParity(system serial . PARI TY_NONE)\

.set StopBi ts(system serial.STOP_BITS_1)

system.serial.openSerialPort

Description

Opens a previously configured serial port for use. Will throw an exception if the serial port cannot be opened.

Syntax

system.serial.openSerialPort(port)
® Parameters
String port - The name of the serial port, e.g., "COM1" or "dev/ttyS0".
® Returns
nothing
® Scope

All

Code Examples

There are no examples associated with this scripting function.

system.serial.readBytes

Description

Read numberOfBytes bytes from a serial port.

Syntax

system.serial.readBytes(port, numberOfBytes [, timeout])
® Parameters
String port - The previously configured serial port to use.
int numberOfBytes - The number of bytes to read.
int timeout - Maximum amount of time, in milliseconds, to block before returning. Default is 5000. [optional]
® Returns
byte[] - A byte[] containing bytes read from the serial port.
® Scope

All

Code Examples

There are no examples associated with this scripting function.

system.serial.readBytesAsString

Description

Read numberOfBytes bytes from a serial port and convert them to a String. If a specific encoding is needed to match the source of the data, use
system.serial.readBytes and use the desired encoding to decode the byte array returned.

Syntax

system.serial.readBytesAsString(port, numberOfBytes [, timeout])
® Parameters
String port - The previously configured serial port to use.
int numberOfBytes - The number of bytes to read.
int timeout - Maximum amount of time, in milliseconds, to block before returning. Default is 5000. [optional]
® Returns
String - A String created from the bytes read.
® Scope

All

Code Examples

There are no examples associated with this scripting function.

system.serial.readLine

Description

Read one line from a serial port.

Syntax

system.serial.readLine(port [, timeout] [, encoding])
® Parameters
String port - The previously configured serial port to use.
int timeout - Maximum amount of time, in milliseconds, to block before returning. Default is 5000. [optional]
String encoding - The String encoding to use. Default is UTF8. [optional]
® Returns

String - A line of text. A line is considered to be terminated by any one of a line feed ('\n’), a carriage return (\r'), or a carriage return
followed immediately by a line feed.

® Scope

All

Code Examples

There are no examples associated with this scripting function.

system.serial.readUntil

Description

Reads a byte at a time from a serial port until a delimiter character is encountered. The read will block for up to timeout milliseconds before
returning.

Syntax

system.serial.readUntil(port, delimiter, includeDelimiter, timeout)
® Parameters
String port - The previously configured serial port to use.
char delimiter - The delimiter to read until.
boolean includeDelimiter - If true, the delimiter will be included in the return value.
int timeout - Optional timeout in milliseconds. Default is 5000. (Since 7.8.0)

® Returns

String - Returns a String containing all 8-bit ASCII characters read until the delimiter was reached, and including the delimiter if the
"includeDelimiter" parameter was true.

® Scope

All

Code Examples

There are no examples associated with this scripting function.

system.serial.sendBreak

Description

Sends a break signal for approximately millis milliseconds.

Syntax

system.serial.sendBreak(port, millis)
® Parameters
String port - The name of the serial port, e.g., "COM1" or "dev/ttyS0".
int millis - Approximate length of break signal, in milliseconds.
® Returns
nothing
® Scope

All

Code Examples

There are no examples associated with this scripting function.

system.serial.write

Description

Write a String to a serial port using the platforms default character encoding.

Syntax

system.serial.write(port, toWrite)
® Parameters
String port - The previously configured serial port to use.
String toWrite - The String to write.
® Returns
nothing
® Scope

All

Code Examples

There are no examples associated with this scripting function.

system.serial.writeBytes

Description

Write a byte[] to a serial port.

Syntax

system.serial.writeBytes(port, toWrite)
® Parameters
String port - The previously configured serial port to use.
byte[] toWrite - The byte[] to write.
® Returns
nothing
® Scope

All

Code Examples

There are no examples associated with this scripting function.

system.sfc

system.sfc.cancelChart
system.sfc.getRunningCharts
system.sfc.pauseChart
system.sfc.resumeChart
system.sfc.setVariable
system.sfc.setVariables
system.sfc.startChart

Chart Scope Variables

Certain chart scoped variables may interfere with the internal functions of the chart. For example, creating a variable like chart.values will
conflict with a pyDictionary's values() method and therefore the chart will show an error. Since SFC charts use Python Dictionaries to
manage chart scoped variables the methods associated with Python Dictionary's act like reserved words.

There are a number of built-in variables maintained by the SFC engine that can be read through the chart scope.

SFC built-in Variables Description

chart.instanceld The string UUID of the running chart instance

chart.startTime Ajava. util . Dat e object that indicates when the chart instance started running.

chart.runningTime An integer representing the number of seconds the chart has been running for.

chart.parent The chart scope of the enclosing chart (if any). null if this chart was not executed as part of an enclosing step.

Scripting system.sfc.* Functions

See the following links for a description of each function:

system.sfc.cancelChart

Description

Cancels the execution of a running chart instance. Any running steps will be told to stop, and the chart will enter Canceling state.

Syntax

system.sfc.cancelChart(id)
® Parameters
id -The ID of the chart instance to cancel
® Returns
Nothing
® Scope
All
® Throws

Will throw a KeyError if the ID does not match any running chart instance.

Code Examples

Code Snippet

#The following will attenpt to stop an SFC but will alert the user if the id of the chart is not
currently running
id = "'Sone long string value obtained fromearlier in the script'
try:
system sfc. cancel Chart (id)
except :
system gui . messageBox(" Coul d not stop the SFC')

system.sfc.getRunningCharts

Description

Retrieves information about all of the charts currently running.

Syntax

system.sfc.getRunningCharts()
® Parameters
nothing
® Returns
Dataset
® Scope

All

Code Examples

There are no examples associated with this scripting function.

system.sfc.pauseChart

Description

Pauses a running chart instance. Any running steps will be told to pause, and the chart will enter Pausing state.

Syntax

system.sfc.pauseChart(id)
® Parameters
id - The ID of the chart instance to pause
® Returns
Nothing
® Scope
All
® Throws

Will throw a KeyError if the ID does not match any running chart instance.

Code Examples

There are no examples associated with this scripting function.

system.sfc.resumeChart

Description

Resumes a chart that was paused. Steps which were previously paused will be resumed, and chart will enter Resuming state.

Syntax

system.sfc.resumeChart(id)
® Parameters
id - The ID of the chart instance to resume.
® Returns
Nothing
® Scope
All
® Throws

Will throw a KeyError if the ID does not match any running chart instance.

Code Examples

There are no examples associated with this scripting function.

system.sfc.setVariable

Description

Sets a variable inside a currently running chart.

Syntax

system.sfc.setVariable(instanceld, [stepld], variableName, variableValue)

® Parameters
String instanceld - The instance identifier of the chart.
String stepld - [Optional] The id for a step inside of a chart. If omitted the function will target a chart scoped variable.
String variableName - The name of the variable to set.
Object variableValue - The value for the variable to be set to.

® Returns
Nothing

® Scope

All

G} Omitting the stepld parameter will cause the function to target a chart scoped variable. If the variable is persistent to the whole chart, or
used in multiple different steps, then this parameter should be omitted.

If a stepld parameter is used, then the function will target a step scoped variable. The step associated with the stepld must be the
currently active step.

Code Examples

Code Snippet

#The followi ng passes the chart instance ID and step ID to a client nessage Handl er. The message handl er
can then wait
#for user input, and then wite back to the step vari abl es.

#The exanpl e assunmes there is a chart scoped variable called confirnEndchart, and a step scoped vari abl e
cal l ed "nessageSent".

#Get the instanceld of the current chart
chart1 D = chart.get("instanceld")

#Get the id of the step
stepl D = step.get("id")

#Create a payload to pass to the client.

#lnclude the instanceld and stepld so the script fromthe nmessage handl er knows which
#chart and step to wite to

payload = {"chartI D' : chartID, "steplD' : steplD}

#Send the nmessage
systemutil.sendMessage(project = "SFC', messageHandl er = "SFCMessage", payl oad = payl oad

HHHHHHH AR

#The followi ng script would be placed on a client nessage handler. This receives the payl oad,
#and sets a variable on either the chart or step depending on user selection

#Read itenms out of the payl oad
id = payload[' chart| D]
stepld = payl oad['stepl D]

#Ask the user to end the chart

if systemgui.confirn("Wuld you like to end the process"):
#1f yes, end the chart. confirnEndChart is chart scoped, so only 3 paraneters are passed
system sfc. set Variabl e(id, "confirnEndChart", True)

el se:
#1f no, reset the step.nessageSent variable so that the user will be pronpted again
#messageSent is step scoped, so 4 paraneters are passed
system sfc. set Vari abl e(i d, stepld, "nmessageSent", Fal se)

system.sfc.setVariables

Description

Sets any number of variables inside a currently running chart.

Syntax

system.sfc.setVariables(instanceld, [stepld], variableMap)

® Parameters
String instanceld - The instance identifier of the chart.
String stepld - [Optional] The id for a step inside of a chart. If omitted the function will target a chart scoped variable.
PyObject variablesMap - A dictionary containing the name:value pairs of the variables to set.

® Returns
Nothing

® Scope

All

@ Omitting the stepld parameter will cause the function to target a chart scoped variable. If the variable is persistent to the whole chart, or
used in multiple different steps, then this parameter should be omitted.

If a stepld parameter is used, then the function will target a step scoped variable. The step associated with the stepld must be the
currently active step.

Code Examples

Code Snippet

#GCGet the instance ID fromthe selected chart on a SFC Monitor conponent
id = event.source. parent. get Conponent (' SFC Monitor').instanceld

#Create a Python dictionary of values. This exanple assunes there are variables on the
#chart named chartParam and counter. The script will set these to 1, and O respectively
dict = {"chartParani:1, "counter":O0}

#Set the variables on the chart
system sfc. set Variables(id, dict)

system.sfc.startChart

Description

Starts a new instance of a chart. The chart must be set to "Callable" execution mode.

Syntax

system.sfc.startChart(path, arguments)
® Parameters
Path - The path to the chart, for example "ChartFolder/ChartName"

Arguments - A dictionary of arguments. Each key-value pair in the dictionary becomes a variable in the chart scope and will override
any default.

® Returns
String - The unique ID of this chart.
® Scope

All

Code Examples

Code Snippet

#The following will start an SFCwith a dictionary of values to use inside the chart
args= {"var1":10, "Var2":15,"Var3":1}

path = "Chart Fol der/ Chart Nane"

sfclD = system sfc.startChart(path, args)

system.tag

system.tag.addTag

Description

Adds a new tag in Ignition. You can add OPC, memory, expression, query, folder, and UDT instance tags.

@ This function accepts keyword arguments.

Syntax

system.tag.addTag(parentPath, name, tagType, dataType, accessRights, enabled, value, attributes, parameters, overrides, alarmList,
alarmConfig)

® Parameters
String parentPath - The folder to add the tag to. Leave blank for the root folder.
String name - The name of the tag.
String tagType - The type of tag to create. Possible values are OPC, MEMORY, EXPRESSION, QUERY, Folder, and UDT_INST.
String dataType - The data type of the tag. Not used for UDT instances or folders.
Possible basic values are Intl, Int2, Int4, Int8, Float4, Float8, Boolean, String, DataSet, and DateTime.
Possible array values are Int4Array, Int8Array, Float8Array, BooleanArray, StringArray, DateTimeArray.
String accessRights - The access rights for a tag. Possible values are Read_Only, Read_Write, and Custom.
boolean enabled - If true, the tag will be enabled.
Object value - The value of the tag. Used for memory tags.
PyDictionary attributes - The tag's configuration attributes.
PyDictionary parameters - The parameters for a UDT instance tag.
PyDictionary overrides - All of the overrides for a UDT instance tag.
String alarmList - List of alarms for the tag.
PyDictionary alarmConfig - The alarm configuration for the tag.
® Returns
Nothing
® Scope

All

@ If called in the gateway scope, a tag provider must be specified.

Associated attributes:
® Complete list of the acceptable Tag attributes.

® Complete list of the alarmConfig

Code Examples

https://legacy-docs.inductiveautomation.com/display/DOC/Configure+Alarm+on+a+Tag
https://legacy-docs.inductiveautomation.com/display/DOC/Scripting+Overview+and+Syntax#ScriptingOverviewandSyntax-KeywordArguments

Code Snippet

#Exanpl e: Add OPC tag

systemtag. addTag(parent Path=""', name="TagOPC', tagType="OPC', dataType="Int2", attributes={"0OPCServer":"

Ignition OPC-UA Server", "OPCltenPath":"[M.X] N7:0"})

Code Snippet

#Exanpl e: Add OPC tag with alarm

systemtag. addTag(parent Path=""', nanme="TagOPCAl arnl', tagType="OPC', dataType="Int2", attributes=
{"OPCServer":"lgnition OPC-UA Server", "OPCltenPath":"[MLX] N7: 0"}, alarnConfig={"Alarm 1":[["nane",
"Value", "Alarm 1"], ["setpointA","Value", 1.0], ["CustonEmail Subject","Value","M Subject"]], "Alarni:

[["nanme", "Value", "Alarnf], ["Something", "Value", "sdfsdfs"], ["enabled", "Expression", "1=2"],
[" Cust onEnai | Message”, "Val ue", "My Message"]]1})

Code Snippet

#Exanpl e: Add Fol der

systemtag. addTag(parent Path=""', nane="Fol der", tagType="Fol der")

Code Snippet

#Exanpl e: Add Menory tag

systemtag. addTag(parent Path="", nanme="TagMenory", tagType="MEMORY", dataType="Int2", val ue=25)

Code Snippet

#Exanpl e: Add Expression tag

systemtag. addTag(parent Path="", nanme="TagExpressi on", tagType="EXPRESSI ON', dataType="Int2", attributes=

{"Expression":"{[~] Tagl} * 20.5"})

Code Snippet
#Exanpl e: Add Query tag

systemtag. addTag(parent Path="", nanme="TagQuery", tagType="QUERY", dataType="DateTi ne", attributes=
{" Expressi on":"SELECT CURRENT_TI MESTAWMP", "SQLBi ndi ngDat asource":"M/SQL"})

Code Snipet

#Exanpl e: Add Menory tag to a provider other than the default tag provider

system t ag. addTag(par ent Pat h="[Provi der Nan®] Fol der", nanme="TagMenoryProvi der", tagType="MEMORY",
dat aType="Int2", val ue=42)

Code Snippet

#Exanpl e: Add UDT instance tag

Before running this script, there nust be a UDT naned ' Motor'

that has a string paraneter 'DeviceName' and an integer paraneter

' Mot or Nunber' .

systemtag. addTag(parent Path="", nanme="TagUDT", tagType="UDT_I NST", attributes={"UDTParent Type":"NMotor"},
par anet er s={" Devi ceNanme": " CLX", "MotorNunber":1})

Code Snippet

#Exanpl e: Add UDT instance tag and override nmultiple parameters on status tag.

Before running this script, there nust be a UDT naned ' SecondUDT'
that has a string paraneter 'DeviceNane', an integer paraneter
' Mot or Nunber', and a tag nanmed " STATUS".

systemtag. addTag(parent Pat h=""', nane="TagUDTParameters", tagType="UDT_I NST", attributes=
{" UDTPar ent Type": " SecondUDT"}, paraneters={"Devi ceNane":"CLX", "MtorNunber":2}, overrides={"STATUS":
{"ScanC ass":"Default Historical", "Enabled":"false"}})

Code Snippet

#Exanpl e: Add UDT instance tag and override the scan class of a tag inside of another UDT

Before running this script, there nust be a UDT naned ' ThirdUDT' .

Thi rdUDT nust contain another UDT naned ' SecondUDT', which

that has a string paraneter 'DeviceNane', an integer paraneter

' Mot or Nunber' and a tag naned " STATUS".

systemtag. addTag(parent Path="", nanme="TagUDTScanC ass", tagType="UDT_| NST", attributes={"UDTParent Type":
ThirdUDT"}, paraneters={"Mtor/Devi ceNane":"CLX", "Motor/MtorNunber":1}, overrides={"Mtor/ STATUS":
{"ScanC ass":"Default Historical"}})

Code Snippet

#Exanpl e: Create a nenory tag with a type of DataSet, and pass in a dataset as the initial value of the
newly created tag

#create an intial dataset to pass the tag
i ni t Dat a=syst em dat aset . fronCSV("' "#NAVES"\ n" Col 1"\ n"#TYPES'\n"I"\n"#ROAS","1"\n"0"\n")

#create the tag

systemtag. addTag(parent Path=""', val ue=i nitData, nane="TagMenoryDataset", tagType="MEMORY", dataType="
Dat aSet ")

Code Snippet

#Exanpl e: Add an Array type Menory tag to the default tag provider

create a dataset
dat aset = system dataset.toDataSet(["values"], [[1],[2],[3]])

create the tag
systemtag. addTag(parent Path="", nanme="TagMenoryArray", tagType="MEMORY", dataType="Int4Array",
val ue=dat aset)

Tag Attributes

Description

Tags have many attributes that define how the tag is configured. This are often referred to when creating tags using the system.tag.addTag and system.
tag.editTag scripting functions. See below for the complete list of attributes.

Attributes

Value Object

Name String

Quality DataQuality

Enabled Boolean

AccessRights AccessRightsType
OPCServer String
OPCltemPath String
OPCWriteBackServer String
OPCWriteBackltemPath String
ScaleMode Integer

RawLow Double

RawHigh Double

ScaledLow Double

ScaledHigh Double
ClampMode Integer

Deadband Double

FormatString String

EngUnit String

Tooltip String

EngHigh Double

EngLow Double

Documentation String
Expression String
ExpressionType Integer
AlertMode Integer
AlertAckMode Integer
AlertSendClear Integer
AlertMessageMode Integer
AlertMessage String

AlertNotes String
AlertDisplayPath String
AlertDeadband Double
LastChange Date.class
DriverName String

ScanClass String.class
PollRate PollingRate.class
SQLBindingDatasource String
PrimaryHistoryProvider String
HistoricalDeadband Double
HistoryEnabled Boolean
HistoricalScanclass String
InterpolationMode Integer
AlertExecEnabled Boolean
AlertActive Boolean
AlertCurrentState String
AlertCurrentSeverity Integer
AlertAcknowledged Boolean
AlertAcknowledgeUser String
AlertActiveTime Date
AlertAcknowledgedTime Date
AlertClearedTime Date
AlertTimestampSource Integer
AlertMessageSubject String
HistoryTimestampSource Integer
HistoryMaxAgeMode Integer
HistoryMaxAge Integer
DataType DataType.class
TagTypeSubCode Integer
TagType Integer
UDTParentType String
ExtendedProperties PropertySet
PropertyOverrides OverrideMap
UDTMemberUID String.class
AlarmActiveUnackCount Integer
AlarmActiveAckCount Integer
ScaleFactor Double
EngLimitMode Integer
AlarmClearUnackCount Integer
AlarmHighestUnackPriority Integer
AlarmHighestUnackName String
AlarmHighestAckName String
AlarmHighestAckPriority Integer
DeadbandMode Integer
HistoricalDeadbandMode Integer

system.tag.browseHistoricalTags

Description

Browses and returns the historical tags.

Syntax

system.tag.browseHistoricalTags(path, [nameFilters], [maxSize], [continuationPoint])
® Parameters
String path
String[] nameFilters
Integer maxSize
Object continuationPoint
® Returns
BrowseResults
® Scope

All

Code Examples

There are no examples associated with this scripting function.

system.tag.browseTags

Description

Returns an array of tags from a specific folder. The function supports filtering and recursion. Leave filters blank to return all tags.

Note: This function cannot browse Client tags.

Syntax

system.tag.browseTags(parentPath, tagPath, tagType, dataType, udtParentType, recursive, sort)
® Parameters
String parentPath - The parent folder path. Leave blank for the root folder. Note: you can specify the tag provider name in square
brackets at the beginning of the parentPath string. Example: "[myTagProvider]MyTagsFolder". If the tag provider name is left off then
the project default provider will be used.
String tagPath - Filters on a tag path. Use * as a wildcard for any number of characters and a ? for a single character.

String tagType - The type of tag to create. Possible values are OPC, MEMORY, EXPRESSION, QUERY, FOLDER, and UDT_INST.

String dataType - The data type of the tag. Not used for UDT instances or folders. Possible values are Intl, Int2, Int4, Int8, Float4,
Float8, Boolean, String, and DateTime.

String udtParentType - The name of the parent UDT.

boolean recursive - Recursively search for tags inside of folders.

String sort - Sets the sort order, possible values are ASC and DESC. Sorting is done on the full path of the tag.
® Returns

BrowseTag[] - An array of BrowseTag. BrowseTag has the following variables: name, path, fullPath, type, dataType, and the following
functions: isFolder(), isSUDT(), isOPC(), isMemory(), isExpression(), isQuery().

® Scope

All

@ If called in the gateway scope, a tag provider must be specified.

Code Examples

Code Snippet

#Exanple 1: Browse all tags in a specific folder
tags = systemtag. browseTags(parent Pat h="")
for tag in tags:
print tag.nane, tag.path, tag.fullPath, tag.isFolder(), tag.isUDT(),

print tag.isOPC(), tag.isMenory(), tag.isExpression(), tag.isQuery(),
print tag.isDB(), tag.type, tag.dataType

Code Snippet

#Exanpl e 2: Browse tags of a the sane data type

tags = systemtag. browseTags(parent Pat h= dat aType="Int2")

Code Snippet

#Exanpl e 3: Browse tags of a the sane UDT parent type

tags = systemtag. browseTags(parentPath="", udtParent Type="Mtor")

Code Snippet

#Exanpl e 4: Browse tags of a the sane type

tags = systemtag. browseTags(parentPath="", tagType="0OPC")

Code Snippet

#Exanpl e 5: Browse tags using a tag path filter

tags = systemtag. browseTags(parent Path="", tagPath="*Fol der1")

Code Snippet

#Exanpl e 6: Recursively browse tags

tags = systemtag. browseTags(parent Path="", recursive=True)

Code Snippet

#Exanple 7: Sort tag in DESC order

tags = systemtag. browseTags(parentPath="", sort="DESC")

system.tag.browseTagsSimple

Description

Returns a sorted array of tags from a specific folder.

Syntax

system.tag.browseTagsSimple(parentPath, sort)

® Parameters

String parentPath - The parent folder path. Leave blank for the root folder. Note: you can specify the tag provider name in square

brackets at the beginning of the parentPath string. Example: "[myTagProvider]MyTagsFolder". If the tag provider name is left off then
the project default provider will be used.

String sort - Sets the sort order, possible values are ASC and DESC.
® Returns

BrowseTag[] - An array of BrowseTag. BrowseTag has the following variables: name, path, fullPath, type, dataType, and the
following functions: isFolder(), isUDT(), isOPC(), isMemory(), isExpression(), isQuery().

® Scope

All

@ If called in the gateway scope, a tag provider must be specified.

Code Examples

The following script will print out the names of all tags and the tag type:

Code Snippet

tags = systemtag. browseTagsSi npl e("", "ASC")
for tag in tags:

print "Nane:",tag.nane, "\tType:", tag.dataType

system.tag.editAlarmConfig

Description

Edit the alarm configuration of multiple existing tags in Ignition with a single call.

Syntax

system.tag.editAlarmConfig(tagPaths, alarmConfig)

® Parameters

String[] tagPaths - The full path to the tag you want to edit. Note: you can specify the tag provider name in square brackets at the
beginning of the parentPath string. Example: "[myTagProvider]MyTagsFolder". If the tag provider name is left off then the project
default provider will be used.

PyDictionary alarmConfig - A dictionary of multi-dimensional lists containing the new alarm configuration. The key in the dictionary will
be the name of the alarm being to edit, and the value is a list of lists. The nested lists use the format ['name”, "Value", "newValue"].
Note that item 1 is always "Value".

Example: {"target Alarni': [[" propertyToChange", "Val ue", "newval ue"], ["anot her Property", "Val ue", "
anot her Newval ue"]]}

If the name of the alarm does not match a pre-existing alarm, a new alarm will be created. Note that alarm names are case
sensitive. Beware of typos.

A list of scripting names for each alarm property can be found on the Configure Alarm on a Tag page.

® Returns

nothing

® Scope

All

https://legacy-docs.inductiveautomation.com/display/DOC/Configure+Alarm+on+a+Tag

Code Examples

Code Snippet - Single Tag, Multiple properties

#The following exanple will alter the alarmconfiguration on a single tag.
#The tag currently has an al arm named "H gh Tenp". The code below will change the name of the alarm
#to "Low Tenp", and change the Setpoint to 100.

#Build a list of tag paths. Only a single tag will be altered, so create a list of one itemand store the
list in a variable
tagPat hs = ["sensors/ B3:0"]

#Buil d the dictionary of alarmnanes, and properties to change.
alarnConfig = {"Hi gh Tenp":[["nane", "Val ue", "Low Tenp"],["set poi nt A", "Val ue","100"]1]}

#Edit the al arm configuration.
systemtag. edi t Al arnConfi g(tagPat hs, al arnConfi g)

Code Snippet - Multiple Tags, Single Alarm per Tag

#The followi ng exanple will disable alarns on nultiple tags.
#The tags bel ow both have an al arm naned "Al arnf
#This code will edit the Enabled property for both alarns.

#Build a list of tag paths.
tagPat hs = ["Tanks/ Tank_1/1evel _PV', "Tanks/ Tank_2/I|evel _PV"]

#Build a dictionary of alarnms. Both alarns have the name "Alarnf, so a dictionary of one item
#will be able to alter both alarms in a single call.
alarnConfig = {"Alarni:[["enabl ed", "Val ue","0"]11}

#Edit the alarm configuration.
systemtag. edi t Al ar nConfi g(tagPat hs, al arnConfi g)

Code Snippet - Multiple Tags, Multiple Alarms per Tag

#The following exanple will create two alarns each on two different tags.

#The code assunes there are not pre-existing alarns on the tags by the nane of "Hi gh Level" and "Low
Level "

#The Nanme, Mbdde, and Setpoint properties will be nodified for each alarm

#Build a |ist of tag paths.
tagPat hs = ["Tanks/ Tank_1/1evel _PV", "Tanks/ Tank_2/| evel _PV"]

#Configure two alarnms on the tags.

#Mbde val ue of 2 = Above Set poi nt

#Mode val ue of 3 = Bel ow Set poi nt

al arnConfig = {"Hi gh Level ":[["npde", "Val ue","2"],["setpointA", "Value", 80]], "Low Level":[["npde","
Val ue", "3"],["setpoi nt A", "Val ue", 1511}

#Edit the al arm configuration.
systemtag. edi t Al ar nConfi g(tagPat hs, al arnConfi g)

system.tag.editTag

Description

Edits an existing tag in Ignition.

Syntax

system.tag.editTag(tagPath, attributes, parameters, accessRights, overrides, alarmList, alarmConfig)

® Parameters
String tagPath - The full path to the tag you want to edit. Note: you can specify the tag provider name in square brackets at the
beginning of the parentPath string. Example: "[myTagProvider]MyTagsFolder". If the tag provider name is left off then the project
default provider will be used.
PyDictionary attributes - The tag's configuration attributes.
PyDictionary parameters - The parameters for a UDT instance tag.
String accessRights - The access rights for the tags. Possible values are Read_Only, Read_Write, and Custom.
PyDictionary overrides - All of the overrides for a UDT instance tag.
String alarmList - List of alarms for the tags.
PyDictionary alarmConfig - The alarm configuration for the tag.

® Returns
nothing

® Scope

All

@ If called in the gateway scope, a tag provider must be specified.

Associated attributes:
® Complete list of the acceptable Tag attributes.

® Complete list of the alarmConfig values coming soon.

Code Examples

Code Snippet

#Exanple 1: Edit OPC tag

systemtag. edi t Tag(t agPat h="Tagl",
attributes={"OPCServer":"lIgnition OPC-UA Server", "OPCltenPath":"[MLX] N7:2"})

Code Snippet

#Exanpl e 2: Edit UDT instance paraneters

systemtag. edi t Tag(t agPat h="Tag5", paraneters={"Devi ceNane":"CLX", "MbtorNunber":2})

Code Snippet

#Exanple 3: Edit UDT instance and override certain paranmeters

systemtag. edi t Tag(t agPat h="Tag8", overrides={"STATUS": {"ScanC ass":"Default"}})

Code Snippet

#Exanpl e 4: Edit UDT instance and override nultiple paraneters

systemtag. edi t Tag(t agPat h="Tag8",
overrides={"STATUS": {"ScanC ass":"Default", "Enabled":"false"}})

Code Snippet

#Exanpl e 5: Edit UDT instance and renpve certain overrides

systemtag. edi t Tag(t agPat h="Tag8", paraneters={"Parani:" Sonet hing"},
overrides={"STATUS": {" ScanCl ass": None}})

Code Snippet

#Exanpl e 6: Enable history on a tag, set the historical scanclass to "Default H storical", and set the
Hi story Provider to the "Data" provider

systemtag. edi t Tag(t agPat h="Fol der/ Tag", attri butes={"Hi storyEnabl ed": True, "Hi storical Scancl ass": "Def aul t
Historical", "PrimaryHistoryProvider":"Data"})

system.tag.editTags

Description

Edit multiple existing tags in Ignition with a single call.

Syntax

system.tag.editTags(tagPaths, attributes, parameters, accessRights, overrides, alarmList, alarmConfig)

® Parameters
String[] tagPaths - The full path to the tag you want to edit. Note: you can specify the tag provider name in square brackets at the
beginning of the parentPath string. Example: "[myTagProvider]MyTagsFolder". If the tag provider name is left off then the project
default provider will be used.
PyDictionary attributes - The tag's configuration attributes.
PyDictionary parameters - The parameters for a UDT instance tag.
String accessRights - The access rights for a tag. Possible values are Read_Only, Read_Write, and Custom.
PyDictionary overrides - All of the overrides for a UDT instance tag.
String alarmList - List of alarms for the tag.
PyDictionary alarmConfig - The alarm configuration for the tag.

® Returns
nothing

® Scope

All

Code Examples

There are no examples associated with this scripting function.

system.tag.exists

Description

Checks whether or not a tag with a given path exists.

Syntax

system.tag.exists(tagPath)
® Parameters
String tagPath - The path of the tag to look up.
® Returns
boolean - True if a tag exists for the given path, false otherwise.
® Scope

All

Code Examples

Code Snippet

#This code would wite a 1 to the tag "Conpressors/C28/ClearFault"” if that tag exists.

if systemtag. exists("Conpressors/C28/C earFault"):
systemtag. wite("Conpressors/C28/ ClearFault", 1)

system.tag.getAlarmStates

Description

Returns an array of alarm definitions for a specific tag.

Syntax

system.tag.getAlarmStates(tagPath)

® Parameters
String tagPath - The full path to the tag. Note: you can specify the tag provider name in square brackets at the beginning of the
parentPath string. Example: "[myTagProvider]MyTagsFolder". If the tag provider name is left off then the project default provider will
be used.

® Returns
TagAlarmDefinition[] - An array of TagAlarmDefinition.

® Scope

All

@ The properties on the alarm definitions returned by this function do not list what are considered "default" properties; calling
getAlarmProperties on an alarm with a Low properity will not return the priority property of the alarm, but if the priority is changed to
Medium, then the priority property would be returned. See the Configure Alarm on a Tag page for a full list of properties.

Code Examples

Code Snippet

CGet the alarmconfiguration for a tag. The prop.type represents whether the
value is static, bound to an expression, or bound to a UDT paraneter
tagDefs = systemtag. get Al arnft at es(" TagAl arni')
for tagDef in tagDefs:
print tagDef.alarm
for prop in tagDef.get Al arnProperties():
print prop.property, prop.type, prop.value

https://legacy-docs.inductiveautomation.com/display/DOC/Configure+Alarm+on+a+Tag

system.tag.getAttribute - Deprecated

Description

Returns an any attribute for a specific tag.

Syntax

system.tag.getAttribute(tagPath, attribute)

® Parameters
String tagPath - The full path to the tag you want to edit. Note: you can specify the Tag provider name in square brackets at the
beginning of the parentPath string. Example: "[myTagProvider]MyTagsFolder". If the tag provider name is left off then the project
default provider will be used.
String attribute - The name of a tag attribute. See Tag Attributes for more information.

® Returns
Object - The value of the attribute.

® Scope

All

Code Examples

Code Snippet

#Exanpl e 1:

expression = systemtag. getAttribute("Tag3", "Expression")
print expression

system.tag.isOverlaysEnabled

Description

Returns whether or not the current client's quality overlay system is currently enabled.

Syntax

system.tag.isOverlaysEnabled()
® Parameters
none
® Returns
boolean - True (1) if overlays are currently enabled.
® Scope

All

Code Examples

There are no examples associated with this scripting function.

system.tag.loadFromFile

Description

This function locates an exported tag file and loads the tags into the specified tag provider.

Syntax

system.tag.loadFromFile(filePath, provider, mode)
® Parameters
String filePath - The path of the tag file to import from.
String provider - The name of the provider to import to.
Integer mode - Dictates what happens if the tag already exists. 0 = overwrite, 1 = ignore.
® Returns
nothing
® Scope

All

Code Examples

Code Snippet

#The following exanple loads a file naned 'tags.xm' |ocated at C:\
#The backsl ash character is an escape character in python, so we have to use it twice for the filePath
vari abl e

#Create variables to pass into the function
filePath = "'C\\tags.xm"'
provider = "default'

#Load the file
systemtag. | oadFronFil e(fil ePath, provi der, 0)

system.tag.queryTagCalculations

Description

Queries various calculations (aggregations) for a set of tags over a specified range. Returns a dataset with a row per tag, and a column per

calculation.

Syntax

@ This function accepts keyword arguments.

system.tag.queryTagCalculations(paths, calculations, startDate, endDate, rangeHours, rangeMinutes, aliases, includeBoundingValues,
validatesSCExec, nolnterpolation, ignoreBadQuality)

® Parameters

PySequence paths - An array of tag paths (strings) to query calculations for. The resulting dataset will have a row for each tag, and a
column for each calculation.

PySequence calculations - An array of calculations (aggregation functions) to execute for each tag. Valid values are: "Average" (time-
weighted), "MinMax", "LastValue", "SimipleAverage", "Sum", "Minimum", and "Maximum".

Date startDate - The starting point for the calculation window. If omitted, and range is not used, 8 hours before the current time is
used.

Date endDate - The end of the calculation window. If omitted, and range is not used, uses the current time.

Integer rangeHours - Allows you to specify the query range in hours, instead of using start and end date. Can be positive or negative,
and can be used in conjunction with startDate or endDate.

Integer rangeMinutes - Same as rangeHours, but in minutes.

PySequence aliases - Aliases that will be used to override the tag path names in the result dataset. Must be 1-to-1 with the tag
paths. If not specified, the tag paths themselves will be used.

Boolean includeBoundingValues - A boolean flag indicating that the system should attempt to load values before and after the query
bounds for the purpose of interpolation. The effect depends on the aggregates used. The default is "true”.

Boolean validatesSCExec - A boolean flag indicating whether or not data should be validated against the scan class execution
records. If false, calculations may include data that is assumed to be good, even though the system may not have been running.
Default is "true"

Boolean nolnterpolation - A boolean flag indicating that the system should not attempt to interpolate values in situations where it
normally would, such as for analog tags. Default is "false"

Boolean ignoreBadQuality - A boolean flag indicating that bad quality values should not be used in the query process. If set, any
value with a "bad" quality will be completely ignored in calculations. Default is "false".

® Returns

Dataset - A dataset representing the calculations over the specified range. There is a row per tag id, and a column per requested
calculation. Tag path is returned in the first column.

® Scope

All

https://legacy-docs.inductiveautomation.com/display/DOC/Scripting+Overview+and+Syntax#ScriptingOverviewandSyntax-KeywordArguments

Code Examples

Code Snippet

system tag. queryTagCal cul ati ons(paths=[' Hi storical Tag'], calculations=['Average'],
nol nt er pol at i on=Fal se)

system.tag.queryTagDensity

Description

Queries the tag history system for information about the density of data. In other words, how much data is available for a given time span.
This function is called with a list of tag paths, and a start and end date. The result set is a two column dataset specifying the timestamp, and a

relative weight. Each row is valid from the given time until the next row. The weight is normalized to a value of 1.0 for each tag with data during that
time. Thus, for three tag paths passed in, if all tags were present during the span, the result would be 3.0.

Syntax

system.tag.queryTagDensity(paths, startDate, endDate)
® Parameters
PySequence paths - An array of tag paths (strings) to query.
Date startDate - The start of the range to query.
Date endDate - The end of the range to query.
® Returns

Dataset - A 2-column dataset consisting of a timestamp and a weight. Each row is valid until the next row. The weight is 1 point for
each tag with data present.

® Scope

All

Code Examples

There are no examples associated with this scripting function.

system.tag.queryTagHistory

Description

Issues a query to the Tag Historian. Querying tag history involves specifying the tags and the date range, as well as a few optional parameters.
The Tag historian will find the relevant history and then interpolate and aggregate it together into a coherent, tabular result set.

This function takes a list of strings, where each string is a tag path, like "Tanks/Tank5" or "[OracleProvider]Sump/Out2". See also: Tag Paths.

The return size determines how the underlying data is aggregated and/or interpolated. If a distinct return size is specified, that will be the number of
rows in the resulting dataset. The special numbers 0 and -1 mean "Natural" and "On-Change", respectively. "Natural" calculates a return size
based on the rate of the logging historical scan classes. For example, if you query 1 hour of data for a scan class logging every minute, the natural
return size is 60. "On-Change means that you'll get an entry whenever any of the tags under consideration have changed.

Instead of defining a fixed return size, the parameters intervalHours and intervalMinutes can be used. These parameters can be used
independently or together to define a "window size". For example, if you defined a 1 hour range, with intervalMinutes=15, you would get 4 rows as
a result.

The span of the query can be specified using startDate and endDate. You can also use rangeHours and rangeMinutes in conjunction with either
start or end date to specify the range in dynamic terms. For example, you could specify only "rangeHours=-8" to get the last 8 hours from the
current time. Or you could use "startDate='2012-05-30 00:00:00', rangeHours=12" to get the first half of the day for May 30th, 2012. The
aggregation mode is used when the data is denser than what you asked for. This happens when using fixed return sizes, as there will often be
multiple raw values for the window interval defined. Another common operation is to set the return size to 1, in order to use these aggregate
functions for calculation purposes. The available functions are:

® "MinMax" - will return two entries per time slice - the min and the max.

* "Average" - will return the time-weighted average value of all samples in that time slice.

® "LastValue" - returns the most recent actual value to the end of the window.

® "SimpleAverage" - returns the simple mathematical average of the values - ((V1+V2+...+Vn)/n)
® "Maximum" - the maximum value of the window.

® "Minimum" - the minimum value of the window.

Syntax

@ This function accepts keyword arguments.

system.tag.queryTagHistory(paths, startDate, endDate, returnSize, aggregationMode, returnFormat, columnNames, intervalHours,
intervalMinutes, rangeHours, rangeMinutes, aggregationModes, includeBoundingValues, validateSCExec, nolnterpolation,
ignoreBadQuality)

® Parameters
PySequence paths - An array of tag paths (strings) to query. Each tag path specified will be a column in the result dataset.
Date startDate - The earliest value to retrieve. If omitted, 8 hours before current time is used.
Date endDate - The latest value to retrieve. If omitted, current time is used.

Integer returnSize - The number of samples to return. -1 will return values as they changed, and 0 will return the "natural" number of
values based on the logging rates of the scan class(es) involved. -1 is the default.

String aggregationMode - The mode to use when aggregating multiple samples into one time slice. Valid values are: "Average" (time-
weighted), "MinMax", "LastValue", "SimpleAverage", "Sum", "Minimum", and "Maximum". Default is "Average" (time-weighted).

String returnFormat - Use "Wide" to have a column per tag queried, or "Tall" to have a fixed-column format. Default is "Wide".

PySequence columnNames - Aliases that will be used to override the column names in the result dataset. Must be 1-to-1 with the tag
paths. If not specified, the tag paths themselves will be used as column titles.

Integer intervalHours - Allows you to specify the window interval in terms of hours, as opposed to using a specific return size.
Integer intervalMinutes - Same as intervalHours, but in minutes. Can be used on its own, or in conjunction with intervalHours.

Integer rangeHours - Allows you to specify the query range in hours, instead of using start and end date. Can be positive or negative,
and can be used in conjunction with startDate or endDate.

Integer rangeMinutes - Same as rangeHours, but in minutes.

PySequence aggregationModes - A one-to-one list with paths specifying an aggregation mode per column.

Boolean includeBoundingValues - A boolean flag indicating that the system should attempt to include values for the query bound
times if possible. The default for this property depends on the query mode, so unless a specific behavior is desired, it is best to not
include this parameter.

Boolean validateSCExec - A boolean flag indicating whether or not data should be validated against the scan class execution records.
If false, data will appear flat (but good quality) for periods of time in which the system wasn't running. If true, the same data would be

bad quality during downtime periods.

Boolean nolnterpolation - A boolean flag indicating that the system should not attempt to interpolate values in situations where it
normally would. This will also prevent the return of rows that are purely interpolated.

Boolean ignoreBadQuality - A boolean flag indicating that bad quality values should not be used in the query process. If set, any value
with a "bad" quality will be completely ignored in calculations and in the result set.

® Returns

Dataset - A dataset representing the historian values for the specified tag paths. The first column will be the timestamp, and each
column after that represents a tag.

® Scope

All

https://legacy-docs.inductiveautomation.com/display/DOC/Scripting+Overview+and+Syntax#ScriptingOverviewandSyntax-KeywordArguments

Code Examples

Code Snippet

#The following exanple will return a dataset with one row detailing maxi nrumvalue of a tag named 'Sine'
for the past 5 minutes.

inport datetine

startTime = datetine.datetine.now() - datetine.tinmedelta(m nutes=5)

endTi ne = datetine.datetime. now()

dataSet = systemtag.queryTagHi story(paths=['Sine'], startDate=startTi ne, endDate=endTine, returnSize=1,
aggr egat i onMode="Maxi munt', returnFormat="Wde')

system.tag.read

Description

Reads the value of the tag at the given tag path. Returns a qualified value object. You can read the value, quality, and timestamp from this object.
If the tag path does not specify a tag property, then the Value property is assumed.

You can also read the value of tag attributes by appending the attribute to the tagPath parameter. See the Tag Attributes page for a list of available
attributes.

Syntax

system.tag.read(tagPath)
® Parameters
String tagPath - Reads from the given tag path. If no property is specified in the path, the Value property is assumed.
® Returns
QualifiedValue - A qualified value. This object has three sub-members: value, quality, and timestamp.
® Scope

All

Code Examples

Code Snippet

#Thi s exanple would read a value and display it in a nessage box.

gqv = systemtag. read("[]EastSection/Val veG HOA bit")
system gui . nressageBox(" The value is %" % qv. val ue)

Code Snippet

#Thi s exanpl e woul d check the quality of a tag value, and wite it to the database if the quality is good
gqv = systemtag. read("[]East Section/Val veG HOA bit")

if gqv.quality.isGood():
system db. runPrepQuery(" I NSERT | NTO VALVE_TABLE (HOA) VALUES (?)", qv.value)

Code Snippet

#Thi s exanpl e woul d check the value of the EngHi gh attribute on the tag

qv = systemtag.read("[] East Section/ Val ve@ HOA_bi t. EngHi gh")
system gui . messageBox(" The EngHi gh value is %" % qv. val ue)

system.tag.readAll

Description

Reads the values of each tag in the tag path list. Returns a sequence of qualified value objects. You can read the value, quality, and timestamp
from each object in the return sequence. Reading in bulk like this is more efficient than calling read() many times.

Syntax

system.tag.readAll(tagPaths)
® Parameters
String[] tagPaths - A sequence of tag paths to read from.
® Returns

QualifiedValue[] - A sequence of qualified values corresponding to each tag path given. Each qualified value will have three sub-
members: value, quality, and timestamp.

® Scope

All

Code Examples

Code Snippet

#Thi s exanple would read 5 tags at once and print each of their val ues

tags = ["Tags/T1", "Tags/T2", "Tags/T3", "Tags/T4", "Tags/ T5"]
val ues = systemtag.readAll (tags)
for x in range(len(tags)):

print "% = %" % (tags[x], values[x])

system.tag.removeTag

Description

Removes a tag from Ignition.

Syntax

system.tag.removeTag(tagPath)

® Parameters

String tagPath - The path to the tag you want to remove. Note: you can specify the tag provider name in square brackets at the
beginning of the parentPath string. Example: "[myTagProvider]MyTagsFolder". If the tag provider name is left off then the project
default provider will be used.

® Returns
nothing

® Scope

All

Code Examples

Code Snippet

systemtag. renoveTag(" Tagl")

system.tag.removeTags

Description

Removes multiple tags from Ignition with a single call.

Syntax

system.tag.removeTags(tagPaths)

® Parameters
String[] tagPaths - An array of the paths to the tags you want to remove. Note: you can specify the tag provider name in square
brackets at the beginning of the parentPath string. Example: "[myTagProvider]MyTagsFolder". If the tag provider name is left off then
the project default provider will be used.

® Returns
nothing

® Scope

All

Code Examples

Code Snippet

systemtag. renoveTags([" Tagl", "Tag2"])

system.tag.setOverlaysEnabled

Description

Enables or disables the component quality overlay system.

Syntax

system.tag.setOverlaysEnabled(enabled)
® Parameters
boolean enabled - True (1) to turn on tag overlays, false (0) to turn them off.
® Returns
nothing
® Scope

All

Code Examples

There are no examples associated with this scripting function.

system.tag.storeTagHistory

Description

Inserts data into the tag history system, allowing Tag history to be recorded via scripting.
The Tag paths are associated with a historical and realtime provider, but they do not necessarily need to exist in the realtime provider. This means

records from non-existent Tags can be stored in the Tag History system. Because of this, it is imperative that Tag paths passed to the function are
typed precisely, otherwise the history will be stored at an incorrect path.

Syntax

system.tag.storeTagHistory(historyprovider, tagprovider, paths, values [, qualities, timestamps])
® Parameters
String historyprovider - The historical provider to store to.

String tagprovider - The name of the realtime tag provder to associate these tags with. The tag provider does not need to exist, and
the tag paths do not need to exist in it.

String[] paths - A list of paths to store. The values, qualities, and timestamps are one-to-one with the paths. A single path may be
present multiple times in order to store multiple values.

Object[] values - A list of values to store.

Integer[] qualities - A list of integer quality codes corresponding to the values. Quality codes can be found on the Tag Quality and
Overlays page. If omitted, GOOD quality will be used.

Date[] timestamps - A list of Date timestamps corresponding to the values. If omitted, the current time will be used. A java.util.date
object may be passed, so the system.date funcitions can be used to return a timestamp.

® Returns
nothing
® Scope

All

https://legacy-docs.inductiveautomation.com/display/DOC/Tag+Quality+and+Overlays
https://legacy-docs.inductiveautomation.com/display/DOC/Tag+Quality+and+Overlays

Code Examples

Example - Single Tag

This exanple stores history for a fictitious tag path in a non-existent Tag provider, but both could be
substituted for actual resources in the project.
Note that the History Provider specified nmust exist in the system

histProv = "My Hi story Provider"
tagProv = "My Tag Provider"
paths = ["fol der/tag"]

values = [10]

#Store the history with the variabl es decl ared above.
system tag. storeTagHi story(histProv, tagProv, paths, val ues)

Example - Single Tag, Multiple Entries

Stores nultiple records for a single tag path. Could be nodified to store nore records by increasing the
nunber of itens in each list.
Additionally, different tag paths could be used for each record.

paths = ["fol der/tag","folder/tag"]
val ues = [15, 300]
quals = [192, 192]

#CGenerate the date: Jan 19th 2017 10:02:44 AMlocal tine
date = system date. getDate(2017, 0, 19)

hi stDate = system date. setTi ne(date, 10, 02, 44)

dates = [system date.now), histDate]

#Store the history with the variabl es decl ared above.
systemtag. storeTagHi story("My History Provider", "My Tag Provider", paths, values, quals, dates)

system.tag.write

Description

Writes a value to a tag. Note that this function writes asynchronously. This means that the function does not wait for the write to occur before
returning - the write occurs sometime later on a different thread.

Syntax

system.tag.write(tagPath, value, suppressErrors)
® Parameters
String tagPath - The path of the tag to write to.
Object value - The value to write.
Boolean suppressErrors - A flag indicating whether or not to suppress errors. (optional, client-only).
® Returns
int - 0 if the write failed immediately, 1 if it succeeded immediately, and 2 if it is pending.
® Scope

All

Code Examples

Code Snippet

#Thi s code would go on a property change event for a nuneric text field to calculate and wite a value to
a tag.

if event.propertyNane == intVal ue:
cal cVal ue = event.newalue * 2.5
systemtag. wite("Tanks/tankH SP", cal cVal ue)

system.tag.writeAll

Description

Performs an asynchronous bulk write. Takes two sequences that must have the same number of entries. The first is the list of tag paths to write to,
and then second is a list of values to write. This function is dramatically more efficient than calling write multiple times.

Syntax

system.tag.writeAll(tagPaths, values)
® Parameters
String[] tagPaths - The paths of the tags to write to.
Object[] values - The values to write.
® Returns

int[] - Array of ints with an element for each tag written to: 0 if the write failed immediately, 1 if it succeeded immediately, and 2 if it is
pending.

® Scope

All

Code Examples

Code Snippet

#This code wite to 5 tags at once.

tags = ["Tags/ T1", "Tags/T2", "Tags/T3", "Tags/T4", "Tags/ T5"]
values = [2, 4, 8, 16, 32]
val ues = systemtag. witeAll(tags, val ues)

system.tag.writeAllISynchronous

Description

Performs a synchronous bulk write to tags. This means that you know at the end of this function whether or not the writes succeeded or not. Writes
that fail or time out will throw errors. However, this function cannot be called from the event dispatch thread, which means that it cannot be called
directly from a GUI event like a button press, without wrapping it in a system.util.invokeAsynchronous. You can call this from project event scripts
like timer scripts.

Syntax

system.tag.writeAllSynchronous(tagPaths, values [, timeout])
® Parameters
String[] tagPaths - The paths of the tags to write to.
Object[] values - The values to write.
int timeout - How long to wait in milliseconds before timing out pending writes. The default is 45000 milliseconds. [optional]
® Returns
nothing
® Scope

All

Code Examples

Code Snippet
#This code wite to 5 tags at once, waiting up to 30 seconds for any pending wites to conplete.

tags = ["Tags/ T1", "Tags/T2", "Tags/T3", "Tags/T4", "Tags/ T5"]
values = [2, 4, 8, 16, 32]

timeout = 30000

systemtag. witeAll Synchronous(tags, val ues, ti meout)

system.tag.writeSynchronous

Description

Performs a write to a tag, synchronously. This means that you know at the end of this function whether or not the write succeeded or not. A write
that fails or times out will throw an error. However, this function cannot be called from the event dispatch thread, which means that it cannot be
called directly from a GUI event like a button press, without wrapping it in a system.util.invokeAsynchronous. You can call this from project event
scripts like timer scripts.

Syntax

system.tag.writeSynchronous(tagPath, value [, timeout])
® Parameters
String tagPath - The path of the tag to write to.
Object value - The value to write.
int timeout - How long to wait in milliseconds before timing out pending writes. The default is 45000 milliseconds. [optional]
® Returns
nothing
® Scope

All

Code Examples

Code Snippet

#This code would wite the value 1 to a tag. It will continue inmediately on success or failure, or wait
up to 38 seconds if the wite is pending.

systemtag. witeSynchronous("Tags/ T5", 1, 38000)
This line will not be reached until the tag wite succeeds, fails, or has been
pending for at |east 38 seconds.

system.twilio

system.twilio.getAccounts

Description

Return a list of Twilio accounts that have been configured in the gateway

Syntax

system.twilio.getAccounts()
® Parameters
None
® Returns
List - A list of configured Twilio accounts
® Scope

All

Code Examples

Code Snippet

#Retrieves a list of twilio accounts and then iterates through the resulting Ii st
#Call systemtw lio.getAccounts() and store the returned list into a variable
twilioAccounts = systemtwilio.getAccounts()

#lterate through the list of accounts
for account in twlioAccounts:

#Prints the account nane to the console, but could do sonething nore useful with each account
print account

system.twilio.getAccountsDataset

Description

Return a list of Twilio accounts that have been configured in the gateway as a single-column Dataset

Syntax

system.twilio.getAccounts()
® Parameters
None
® Returns
Dataset - A list of configured Twilio accounts as a single-column Dataset
® Scope

All

Code Examples

Code Snippet

#Retrieves a list of Twilio accounts and then passes the data to a Tabl e conponent's Data property

#Call systemtwilio.getAccountsDataset() and store the returned list into a variable
twilioAccounts = systemtwilio.getAccounts()

#Pass the dataset to a Table conponent. The Table is located in the same container as the
#conponent calling this script
event . sour ce. parent . get Conponent (' Tabl e').data = twi | i oAccounts

system.twilio.getPhoneNumbers

Description

Returns a list of outgoing phone numbers for a Twilio account. Note that these numbers are supplied by Twilio, and are not defined on a user in
Ignition.

Syntax

system.twilio.getPhoneNumbers(accountName)
® Parameters
String accountName - The Twilio account to retrieve phone numbers for
® Returns
List - A list of phone numbers for the given Twilio account
® Scope

All

Code Examples

Code Snippet

#Retrieves a list of phone nunbers associated with a twilio account and then iterates through the
resulting |ist
#Checks against a Twilio Profile configured on the gateway by the name of "Twilio Account”

#Cal |l systemtw |io.getPhoneNunbers() and store the returned list into a variable
twilioNumbers = systemtwilio.get PhoneNunbers("Twilio Account")

#lterate through the Iist of nunbers
for number in twlioNunbers:

#Prints the nunbers to the console, but could do sonething nore useful with each nunber
print nunber

system.twilio.getPhoneNumbersDataset

Description

Return a list of outgoing phone numbers for a Twilio account as a single-column Dataset. Note that these numbers are supplied by Twilio, and are
not defined on a user in Ignition.

Syntax

system.twilio.getPhoneNumbersDataset(accountName)
® Parameters
String accountName - The Twilio account to retrieve phone numbers for
® Returns
Dataset - A list of phone numbers for the given Twilio account as a single-column Dataset
® Scope

All

Code Examples

Code Snippet

#Retrieves a list of phone nunbers associated with a twilio account and then passes the resulting list to
a Tabl e conmponent's Data property.
#Checks against a Twilio Profile configured on the gateway by the name of "Twilio Account”

#Call systemtwilio.getPhoneNunbers() and store the returned list into a variable
twilioNumbers = systemtwilio.get PhoneNunbersDataset ("Twilio Account")

#Pass the dataset to a Table conponent. The Table is located in the same container as the
#conmponent calling this script
event . sour ce. parent . get Conponent (' Tabl e').data = twilioNunbers

system.twilio.sendSms

Description

Sends a SMS message

Syntax

system.twilio.sendSms(accountName, fromNumber, toNumber, message)

® Parameters
String accountName - The Twilio account to send the SMS from
String fromNumber- The outbound phone number belonging to the Twilio account to use
String toNumber - The phone number of the recipient
String message - The body of the SMS

® Returns
Nothing

® Scope

All

Code Examples

Code Snippet

#Send a SMS nessage.

#Fetch the Twilio account name

#get Accounts() returns a list, so the "[0]" operator is refering to the first itemin the |ist
account = systemtwilio.getAccounts()[O0]

#Fetch the nunber associated with the account
fromunber = systemtwi |io.getPhoneNunbers(account)

#Fetch a specific user's contact information
#A static value is used bel ow, but system user.getUser() could be used to retrieved a user's phone nunber
t oNunber = "+19165550101"

#Define the text nmessage

#A static nessage is used below, but nultiple messages could be stored in a database table and retrieved
here

text Message = "This is the body of a text nmessage"

#Send the nessage
systemtw |io.sendSns(account, fromNurmber, toNunber, textMessage)

system.user

system.user.addHoliday

The following feature is new in Ignition version 7.8.0
Click here to check out the other new features

Description

Allows a holiday to be added.

Syntax

® Parameters

HolidayModel holiday - The holiday to add.

® Returns
UIResponse - an object with lists of warnings, errors, and info about the success or failure of the add.

® Scope

All

https://docs.inductiveautomation.com/display/DOC/New+in+this+Version#NewinthisVersion-Newin7.8.0

Code Examples

Code Snippet

This exanpl e adds a holiday
def printResponse(responselList):
if len(responselList) > O:
for response in responselList:
print "", response
el se:
print " None"
from cominductiveautonation.ignition.common. user.schedul e i nport Hol i dayModel
fromjava.util inport Date
hol i dayNane = "G oundhog Day"
d = Date(2016 - 1900, 2, 2) # java dates start in 1900
repeat Annual ly = Fal se
nyHol i day = Hol i dayMbdel (hol i dayName, d, repeatAnnually)
response = system user. addHol i day(nyHol i day)

war ni ngs = response. get Varns()
print "Warnings are:"
print Response(war ni ngs)

errors = response. getErrors()
print "Errors are:"

print Response(errors)

infos = response. getlnfos()

print "Infos are:"
pri nt Response(i nf os)

Output

War ni ngs are:

None
Errors are:
None
Infos are:

New hol i day "G oundhog Day" added.

system.user.addSchedule

The following feature is new in Ignition version 7.8.0
Click here to check out the other new features

Description

Allows a schedule to be added.

Syntax

® Parameters

AbstractScheduleModel schedule - The schedule to add.

® Returns
UIResponse - an object with lists of warnings, errors, and info about the success or failure of the add.

® Scope

All

https://docs.inductiveautomation.com/display/DOC/New+in+this+Version#NewinthisVersion-Newin7.8.0

Code Examples

Code Snippet

This exanple tries to add the schedul e NewSchedul e based on an existing schedul e MySchedul e,

the results of the action.

This function prints the response received
def printResponse(responselList):
if len(responseList) > 0:
for response in responselList:
print "", response
el se:
print " None"

The main function
nmySchedul e = system user. get Schedul e(" Al ways")

if nySchedul e !'= None and nySchedul e. get Type() == "basic schedul e":

nmySchedul e. set Gbser veHol i days(Fal se)

nmySchedul e. set Name(" NewSchedul e")

response = system user.addSchedul e(mySchedul e)
war ni ngs = response. get Warns()

print "Warnings are:"

pri nt Response(war ni ngs)

errors = response. getErrors()
print "Errors are:"

print Response(errors)

infos = response. getlnfos()

print "Infos are:"
pri nt Response(i nf os)

Output

Warni ngs are:

None
Errors are:
None
Infos are:

New schedul e "NewSchedul e" added.

and prints

system.user.editHoliday

The following feature is new in Ignition version 7.8.0
Click here to check out the other new features

Description

Allows a holiday to be edited.

Syntax

® Parameters
String holidayName - The name of the holiday to edit. Name is case-sensitive.

HolidayModel holiday - The edited holiday.

® Returns
UIResponse - an object with lists of warnings, errors, and info about the success or failure of the edit.

® Scope

All

https://docs.inductiveautomation.com/display/DOC/New+in+this+Version#NewinthisVersion-Newin7.8.0

Code Examples

Code Snippet

This exanple gets a holiday and edits it

This function prints the response received
def printResponse(responselList):
if len(responseList) > 0:
for response in responseList:
print "", response
el se:
print " None"

The main function
hol i dayNane = "Labor Day"
nmyHol i day = system user. get Hol i day(hol i dayNane)
if myHoliday != None:
nyHol i day. set Repeat Annual | y(Fal se)
response = system user. editHoliday(holidayNane,

war ni ngs = response. get Warns()
print "Warnings are:"
pri nt Response(war ni ngs)

errors = response. getErrors()
print "Errors are:"

print Response(errors)

infos = response. getlnfos()

print "Infos are:"
pri nt Response(i nf os)

Output

Warni ngs are:

None
Errors are:
None
Infos are:

Hol i day "Labor Day" updated.

nmyHol i day)

system.user.editSchedule

The following feature is new in Ignition version 7.8.0
Click here to check out the other new features

Description

Allows a schedule to be edited.

Syntax

® Parameters

String scheduleName - The name of the schedule to edit. Name is case-sensitive.
AbstractScheduleModel schedule - The edited schedule.

® Returns

UIResponse - an object with lists of warnings, errors, and info about the success or failure of the edit.

® Scope

All

https://docs.inductiveautomation.com/display/DOC/New+in+this+Version#NewinthisVersion-Newin7.8.0

Code Examples

Code Snippet

This exanple tries to edit the schedul e MySchedul e,

This function prints the response received
def printResponse(responselList):
if len(responseList) > 0:
for response in responseList:
print "", response
el se:
print " None"

The main function
ol dSchedul eName = "M/Schedul e"

nmySchedul e = system user. get Schedul e(ol dSchedul eNane)
if nySchedul e !'= None and nySchedul e. get Type()

nmySchedul e. set Gbser veHol i days(Fal se)

nmySchedul e. set Name(" MyEdi t edSchedul e")

and prints the results of the action.

"basi c schedul e":

nySchedul e. set Descri ption("A nodified description")
response = system user. edi t Schedul e(ol dSchedul eNanme, mySchedul e)

warni ngs = response. get Warns()
print "Warnings are:"
print Response(war ni ngs)

errors = response. getErrors()
print "Errors are:"
print Response(errors)

infos = response. getlnfos()
print "Infos are:"
print Response(i nf os)

el se:

print "Basic schedul e", ol dSchedul eNane,

Output

Warni ngs are:

None
Errors are:
None
Infos are:

Schedul e "MWEdi t edSchedul e" updat ed.

"not found."

system.user.getHoliday

The following feature is new in Ignition version 7.8.0
Click here to check out the other new features

Description

Returns a specific holiday.
Syntax

® Parameters

String holidayName - The name of the holiday to return. Case-sensitive
® Returns

HolidayModel - The holiday, or None if not found.
® Scope

All

Code Examples

Code Snippet

This exanple will get a holiday and print info about it
hol i dayNane = "Labor Day"
hol i day = system user. get Hol i day(hol i dayNane)
if holiday == None:
print holidayNanme, "not found"
el se:
print holiday. getNane(), holiday.getDate(), holiday.isRepeatAnually()

Output

Labor Day 2015-09-07 00: 00: 00.0 Fal se

https://docs.inductiveautomation.com/display/DOC/New+in+this+Version#NewinthisVersion-Newin7.8.0

system.user.getHolidayNames

The following feature is new in Ignition version 7.8.0
Click here to check out the other new features

Description

Returns a collection of Strings of all holiday names.
Syntax

® Parameters
None
® Returns

List - A list of all holiday names, or an empty list if no holidays are defined.
® Scope

All

Code Examples

Code Snippet
This exanple prints the nane of every holiday
hol i dayNames = system user. get Hol i dayNanes()

for holidayNane in holidayNanes:
print holidayNane

Output

Labor Day
G oundhog Day

https://docs.inductiveautomation.com/display/DOC/New+in+this+Version#NewinthisVersion-Newin7.8.0

system.user.getHolidays

The following feature is new in Ignition version 7.8.0
Click here to check out the other new features

Description

Returns a sequence of all of the holidays available.
Syntax

® Parameters

none
® Returns

List - A list of holidays.
® Scope

All

Code Examples

Code Snippet

This exanple prints informati on about every holiday
hol i days = system user. get Hol i days()
if len(holidays) == 0O:
print "No holidays defined"
for holiday in holidays:
print holiday.getName(), holiday.getDate(), holiday.isRepeatAnnually()

Output

Labor Day 2015-09-07 00:00: 00.0 Fal se
G oundhog Day 2016-03-02 00: 00: 00. 0 Fal se

https://docs.inductiveautomation.com/display/DOC/New+in+this+Version#NewinthisVersion-Newin7.8.0

system.user.getRoles

Description

Returns a sequence of strings representing all of the roles configured in a specific user source.

Syntax

system.user.getRoles(userSource)
® Parameters

String userSource - The user source to fetch the roles for.

® Returns

List - A List of Strings that holds all the roles in the user source.
® Scope

All

Code Examples

Code Snippet
#This exanple will print a list of all user roles in the default datasource:
rol es = systemuser. getRoles("")

for role in roles:
print role

system.user.getSchedule

The following feature is new in Ignition version 7.8.0
Click here to check out the other new features

Description

Returns a specific schedule.
Syntax

® Parameters
String scheduleName - The name of the schedule to return. Case-sensitive
® Returns

AbstractScheduleModel - The schedule, which can be a BasicSchedule, CompositeSchedule, or another type registered by a module,
or None if not found.

® Scope

All

Code Examples

Code Snippet

This exanple will get a schedule and print info about it:

This function handl es recursive printing of the different schedul e types. Mdul es can register nore
types than listed here.
def printSchedul el nfo(aSchedul e):
i f aSchedul e. get Type() == "basic schedul e":
print "Basic schedule type: ",aSchedul e. get Nane(), aSchedul e. get Description(), aSchedul e.
i sAll Days(), aSchedul e.isObserveHol i days()
elif aSchedul e. get Type() == "conposite schedul e":
conposi t ePi eces = aSchedul e. get Mbdel s()
print "Conposite schedul e type:", aSchedul e. get Nane(), aSchedul e. get Description(), " which
is made up of..."
for piece in conpositePieces:
print Schedul el nf o(pi ece)
el se:
print "Qther schedule type: ", aSchedul e. get Nane(), aSchedul e. get Description(), aSchedul e.
get Type(), aSchedul e.i sQbserveHol i days()

The main function
schedul eName = " MySchedul e"
schedul e = system user. get Schedul e(schedul eNane)
if schedul e == None:
print "Schedul e", schedul eNane, "was not found"
el se:
pri nt Schedul el nf o(schedul e)

Output

Basi ¢ schedul e type: MSchedul e A description False True

https://docs.inductiveautomation.com/display/DOC/New+in+this+Version#NewinthisVersion-Newin7.8.0

system.user.getScheduleNames

The following feature is new in Ignition version 7.8.0
Click here to check out the other new features

Description

Returns a sequence of strings representing the names of all of the schedules available.
Syntax

® Parameters

none
® Returns

List - A List of Strings that holds the names of all the available schedules.
® Scope

All

Code Examples

Code Snippet

#This exanple will print a list of all available schedul es:

schedul es = system user. get Schedul eNames()
for schedule in schedul es:
print schedul e

Output

A

Al ways

B

Cc

Exanpl e
MyConposi te
MySchedul e

https://docs.inductiveautomation.com/display/DOC/New+in+this+Version#NewinthisVersion-Newin7.8.0

system.user.getSchedules

The following feature is new in Ignition version 7.8.0
Click here to check out the other new features

Description

Returns a sequence of all of the schedules available.

Syntax

® Parameters
none

® Returns
List - A list of schedule names. Schedules can be a Basic Schedule, Composite Schedule (composed of exactly two other schedules),
or another type registered by a module.

® Scope

All

https://docs.inductiveautomation.com/display/DOC/New+in+this+Version#NewinthisVersion-Newin7.8.0

Code Examples

Code Snippet

This exanple will print a list of all available schedul es:

This function handl es recursive printing of the different schedul e types. Mddul es can register nore
types than listed here.
def printSchedul el nfo(aSchedul e):
if aSchedul e. get Type() == "basic schedul e":
print "Basic schedule type: ", aSchedul e. get Nane(), aSchedul e. get Description(), aSchedul e.
i sAll Days(), aSchedul e.getAl'l DayTi ne()
elif aSchedul e. get Type() == "conposite schedul e":
conposi t ePi eces = aSchedul e. get Mbdel s()
print "Conposite schedul e type:", aSchedul e. get Nane(), aSchedul e. get Description(), " which
is made up of..."
for piece in conpositePieces:
pri nt Schedul el nf o(pi ece)
el se:
print "Qther schedule type: ", aSchedul e. get Nane(), aSchedul e. get Description(), aSchedul e.
get Type(), aSchedul e.i sQbserveHol i days()

The main function
schedul es = system user. get Schedul es()
for schedule in schedul es:

print Schedul el nf o(schedul e)

Output

Basi ¢ schedule type: A None True 0:00-24: 00

Basi ¢ schedule type: Al ways Built-in schedule that is always available: 24x7x365 True 0: 00-24: 00

Basi ¢ schedul e type: B None True 0:00-24: 00

Basi ¢ schedule type: C None True 0:00-24: 00

Basi ¢ schedul e type: Exanple An exanple of a MF 8am 5pm schedule with a lunch break Fal se 0:00-24:00
Conposi te schedul e type: MyConposite a conposite schedule which is made up of...

Basi ¢ schedule type: A None True 0:00-24: 00

Basi ¢ schedule type: B None True 0: 00-24: 00

Basi ¢ schedul e type: MSchedul e A description False 0:00-24: 00

system.user.getUser

Description

Looks up a specific user in a user source, by username. The full User object is returned except for the user's password.

Syntax

system.user.getUser(userSource, username)
® Parameters
String userSource - The name of the user source to search for the user in.
String username - The username of the user to search for.
® Returns
User - A User object.
® Scope

All

User Object

The "User" object that is returned contains all of the information about that user, except for the user's password. You can access most of the basic
user properties via a call to "get" or "getOrDefault" which returns a default value if the requested item is not present. For example:

user.getOrDefault(User.Schedule)

...will return that user's schedule, or the value of "Always" if no schedule has been set as that is the default schedule. The following are the
various values you may use in this manner:

User.Username
User.FirstName
User.LastName
User.Notes
User.Schedule
User.Language

In addition to these properties, the user object has other methods on it to retrieve more information:

® User.getld() - returns the internal identifier object that the backing user source needs to identify this user

® User.getRoles() - returns a sequence of strings representing the roles that this user belongs to

® User.getContactinfo() - returns a sequence of Contactinfo objects. Each of these objects will have a contactType and valueproperty
representing the contact information, both strings.

® User.getScheduleAdjustments() - returns a sequence of ScheduleAdjustment objects. Each of these objects will have two date
properties, "start" and "end", a boolean property, "available", and a string property called "note".

® User.getPath() - returns a QualifiedPath object that represents this user in a deterministic manner.

Code Examples

Code Snippet

#This exanple will print the first and | ast name of the current user using the default datasource:
user Nane = system security. get User nane()

user = system user.getUser("", userNane)
print user.get(user.FirstNanme) + " " + user.get(user.Last Nane)

system.user.getUsers

Description

Retrieves the list of users in a specific user source. The "User" objects that are returned contain all of the information about that user, except for
the user's password.

Syntax

system.user.getUsers(userSource)
® Parameters
String userSource - The name of the user source to find the users in.
® Returns
List - A List of User objects.
® Scope

All

User Object

You can access most of the basic user properties via a call to "get" or "getOrDefault" which returns a default value if the requested item is not
present. For example:

user.getOrDefault(User.Schedule)

...will return that user's schedule, or the value of "Always" if no schedule has been set as that is the default schedule. The following are the
various values you may use in this manner:

User.Username
User.FirstName
User.LastName
User.Notes
User.Schedule
User.Language

In addition to these properties, the user object has other methods on it to retrieve more information:

® User.getld() - returns the internal identifier object that the backing user source needs to identify this user

® User.getRoles() - returns a sequence of strings representing the roles that this user belongs to

® User.getContactinfo() - returns a sequence of Contactinfo objects. Each of these objects will have a contactType and valueproperty
representing the contact information, both strings.

® User.getScheduleAdjustments() - returns a sequence of ScheduleAdjustment objects. Each of these objects will have two date
properties, "start" and "end", a boolean property, "available", and a string property called "note".

® User.getPath() - returns a QualifiedPath object that represents this user in a deterministic manner.

Code Examples

Code Snippet

#This exanple will print the first and | ast nane of all users, using the default datasource:

users = system user.getUsers("")
for user in users:
print user.get(user.FirstNanme) + " " + user.get(user.LastNane)

system.user.removeHoliday

The following feature is new in Ignition version 7.8.0
Click here to check out the other new features

Description

Allows a holiday to be deleted.

Syntax

® Parameters
String holidayName - The name of the holiday to delete. Name is case-sensitive.

® Returns
UIResponse - an object with lists of warnings, errors, and info about the success or failure of the deletion

® Scope

All

https://docs.inductiveautomation.com/display/DOC/New+in+this+Version#NewinthisVersion-Newin7.8.0

Code Examples

Code Snippet

def printResponse(responselist):
if len(responseList) > 0:
for response in responselList:
print "", response
el se:
print " None"

hol i dayName = "Labor Day"
response = system user.renpveHol i day(hol i dayName)

warni ngs = response. get Warns()
print "Warnings are:"
print Response(war ni ngs)

errors = response. getErrors()
print "Errors are:"

print Response(errors)

infos = response. getlnfos()

print "Infos are:"
print Response(i nf os)

Output

War ni ngs are:

None
Errors are:
None
Infos are:

Hol i day "Labor Day" del eted.

system.user.removeSchedule

The following feature is new in Ignition version 7.8.0
Click here to check out the other new features

Description

Allows a schedule to be deleted. Note that schedules which are used in Composite Schedules can not be deleted until they are removed from the
Composite Schedule.

Syntax

® Parameters

String scheduleName - The name of the schedule to delete. Name is case-sensitive.

® Returns

UIResponse - an object with lists of warnings, errors, and info about the success or failure of the deletion

® Scope

All

https://docs.inductiveautomation.com/display/DOC/New+in+this+Version#NewinthisVersion-Newin7.8.0

Code Examples

Code Snippet

This exanple tries to delete the schedul e MySchedul e,

def printResponse(responselList):
if len(responseList) > 0:
for response in responselList:
print "", response
el se:
print " None"

schedul eName = "M/Schedul e"
response = system user.renoveSchedul e(schedul eNane)

warni ngs = response. get Warns()
print "Warnings are:"
pri nt Response(war ni ngs)

errors = response. getErrors()
print "Errors are:"

print Response(errors)

infos = response. getlnfos()

print "Infos are:"
print Response(i nf os)

Output

WArni ngs are:

None
Errors are:
None
Infos are:

Schedul e "MySchedul e" del et ed.

and prints the results of the action.

system.util

system.util.beep

Description

Tells the computer to make a "beep" sound.

Syntax

system.util.beep()
® Parameters
Nothing
® Returns
Nothing
® Scope

Vision Client

Code Examples

There are no examples associated with this scripting function.

system.util.execute

Description

Executes the given commands via the operating system, in a separate process. The commands argument is an array of strings. The first string is
the program to execute, with subsequent strings being the arguments to that command.

Syntax

system.util.execute(commands)
® Parameters
String[] commands - A list containing the command (1st entry) and associated arguments (remaining entries) to execute.
® Returns
nothing
® Scope

All

Code Examples

Code Snippet

This code woul d work on a Wndows systemto play a sound file.
systemutil.execute(["sndrec32", "/play", "/close", "/enbedding", "C:\\sonethingwong.wav"])

system.util.exit

Description

Exits the running client, as long as the shutdown intercept script doesn't cancel the shutdown event. Set force to true to not give the shutdown
intercept script a chance to cancel the exit. Note that this will quit the Client completely. you can use system.security.logout() to return to the login
screen.

Syntax

system.util.exit([force])
® Parameters
boolean force - If true (1), the shutdown-intercept script will be skipped. Default is false (0). [optional]
® Returns
nothing
® Scope

Client

Code Examples

Code Snippet

This code would exit the client after confirmng with the user.
if systemgui.confirm"Are you sure you want to exit?"):
systemutil.exit()

system.util.getAvailableLocales

Description

Returns a collection of strings representing the Locales added to the Translation Manager, such as 'en’ for English.

Syntax

system.util.getAvailableLocales()
® Parameters
none
® Returns
Collection
® Scope

Client

Code Examples

There are no examples associated with this scripting function.

system.util.getAvailableTerms

Description

Returns a collection of available terms.

Syntax

system.util.getAvailableTerms()
® Parameters
none
® Returns
Collection
® Scope

Client

Code Examples

There are no examples associated with this scripting function.

system.util.getClientld

Description

Returns a hex-string that represents a number unique to the running client's session. You are guaranteed that this number is unique between all
running clients.

Syntax

system.util.getClientld()
® Parameters
none
® Returns
String - A special code representing the client's session in a unique way.
® Scope

Client

Code Examples

Code Snippet

This code would print the current client's id to the debug consol e.
id = systemutil.getdientld()
print id

system.util.getConnectionMode

Description

Retrieves this client session's current connection mode. 3 is read/write, 2 is read-only, and 1 is disconnected.

Syntax

system.util.getConnectionMode()
® Parameters
none
® Returns
int - The current connection mode for the client.
® Scope

Client

Code Examples

There are no examples associated with this scripting function.

system.util.getConnectTimeout

Description

Returns the connect timeout in milliseconds for all client-to-gateway communication. This is the maximum amount of time that communication
operations to the Gateway will be given to connect. The default is 10,000ms (10 seconds).

Syntax

system.util.getConnectTimeout()
® Parameters
none
® Returns
int - The current connect timeout, in milliseconds. Default is 10,000 (ten seconds)
® Scope

Client

Code Examples

Code Snippet

This code woul d print out the current connect tineout
print systemutil.get Connect Ti meout ()

system.util.getEdition

Description

Returns the "edition" of the Vision client - "standard", "limited", or "panel".

Syntax

system.util.getEdition()
® Parameters
none
® Returns
String - The edition of the Vision module that is running the client.
® Scope

Client

Code Examples

There are no examples associated with this scripting function.

system.util.getGatewayAddress

Description

Returns the address of the gateway that the client is currently communicating with.

Syntax

system.util.getGatewayAddress()
® Parameters
none
® Returns
String - the address of the Gateway that the client is communicating with.
® Scope

Client

Code Examples

Code Snippet

This code woul d open up the gateway config page.
address = systemutil. get Gat ewayAddr ess()
system net . openURL(" %/ web/ config/" % address)

system.util.getGateway Status

Description

Returns a string that indicates the status of the Gateway. A status of RUNNING means that the Gateway is fully functional. Thrown exceptions
return "ERROR" with the error message appended to the string. This function can be used to test all 7.7 and later Gateways. The function can also
be used to test 7.6 (7.6.4 and later) and 7.5 (7.5.11 and later) Gateways. Attempting to test Gateways older than these versions will return errors.

Syntax

system.util.getGatewayStatus(gatewayAddress, connectTimeoutMillis, socketTimeoutMillis)
® Parameters
String gatewayAddress - The gateway address to ping, in the form of ADDR:PORT/main.
Integer connectTimeoutMillis - Optional. The maximum time in milliseconds to attempt to initially contact a Gateway.

Integer socketTimeoutMillis - Optional. The maximum time in milliseconds to wait for a response from a Gateway after initial
connection has been established.

® Returns
String - A string that indicates the status of the Gateway. A status of RUNNING means that the Gateway is fully functional.
® Scope

Client

Code Examples

Code Snippet

def checkRenot eGat eway():
i mport system

status = systemutil.get Gat ewaySt at us("10. 20. 6. 253: 8088/ nai n")

if status == "RUNNI NG':

print "Central Gateway is available!"
el se:

print "Error: " + status

1t's inportant to do this as an asynchronous operation, as the nethod
may block for some tine.
systemutil.invokeAsynchronous(checkRenot eGat eway)

system.util.getGlobals

Description

This method returns a dictionary that provides access to the legacy global namespace. As of version 7.7.0, most new scripts use the modern style
of scoping, which makes the ‘global' keyword act very differently. Most importantly, the modern scoping rules mean that variables declared as
‘global’ are only global within that one module. The system.util.getGlobals() method can be used to interact with older scripts that used the old
meaning of the 'global’ keyword.

Syntax

system.util.getGlobals()
® Parameters
none
® Returns
PyStringMap - The global namespace, as a dictionary.
® Scope

All

Code Examples

Code Snippet

Read and print out global variable 'foo'
print systemutil.getd obals()['foo']

Code Snippet

Wite value "hello' to global variable 'foo
systemutil.getd obals()['foo'] = "hello

system.util.getinactivitySeconds

Description

Returns the number of seconds since any keyboard or mouse activity. Note - this function will always return zero in the Designer.

Syntax

system.util.getInactivitySeconds()
® Parameters
none
® Returns
long - The number of seconds the mouse and keyboard have been inactive for this client.
® Scope

Client

Code Examples

Code Snippet

This code could run in a global tinmer script.

After a 5-minute timeout, navigate back to the hone screen

if systemutil.getlnactivitySeconds()>300 and system nav. get Current Wndow()!="Hone":
syst em nav. swapTo(" Hone")

system.util.getLocale

Description

Returns the current string representing the user's Locale, such as 'en’ for English.

Syntax

system.util.getLocale()
® Parameters
none
® Returns
String
® Scope

All

Code Examples

There are no examples associated with this scripting function.

system.util.getLogger

Description

Returns a Logger object that can be used to log messages to the console. Each Logger has a name, which is typically structured hierarchically
using periods, indicating where in the project the Logger is used. You can use any naming scheme you like, however a well-planned naming
scheme makes finding log entries and setting log levels much easier. Loggers can be shared between scripts simply by giving them the same

name. Six levels of logging are available:

To view log messages from Gateway scripts, in the Gateway go to Configure > System > Console > Logs. To view log messages from Client
scripts, including scripts in components, in the Client go to Help > Diagnostics > Log Viewer, or in the Designer go to Tools > Console. The default
logging level is info, meaning that all messages with level info or higher are logged, and messages with a level or debug or trace are discarded. To
change the logging level for a Logger in a Gateway script, go to Configure > System > Console > Levels. The new logging level will remain until it is
changed or the Gateway is restarted. To change the logging level in a Client script, go to Help > Diagnostics > Logging Levels. Logging levels can

Fatal - A severe error that will cause termination of the script.

Error - A runtime error or other unexpected condition.

Warn - An undesired condition, but one that does not interfere with execution.
Info - An event that should be noted on the console, but is not an error.
Debug - Detailed information useful in debugging.

Trace - Highly detailed information.

not be changed in the Designer. The following methods are available to a Logger:

Syntax

Logger.fatal(String) - Logs a message with level fatal.

Logger.fatalf(String, Args...) - Logs a formatted message with level fatal, using Java's Formatter syntax.
Logger.error(String) - Logs a message with level error.

Logger.errorf(String, Args...) - Logs a formatted message with level error, using Java's Formatter syntax.
Logger.warn(String) - Logs a message with level warn.

Logger.warnf(String, Args...) - Logs a formatted message with level warn, using Java's Formatter syntax.
Logger.info(String) - Logs a message with level info.

Logger.infof(String, Args...) - Logs a formatted message with level info, using Java's Formatter syntax.
Logger.debug(String) - Logs a message with level debug.

Logger.debugf(String, Args...) - Logs a formatted message with level debug, using Java's Formatter syntax.
Logger.trace(String) - Logs a message with level trace.

Logger.tracef(String, Args...) - Logs a formatted message with level trace, using Java's Formatter syntax.
Logger.isTraceEnabled() - Returns True is the current log level is at least trace.
Logger.isDebugEnabled() - Returns True is the current log level is at least debug.

Logger.isinfoEnabled() - Returns True is the current log level is at least info.

system.util.getLogger(name)

Parameters

String name - The name of a logger to create.
Returns

LoggerEx - A new Logger object used to log informational and error messages.
Scope

All

Code Examples

Code Snippet

This code would 1og a nessage with level info
| ogger = systemutil.getLogger("nyLogger")
| ogger.info("Hello, world.")

Code Snippet

This code would log a formatted nessage with |evel info.

Note the 'f' at the end of the method nane.

who = ' Bob Jones'

num = 5

| ogger = systemutil.getLogger("nyLogger")

| ogger. i nfof ("Machine started by %, enployee ID %", who, nun)

Code Snippet

This code would check if the debug level is enabled for this |ogger before
executing the remaining code. Although not needed for a sinple log entry like
#in this exanple, it can elimnate expensive function calls in a nore conpl ex
log entry.
| ogger = systemutil.get Logger("nyLogger")
if logger.isDebugEnabl ed():

| ogger . debug("Hell o, world!")

system.util.getProjectName

Description

Returns the name of the project that is currently being run.

Syntax

system.util.getProjectName()
® Parameters
none
® Returns
String - The name of the currently running project.
® Scope

Client

Syntax

system.util.getProjectName()
® Parameters
none
® Returns
String - The name of the currently running project.
® Scope

Gateway

Code Examples

Code Snippet

This code woul d display the name of the currently running project
system gui . mressageBox("You are running project: %" %systemutil.getProjectNane())

system.util.getProperty

Description

Retrieves the value of a named system property. Some of the available properties are:

file.separator. The system file separator character. (for example, "/* (unix) or "\" (windows))
line.separator. The system line separator string. (for example, "\r\n" (carriage return, newline))
os.arch. Operating system architecture. (for example, "x86")

os.name. Operating system name. (for example, "Windows XP")

os.version. Operating system version. (for example, "5.1")

user.home. User's home directory.

user.name. User's account name.

Syntax

system.util.getProperty(propertyName)
® Parameters
String propertyName - The name of the system property to get.
® Returns
String - The value for the named property.
® Scope

All

Code Examples

Code Snippet

#This script would store the contents of the Text Area conponent in the users hone directory.
homeDir = systemutil.getProperty("user.hone")

sep = systemutil.getProperty("file.separator")

path = "% %nyfile.txt" Y% homeDir, sep)

systemfile.witeFile(path, event.source. parent.getConponent (" Text Area").text)

system.util.getRead Timeout

Description

Returns the read timeout in milliseconds for all client-to-gateway communication. This is the maximum amount of time allowed for a communication
operation to complete. The default is 60,000ms (1 minute).

Syntax

system.util.getRead Timeout()
® Parameters
none
® Returns
int - The current read timeout, in milliseconds. Default is 60,000 (one minute)
® Scope

Client

Code Examples

There are no examples associated with this scripting function.

system.util.getSessioninfo

Description

Returns a PyDataSet holding information about all of the sessions (logged-in users) on the Gateway. Optional regular-expression based filters can
be provided to filter the username or the username and the project returned.

The PyDataSet returned has these columns:

username (String)
project (String)
address (String)
isDesigner (Boolean)
clientld (String)
creationTime (Date)

Note that this function will not return all sessions across a cluster - only the cluster node that is being communicated with by the client who makes
the call.

Syntax

system.util.getSessionInfo([usernamekFilter] [, projectFilter])
® Parameters
String usernamekFilter - A regular-expression based filter string to restrict the list by username. [optional]
String projectFilter - A regular-expression based filter string to restrict the list by project [optional]
® Returns
PyDataSet - A dataset representing the Gateway's current sessions.
® Scope

All

Code Examples

Code Snippet

This code would get the entire table of sessions and put it in an adjacent table
tabl e = event. source. parent. get Conponent (" Tabl e")

sessions = systemutil.get Sessionlnfo()

tabl e. data = system db. t oDat aSet (sessi ons)

Code Snippet

This code would count the nunber of tinmes a user named "billy" is logged in
sessions = systemutil.getSessionlnfo("billy")
system gui . messageBox("Billy has % sessions" % | en(sessions))

Code Snippet

This code woul d return session info on all users starting with the letters "bi"
sessions = systemutil.getSessionlnfo("bi.*")

Code Snippet

This code uses a single character wildcard in the usernane
sessions = systemutil.getSessionlnfo("bi.ly")

Code Snippet

This code would return session info on a user naned "bill.smth"
sessions = systemutil.getSessionlnfo("bill\.smth")

system.util.getSystemFlags

Description

Returns an integer that represents a bit field containing information about the currently running system. Each bit corresponds to a public bitmask as
defined below. See the examples for tips on how to extract the information in this bit field are in the examples. Note that the tag[System]Client
/System/SystemFlags contains the same value.

system.util. DESIGNER_FLAG. Set if running in the Designer. (1)

system.uti.PREVIEW_FLAG. Set if running in the Designer, and the Designer is in preview mode. (2)
system.util. CLIENT_FLAG. Set if running as a Client. (4)

system.uti.l WEBSTART_FLAG. Set if running as a Client in Web Start mode. (8)

system.uti. APPLET_FLAG. Set if running as a Client in Applet mode. (16)

system.uti. FULLSCREEN_FLAG. Set if running as a Client in full-screen mode. (32)
system.util.SSL_FLAG. Set if communication to the Gateway is encrypted with SSL. (64)

system.util. MOBILE_FLAG. Set if currently running a mobile-launched client. (128)

system.uti. STAGING_FLAG. Set if running a staging client. (256)

Syntax

system.util.getSystemFlags()
® Parameters
none
® Returns
int - The system flags integer.
® Scope

All

Code Examples

There are no examples associated with this scripting function.

system.util.invokeAsynchronous

Description

This is an advanced scripting function. Invokes (calls) the given Python function on a different thread. This means that calls to invokeAsynchronous
will return immediately, and then the given function will start executing asynchronously on a different thread. This is useful for long-running data
intensive functions, where running them synchronously (in the GUI thread) would make the GUI non-responsive for an unacceptable amount of

time.

(D Warning!

Under no circumstances should you ever do anything in the function that is invoked asynchronously that interacts with the GUI. This
means things like window navigation, setting and getting component properties, showing error/message popups, etc. If you need to do
something with the GUI in this function, this must be achieved through a call to system.util.invokeLater.

Syntax

system.util.invokeAsynchronous(function)

® Parameters

PyObiject function - A Python function object that will get invoked with no arguments in a separate thread.

® Returns
Thread thread - the executing thread.
® Scope

All

Code Examples

Code Snippet

This code woul d do sone data-intensive processing, and then call

back to the GUI to let it knowthat it is finished.

We use default function parameters to pass the root container into these
functions. (See a Python reference if you don't understand this)

def | ongProcess(rootContainer = event.source.parent):

inmport system

Do sonmething here with the database that takes a long tine

results = ... (sonething)

Now we' || send our results back to the Ul

def sendBack(results = results, rootContainer = rootContainer):
root Cont ai ner.resul tsProperty = results

systemutil.invokelat er (sendBack)

systemutil.invokeAsynchronous(l ongProcess) #Note that this is 'longProcess'

instead of 'longProcess()’

system.util.invokelLater

Description

This is an advanced scripting function. Invokes (calls) the given Python function object after all of the currently processing and pending events are
done being processed, or after a specified delay. The function will be executed on the GUI, or event dispatch, thread. This is useful for events likepr
opertyChange events, where the script is called before any bindings are evaluated.

If you specify an optional time argument (number of milliseconds), the function will be invoked after all currently processing and pending events
are processed plus the duration of that time.

Syntax

system.util.invokeLater(function [, delay])
® Parameters
PyObject function - A Python function object that will be invoked later, on the GUI, or event-dispatch, thread with no arguments.

int delay - A delay, in milliseconds, to wait before the function is invoked. The default is 0, which means it will be invoked after all
currently pending events are processed. [optional]

® Returns
nothing
® Scope

Client

Code Examples

Code Snippet

The code in the update/refresh button uses the 'date' property on the two

cal endar conponents, which are bound to the current_timestanp property on their
parent. W want to sinulate a button press when the w ndow opens, but only

after the date properties' bindings have been eval uated.

if event.propertyNane == 'current_tinestanp':
Define a function to click the button
def clickButton(button = event. source. parent.get Conponent (' Refresh')):
i mport system
button. dod i ck()
syst em gui . mressageBox("Button has been clicked!")

Tell the systemto invoke the function after
the current event has been processed
systemutil.invokelLater(clickButton)

system.util.jsonDecode

Description

Takes a json String and converts it into a Python object such as a list or a dict. If the input is not valid json, a string is returned.

Syntax

system.util.jsonDecode(jsonString)
® Parameters
String jsonString - The JSON string to decode into a Python object.
® Returns
PyObject - The decoded Python object.
® Scope

All

Code Examples

#The following exanple reads in a JSON string, and converts the string to a Python object.
#The exanple attenpts to read the JSON string froma text file, but this could easily be nodified to read
data froma web server.

#Read the JSON string
jsonString = systemfile.readFileAsString("C \tnp\\json.txt")

#Decode the JSON string and store the results into a variable
obj = systemutil.jsonDecode(jsonString)

#Do sonmething with the results. The code bel ow prints the datatype of the results to the console.
print type(obj)

system.util.jsonEncode

Description

Takes a Python object such as a list or dict and converts into a json string.

Syntax

system.util.jsonEncode(pyObj)
® Parameters
PyObject pyObj - The Python object to encode into JSON such as a Python list or dictionary.
® Returns
String - The encoded JSON string.
® Scope

All

Syntax

system.util.jsonEncode(pyObj, indentFactor)
® Parameters
PyObject pyObj - The Python object to encode into JSON such as a Python list or dictionary.
int indentFactor - The number of spaces to add to each level of indentation for prettyprinting
® Returns
String - The encoded JSON string.
® Scope

All

Code Examples

Code Snippet

#The followi ng exanple builds a Python dictionary, and converts it to a JSON string

#Buil d the Python dictionary

enpl oyeeDi ct = {"enployees":[{"firstNanme":"John", "lastName":"Doe"},{"firstNane":"Anna", "l astNanme":"

Smth"}, {"firstName":"Peter", "l|lastNanme":"Jones"}]}

#Convert the dictionary and store the resulting JSON string in a variable.
jsonString = systemutil.jsonEncode(enpl oyeeDict)

system.util.modifyTranslation

Description

This function allows you to add or modify a global translation.

Syntax

system.util. modifyTranslation(term, translation [, locale])
® Parameters
String term - The key term to translate.
String translation - The translated value to store.

String locale - If specified, the locale code (such as "es") identifying the language of the translation. Otherwise, the currently set
language is used.[optional]

® Returns
nothing
® Scope

Client

Code Examples

Code Snippet

This code adds or updates a translation into French

for the world Hello. Note the u in front "AI16!", which
is needed for Python strings outside of the 7-bit ASC |
range.

systemutil.modi fyTransl ation("Hello", u"Ald!'", "fr")

system.util.playSoundClip

Description

Plays a sound clip from a wav file to the system's default audio device. The wav file can be specified as a filepath, a URL, or directly as a raw byte[].

Syntax

system.util.playSoundClip(wavFile)
® Parameters
String wavFile - A filepath or URL that represents a wav file
® Returns
nothing
® Scope

Vision Client

Syntax

system.util.playSoundClip(wavBytes [, volume] [, wait])
® Parameters
byte[] wavBytes
double volume - The clip's volume, represented as a floating point number between 0.0 and 1.0 [optional]

boolean wait - A boolean flag indicating whether or not the call to playSoundClip should wait for the clip to finish before it returns [optio
nal]

® Returns
nothing
® Scope

Vision Client

Syntax

system.util.playSoundClip(wavFile [, volume] [, wait])
® Parameters
String wavFile - A filepath or URL that represents a wav file
double volume - The clip's volume, represented as a floating point number between 0.0 and 1.0 [optional]

boolean wait - A boolean flag indicating whether or not the call to playSoundClip should wait for the clip to finish before it returns [optio
nal]

® Returns
nothing
® Scope

Vision Client

Code Examples

Code Snippet
This code would play a sound clip at full volune that was |ocated on the current

host's filesystem It will not return until the clip in finished playing.
systemutil.playSoundC ip("C:\\sounds\\siren.wav")

Code Snippet

This code would pull a sound clip out of a BLOB field froma dat abase,
#pl aying it asynchronously at half vol une.

query = "SELECT wavBl ob FROM sounds WHERE type='al ert_hi gh'"
soundDat a = system db. runScal ar Query(query)

systemutil.playSoundd i p(soundData, 0.5, 0)

system.util.queryAuditLog

Description

Queries an audit profile for audit history. Returns the results as a dataset.

Syntax

system.util.queryAuditLog(auditProfileName, startDate, endDate, actorFilter, actionFilter, targetFilter, valueFilter, systemFilter,
contextFilter)

® Parameters

String auditProfileName - The name of the audit profile to pull the history from.

Date startDate - The earliest audit event to return. If omitted, the current time - 8 hours will be used.

Date endDate - The latest audit event to return. If omitted, the current time will be used.

String actorFilter - A filter string used to restrict the results by actor.

String actionFilter - A filter string used to restrict the results by action.

String targetFilter - A filter string used to restrict the results by target.

String valueFilter - A filter string used to restrict the results by value.

String systempFilter - A filter string used to restrict the results by system.

Integer contextFilter - A bitmask used to restrict the results by context. 0x01 = Gateway, 0x02 = Designer, 0x04 = Client.
® Returns

Dataset - A dataset with the audit events from the specified profile that match the filter arguments.
® Scope

Client

Code Examples

There are no examples associated with this scripting function.

system.util.retarget

Description

This function allows you to programmatically 'retarget’ the Client to a different project and/or different Gateway. You can have it switch to another
project on the same Gateway, or another gateway entirely, even across a WAN. This feature makes the vision of a seamless, enterprise-wide
SCADA application a reality.

The retarget feature will attempt to transfer the current user credentials over to the new project / Gateway. If the credentials fail on that project, the
user will be prompted for a valid username and password. Once valid authentication has been achieved, the currently running project is shut down,
and the new project is loaded.

You can pass any information to the other project through the parameters dictionary. All entries in this dictionary will be set in the global scripting
namespace in the other project. Even if you don't specify any parameters, the system will set the variable _RETARGET_FROM_PROJECT to the
name of the current project and _RETARGET_FROM_GATEWAY to the address of the current Gateway.

Syntax

system.util.retarget(projectName [, gatewayAddress] [, params] [, startupWindows])
® Parameters
String projectName - The name of the project to retarget to.

String gatewayAddress - The address of the Gateway that the project resides on. If omitted, the current Gateway will be used. Format
is: "host:httpPort:ssIPort/main” [optional]

PyDictionary params - A dictionary of parameters that will be passed to the new project. They will be set as global variables in the new
project's Python scripting environment. [optional]

String[] startupWindows - A list of window names to use as the startup windows. If omitted, the project's normal startup windows will
be opened. If specified, the project's normal startup windows will be ignored, and this list will be used instead. [optional]

® Returns
nothing
® Scope

Client

Code Examples

Code Snippet

This code would switch to a project named ' TankControl' on the same Gateway
as the currently running project
systemutil.retarget (" TankControl")

Code Snippet

This code would switch to a project naned ' TankControl' on a

Gateway |ocated at a different |P address running on port 8080, and

woul d open the wi ndow naned "G aph", and set a global jython variable in the

new project naned "retargetCccured" to the value 1 (one).

systemutil.retarget (" TankControl ", "10.30.2.33:8088/ nain", {"retargetCOccured": 1}, ["G aph"])

Code Snippet

This code would switch to a project naned ' TankControl' on a
Gateway |located at a different IP address using SSL on port 8043
systemutil.retarget("TankControl", "10.30.2.34:8088: 8043/ nai n")

Code Snippet

This code would be put in a button in the target that was retargetted to,
and act as a 'back' button, that would retarget back to the original project.

fetch the global values that are automatically created when you retarget
project = systemutil.getd obal s()['_RETARGET_FROM PRQJIECT']
gateway = systemutil.getd obal s()[' _RETARGET_FROM GATEVAY' |

retarget
systemutil.retarget(project, gateway)

system.util.sendMessage

Description

This function sends a message to clients running under the Gateway, or to a project within the Gateway itself. To handle received messages, you
must set up event script message handlers within a project. These message handlers run Jython code when a message is received. You can add
message handlers under the "Message" section of the client/Gateway event script configuration dialogs.

Note that messages cannot received within a Designer. However, messages can be sent within the Designer in a script (assuming that read/write
comm is enabled).

Syntax

system.util.sendMessage(project, messageHandler, payload, scope, clientSessionld, user, hasRole, hostName, remoteServers)
® Parameters
String project - The name of the project containing the message handler.
String messageHandler - The name of the message handler that will fire upon receiving a message.

PyDictionary payload - Optional. A PyDictionary which will get passed to the message handler. Use "messagePayload" in the
message handler to access dictionary variables.

String scope - Optional. Limits the scope of the message delivery to "C" (clients), "G" (Gateway), or "CG" for clients and the Gateway.
Defaults to "C" if the user name, role or host name parameters are set, and to "CG" if none of these parameters are set.

String clientSessionld - Optional. Limits the message delivery to a client with the specified session ID.

String user - Optional. Limits the message delivery to clients where the specified user has logged in.

String hasRole - Optional. Limits the message delivery to any client where the logged in user has the specified user role.
String hostName - Optional. Limits the message delivery to the client that has the specified network host name.

List remoteServers (since 7.8.2) - Optional. A list of Strings representing Gateway Server names. The message will be delivered to
each server in the list. Upon delivery, the message is distributed to the local Gateway and clients as per the other parameters.

® Returns

List - A List of Strings containing information about each system that was selected for delivery, where each List item is comma-
delimited.

® Scope

All

Code Examples

Code Snippet

#Si npl e nessage to both Cient and Gateway handl ers

proj ect="X"

I1t's inmportant that both Gateway and O ient versions of this nessage handl er have been created
messageHandl er =" myMessageHandl er "

scope="CG'

nyDict = {'first': "Hello", 'second : "Wrld"}

resul t s=system util.sendMessage(proj ect, messageHandl er, nyDi ct)

#Assum ng that there is one local client running project X, the results List will contain these Strings:
type=Gat eway, proj ect =X, nessageHand| er =t est Handl er, fi | t er Par ans={ host Nane=, cli ent Sessi onl d=, scope=CG
user =, hasRol e=}, sendSt at us=SENT

type=Client, sessi onl d=65F7A472, cl i ent Addr ess=127. 0. 0. 1, cl i ent Host Nane=127. 0. 0. 1, pr oj ect =X,

nessageHand| er =t est Handl er, fi | t er Par ams={ host Name=, cl i ent Sessi onld=, scope=CG user=, hasRol e=},
sendSt at us=SENT

Code Snippet

#Message to client handlers only where a specified user is |ogged in)
systemutil.sendMessage(proj ect="X", messageHand| er =" nyMessageHandl er", scope="C", user =" Bob")

Code Snippet

#Message to renpte servers over the Gateway Network (since 7.8.2)
servers = ["agent-8088", "agent-9000"]
systemutil.sendMessage(proj ect ="X", nessageHandl er =" nyMessageHandl er", r enot eSer ver s=servers)

system.util.setConnectionMode

Description

Sets the connection mode for the client session. Normally a client runs in mode 3, which is read-write. You may wish to change this to mode 2,
which is read-only, which will only allow reading and subscribing to tags, and running SELECT queries. Tag writes and INSERT / UPDATE /
DELETE queries will not function. You can also set the connection mode to mode 1, which is disconnected, all tag and query features will not work.

Syntax

system.util.setConnectionMode(mode)
® Parameters
int mode - The new connection mode. 1 = Disconnected, 2 = Read-only, 3 = Read/Write.
® Returns
nothing
® Scope

All

Code Examples

Code Snippet

#Thi s exanpl e, which could go in a project's startup script, would check the current usernane and set the
connection node to read-only if it is the "guest" user.

usernane = system security. getUsernane()
if "guest" == usernane.lower():
Set "guest" user to read-only node
systemutil . set Connecti onMode(2)
el se:
systemutil.set Connecti onMode(3)

system.util.setConnectTimeout

Description

Sets the connect timeout for client-to-gateway communication. Specified in milliseconds.

Syntax

system.util.setConnectTimeout(connectTimeout)
® Parameters
int connectTimeout - The new connect timeout, specified in milliseconds.
® Returns
nothing
® Scope

All

Code Examples

Code Snippet

This code woul d set the current connect tinmeout to 30 seconds
systemutil . set Connect Ti meout (30000)

system.util.setLocale

Description

Sets the user's current Locale. Any valid Java locale code (case-insensitive) can be used as a parameter, including ones that have not yet been
added to the Translation Manager. An invalid locale code will cause an lllegal Argument Exception.

Syntax

system.util.setLocale(locale)
® Parameters
String locale - A locale code, such as 'en_US' for US English.
® Returns
nothing
® Scope

Client

Code Examples

There are no examples associated with this scripting function.

system.util.setReadTimeout

Description

Sets the read timeout for client-to-gateway communication. Specified in milliseconds.

Syntax

system.util.setRead Timeout(readTimeout)
® Parameters
int readTimeout - The new read timeout, specified in milliseconds.
® Returns
nothing
® Scope

Client

Code Examples

There are no examples associated with this scripting function.

system.util.translate

Description

This function allows you to retrieve the global translation of a term from the translation database using the current locale.

Syntax

system.util.translate(term)
® Parameters
String term - The term to look up.
® Returns
String - The translated term.
® Scope

Client

Syntax

system.util.translate(term, locale, strict)

® Parameters
String term - The term to look up.
String locale
Boolean strict

® Returns
String - The translated term.

® Scope

Client

Code Examples

There are no examples associated with this scripting function

	Appendix
	Components
	Component Scripting Overview
	Input
	Text Field
	Numeric Text Field
	Spinner
	Formatted Text Field
	Password Field
	Text Area
	Dropdown List
	Slider
	Language Selector

	Buttons
	Button
	2 State Toggle
	Multi-State Button
	One-Shot Button
	Momentary Button
	Toggle Button
	Check Box
	Radio Button
	Tab Strip

	Display
	Label
	Numeric Label
	Multi-State Indicator
	LED Display
	Moving Analog Indicator.
	Image
	Progress Bar
	Cylindrical Tank
	Level Indicator
	Linear Scale
	Barcode
	Meter
	Compass
	Thermometer
	Document Viewer
	IP Camera Viewer

	Tables
	Table
	Table Customizer

	Power Table
	Power Table Customizer

	List
	Tree View
	Comments Panel
	Tag Browse Tree

	Charts
	Easy Chart
	Chart
	Sparkline Chart
	Bar Chart
	Radar Chart
	Status Chart
	Pie Chart
	Box and Whisker Chart
	Equipment Schedule
	Gantt Chart

	Calendars
	Calendar
	Popup Calendar
	Date Range
	Day View
	Week View
	Month View

	Admin
	User Management
	Schedule Management
	Roster Management
	SFC Monitor

	Alarming Components
	Alarm Status Table
	Alarm Row Style Customizer

	Alarm Journal Table

	Containers
	Container
	Template Repeater
	Template Canvas
	Template Canvas Customizer

	Misc
	Paintable Canvas
	Line
	Pipe Segment
	Pipe Joint
	Sound Player
	Timer
	Signal Generator

	Reporting Components
	Report Viewer
	Barcodes
	Images
	Labels
	Report Drawing Shapes

	Row Selector
	Column Selector
	File Explorer
	PDF Viewer

	Expression Functions
	Expression Overview and Syntax
	Aggregates
	groupConcat
	max
	maxDate
	mean
	median
	min
	minDate
	stdDev
	sum

	Alarming Expressions
	isAlarmActive

	Colors
	brighter
	color
	darker
	gradient

	Date and Time
	dateArithmetic
	dateDiff
	dateExtract
	dateFormat
	now
	timeBetween

	Logic
	binEnc
	binEnum
	case
	coalesce
	getBit
	hasChanged
	if
	isNull
	lookup
	switch
	try

	Math
	abs
	acos
	asin
	atan
	ceil
	cos
	exp
	floor
	log
	log10
	pow
	round
	sin
	sqrt
	tan
	todegrees
	toradians

	String
	concat
	escapeSQL
	escapeXML
	fromBinary
	fromHex
	fromOctal
	indexOf
	lastIndexOf
	left
	len
	lower
	numberFormat
	repeat
	replace
	right
	split
	stringFormat
	substring
	toBinary
	toHex
	toOctal
	trim
	upper

	Translation
	translate

	Type Casting
	toBoolean
	toBorder
	toColor
	toDataSet
	toDate
	toDouble
	toFloat
	toFont
	toInt
	toInteger
	toLong
	toStr
	toString

	Users
	hasRole

	Advanced
	columnRearrange
	columnRename
	forceQuality
	runScript
	sortDataset
	tag

	Scripting Functions
	Scripting Overview and Syntax
	system.alarm
	system.alarm.acknowledge
	system.alarm.cancel
	system.alarm.createRoster
	system.alarm.getRosters
	system.alarm.getShelvedPaths
	system.alarm.listPipelines
	system.alarm.queryJournal
	system.alarm.queryStatus
	system.alarm.shelve
	system.alarm.unshelve

	system.dataset
	system.dataset.addColumn
	system.dataset.addRow
	system.dataset.dataSetToExcel
	system.dataset.dataSetToHTML
	system.dataset.deleteRow
	system.dataset.deleteRows
	system.dataset.exportCSV
	system.dataset.exportExcel
	system.dataset.exportHTML
	system.dataset.filterColumns
	system.dataset.fromCSV
	system.dataset.getColumnHeaders
	system.dataset.setValue
	system.dataset.sort
	system.dataset.toCSV
	system.dataset.toDataSet
	system.dataset.toPyDataSet
	system.dataset.updateRow

	system.date
	system.date.add*
	system.date.*Between
	system.date.format
	system.date.fromMillis
	system.date.get*
	system.date.getDate
	system.date.getTimezone
	system.date.getTimezoneOffset
	system.date.getTimezoneRawOffset
	system.date.isAfter
	system.date.isBefore
	system.date.isBetween
	system.date.isDaylightTime
	system.date.midnight
	system.date.now
	system.date.setTime
	system.date.toMillis

	system.db
	system.db.addDatasource
	system.db.beginTransaction
	system.db.closeTransaction
	system.db.commitTransaction
	system.db.createSProcCall
	system.db.dateFormat
	system.db.execSProcCall
	system.db.getConnectionInfo
	system.db.getConnections
	system.db.refresh
	system.db.removeDatasource
	system.db.rollbackTransaction
	system.db.runPrepQuery
	system.db.runPrepUpdate
	system.db.runQuery
	system.db.runScalarPrepQuery
	system.db.runScalarQuery
	system.db.runSFPrepUpdate
	system.db.runSFUpdateQuery
	system.db.runUpdateQuery
	system.db.setDatasourceConnectURL
	system.db.setDatasourceEnabled
	system.db.setDatasourceMaxConnections

	system.device
	system.device.addDevice
	system.device.listDevices
	system.device.refreshBrowse
	system.device.removeDevice
	system.device.setDeviceEnabled
	system.device.setDeviceHostname

	system.dnp3
	system.dnp3.directOperateAnalog
	system.dnp3.directOperateBinary
	system.dnp3.freezeAnalogs
	system.dnp3.freezeAnalogsAtTime
	system.dnp3.freezeCounters
	system.dnp3.freezeCountersAtTime
	system.dnp3.selectOperateAnalog
	system.dnp3.selectOperateBinary

	system.eam
	system.eam.getGroups
	system.eam.queryAgentHistory
	system.eam.queryAgentStatus

	system.file
	system.file.fileExists
	system.file.getTempFile
	system.file.openFile
	system.file.readFileAsBytes
	system.file.readFileAsString
	system.file.saveFile
	system.file.writeFile

	system.groups
	system.groups.loadFromFile
	system.groups.removeGroups

	system.gui
	system.gui.chooseColor
	system.gui.color
	system.gui.confirm
	system.gui.convertPointToScreen
	system.gui.createPopupMenu
	system.gui.errorBox
	system.gui.findWindow
	system.gui.getOpenedWindowNames
	system.gui.getOpenedWindows
	system.gui.getParentWindow
	system.gui.getScreens
	system.gui.getSibling
	system.gui.getWindow
	system.gui.getWindowNames
	system.gui.inputBox
	system.gui.isTouchscreenModeEnabled
	system.gui.messageBox
	system.gui.moveComponent
	system.gui.openDiagnostics
	system.gui.passwordBox
	system.gui.reshapeComponent
	system.gui.resizeComponent
	system.gui.setScreenIndex
	system.gui.setTouchscreenModeEnabled
	system.gui.showNumericKeypad
	system.gui.showTouchscreenKeyboard
	system.gui.transform
	system.gui.warningBox

	system.nav
	system.nav.centerWindow
	system.nav.closeParentWindow
	system.nav.closeWindow
	system.nav.getCurrentWindow
	system.nav.goBack
	system.nav.goForward
	system.nav.goHome
	system.nav.openWindow
	system.nav.openWindowInstance
	system.nav.swapTo
	system.nav.swapWindow

	system.net
	system.net.getExternalIpAddress
	system.net.getHostName
	system.net.getIpAddress
	system.net.getRemoteServers
	system.net.httpDelete
	system.net.httpGet
	system.net.httpPost
	system.net.httpPut
	system.net.openURL
	system.net.sendEmail

	system.opc
	system.opc.browse
	system.opc.browseServer
	system.opc.browseSimple
	system.opc.getServers
	system.opc.getServerState
	system.opc.readValue
	system.opc.readValues
	system.opc.writeValue
	system.opc.writeValues

	system.print
	system.print.createImage
	system.print.createPrintJob
	system.print.printToImage

	system.report
	system.report.executeAndDistribute
	system.report.executeReport
	system.report.getReportNamesAsDataset
	system.report.getReportNamesAsList

	system.security
	system.security.getRoles
	system.security.getUsername
	system.security.getUserRoles
	system.security.isScreenLocked
	system.security.lockScreen
	system.security.logout
	system.security.switchUser
	system.security.unlockScreen
	system.security.validateUser

	system.serial
	system.serial.closeSerialPort
	system.serial.configureSerialPort
	system.serial.openSerialPort
	system.serial.readBytes
	system.serial.readBytesAsString
	system.serial.readLine
	system.serial.readUntil
	system.serial.sendBreak
	system.serial.write
	system.serial.writeBytes

	system.sfc
	system.sfc.cancelChart
	system.sfc.getRunningCharts
	system.sfc.pauseChart
	system.sfc.resumeChart
	system.sfc.setVariable
	system.sfc.setVariables
	system.sfc.startChart

	system.tag
	system.tag.addTag
	Tag Attributes

	system.tag.browseHistoricalTags
	system.tag.browseTags
	system.tag.browseTagsSimple
	system.tag.editAlarmConfig
	system.tag.editTag
	system.tag.editTags
	system.tag.exists
	system.tag.getAlarmStates
	system.tag.getAttribute - Deprecated
	system.tag.isOverlaysEnabled
	system.tag.loadFromFile
	system.tag.queryTagCalculations
	system.tag.queryTagDensity
	system.tag.queryTagHistory
	system.tag.read
	system.tag.readAll
	system.tag.removeTag
	system.tag.removeTags
	system.tag.setOverlaysEnabled
	system.tag.storeTagHistory
	system.tag.write
	system.tag.writeAll
	system.tag.writeAllSynchronous
	system.tag.writeSynchronous

	system.twilio
	system.twilio.getAccounts
	system.twilio.getAccountsDataset
	system.twilio.getPhoneNumbers
	system.twilio.getPhoneNumbersDataset
	system.twilio.sendSms

	system.user
	system.user.addHoliday
	system.user.addSchedule
	system.user.editHoliday
	system.user.editSchedule
	system.user.getHoliday
	system.user.getHolidayNames
	system.user.getHolidays
	system.user.getRoles
	system.user.getSchedule
	system.user.getScheduleNames
	system.user.getSchedules
	system.user.getUser
	system.user.getUsers
	system.user.removeHoliday
	system.user.removeSchedule

	system.util
	system.util.beep
	system.util.execute
	system.util.exit
	system.util.getAvailableLocales
	system.util.getAvailableTerms
	system.util.getClientId
	system.util.getConnectionMode
	system.util.getConnectTimeout
	system.util.getEdition
	system.util.getGatewayAddress
	system.util.getGatewayStatus
	system.util.getGlobals
	system.util.getInactivitySeconds
	system.util.getLocale
	system.util.getLogger
	system.util.getProjectName
	system.util.getProperty
	system.util.getReadTimeout
	system.util.getSessionInfo
	system.util.getSystemFlags
	system.util.invokeAsynchronous
	system.util.invokeLater
	system.util.jsonDecode
	system.util.jsonEncode
	system.util.modifyTranslation
	system.util.playSoundClip
	system.util.queryAuditLog
	system.util.retarget
	system.util.sendMessage
	system.util.setConnectionMode
	system.util.setConnectTimeout
	system.util.setLocale
	system.util.setReadTimeout
	system.util.translate

