
1. Vision . 3
1.1 Vision Client Launcher . 6

1.1.1 Vision Client Launcher Settings . 16
1.1.2 Deploying Vision Client Launchers . 25
1.1.3 Client Launchers Commands . 30
1.1.4 Local Client Fallback . 32

1.2 Vision Designer Interface . 34
1.3 Vision Windows . 44

1.3.1 Window Types . 51
1.3.2 Popup Windows . 55

1.3.2.1 Parameterized Popup Windows . 61
1.3.3 Navigation Strategies in Vision . 67

1.3.3.1 Navigation - Tab Strip . 71
1.3.3.2 Navigation - Two Tier . 73
1.3.3.3 Navigation - Tree View . 77
1.3.3.4 Navigation - Forward and Back Buttons . 80
1.3.3.5 Navigation - Drill Down . 84
1.3.3.6 Navigation - Menubar . 88
1.3.3.7 Navigation - Retargeting . 91

1.4 Working with Vision Components . 93
1.4.1 Creating Vision Components . 105
1.4.2 Vision Component Customizers . 109
1.4.3 Drawing Tools . 120

1.4.3.1 Shape Geometry . 125
1.4.3.2 Fill and Stroke . 130

1.4.4 Images and SVGs in Vision . 135
1.4.5 Comparison Charts . 142
1.4.6 HTML in Vision . 156
1.4.7 Localization in Vision . 158

1.5 Binding Types in Vision . 160
1.5.1 Property Bindings in Vision . 164
1.5.2 Tag Bindings in Vision . 166
1.5.3 Indirect Tag Bindings in Vision . 169
1.5.4 Tag History Bindings in Vision . 173
1.5.5 Expression Binding in Vision . 179
1.5.6 Named Query Bindings . 181
1.5.7 DB Browse Bindings . 184
1.5.8 SQL Query Bindings in Vision . 189
1.5.9 Cell Update Bindings . 193
1.5.10 Function Bindings . 203
1.5.11 Color Animation in Vision . 205

1.6 Vision Templates . 211
1.6.1 Creating a Template . 217
1.6.2 Template Indirection . 224
1.6.3 Using the Template Repeater . 229
1.6.4 Using the Template Canvas . 238

1.7 Security in Vision . 248
1.7.1 Login Security . 250
1.7.2 Component and Window Security . 252
1.7.3 Security in Scripting . 254

1.8 Scripting in Vision . 258
1.8.1 Script Builders in Vision . 262
1.8.2 Component Events . 268
1.8.3 Extension Functions . 278
1.8.4 Custom Component Methods . 284
1.8.5 Focus Manipulation . 286
1.8.6 Client Event Scripts . 290
1.8.7 Read a Cell from a Table . 297

1.9 Historian in Vision . 301
1.9.1 Using the Vision Easy Chart . 304

1.9.1.1 Easy Chart - Axes . 309
1.9.1.2 Easy Chart - Subplots . 316
1.9.1.3 Easy Chart - Pen Names and Groups . 320
1.9.1.4 Easy Chart - Pen Renderer . 324
1.9.1.5 Easy Chart - Digital Offset . 327
1.9.1.6 Easy Chart - Calculated Pens . 330
1.9.1.7 Ad Hoc Charting . 338
1.9.1.8 Indirect Easy Chart . 341
1.9.1.9 Charting - Right Click Menu . 347
1.9.1.10 Easy Chart - Database Pens . 349

1.9.2 Using the Classic Chart . 352
1.9.3 Other Vision Trending Charts . 361

1.10 Alarming in Vision . 364
1.10.1 Vision Alarm Status Table - Common Tasks . 368

1.10.1.1 Vision Alarm Status - General Filtering . 370

1.10.1.2 Vision Alarm Status - Filter on Associated Data . 375
1.10.1.3 Vision Alarm Status - Row Styles . 377
1.10.1.4 Vision Alarm Status - Marquee Mode . 380
1.10.1.5 Vision Alarm Status - Acknowledgement . 382
1.10.1.6 Vision Alarm Status - Shelving . 384
1.10.1.7 Vision Alarm Status - Tag History and Alarm History . 387
1.10.1.8 Using Alarm Status Tags in Vision . 389

1.10.2 Vision Alarm Journal Table - Common Tasks . 394
1.10.2.1 Vision Alarm Journal - General Filtering . 395
1.10.2.2 Vision Alarm Journal - Filter on Associated Data . 399
1.10.2.3 Vision Alarm Journal - Filter on Date Range . 403
1.10.2.4 Vision Alarm Journal - Focusing on Alarms . 406
1.10.2.5 Vision Alarm Journal - Row Styles . 409
1.10.2.6 Vision Alarm Journal - Searching . 412

1.11 Reporting in Vision . 414
1.12 Vision Client Tags . 430
1.13 Vision Project Properties . 435

1.13.1 Client Update Modes . 448
1.13.2 Setting Up Auto Login . 451
1.13.3 Using Touch Screen Mode . 453

1.14 Common Tasks in Vision . 457
1.14.1 Component Animation . 459
1.14.2 Custom Input Template . 464
1.14.3 Client Tags for Indirection . 467
1.14.4 High Performance HMI Techniques . 479
1.14.5 Open Dynamic Windows on Startup . 482
1.14.6 Tank Cutaway . 484
1.14.7 Dropdown List Example . 486
1.14.8 Multi-Monitor Clients . 492

Vision

Overview
The Vision Module is a tool for creating and maintaining an interactive, accurate Human-Machine
Interface (HMI) for your site. Many other modules, as well as platform level features, seamlessly
integrate with the Vision Module, providing a simple method of visualizing and presenting data to
your users.

Windows
Vision Windows are the basic building blocks for all of your HMI screens. There are three basic
window configurations that define how a window behaves:

Main Windows - A is one that is set to start maximized (taking up main window
all available screen space (minus space used by any docked).windows
Popup Windows - A is one that appears (pops up) when the user popup window
performs an action such as clicking the mouse, pressing a function key, or touching a
button (if using a touchscreen) . Popup windows usually remain on top of the current
window until closed, enabling users to quickly choose options or settings before returning
to the previous window.
Docked Windows - A docked window is set to a static location on the screen. Docked
windows are often used to hold navigation trees or status information that needs to remain
on the screen at all times.

By changing a window's properties, you can transform any window into various configurations, with
each behaving differently based on those settings. Passing custom parameters into windows
allows you to create the window once, and then re-use your screens multiple times within the
same project. You get to choose what windows are available on startup and how your navigation is
configured. The following is an example of a Vision Module screen.

On this page

...

Overview
Windows
Navigation
Components
Bindings
Graphics

Scalable Vector
Graphics
Other Images

Templates

Window Types

Watch the Video

Navigation
A large number of options exist in the Vision module. For example, docked windows navigation
can be set up with navigation trees, tab strips, or menu bars. Components such as buttons can be
used to navigate to other windows. A graphic or photograph of a map can be customized with
clickable zones. Many of the common options are available as project templates that you can take
advantage of when first creating your project. Here are some examples:

https://www.inductiveuniversity.com/videos/window-types/8.0/8.0

Back/forward buttons

Navigation tab strips

Multi-tier navigation

Navigation
Strategies

Watch the Video

Components
Components are building blocks for your project. The Vision Module has a variety of built-in compo

 such as displays, buttons, charts, and other elements that display information. Each nents
component has multiple properties that control its appearance, behavior, and data. For example, a

 has a level, capacity, and a liquid color, while a has text, font, and an image. You can Tank Label
enhance components with to create additional functionality. custom properties

Bindings
A is a mechanism that allows a property on a component to change based on a a change binding
to a value elsewhere in Ignition. For example, with binding, the liquid level displayed in a tank
graphic can be bound to the realtime liquid level in a tank. The value of a Tag could be bound to a
linear scale, a meter, or a label on your window. The power of bindings comes from the variety of
binding types.

Click on the following links for complete information about binding types:

Properties - , , Property Binding Cell Update Binding Component Styles
Tags - , , Tag Binding Indirect Tag Bindings in Vision Tag History Binding

Component
Overview

Watch the Video

https://www.inductiveuniversity.com/videos/navigation-strategies/8.0/8.0
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Cylindrical+Tank
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Label
https://legacy-docs.inductiveautomation.com/display/DOC80/Working+with+Vision+Components#WorkingwithVisionComponents-CustomProperties
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Animation+in+Vision#ColorAnimationinVision-StyleCustomizer
https://www.inductiveuniversity.com/videos/component-overview/8.0/8.0

Expressions - Expression Binding
Databases - , , DB Browse Binding SQL Query Binding Named Query Bindings
Functions - Function Binding

Graphics
In addition to standard components, the Vision module supports the use of SVG, PNG and JPEG

 on Vision Windows. You can create your own images and import them into your project or images
use Ignition's to create graphics.2D Drawing tools

Scalable Vector Graphics

Scalable Vector Graphics (SVG) have several advantages over other graphic types. Because they
are vector graphics, they can be scaled without a loss of clarity or resolution. Additionally, you can
drill into an SVG to change individual parts of the image. To use an SVG in Ignition, simply drag
the file directly onto the window in which you want it to appear.

Other Images

You can use the built-in SVGs from Symbol Factory which contains hundreds of ready-to-use
graphics, or use the raster image library with an Image component to get a jump start on your
project.

Images (png, jpg,
gif)

Watch the Video

Templates
Components and images can be combined to create . These are re-usable Vision Templates
objects that can be configured once and used throughout your project. Templates work under a
principal of inheritance. When a change is made to a template, that change is inherited by each
instance of that template. Most templates use one or more custom properties (Template
Parameters) to tie data from a window to the internals of the template.

The portal in the Designer gives you access to pre-built templates. Cloud Templates Browser
Ignition community members can also share their own templates in the Cloud Templates.

About Templates

Watch the Video

In This Section ...

https://www.inductiveuniversity.com/videos/images-png-jpg-gif/8.0/8.0
https://www.inductiveuniversity.com/videos/images-png-jpg-gif/8.0/8.0

Vision Client Launcher

The Vision Client Launcher opens Vision Clients from any Ignition Gateway. The launcher browses
all Gateways for Vision projects that are available on your local network and remote locations.
Once your Vision projects are added to the Vision Client Launcher, they will be displayed under
My Applications and organized by Gateway.

This page will show you how to setup the launcher so both designers and users can launch Vision
clients easily.

What Is an Application?
For the purposes of the Vision Client Launcher, an is a configuration in the launcher, Application
which is associated with a Vision Project. A is an Ignition project that contains at Vision Project
least one Vision resource, such as a Window or a Template.

The Vision Client Launcher can only launch applications. Thus, if a new project is created via the
Designer, the Launcher will not be able to launch the project, until an Application has been
configured in the Launcher.

In the image below, we see two applications. One titled , and the other titled University Dashboard
. Each application is a separate tile in the Launcher and contains unique settings and
configurations.

On this page

...

What Is an
Application?
Download and
Install the Launcher

Windows Silent
Installations

Vision Client
Launcher

Watch the Video

Download and Install the Launcher

Best Practice

It's good practice to download and install the Vision Client Launcher every time you install a new release of Ignition. The Vision
Client Launcher is a separate application and is part of an Ignition release, so it's important not to have an outdated Vision not
Client Launcher shortcut residing on your desktop. Each time you install a new version of Ignition, download and install the Vision
Client Launcher, then let the install process create a new desktop shortcut for you automatically.

https://www.inductiveuniversity.com/videos/vision-client-launcher/8.0/8.0

1.

The following feature is new in Ignition version 8.0.10
 to check out the other new featuresClick here

The Vision Client Launcher can now be installed as an "all user" application on a Windows operating system providing launcher acess to all
users on the same machine from a single installation. The first time the Vision Client Launcher is installed, you will be prompted to select
your install mode: "Install for me only" or to "Install for all users." If the Vision Client Launcher was already installed, subsequent install
attempts are treated as an upgrade and you will not be prompted to select the install mode. This new option will only appear on new launcher
installations or after uninstalling a prior version of the installer.

The Vision Client Launcher for Windows, Linux, and Mac OS are available on the tab of the Gateway Webpage. Use the following Home
steps to do an install of the Vision Client Launcher.

From the tab on the Gateway Webpage, click on the link. Home Download Vision Client Launcher

Vision Client Launcher Destination Folder

When installing for "all users," the installer will be placed in the following folder: "%Ignition Installation Directory%\Program
Files\Inductive Automation"
When installing for "me only," the installer will be found under the "\AppData\Roaming\Inductive Automation" folder.

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.10

2.

3.

4.

Select the button for the Download platform you are running on: Windows, Mac, or Linux. This example demonstrates
the installation steps for a Windows operating system.

Run the downloaded file found on the lower-left of the window if using Chrome, or (VisionClientLauncherSetup.exe)
go to your Downloads folder and double-click the file to run it.

The following feature is new in Ignition version 8.0.10
 to check out the other new featuresClick here

If this is the first time installing the Vision Client Launcher, you will be prompted to select an install mode. Select either
"Install for me only," or "Install for all users."

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.10

5.

6.

The Install Wizard will select a default destination location folder for the Vision Client application files. If you are
"installing for me only", the destination folder will be different from the "all users" destination folder. You also have the
option to select a different folder. Click .Next

You'll notice that a desktop shortcut is checked and will be created so you don't have to run the Launcher each Client
time you want to open a client. Click .Next

7.

8.

The Ready to Install window will open. Click . Install

When the Vision Launcher completes the install, click Client Finish.

9.

10.

The Vision Client Launcher shortcut icon will be placed on your desktop and looks like the following.

The Ignition Vision Client Launcher will open, but you most likely won't have any Applications (Vision Client
configurations). The next step is to add Applications. Click Add Vision Client or Add Application(s). Both buttons will
take you to the same window to browse for local and remote Gateways.

11.

12.

13.

The Vision Client Launcher window will refresh and show your local Gateway. It will also check for other Gateways on
your network. Select a Gateway and click the Add a button.Selected Gateway

If there is an issue automatically detecting your Ignition Gateway, you can manually add your Gateway. Click on the Ma
nually Add Gateway button in the upper right corner.
Enter the or (i.e.,), and click . Gateway URL IP address localhost:8088 Add Gateway

14.

15.

Once your Gateway is added, the Vision Client Launcher will automatically find all projects on the Gateway. However,
this list of Applications will only contain projects that contain one or more Vision resources (such as a Vision Window).
Additionally, projects configured as will not appear (since Inheritable projects don't run as stand-alone Inheritable
applications). Select the Applications you would like to add, and click .Add Applications

Back on the screen, you will see all of the Applications that have been added to the launcher, sorted My Applications
by Gateway.

https://legacy-docs.inductiveautomation.com/display/DOC80/Project+Inheritance

16. The Vision Client Launcher is installed and opens the same way you open any program. Launch the client by clicking

the button, or you can click the icon and select . The Launch Windowed Expand Launch + Create Shortcut
project shortcut will be placed on your desktop so you don't have to run the Vision Client Launcher each time you want
to launch a project.

Windows Silent Installations

The Vision Client Launcher (and the) can be installed on Windows systems from command Iine without any user prompts.Designer Launcher

Shows a simplified user interface
C:\Users\user\Downloads\VisionClientLauncherSetup.exe /CURRENTUSER /SILENT

Shows no user interface at all.
C:\Users\user\Downloads\VisionClientLauncherSetup.exe /CURRENTUSER /VERYSILENT

Editor notes are only visible to logged in users
Commands above are taken from: https://jrsoftware.org/ishelp/index.php?topic=setupcmdline

The following feature is new in Ignition version 8.0.10
 to check out the other new featuresClick here

Version 8.0.10 introduced launcher installations for all users. Note that using ALLUSERS may trigger a check from User Account Controls,
so you may need administrator access for the following command to offer a truly silent installation:

C:\Users\user\Downloads\VisionClientLauncherSetup.exe /ALLUSERS /VERYSILENT

The Vision Client Launcher will notify users if it detects that an updated version of the launcher is available
from either the app or a shortcut. For a major Client Launcher upgrade, the application will start and offer an
option to download a new version by providing a link to the Gateway. For a minor upgrade, it allows the user
to choose to upgrade at a later time and allows the application to start.

https://legacy-docs.inductiveautomation.com/display/DOC80/Designer+Launcher
https://jrsoftware.org/ishelp/index.php?topic=setupcmdline
https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.10

Related Topics ...

Quick Start - Vision Client

In This Section ...

https://legacy-docs.inductiveautomation.com/display/DOC80/Quick+Start+-+Vision+Client

Vision Client Launcher Settings

You have the option of customizing the Vision Client Launcher Settings. This can be accomplished
with either the GUI or by modifying a file on the local file system. Regardless of method, both
utilize the properties specified under the Vision Client Launcher Settings Reference Table.

Launcher Settings

You can find the button in the upper right corner of the Vision Client Launcher.Settings

You can choose to use the default settings or customize your client applications. There are three
different buttons in in the Vision Client Launcher. Action Settings

 - Exports a configuration of the the Vision Client Launcher, as a Export Launcher Config
JSON file (i.e.,). Taking an export is useful in cases vision-client-launcher.json
where you want multiple launcher instances to use the same settings. The content of the
export file is based on the last saved configurations settings of the launcher.

 - Imports your launcher configurations from a Vision Client Import Launcher Config
Launcher export file.

- Creates a new client application configuration from an Import Application Config
export, adding a new application to the launcher. The import file is the same generated by
an . application export

 When finished updating any of the client launcher settings, click the button. Refer Save Changes
to the list of additional launcher settings in the below.reference table

On this page

...

Launcher Settings
Launcher
Configuration
Using JSON
Vision Client
Launcher
Settings
Reference Table
Trusted
Certificates
Delete a
Certificate
Export a
Certificate

Launcher
Application Settings

Application
Property
Reference Table

Launcher Configuration Using JSON

In addition to using the GUI, these configurations changes can be made by modifying the file (created vision-client-launcher.json
during installation of the launcher). The file is located at:

{user folder}\.ignition\clientlauncher-data\vision-client-launcher.json

The preferred method of configuration is with the GUI, but JSON modification is useful when attempting to load multiple application
configurations simultaneously.

A reference to the various properties that can be modified via JSON are listed in the . Vision Client Launcher Settings Reference Table
However, the JSON file has the following setting that isn't available from the GUI:

lock.
configurati
on

When set to true, the application list and individual application configurations cannot be modified. Effectively restricting the
ability to add applications and edit the launcher's configurations.

Vision Client Launcher Settings Reference Table

Launcher Settings - Configurations for the Launcher

1.

2.

Property
Setting

Description JSON Name

Default
Application

When set, the Launcher will attempt to automatically launch the specified Application when running. If left
blank/null, an Application will not automatically start

default.
application

Logging
Level

Level of logging that will be used for the launcher: INFO, TRACE, DEBUG, WARN, and ERROR. logger.
level

Multicast
Address

The address that will be used to listen for multicast broadcasts from Gateways. multicast.
address

Multicast
Ports

The port that will be used to listen for multicast broadcasts from Gateways. multicast.
receive.
port

Auto Exit
on
Launch

Automatically close the launcher window when a client is started. autoexit

Application Defaults - Default Configurations for New Applications

Property
Setting

Description JSON Name

Timeout Maximum number of seconds allowed for any Gateway communication. Any communication that exceeds
this amount will cause the client launcher to abort the communication and try again if configured.

timeout

Retries The number of times a Client will to attempt to contact a gateway again if an error occurred during
communication. Available values are:

-1 : Retry indefinitely, or until the launcher is manually closed.
0 : Zero retries, or abort after the first failure.
1 (or more): Determines the number of retries: i.e., a value of "5" means five retries.

retries

Initial
Heap

Amount of memory to be allocated at startup. init.heap

Max
Heap

Maximum amount of memory allocation for heap size. max.heap

JVM Arguments to append to client startup. These should start with a '-D' and be separated by semi-colons. jvm.
arguments

Client
Tag
Overrides

Client Tags and their values that are set when the client launches. client.tag.
overrrides

The following feature is new in Ignition version 8.0.13
 to check out the other new featuresClick here

Trusted Certificates

As of release 8.0.13 you can add security certificates to the launcher. To use this feature, you must have installed a launcher from a version
8.0.13+ Gateway.

While attempting to launch an application, the launcher will check against the application's host Gateway, and attempt to automatically
download any required certificates. In addition, certificates can be manually added using the example below.

Access Vision Launcher Settings by clicking on the top right of the Vision Launcher window. Client Settings Client

In the Trusted Certificates section, click the Add icon.

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.13

2.

3.

4.

Navigate to the location of the certificate on your system and choose . Open

Information about the certificate is displayed. To view complete details, click the icon next to Details. If everything looks Expand
.OK, click Trust Certificate

4.

5.

1.

2.

3.

Once a certificate is imported, you can view its details by clicking the icon.Information

Delete a Certificate

To delete an imported certificate, access Vision Launcher Settings by clicking Vision LaClient Settings on the top right of any Client
uncher window.
In the Trusted Certificates section, select the certificate you want to delete.

Click the Delete icon.

4.

1.

2.

3.
4.

You'll get a confirmation window. If the certificate is the correct one you want to delete, click the button.Delete

Export a Certificate

access To export an imported certificate, Vision Vision LaClient Launcher Settings by clicking Settings on the top right of any Client
uncher window.
In the Trusted Certificates section, select the certificate you want to export.

Click the Export icon.
Navigate to the location you want to save the certificate and click . Save

Launcher Application Settings

For each project application, you can update the default settings by clicking the icon (three vertical dots) next to the project name, More
and select to open the Manage Project Settings window. The command exports the configuration settings to a file. Manage Export .json
The command deletes the project application from the launcher. Delete

You can choose to use the default settings or customize your project client applications. There are three different buttons under Action Mana
 in the Vision Client Launcher. ge Project Settings

- Launches the your application in the Vision Client Launcher.Launch Application
 - Exports your updates to the Vision Client Launcher file (i.e.,). The resulting Export Config vision-client-launcher.json

export file contains the last configuration of the application.saved
- Creates a shortcut to your application on your desktop, using the last application configuration.Create Desktop Shortcut saved

 When finished updating any of the launcher settings, click the button.Save Changes

Application Property Reference Table

Setting
Name

Description JSON
Name

Applicat
ion
Name

The descriptive name of the application. This is independent of the project name that corresponds to a
project on the gateway. Instead, this is the name of the application as it is defined in the Launcher.

appli
cation

Project The Vision project that exists on the gateway that this application will load. proje
ct

Descrip
tion

An optional brief note about the application. The description will appear in the Launcher. If left blank, a
description will not appear.

descr
iption

Window
Mode

Controls the client mode. Available options are:

window : Launches the client in Windowed Mode
fullscreen : Launches the client in Fullscreen Mode

windo
w.
mode

Screen
Index

The screen index indicates which monitor to use. screen

Image
Path

This will allow the icon of the application to be set within the designer and it will be downloaded and
displayed as the icon for the application as well as the shortcuts. If no path is set the default icon is used.
If this is set to a different icon path, that icon will be used.

image
.path

Fallbac
k
Applicat
ion

The name of the application to use if the number of retries has been exceeded. The fallback is only
utilized if the setting is greater than 0.Retries

fallb
ack.
appli
cation

Timeout The maximum number of seconds to allow for any gateway communication. Any communication that
exceeds this amount will cause the Vision client launcher to abort the communication and try again if
configured.

timeo
ut

Retries How many times to attempt to contact a gateway again if an error occurred during communication.
Available values are:

-1 : Retry indefinitely, or until the launcher is manually closed.
0 : Zero retries, or abort after the first failure.
1 (or more): Determines the number of retries: i.e., a value of "5" means five retries. If the number of
retries is exceeded, then the launcher will attempt to launch the Fallback Application.

If the number of retries is exceeded, then the Launcher will attempt to launch the Fallback Application.

retri
es

Init
Heap

The initial heap size (memory) for the client. init.
heap

Max
Heap

The maximum heap size (memory) for the client max.
heap

Client
Tag
Overrid
es

Allows client tags to be overridden on the Vision Client. These are set using the table on the application
configuration screen by adding rows with the names of the tags and the corresponding values.

When applying the overrides from command line, the tags must first be defined as launch parameters,
then a value can be set on the parameters.

The following feature is new in Ignition version 8.0.7
 to check out the other new featuresClick here

Added support for Vision Client Tag overrides within folders and passing client tag overrides with spaces
by using a '+' icon as an escape character. This happens automatically if you are configuring overrides in
the Client Launcher. To learn more about how to configure Client Tag Overrides, refer to Overriding

.Vision Client Tags

clien
t.
tag.
overr
ides

Related Topics ...

Vision Client Tags

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.7
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Client+Tags#VisionClientTags-OverridingVisionClientTags
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Client+Tags#VisionClientTags-OverridingVisionClientTags

1.

2.

1.

2.

Deploying Vision Client Launchers

Deploying Launchers
In some cases, it may be desirable to deploy a pre-configured Launcher to remote clients. Doing
so bypasses the installation process on the remote machine. The process to do so is outlined
below. The steps in this example are operating system dependent, as the launchers were
designed to run on a single operating system.

Three Key Pieces to a Configured Launcher

The launcher itself.
The JRE for the launcher. The "jre" directory should be in the same directory as the
launcher.
The configuration JSON file. The launcher always expects this file to be located at a
certain directory, otherwise the launcher will create a new, blank, file.

The steps below demonstrate how to configure a launcher, and then migrate each piece to a new
file system into an appropriate location.

On this page

...

Deploying
Launchers

Three Key
Pieces to a
Configured
Launcher
Pre-Configure a
Launcher
Create a ZIP
Deploying the
Launcher

Redundancy
Command Line
/Terminal

Command Line
Arguments

Launchers and SSL
Certificates
Signed by a CA
Self-Signed
Certificates

Troubleshooting

Pre-Configure a Launcher

Install a Vision Client Launcher somewhere on network. Take note of the Installation directory you use, as a later step will involve
finding this directory.
Configure each application. Be mindful of the Gateway Address setting: the deployed launcher will need to be able find the Gateway
based on the address you enter.

At this point, we should have a single launcher configured with one or more applications. Next we can zip up the the launcher and its
configuration files.

Create a ZIP

In these steps, we will create a single ZIP, containing all of the required files.

Navigate to the Launcher's installation directory. It should look similar to the image below:

Copy all of the files shown in Step 1, and paste them into the Client Launcher Data directory. This is the same directory that the
configuration JSON file is located. The path differs by operating system, but should generally look like the following:

C:\Users\userName\.ignition\clientlauncher-data\

2.

3.

4.

5.

6.

Linux

/home/user/.ignition/clientlauncher-data/

After pasting, the directory should look something like the following:

We now have a single folder containing the launcher, a JRE, and the application configurations.

Navigate up a directory to the ".ignition" folder. You will see the folder we were just in: "clientlauncher-data"

In this directory (the directory), create a new folder called . Note the leading period. In some operating systems .ignition .ignition
you may have to attempt to rename with a trailing period as well.

.ignition.

Copy the folder into the new folder. Note that you want to copy, not move. Moving would make prior clientlauncher-data .ignition
application configurations on the local system unavailable.
Zip up the newer directory..ignition

6.

1.
2.

3.

4.
5.

We now have a ZIP we can deploy to a new system.

Deploying the Launcher

Take the ZIP, and move it to another computer.
Unzip the file at the user directory. The location of the directory is based on the local operating system.

Windows

C:\Users\userName

Linux

/home/user/

The files should be unzipped. Navigate to the launcher at:

{user folder}/.ignition/clientlauncher-data/visionclientlauncher

Run the Launcher. It should contain all of the configured applications.
At this point, consider creating a shortcut to the launcher, and placing the shortcut at a more accessible location. Alternatively, the
launcher can be accessed via command line/terminal, so you could automate client launchers in a number of ways.

Redundancy
The client launcher can take advantage of a redundant Gateway setup. Whenever a connection is established with a master Gateway, the
backup Gateway IP address is automatically stored in the client launcher configuration file. If the master Gateway cannot be contacted the
next time the client launcher is run, an attempt is made to contact the backup Gateway. If the backup cannot be contacted, the client
launcher switches between contacting the primary Gateway and the backup Gateway until one responds or the user closes the launcher.

Command Line/Terminal
Clients can be launched from the Client Launcher via command/terminal. When called in this way, many of the application properties may be
overridden for the one call. The overrides use the same property names as noted in the , under the Application Property Reference Table
"JSON name" column.

Windows:
"C:\ClientLauncher\visionclientlauncher.exe" application=myproject window.mode=window

Linux:
./visionclientlauncher.sh application=myterminal window.mode=fullscreen screen=0

There are a few important notes when using the Command Line/Terminal to launch a project from the Vision Client Launcher.

The Vision Client Launcher must be installed and have an application added for the Command Line/Terminal commands to work.
The argument requires the application name in the Launcher, not the project name. You can open the launcher to application
determine what the application name is. Adding new applications in the launcher uses the Project title by default.

Applications may contain spaces in their name. However, when launching from command/terminal, spaces should be escaped with
. For example, if our application was named , then we could all it with the following:%20 my project

"C:\ClientLauncher\visionclientlauncher.exe" application=my%20project

Command Line Arguments

Argument Description

applica
tion

The name of the application to launch.

window.
mode

Controls the client mode. Available options are:

window : Launches the client in Windowed Mode
fullscreen : Launches the client in Fullscreen Mode

screen The screen index indicates which monitor to use.

fallbac
k.
applica
tion

The name of the application to use if the number of retries has been exceeded. The fallback is only utilized if the
 setting is greater than 0.Retries

timeout The maximum number of seconds to allow for any gateway communication. Any communication that exceeds
this amount will cause the Vision client launcher to abort the communication and try again if configured.

retries How many times to attempt to contact a gateway again if an error occurred during communication. Available
values are:

-1 : Retry indefinitely, or until the launcher is manually closed.
0 : Zero retries, or abort after the first failure.
1 (or more): Determines the number of retries: i.e., a value of "5" means five retries. If the number of retries
is exceeded, then the launcher will attempt to launch the Fallback Application.

If the number of retries is exceeded, then the Launcher will attempt to launch the Fallback Application

init.
heap

The initial heap size (memory) for the client.

max.
heap

The maximum heap size (memory) for the client

-
Djavaws
.
launchp
arams

Defines client tags that can be overwritten upon launch. The use of this argument alone only defines the client
tags that will be overwritten. Setting a value on the tags can be done by an additional argument that utilizes the
tag names delimited by a semicolon:

// Establishes the tag names
 -Djavaws.launchparams="Tag1;Tag2"

// Sets values on the tags
-Djavaws.launchparams.Tag1=10
-Djavaws.launchparams.Tag2=20

//An actual call would look like:
"C:\ClientLauncher\visionclientlauncher.exe" application=myproject -Djavaws.
launchparams="Tag1;Tag2" -Djavaws.launchparam.Tag1=10 -Djavaws.launchparam.
Tag2=20

config.
json The following feature is new in Ignition version 8.0.15

 to check out the other new featuresClick here

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.15

Allows you to point the launcher to a launcher configuration file command line. Doing so will start running an
instance of the launcher using the configurations in the file as temporary overrides. The argument expects a
path to a JSON export file, specifically the same file that created by the that's created by the Export Launcher
Config button under the launcher's Settings menu.

"C:\ClientLauncher\visionclientlauncher.exe" config.json="C:
\Users\MyUser\Desktop\vision-client-launcher.json"

Launchers and SSL
When SSL is enabled on a Gateway, the Vision Client Launcher can take advantage of the enhanced security features associated with SSL.

Certificates Signed by a CA

When the Gateway's SSL certificates are signed by a recognized Certificate Authority, no additional configuration is required on the launcher.

Self-Signed Certificates

When using a self-signed SSL certificate, the certificates for the Gateway must be locally accessible to the client launcher in the following
directory:

{user folder}\.ignition\clientlauncher-data\certificates

When a certificate is placed in the directory above, the launcher will attempt to automatically add the certificate(s) to the local KeyStore upon
application launch.

Troubleshooting
If the Vision Client Launcher fails to launch a client for some reason, the log file can be found at:

{user folder}\.ignition\clientlauncher-data\visionclientlauncher.log

This log contains any errors that occurred.

Related Topics ...

Quick Start - Vision Client
Vision Client Tags

https://legacy-docs.inductiveautomation.com/display/DOC80/Quick+Start+-+Vision+Client

Client Launchers Commands

Command Line/Terminal
Clients can be launched from the Client Launcher via command/terminal. When called in this way,
many of the application properties may be overridden for the one call. The overrides use the same
property names as noted in the , under the "JSON name" Application Property Reference Table
column.

Windows:
"C:\ClientLauncher\visionclientlauncher.exe" application=myproject
window.mode=window

Linux:
./visionclientlauncher.sh application=myterminal window.
mode=fullscreen screen=0

There are a few important notes when using the Command Line/Terminal to launch a project from
the Vision Client Launcher.

The Vision Client Launcher must be installed and have an application added for the
Command Line/Terminal commands to work.
The argument requires the application name in the Launcher, not the project application
name. You can open the launcher to determine what the application name is. Adding new
applications in the launcher uses the Project title by default.
Applications may contain spaces in their name. However, when launching from command
/terminal, spaces should be escaped with . For example, if our application was named %20

, then we could all it with the following:my project

"C:\ClientLauncher\visionclientlauncher.exe" application=my%
20project

On this page

...

Command Line
/Terminal

Command Line
Arguments

Command Line Arguments

Argument Description

applica
tion

The name of the application to launch.

window.
mode

Controls the client mode. Available options are:

window : Launches the client in Windowed Mode
fullscreen : Launches the client in Fullscreen Mode

screen The screen index indicates which monitor to use.

fallbac
k.
applica
tion

The name of the application to use if the number of retries has been exceeded. The fallback is only utilized if the
 setting is greater than 0.Retries

timeout The maximum number of seconds to allow for any gateway communication. Any communication that exceeds
this amount will cause the Vision client launcher to abort the communication and try again if configured.

retries How many times to attempt to contact a gateway again if an error occurred during communication. Available
values are:

-1 : Retry indefinitely, or until the launcher is manually closed.
0 : Zero retries, or abort after the first failure.
1 (or more): Determines the number of retries: i.e., a value of "5" means five retries. If the number of retries
is exceeded, then the launcher will attempt to launch the Fallback Application.

If the number of retries is exceeded, then the Launcher will attempt to launch the Fallback Application

init.
heap

The initial heap size (memory) for the client.

max.
heap

The maximum heap size (memory) for the client

-
Djavaws
.
launchp
arams

Defines client tags that can be overwritten upon launch. The use of this argument alone only defines the client
tags that will be overwritten. Setting a value on the tags can be done by an additional argument that utilizes the
tag names delimited by a semicolon:

// Establishes the tag names
 -Djavaws.launchparams="Tag1;Tag2"

// Sets values on the tags
-Djavaws.launchparams.Tag1=10
-Djavaws.launchparams.Tag2=20

//An actual call would look like:
"C:\ClientLauncher\visionclientlauncher.exe" application=myproject -Djavaws.
launchparams="Tag1;Tag2" -Djavaws.launchparam.Tag1=10 -Djavaws.launchparam.
Tag2=20

config.
json The following feature is new in Ignition version 8.0.15

 to check out the other new featuresClick here

Allows you to point the launcher to a launcher configuration file command line. Doing so will start running an
instance of the launcher using the configurations in the file as temporary overrides. The argument expects a
path to a JSON export file, specifically the same file that created by the that's created by the Export Launcher
Config button under the launcher's Settings menu.

"C:\ClientLauncher\visionclientlauncher.exe" config.json="C:
\Users\MyUser\Desktop\vision-client-launcher.json"

Related Topics ...

Quick Start - Vision Client
Vision Client Tags

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.15
https://legacy-docs.inductiveautomation.com/display/DOC80/Quick+Start+-+Vision+Client

1.
2.
3.

4.

Local Client Fallback

Ignition s are fully dependent on being able to communicate with a Gateway. If Gateway Client
communication is lost, the suspends operation while it attempts to reconnect with the Client
Gateway. This can be a problem when you need the to monitor critical operations on a plant Client
floor.

Ignition provides a l Vision c fallback mechanism that lets you use a Gateway running on ocal lient
the machine where the client is running. In normal operation, your can connect to a central Client
Gateway located somewhere on the network. The central Gateway would be responsible for all
data aggregation, such as storing historical data in a database. But if communication to the central
Gateway is lost, the can automatically retarget to a project that you specify in the GatewClient local
ay. This project should contain the minimal realtime information that you need to keep your
operation running. Note, that in order to use client fallback, must be open on the local port 6501 loc

 machine.al

On this page

...

Testing Local
Fallback
Automatically
Transferring Back

To enable local Vision client fallback, do the following steps:

Go to in the Gateway. Config > Gateway Settings local
Scroll down to the section and select the . Vision FallbackLocal Client Enable FallbackLocal
Select a from the dropdown list.Fallback Project
Note, that the selected project must be published in the Gateway, and it must have at least one main window.local
Optionally, you can change the setting to a value other than 60 seconds.Seconds to Failover
This setting controls the number of seconds to wait before fallback automatically starts. During comm failure, you can also click a
button to load the fallback project immediately.local

When Vision client fallback is enabled, the attempts to open port 6501 on the machine. If the port can be opened local Client local
successfully, the reads fallback settings from the Gateway and shows a button on the bottom of the Client local Fallback Project Gateway

 window. You can click this button at any time to load the fallback project, or simply wait for the fallback project to Connection Lost
automatically load. You may want to set the to automatically log in to avoid typing in a username and password when the lolocal Client Client
ads. This can be set in the Login section of the project's properties.

Testing Local Fallback
Testing Vision client fallback is highly recommended before you start to depend on it in a production setting. The easiest way to test local
fallback is to simply unplug the network cable to the machine, or disable the network card on the machine. If the buttoClient Fallback Project
n is not visible on the window, check your Gateway console and verify that the message Gateway Connection Lost local Started Fallback

is present in the console. Any other error message related to the indicates that some Socket on port 6501 Fallback Socket Controller
other problem has occurred (most likely the port cannot be reserved) and fallback is not available to s.local Client

Automatically Transferring Back
Local Vision Client Fallback will not automatically transfer back to the main Gateway when it is running again, as simplicity was key in this
system. You can, however, provide your own solution to automatically switch back. One example is to add a script to your retarget Timer
Client Event Scripts to silently try to reconnect.

Automatically Retarget Back

add this to a Client Timer Script running every 30 seconds
change the ipaddress and project names to match your system

https://legacy-docs.inductiveautomation.com/display/DOC80/system.util.retarget

allow the main copy of Ignition 10 seconds to give a response
status = system.util.getGatewayStatus("ipaddress:8088/main", 10000)
if it's running again, retarget
if status == "RUNNING":
 system.util.retarget("my_project", "ipaddress:8088")

Vision Designer Interface

Vision Designer Workspace
When looking at a Vision specific element in the Designer, such as a window or template, the
Designer is organized with some panels that are specific to the Vision Designer Interface, such as
the and . Other elements of the workspace that are shared Property Editor Component Palette
between spaces are discussed in the .General Designer Interface

On this page

...

Vision Designer
Workspace
Component Palette
Vision Property
Editor

Filters
Binding Icon
Status Indication
Dropdown Lists
in Properties
Common
Properties

Vision Menubar
File Menu
Edit Menu
View Menu
Project Menu
Component Menu
Alignment Menu
Shape Menu

Tools Menu

Using Designer
User Interface

Watch the Video

Component Palette
The Vision module comes with a host of useful out of the box, such as buttons, text areas, dropdowns, and charts, many of components
which are specialized for industrial controls use. The Component Palette is located on the right side of the Designer workspace. The basic
workflow is to drag a component from the component palette and drop it into a container on a . From there, you can use the mouse to window
drag and resize the component into the correct position. While the component is selected, you can use the Editor panel to alter the Property
component's properties, which changes the component's appearance and behavior.

Vision Property Editor
The Vision Property Editor is a dockable panel that appears in the Designer's central workspace, usually in the lower left corner. It displays
the properties of the selected component. If more than one component is selected, it will show all properties that the current selection set
have in common. Hovering your mouse over a property will display a tooltip that gives a description of the property, as well as its data type

and scripting name. Alternately, you can click on the Show/Hide Description Area icon to bring up the description area which displays the
same information for the currently selected property.

https://legacy-docs.inductiveautomation.com/display/DOC80/General+Designer+Interface
https://www.inductiveuniversity.com/video/using-designer-user-interface/8.0

You can also change how the properties are sorted in the property editor. By default, they are sorted with the Categorized icon, with
similar components grouped under different categorical headers. However, they can also be sorted in alphabetical order by clicking on the

Alphabetic icon.

Filters

It is common for components to have many properties, so by default the Property Editor only shows the properties. These are the Basic
properties that you'll most commonly want to set or bind for a given component. However, the property filter can be changed to show different
sets of properties. The designer will remember your selection for future sessions.

Basic: The Name and any very commonly used properties. Most only show two to four properties in Basic.property components
Standard: Most of the common properties that a designer would want to use. Few or none of the Expert properties are in the
Standard list.
Expert: The properties that are most commonly used with more advanced features of the component. Few or none of the Standard
properties are in the Expert list.
All: All properties

Binding Icon

To the right of most properties is the Binding icon. Click this icon to modify the property binding that is driving that property. You can only
use this button when the window workspace is not in Preview mode. Some properties cannot be bound because their datatype is not
supported by the binding system. You can still use scripting to affect these properties.

Status Indication

The name of a property in the conveys important information about that property:Property Editor

A indicates that the property is a . blue name custom property

A with a Link icon next to the property indicates that the property is bound using a . bold name property binding

A with a Color Palette icon indicates that the property is being affected by the settings.bold name component styles

A name with a Warning icon indicates that the property is double-bound. This means that two things, a property red bold
binding and the styles settings are both trying to drive the property value. This will result in errors as the two systems fight each other
to write to the property.

Dropdown Lists in Properties

Some of the properties you will encounter on components will have a dropdown list instead of a field to type into. The property description will
say it is an integer value, and in most of these cases you can still create a binding on that property. These dropdown lists are an
enumeration, meaning each element in the dropdown has an integer value. In all cases, the first value in the list is 0, the second is 1, the
third is 2, and so on. You can use this knowledge to create a dropdown list on-screen for your operators that matches the list. In this case,
you would just bind this property to the Selected Value of the dropdown.

Most users find it best to set the property filter to All, so they can see all of the properties available to them at all times.

https://legacy-docs.inductiveautomation.com/display/DOC80/Working+with+Vision+Components#WorkingwithVisionComponents-CustomProperties

Common Properties

Every component has properties arranged into categories based on what it has available (i.e., Common, Behavior, Data, Appearance,
Layout, etc.). Each component has a different list of properties to effect how it behaves, but every component has the group of Common
properties located at the top of the list. These properties will behave the same for all components. Here's a list for each Common Common
property and when it might be used.

Function Description

Name The name of the component. This string is used to identify your components in the Project Browser. This is especially
important for Bindings and Scripting. Binding is allowed on this property, but it is recommended to Binever bind this property.
nding it can break your scripts, bindings, and cause errors.

Enabled This Boolean controls whether a component can be interacted with. Most commonly used with data entry components to allow
the user to see the value, but not change it.

Visible This Boolean controls whether the component is shown on the window. You can bind this property to show/hide the
component based on any logic you want (i.e., security, process step, etc.).

Border The border that surrounds the component. There is a dropdown to select from a list of common borders, and a button to the
right to manually edit a border from several different options with a second tab that shows Titled Borders. When binding this
property, note that this is a complex data type. It is a Java data type, not a string or an enumeration. The common Border
ways to make this property dynamic are to bind it with an Expression binding type or to set it through a script, but using the
Expression binding is preferred. If you are using an Expression binding, you must use the expression function to toBorder()
return the correct data type. If you are using a script, you need to make sure you use the Java data type. See the Border Java

 for more information on setting a border through scripting.documentation

Mouseov
er Text

The text that is displayed when a user moves the mouse over the component. This string is commonly used to provide your
operators more information about an object (i.e., showing the PLC address of an on-screen value, or telling the operator
exactly what will happen when a button is pressed). HTML is allowed in this property.

Cursor The mouse pointer image to use when the operator moves the mouse over the component. This property corresponds to int
one of the options in the list. Selecting 'default' means the operating system decides what pointer to use.

Value Cursor

0 Default

1 Crosshair

2 Text

3 Wait

4 SW Resize

5 SE Resize

6 NW Resize

7 NE Resize

8 N Resize

9 S Resize

10 W Resize

11 E Resize

12 Hand

13 Move

Vision Menubar

https://legacy-docs.inductiveautomation.com/display/DOC80/toBorder
https://docs.oracle.com/javase/tutorial/uiswing/components/border.html
https://docs.oracle.com/javase/tutorial/uiswing/components/border.html

There is a menubar at the top of the Designer Workspace that provides functionality that you can interact with when working in the Vision
workspace. Each menu has a host of functions as it relates to that menu. The other menus that are shared between Vision and Perspective
are discussed in the .General Designer Interface

File Menu

See . General Designer Interface

Edit Menu

The is also similar to other applications edit menus in that it provides much of the basic copy/paste functionality. You can also Edit Menu
right click on an item to access this menu.

Function Description

Undo
and
Redo

Can be used to revert to the previous state, essentially removing the last change, or redoing it again after having been
removed. This has a large queue that can be traversed, but does not include every change (i.e., Tag edits cannot be undone).

Cut
/Copy
/Paste
/Duplicate

These functions much the same as they do everywhere else. Most things in the Designer can be copied and pasted
elsewhere, from individual components on the window to entire folders of windows. The difference is that when using Paste
with an object on a window, it will instead create a paste action, and allow you to move the mouse and select where you want
to paste it, clicking the mouse to confirm. Cancel Paste will cancel the paste action, while paste immediate will bypass the
paste action, and instead immediately paste the object from where it was cut or copied from.

Find
/Replace

Brings up the Find and Replace interface to allow you to find specific objects within the project. See also: Find and Replace

Select Selects All siblings in the same container as the currently selected component.

https://legacy-docs.inductiveautomation.com/display/DOC80/General+Designer+Interface
https://legacy-docs.inductiveautomation.com/display/DOC80/General+Designer+Interface
https://legacy-docs.inductiveautomation.com/display/DOC80/Find+and+Replace

All

Select
Same
Type

Selects all components of the same type in the same container as the currently selected component.

Select
Same
Type in
Window

Selects all components of the same type as the currently selected component, regardless of what container they are in.

Group
Rename

Renames a group of components to a prefix with a number afterwords. For example, if your prefix is Button, it will rename all
selected components Button (1), incrementing the number each component.

Delete Deletes the currently selected component. This can also be done using the delete key.

View Menu

The allows you to manipulate how various objects look or act in the Designer.View Menu

Function Description

Emulate
Touchscr
een

Simulates Touchscreen mode in the Designer to be able to test it without having to open a client.

Disable
Overlays

Disables the red or gray overlays on components because of a bad Tag or binding, but only in this Designer session.

Reset
Panels

Resets panels (Project Browser, Tag Browser, etc.) to the default panel configuration.

Panels Allows you to enable or disable certain panels within the Designer.

Toolbars Allows you to enable or disable certain toolbars within the Designer.

Welcom
e Screen

Takes you to the welcome screen in the Designer, or reopen it if it had been closed.

Grid Size Allows you to select a grid size of 5 or 10.

Show
Grid

Toggles the grid on and off.

Snap to
Grid

Changes click-and-drag behavior to snap components to grid lines. This works even when Show Grid is off.

Show
Guides

Shows any guide lines.

Snap to
Guides

Changes click-and-drag behavior to snap components to any created guidelines.

New
Guide

Adds a guide line to the current window.

Spotlights Puts a highlighted border around components that have the selected spotlight. Bound objects will get a green highlight, objects
with scripting will get a blue highlight, and invisible objects will get a pink highlight. If a component has multiple highlights, and
both are enabled, it will alternate the colors throughout the highlight.

Depende
ncies

Shows the binding dependencies (as arrows) based on the selected component or components. Show Supporters will show all
components that the currently selected component is bound to, Show Dependents will show all components that are bound to
the currently selected component, and Show All will show all of the bindings, regardless of the selected components.

Project Menu

The is where many project specific settings can be changed.Project Menu

Function Description

Designer
Comms

The Comm settings allow you to select the level of communication the Designer can have with the Gateway. By default, this is
set to Comm Read-Only, which will make any information coming from the Gateway read only, but this can be changed to
Comm Off which will prevent Gateway communication, or Comm Read/Write, which will allow both read and write
communications between the Gateway. The default that the Designer opens at can be changed in the Project Properties. See
also: Communication Modes

Properties Opens up the Project Properties window, allowing project settings to be changed. See also: Project Properties

Event
Scripts

Opens up the appropriate event script window, either client or Gateway. These can also be accessed from the Project
Browser. and .See also: Client Event Scripts Gateway Event Scripts

https://legacy-docs.inductiveautomation.com/display/DOC80/General+Designer+Interface#GeneralDesignerInterface-ProjectMenu
https://legacy-docs.inductiveautomation.com/display/DOC80/Project+Properties
https://legacy-docs.inductiveautomation.com/display/DOC80/Gateway+Event+Scripts

Preview
Mode

Puts the Designer into Preview Mode, allowing you to interact with it like a client. See also: Previewing the Project

Preview
Language

Determines the language that the Designer will revert to when in Preview Mode. See also Localization in Vision

Component Menu

The offers many of the same selections for the selected component that right clicking on that component would contain.Component Menu

Function Description

Group Only available when multiple components are selected. Grouping will place the currently selected components into a group.
Ungroup will remove the grouping. See also: Working with Components

Ungroup Only available when a group is selected. This option removes the group (and any custom properties that are on the group)
and places all items from that group into the object the group was in.

Convert to
Container

Only available when a group is selected. Converts the selected group to a container. See also: Container

Lock Locks or unlocks the selected component's size and position.

Layout Set layout constraints for the selected component.

Size and
Position

Change the size and position of the currently selected component.

Customizers Allows you to select any of the available customizers for the currently selected component.

Scripting Brings up the scripting window for the currently selected component.

Security Opens up the Security Settings Panel, allowing security to be placed on the selected components.

Translations Brings up the Translatable Terms Panel, showing any translations for the selected component.

Alignment Menu

The options allow you to adjust the alignment of components relative to other components.Alignment Menu

https://legacy-docs.inductiveautomation.com/display/DOC80/General+Designer+Interface#GeneralDesignerInterface-PreviewingtheProject
https://legacy-docs.inductiveautomation.com/display/DOC80/Working+with+Vision+Components#WorkingwithVisionComponents-ComponentGrouping
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Container

Function Description

Move to
Front

Move the selected components to the front of the z-order.

Move to
Back

Move the selected components to the back of the z-order.

Move
Forward

Move the selected components forward in the z-order relative to any overlapping components.

Move
Backward

Move the selected components backward in the z-order relative to any overlapping components.

Align Left Align the left edges of a group of components.

Align Right Align the right edges of a group of components.

Align Top Align the top edges of a group of components.

Align Bottom Align the bottom edges of a group of components.

Align
Centers
Horizontal

Aligns all of the selected components horizontally on their centers.

Align
Centers
Vertical

Aligns all of the selected components vertically on their centers.

Align Centers Aligns all of the selected components either vertically or horizontally on their centers.

Align as Row Aligns all of the components on their centers as a row, and will add padding between them that you can select.
Normalizing them will change the size of all of the components to the first selected component.

Align as
Stack

Aligns all of the components on their centers as a stack, and will add padding between them that you can select.
Normalizing them will change the size of all of the components to the first selected component.

Center Horiz
ontally

Centers the currently selected components horizontally.

Center Vertic
ally

Centers the currently selected components vertically.

Shape Menu

The allows for manipulation of shape or path objects.Shape Menu

Function Description

Rotate Rotates the currently selected shape 90 degrees either right or left.

Mirror Flips the component either vertically or horizontally.

Union Alters the first shape to be the combination of all selected shapes.

Difference Alters the first selected shapes by removing the last selected shape from them.

Intersection Alters the first shape to become a new shape consiting of the area they share.

Exclusion Alters the first shape to become a new shape consiting of the area they do not share.

Division Cuts the first shape into multiple shapes along the borders of other shapes.

To Path Converts a shape to a simple path object.

Stroke To Path Converts the selected shape into a new shape defined by its stroke.

Tools Menu
The comes with many tools that allow you to manage and test various resources within a project. Each of the tools have their own Designer
interface and are accessed within the Tools menu on the menu bar of the . For more information, see .Designer Designer Tools

https://legacy-docs.inductiveautomation.com/display/DOC80/Designer+Tools

Vision Windows

Windows are the key to your HMI/SCADA application. A window is the basic building block of any
Vision project, where each window can contain any number of components that can display Tag
values, run scripts, write values to the database, accept user input and more. When you publish
your project, these windows are loaded into the Vision Client where any number of windows can
be opened at one time.

Your windows are brought to life through the property bindings and event handlers on your
components. They can be designed to fit any need, from simple screens showing basic
information, to complex diagrams outlining an entire plant floor with various controls. Despite their
abilities, using windows is relatively simple so that even new users can get started creating
windows right away. The possibilities are endless when designing windows for your project.

In this Realtime Display example, you can see how windows can be used to display and interact
with data and Tags.

On this page

...

Window Anatomy
Root Container
Window Name
and Title
Titlebar and
Border

Creating a Window
Right Click in the
Project Browser
Using the
Welcome Window
From the
Menubar

Organizing Windows
Window Right-Click
Menu

Exporting
Window Example
Importing
Window Example

Navigation Strategy

Window Anatomy
While there is only one type of , windows have various properties that determine window object
how they behave within the client. When these settings are configured in specific ways, they
create certain categories or : act like a typical HMI screen and types of windows Main Windows
take up all available space, are often opened by a component in a Main Window Popup Windows
and appear to float on top of the Main Window, and stick to one side of the Docked Windows
screen and are typically always open. These types of windows all provide different functionality to
a project which, when combined create the basis for a Vision project that displays relevant
information while remaining intuitive and user friendly.

Root Container

Inside a window there is always a . The Root Container is where you place all Root Container
components in the window. It's a normal except that it cannot be deleted or Container component
resized, and is always set to fill the entire window. The root container will be the root of all
components that go onto the window.

Anatomy of a
Window

Watch the Video

Window Name and Title

Windows have both a and a . The name is used within the Project Browser to Name Title
differentiate the windows from each other and to form part of the path to the window. Windows can
be renamed by right clicking on the window object and selecting rename or by pressing F2. Each
window must have a unique path, so windows can have the same name as long as they are not in
the same folder.

The Title property is a property within the property editor and works a little differently than the
name. By default, Ignition assigns the Title property the same name as the window type that is
created (i.e., Main Window, Docked Window, or Popup Window). These window titles are used for
the titlebar of a window, but are also used when viewing currently opened windows. In the Client,
the Windows menubar command will display a list of all currently opened windows, as well as
allow you to switch between which one is in focus. The list of opened windows displays the title of

Locate All Opened
Windows In Client

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+The+Window+Object
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+The+Window+Object
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Container
https://www.inductiveuniversity.com/video/anatomy-of-a-window/8.0

the window, and not the window name or path, so it is also important to have good titles for your
window.

Watch the Video

Titlebar and Border

A window can display a and/or a . A titlebar allows you to drag a window around the workspace, and contains the window's Titlebar Border
close, maximize and restore buttons. The border of a window also lets you resize the window when it is floating or docked. Whether or not
the titlebar and border are displayed depends on the property values set for your Titlebar and Border properties. A window typically displays
both a titlebar and border when it is floating, but only a titlebar when maximized. It is often desirable to remove titlebars and borders on
maximized windows.

Creating a Window
Creating windows is easy. There are three ways to create a new window:

Right Click in the Project Browser

Probably the most common method is to right click within the Windows section of the Project Browser and select one of the window types to
create a window. While you can create each type of window, it is important to remember that the only difference is the configuration of the
window properties.

Using the Welcome Window

https://www.inductiveuniversity.com/video/locate-all-opened-windows-in-client/8.0

The Welcome Window that is available when the project is first opened has a few quick start options available on it. One of these options is
the ability to add a new window.

From the Menubar

In the menubar of the Designer, the menu has a option that allows you to create a new window regardless of where you are in the File New
project.

Organizing Windows
You can create folders to organize your windows. A window's name must be unique among the
windows in its folder, but you can have the same window name in multiple folders. The window
name and folder path are very important, they are used as references by other windows. You can
create as many folders as you want and nest them as deep as you need for your project. To
rearrange a window, just click and drag the window where you want to place it.

Open Static Window
(s) on Startup

Watch the Video

Window Right-Click Menu

If you have a security requirement to open a different startup window depending who is
logged in, you can create a client startup script to open a dynamic set of windows. To
learn more, refer to .Open Dynamic Windows on Startup

https://inductiveuniversity.com/videos/open-static-windows-on-startup//8.0

For a full list of properties that can be set on windows, refer to . Windows also have right click menu of options Vision - The Window Object
for additional functionality.

Function Description

Open
Window

Opens the selected window.

Close &
Commit

Commits any changes to your workspace and closes the window.

Close &
Revert

Reverts any changes that were made since the window was last opened or saved.

Open on
Startup

One of the most useful properties is the property, which when enabled will automatically open the window Open on Startup
when the client first starts up. This makes it easy to open a static set of default windows that everyone can see after logging in
to the project. Multiple windows can be set to open on startup, though it is recommended that only a single main window is set
to open on start, as at once will cause them to be hidden behind one main window.opening multiple

All windows that have a little box with a Right Arrow icon next to the window name.Open on Startup

About
Window

An "About" Window relays information to the user that may be important, such as instructions on how to use the project, or
information about the projects creator. To specify a window as the About window, right click on the window in the Project

Browser. Then click the About Window checkbox. The window will have a Information Bubble icon displayed next to its
name.

In the client, the window will be displayed when a user selected . Help > About This Application

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+The+Window+Object
https://legacy-docs.inductiveautomation.com/display/DOC80/Navigation+Strategies+in+Vision#NavigationStrategiesinVision-Multiple'Main'Windows

1.

a.

b.

2.

3.

Notes Windows can also have notes attached to them. The notes provide a way for a windows designer to provide some
documentation on what the window is doing and how the various components interact with one another.

Any windows that have notes will have a small Document icon next to the window name.

Scripting The Scripting option takes you to the Component Scripting for that window. For more information, refer to Component Events a
nd Script Builders in Vision.

Security The Security options displays Security Settings for role-base security. For more information, refer to Security in Vision.

Rename To rename a window, select this option then enter a new name.

Duplicate Duplicates the selected window.

Cut Cuts the clipboard. the selected window onto

Copy Copies clipboard.the selected window onto the

Copy
Path

Copies the path of the selected window into the clipboard.

Paste Pastes the content in the clipboard into the selected context.

Delete Deletes the current selection.

Protect Locks the individual project resource from inside the Designer.

Export Exports the window as a project resource file which can then be imported into other projects. See the following sections for
examples of Export and Import.

Exporting Window Example

In the Designer, you can export and import windows from one project to another project using external files or sending it directly to a project
on the same gateway.

You can export windows in two ways.

To export multiple windows, right click on the folder of windows and select the option or option. The Export Send to Project
window export works similarly to the , the difference being that it automatically highlights only that window to project export
export from the list of project resources.

To export one window, right click on an individual window and click , then choose the Export Export or Send to Project
option.

If you choose the option, the window is displayed. You can save the windows with the existing project name (not Export Save
recommended if you are only exporting part of a project), or type a new name in the File Name field.

Click to save the windows as a project export file.Save

Importing Window Example

Importing the individual windows can be done by right clicking on the Windows expandable object and selecting .Import

https://legacy-docs.inductiveautomation.com/display/DOC80/Security+in+Vision#SecurityinVision-Role-DrivenClientSecurity
https://legacy-docs.inductiveautomation.com/display/DOC80/Project+Export+and+Import

Browse to the folder that contains the file you want to import, and click . .zip Open

Navigation Strategy
Setting up a allows you to navigate between different windows in the runtime Client. While we have a few examples of navigation strategy
the most common navigation strategies, it is certainly not an exhaustive list as most users tend to combine multiple strategies to create a
project that fits their needs.

A typical navigation strategy for a Vision project is as follows:

Have a window or two, usually docked North and/or West.Docked
Have a single window visible at a time.Main
Use swap navigation to swap between the windows. This ensures that only one main window is open at a time. Main
Use standard open navigation to open various windows as necessary.Popup

This style of project is so common, that the default operation of the component expects it. When it is in its default automatic Tab Strip
operation, it expects that each tab represents a main window, and will automatically swap from the current screen to the desired screen.
Additionally, the Tag is calculated based on this strategy: its value is the name of the current [System]/Client/User/CurrentWindow
maximized window. This navigation strategy is used in the that you can download from our website.Ignition Online Demonstration

In This Section ...

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Tab+Strip
https://inductiveautomation.com/products/ignition/demo/online

Window Types

There are three Vision types: windows, windows, and window Main Popup Docked
windows. You can create windows from the menu or by right clicking on the Windows File > New
object in the Project Browser. By changing a window's properties, you can transform any window
into various configurations, with each behaving differently based on those settings.

On this page

...

Main Windows
Popup Windows
Docked Windows

Docking Settings

Window Types

Watch the Video

Main Windows
A window is one that is set to start maximized, and has its Border and Titlebar display policies set to 'When Not Maximized' or 'Never.' Main
This will make the window take up all available space (minus space used by any "docked" windows). This makes the window act much like a
typical "HMI screen." There can be many main windows in a project, but only one should be open at any time since they would all overlap.

Popup Windows
A is a window whose Dock Position is set to Floating and is not maximized. Its Border and Titlebar display policies are popup window
typically set to 'When Not Maximized' or 'Always,' so that they can be manipulated by the end-user. These windows are often opened
by components in a main window, and are meant to be on top of the screen. To this end, they should have their property set to a Layer
number higher than zero so they don't get lost behind the main window. Popups can be set to open at a specific position on the screen using
window's property. Popup windows can also be so they can be made once and used for multiple similar Location parameterized
applications, dynamically changing the content on the screen based on a parameter that gets passed in.

Docked Windows
A window is one whose Dock Position is set to anything but Floating. Docked windows Docked
are locked to the edges of the Client and fill all the space on that edge (i.e., West Docked fills the
left side of the Client). It will also typically have its Border and Titlebar display policies set to Never.
This makes the "docked" window appear to be joined seamlessly with the current main window.
These screens are usually tall and skinny or short and wide, depending on the side they're
docked to. The purpose of a docked window is to make some information always available;

It is important to understand that just because a certain type of window was created does not mean that it must always be that type
of window. A windows type is determined by its settings, so changing its settings to match a different window type will change that
window to a new type.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+The+Window+Object
https://www.inductiveuniversity.com/video/window-types/8.0
https://legacy-docs.inductiveautomation.com/display/DOC80/Popup+Windows#PopupWindows-Layer
https://legacy-docs.inductiveautomation.com/display/DOC80/Popup+Windows#PopupWindows-Location

typically navigation controls and overall status information. Using docked windows can help
eliminate repetitive design elements from being copied to each screen, making maintenance
easier.

Setting which side the window is docked on is done through the window's property.Dock Position

Docking Settings

Having multiple docked windows means you need to decide how you want them to appear in
relation to each other. For that, Ignition has several settings.

The Dock Index is a property on the window that determines the order of docked windows if
multiple windows are docked to the same side. The window with the lowest Dock Index will appear
closest to the edge on that side, whereas the highest Dock Index will appear closest to the middle
of the client.

Docked Windows -
Order Precedence

Watch the Video

https://www.inductiveuniversity.com/video/docked-windows-order-precedence/8.0

The remaining three settings are located in the section:Project Properties > Vision > User Interface

Axis Precedence - Project wide property that determines which sides get to extend to the
edge of the window, North and South or East and West.
Prevent Popup/Docking Overlap - When set to true, then floating (popup) windows will
not overlap with docked windows.
Infinite Desktop - When set to true, then the desktop area will be expanded if windows
are dragged out of frame.

Related Topics ...

Vision Project Properties

Popup Windows

A popup window is typically a window that "floats" on top of the main window. It can be resized
and moved around by the user, all while the main window is still open in the background. Popup
windows are great for displaying additional information about a selected item on the screen, for
example a details screen about one particular component. Popup windows are often opened by
components in a main window, and are meant to be on top of the screen. They are used to view
setpoints and zoom into a specific area.

The great thing about Popup windows is they can also be parameterized so they can be reused.
One popup window design can be reused for many components as long as the proper information
is passed to the popup window.

On this page

...

Creating a Popup
Window
Opening a Popup
Window
Popup Window
Properties

Layer
Location

Parameterized
Popup Windows
Multiple Instances
of a Popup Window

Open Popup
Window

Watch the Video

https://www.inductiveuniversity.com/courses/vision-windows/8.0/8.0

Creating a Popup Window
Before you can open a popup window, you have to create it. Like main windows and docked windows, popup windows are simply windows
that have specific settings. In particular, popup windows are floating windows that are not set to start maximized. In the Designer, when
adding a new window, selecting the popup window option creates a window with these presets. Once you have your popup window created,
you can make it as big or small as you want. You can also set properties in the Property Editor to make it closeable, resizable, change the
title, and display the title bar and border in the window.

Opening a Popup Window

In any window, you can add a script to any component to open your popup. This is easiest to do from a component like a button on the main
window using the . Simply select the Open action and the window that you want to open. Clicking on the button will Navigation Script Builder
then open the popup window that was selected. Alternately, you can use one of the many that open a window. scripting functions

Popup Window Properties
There are a few properties of the Window that are useful to popups.

Layer

The Layer property of windows controls the z-order of the windows. Windows with a higher Layer will always be on top of windows with a
lower Layer, regardless of which window is in focus. This is useful for keeping popup windows at the forefront. By default, all windows have a
Layer of 0, but we can change this so that popups always remain on top. If popups have a layer that is the same as the main
window, clicking on your main window makes it look like the popup window disappears, but it’s actually behind your main window. The Windo

 will show you all the open windows in your Client, with the popup still being open.ws Menu

https://legacy-docs.inductiveautomation.com/display/DOC80/Script+Builders+in+Vision#ScriptBuildersinVision-NavigationScriptBuilder
https://legacy-docs.inductiveautomation.com/display/DOC80/system.nav.openWindow

The Layer property is located on the window object itself, in the Property Editor. Simply set it to a higher value so that the popup is always on
top.

Location

Popup windows can also be given a specific location to open up at, when the not being automatically centered by the script. In the Vision
Property Editor, go to and provide a specific and position (in pixels).Layout > Location X Y

Parameterized Popup Windows
A lets you pass information from one window to another parameterized popup window
window. You can make a single popup window, change what it does and what it points to from a
parameter(s) that gets passed into the receiving window using Custom properties. Parameters can
range from simple integers and strings, to properties on the window that is opening the popup, and
even entire custom properties.UDT

Parameterized
Popup Window

Watch the Video

When opening a popup window to a specific location, ensure the and option is unchecked so that it doesn't override Open Center
the location coordinates.

https://legacy-docs.inductiveautomation.com/display/DOC80/Parameterized+Popup+Windows#ParameterizedPopupWindows-PassingaUDTtoaPopup
https://www.inductiveuniversity.com/videos/parameterized-popup-window/8.0/8.0

Multiple Instances of a Popup Window
By default, the client only opens a single instance of a popup window, but you can change this
behavior. For example, suppose you have four different Tanks passing all the same parameters
with the only difference being the individual Tank number. In order to see all four instances of your
tanks, you need to configure component scripting to display Additional Instances. This is done by
selecting the option when setting up the navigation scripting action.Additional Instance

Alternately, the can be used within a more complex script system.nav.openWindowInstance
instead. Popup Window -

Multiple Instances

Watch the Video

In This Section ...

https://legacy-docs.inductiveautomation.com/display/DOC80/system.nav.openWindowInstance
https://www.inductiveuniversity.com/videos/popup-window-multiple-instances/8.0/8.0

1.

2.

Parameterized Popup Windows

A parameterized popup window lets you pass parameters from one window into a popup window,
where the receiving popup window could then use that parameter to display relevant information.
This also allows you to maintain a single window that can be used to display similar information.

For example, suppose you have two compressors: Compressor 1 and Compressor 2. Imagine
clicking on one of the compressors on the main window and a popup
displays the diagnostic information about that specific compressor. Instead
of creating a popup window for each compressor, you can create a single
popup and use indirection with the passed parameter to display a different
compressor's information depending on which was selected.

Passing Parameters to a Popup Window
To pass parameters from one window to a popup window, the receiving popup window must have c

 that receive the passed parameters. When the event on the parent window is ustom properties
called, the parameters are passed to the receiving Popup Window's custom properties on its root
container. The component's properties on the receiving window can use the root container's
custom properties to address their bindings.

The following examples explain how to setup a main window and a popup window to pass
compressor numbers to the popup window in order to display relevant information about each
compressor.

On this page

...

Passing Parameters
to a Popup Window

Setting up the
Popup Window
Setting up the
Main Window

Passing a UDT to a
Popup

Parameterized
Popup Window

Watch the Video

Setting up the Popup Window

Right click on a folder in the Project Browser and select Popup Window to create a new popup.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers#VisionComponentCustomizers-CustomProperties
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers#VisionComponentCustomizers-CustomProperties
https://www.inductiveuniversity.com/videos/open-popup-window/8.0/8.0

1.

2.
3.

4.

5.
6.

Drag a image from Symbol Factory.Compressor
Drag a component from the component palette to your window.Label

Create a on your popup window that will receive the passed parameters. Right click on your window and select custom property Cust

. The Custom Properties window is displayed. omizers > Custom Properties

Click the icon to add a property.Add
Specify a for the Custom Property, such as and click .Name compNum, OK

The custom property is created and displayed in blue at the bottom of the Property Editor.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers#VisionComponentCustomizers-CustomProperties

6.

7.

a.
b.

c.

8.

9.

Let's use an expression on the Label to show what compressor number we are on.

Select the and click the binding icon for the property. Label Text
Select for the binding type. Expression

Click the icon in the Expression window and choose the custom property on the root Insert Property Value compNum
container for the compressor popup window as shown in the image below. Click .OK

Now, let's update the Expression using the script below to show the word before the number in the label. Update "Compressor"
the Expression as follows.

Script to change the compressor number

"Compressor " + {Root Container.compNum}

The expression should look as follows in the Property Binding window. Click to save the property binding. OK

Do not bind these custom properties to anything, leave them unbound so you can pass values into them without any other
values to override them.

9.

1.

2.

a.
b.
c.
d.

e.
f.

g.

Setting up the Main Window

In a Main Window (parent window) drag a from the component palette to your window. Type into the text Button "Compressor 1"
property.

Let's add a script to the button which opens the popup that we created earlier. We can then pass in a value to designate that this
button should be opening Compressor 1.

Right click on the button and select . Compressor 1 Scripting
Under Event Handlers, select actionPerformed.
Click the Open / Swap radio button.
Under , use the dropdown list to select the path to your Popup Window (i.e.,Popup_Param_Test).Window

Check the check box, and click the icon to add a parameter. Pass Parameters Add
Click the new row under and a dropdown list will appear. Select the custom property . Parameter Name compNum

Ignition will automatically check the Root Container of the window selected in the dropdown. If you do Window
not see the parameter, it may have been created on wrong component, so check the Root Container compNum
of the Compressor Popup window.

2.

g.
h.

3.

4.
5.

6.

Enter in the column because the button will be for Compressor 1."1" Value
Click to save the script.OK

Now, create a second compressor button. A quick way to do this is duplicate () the Compressor 1 button so it inherits the Ctrl D
script. Update the Text property to . Compressor 2
Right click on the new component and select . Update the parameter Value being passed in from a to a . Button Scripting "1" "2"
Click to save the script.OK

Test it out by putting the Designer in . Click one of the Compressor buttons, then navigate back and click the other Preview Mode
Compressor button. While these buttons are opening the same popup, they display different information because they are using the
parameter that we passed in for indirection. In this example, we just used a label, but the parameters can be used in things like indire

6.

 or scripts to pull in various Tag bindings.ct Tag bindings

Passing a UDT to a Popup
In addition to the basic types, parameters can be a complex . This works much the same UDT type
as passing in basic values, where the popup window has a custom property on the root container,
and a parameter is passed in when opening the window.

The difference is that the custom property on the popup window needs to be a UDT that has been
previously defined, and the value being passed in when opening the window needs to be an entire

. This gives the popup access to every Tag within the UDT, which can be useful UDT instance
when making popups that show all the details of a certain area which has a UDT. Parameterized

Popup Window and
UDTs

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC80/User+Defined+Types+-+UDTs
https://legacy-docs.inductiveautomation.com/display/DOC80/UDT+Instances
https://www.inductiveuniversity.com/videos/parameterized-popup-window-and-udts/8.0/8.0

Navigation Strategies in Vision

Navigation Strategy
Setting up a navigation strategy allows you to navigate between different windows in the runtime
Client. Ignition provides several different types of runtime navigational strategies you can choose
from when designing your project. Before selecting the proper navigation strategy for your project,
there are several things to consider. These considerations will help you determine the best
navigation strategy to use for your project and your users. Once you address these
considerations, then you can choose the best navigation strategy from the types below.

Does your project have a lot of windows?
How complex is your project structure?
Is your project structure organized?
What types of things are you doing?
Do you want to use navigation windows or fill the screen?

Types of Navigation Strategies

To help you select the right strategy that fits your project structure, here is a brief description of
each navigation strategy that Ignition provides. Keep in mind your project structure, size,
organization, and types of things you are doing while you are reviewing these strategies so you
can select the best runtime strategy for your project.

 is a simple strategy used for small structures regardless of how organized your Tab Strip
project is. It lends itself perfectly to only having a few windows and showing all of them on
a navigation window. Having too many tabs does not work well with the Tab Strip
because of size limitations. You want your users too see all the navigation tabs
immediately on the first screen. The Tab Strip works by clicking to swap one main window
for another.

 is similar to the Tab Strip, but is good for small and regular size project structures 2 Tier
where windows are grouped. It contains a second level of tabs allowing you to navigate
around various areas of your project. This strategy has a docked window that contains
tabs that are always open to do navigation, and the main window which fills the rest of the
space.

 is excellent for large project structures. You can view the entire project Tree View
structure at a glance allowing you to navigate to any structure within the multi-tier Tree
View component.

 are perfect if you have a small process with ordered Back and Forward Buttons
steps. It is one big main window that has Back and Forward buttons to step through each
process step or operation one right after the other.

 is ideal if you have different geographical locations, whether it's in a local Drill Down
facility or facilities sprinkled around the world. The project opens with an overview that
has areas that correspond to specific locations/areas in your facility. With the Drill Down
strategy, you can select a specific area representing the facility, and the client swaps
windows to display details pertaining to that specific area.

 is ideal for maximizing the usable screen space, while still having the ability to Menubar
navigate to any window at any time by selecting from a list of windows.

 enables navigation between multi-project operations: a simple script can Retargeting
push the user between many different projects, even on different gateways.

On this page

...

Navigation Strategy
Types of
Navigation
Strategies
Tab Strip
Navigation
2-Tier Navigation
Tree View
Navigation
Back and
Forward Button
Navigation
Drill Down
Navigation
Menubar
Navigation

Navigation
Operations -
Swapping vs.
Opening

Opening
Swapping

Common Navigation
Mistakes

Multiple 'Main'
Windows
Swapping a Main
Window with a
Docked Window

Navigation
Strategies

Watch the Video

Tab Strip Navigation 2-Tier Navigation

https://legacy-docs.inductiveautomation.com/display/DOC79/Tab+Strip
https://legacy-docs.inductiveautomation.com/display/DOC79/Tree+View
https://www.inductiveuniversity.com/video/navigation-strategies/8.0

Tree View Navigation Back and Forward Button Navigation

Drill Down Navigation Menubar Navigation

Navigation Operations - Swapping vs. Opening
Any time you open a window, you have to use one of the two navigation operations: or Swapping

. These operations can be performed on any type of window, but are usually reserved for Opening
specific cases. Navigating between different windows typically involves some sort of scripting, but
the makes this a simple task. Otherwise, you can use the specific Navigation Script Builder
scripting functions to completely customize navigation.

Swapping vs.
Opening

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC80/Script+Builders+in+Vision#ScriptBuildersinVision-NavigationScriptBuilder
https://www.inductiveuniversity.com/video/swapping-vs-opening/8.0

Opening

Opening and by extension closing are the basic window navigation options. Opening a window
opens the window at the same size it was in the Designer, unless the property is Start Maximized t

 or the is . This is typically reserved for opening popup windows. rue Dock Position not Floating
They have a scripting function that can open and a function that can close.

system.nav.openWindow
system.nav.closeWindow

Swapping

When Ignition swaps a window, it closes the current main window and then opens another window
in its place. This is typically reserved for moving between main windows, as it performs the close
action automatically. There are two different scripting functions that can be used to swap windows,
depending on what needs to be done.

system.nav.swapWindow
system.nav.swapTo

Navigation
Functions

Watch the Video

Common Navigation Mistakes

Multiple 'Main' Windows

The most common mistake that will cause windows to stay open unintentionally is to implement a swapping navigation system using the syst
 function on main windows instead of . When you do this, the next time the function is called, it may em.nav.openWindow() swapTo swapTo

swap from a window that is hidden behind the current 'Main' window and look like nothing happened. It is easy to check the client's Windows
menu to see what windows are currently open. If there are more windows listed there than you can currently see, there is a problem in your
navigation logic that is failing to close windows properly.

Swapping a Main Window with a Docked Window

Another common mistake that will cause windows to stay open unintentionally is to implement a swapping navigation system using the syste
 function on windows that are docked. This will cause your docked windows to be 'swapped in' as a maximized window m.nav.swapTo()

instead of its usual size. When you do this, the client will not see it as a main window and next time the function is called, it may not swapTo
have space on screen to open the main window. Logging out and back in to the client (or restarting it) is the only solution to this. Identify the
offending button or script that is swapping the docked window and change it accordingly.

In This Section ...

https://legacy-docs.inductiveautomation.com/display/DOC80/system.nav.openWindow
https://legacy-docs.inductiveautomation.com/display/DOC80/system.nav.closeWindow
https://legacy-docs.inductiveautomation.com/display/DOC80/system.nav.swapWindow
https://legacy-docs.inductiveautomation.com/display/DOC80/system.nav.swapTo
https://inductiveuniversity.com/video/navigation-functions/8.0

1.
2.
3.

4.

a.

b.
c.

d.
e.

Navigation - Tab Strip

The component provides a simple navigation strategy used for small project structures Tab Strip
having only a few windows. It allows users to see all the navigation tabs on the first screen of the
client. It is most commonly used in a docked window to provide automatic window navigation. The
Tab Strip works by clicking on a tab to swap one main window for another. The Tab Strip has two
navigation modes:

Swap Windows - the Tab Strip automatically calls with the name of system.nav.swapTo()
the selected tab for easy navigation from one window to another.
Disabled - the Tab Strip doesn't do anything when a tab is pressed. Users can customize
tabs using property bindings or by responding to the scripting event. propertyChange

A Tab Strip is an effective primary navigation strategy, particularly when you don't have many
items to choose from.

On this page

...

Tab Strip
Navigation Example

Navigation - Tab
Strip

Watch the Video

Tab Strip Navigation Example
 Tab Strip navigation is simple to setup. In the following example, we'll setup a small project that has a few windows which are visible on the
navigation tabs.

Add a Tab Strip component to a window, typically a docked window.
Right-click on the Tab Strip component, choose . Customizers > Tab Strip Customizer
In the Tab Strip Customizer you can specify which window to open with each tab. Notice the property which is set Navigation Mode
to as shown in the screenshot below.Swap Windows
To create a new tab, click If you have a tab already selected, clicking the button creates a Tab with the same Add Tab. Add Tab
colors and font as the selected tab.

Under dropdown list, select the window you want to open. Note, it is the full path from the window and not Window Name
just the name (i.e.,).Main Windows/Main Window 2
Enter the for your new tab (i.e.,).Display Name Main Window 2
With the , , and buttons you can move tabs up and down on the tab strip, and remove a Move Up Move Down Remove Tab
tab if it is no longer required.
You can also set the and colors when to show when a tab is selected and unselected. Background Foreground
When you're finished, press .OK

Main Windows already created

This step assumes you already have your main windows created in your Project Browser.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Tab+Strip
https://legacy-docs.inductiveautomation.com/display/DOC80/system.nav.swapTo
https://legacy-docs.inductiveautomation.com/display/DOC80/Component+Events#ComponentEvents-PropertyEventHandlers
https://www.inductiveuniversity.com/video/navigation-tab-strip/8.0

4.

e.

5.
6.

Save your project.
Open your project in the , and see that each tab navigates to a different window. As you can see, the works by Client Tab Strip
clicking on a tab to swap one main window for another.

1.
2.

3.

Navigation - Two Tier

Two Tier Navigation is similar to the strategy. It's good for small and regular Tab Strip navigation
size project structures where windows are grouped, and lets you organize your main windows into
different sections making navigation easy for users. It uses two levels of tabs to navigate around
various areas of your project. Once you select a first tier tab, a different set of tabs appear in the
second tier to switch between different windows.

This works a bit differently than the default Tab Strip navigation, as the first tier Tab Strip will
actually not do any window swapping, which will instead be left up to the second tier of tabs. The
Two Tier approach has a docked window that contains multiple sets of tabs. One set is used as a
higher level of grouping of windows, and is used to conditionally swap out another set of tabs
based upon user selection.

In the image below, the top tier of tabs contains the and tabs. HMI Screens Administration
Clicking on makes a second tier of tabs appear (the set containing , HMI Screens Overview Alarms
, and). Clicking on the tab would make a different set of sub tier tabs Empty Administration
appear. Thus, the top tier of tabs isn't directly responsible for any sort of window navigation.
Rather, it's used to make other sets of tabs appear.

On this page

...

Two Tier Navigation
Example

Navigation - 2 Tier

Watch the Video

Two Tier Navigation Example
In this example, we are using the 2-Tier Tab Nav project template which is selectable upon project creation. By default, 2-Tier Tab navigation
comes with two tiers tab strips and several default tabs. We will add one tab on the first tier and two tabs on the second tier.

Right click on the in the Project Browser to add another tab. Select First Tier Tabs Customizers > Tab Strip Customizer.
To create a new tab, click Add Tab, and position it on the tab strip any where you like. Enter your Window Name and Display Name
. Make sure the Navigation Mode is set to Disabled since this first tab strip is not swapping to any windows.

Now let's create a second tier category of tabs for the Reports tab. The easiest way to do this, is copy the second tier of tabs from
either the HMI Screens or Adminstration tabs in the root container of the Navigation folder of the Project Browser. Paste it in the root
container of the Navigation folder giving it a unique name identifying what it is (i.e. Reports Tabs).

https://www.inductiveuniversity.com/videos/navigation-2-tier/8.0/8.0

3.

4.
5.

6.
a.

b.
c.

7.
8.

Right click on the Reporting Tabs Tab Strip of the Designer and select the Customizers > Tab Strip Customizer.
Add Tabs like you would for a normal Tab Strip, but only add tabs that fit that category of . In this step, we are adding two windows
tabs: Report 1 and Report 2. Click to create the new tabs. OK

Note: This example assumes you already have some main windows created in your Project Browser (i.e., Report 1 and Report 2).

The second tier tabs can be shown or hidden depending on what tab is selected in the first tier.
Select a second tier Tab Strip (i.e.,Reports).

Go to the , select the property and set it to true, and then select its binding icon. Property Editor Visible
Select the binding and set up an expression to be true when the appropriate first tier tab is selected, as shown Expression
in the image below. Click .OK

{Root Container.First Tier Tabs.selectedTab} = "Reports"

Save your project.
Open your project in the , click on the various tabs to see your first and second tier tabs switch between the different . Client windows

The following images show the first and second tier tabs for and tabs.HMI Screens Reports

HMI Screens Tab

Reports Tab

1.

Navigation - Tree View

The Tree View navigation strategy is excellent for large project structures. It uses a typical
navigation strategy again with a docked west window that contains a Tree View to navigate around
to various areas. Users can double click on an item in the tree view and it will swap out one main
window for another. The list is fairly compact, and can contain folders, helping you to group similar
windows just like you would in the project browser.

On this page

...

Tree View
Navigation Example

Navigation - Tree
View

Watch the Video

Tree View Navigation Example
In this example, we are using the Tree View Nav project template which is set up when the project is created. By default, Tree View
navigation comes with several default folders to help get you started. This simple example adds one new main window.

 , Once you create your project and set the Tree View as your navigation strategy, open the Project Browser and expand the Main
 Windows folder. Click the Navigation folder to open the skeleton project, then select the Tree property.

https://www.inductiveuniversity.com/videos/navigation-tree-view/8.0/8.0

1.

2.

3.

4.

5.

 From Property Editor, find the Items property and click on the Dataset Viewer icon.

This brings up a . dataset editor You will see a number of columns that identify how each tree view item is displayed. Each row
corresponds to a node in the tree view. The windowPath column is the window that we want to navigate to. The path is the folder
that the window will display in the Tree View.

Note: This example assumes you already have your new window created in your Project Browser.

Let's add a new main window under Administration. To add a new Main Window (i.e., Reports) we first need to add a row. Click the

 Add Row icon and populate the fields manually using the data from the previous row, or you can also copy the entire dataset
 . into a notepad where you can manually manipulate the data to add a row, and then paste it back into the dataset editor. Click OK

Note: Do not use the Tree View Customizer to edit any of your data. Use only the Dataset Editor, otherwise it will overwrite that
item's dataset.

5.

6.

7.

You can then add a script that will use the newly added windowPath to open the correct window when a user double clicks on a
 node. Right click on the Tree View component and select Scripting.

Select the mouseClicked event handler, and add the following script to the Script Editor tab.

mouseClicked code

If the user performs a double click, open the appropriate window
if event.clickCount == 2:
 row = event.source.selectedItem
 data = event.source.data
 if row != -1:
 # Grab the window path value out of the tree view's items dataset
 windowPath = data.getValueAt(row, "windowPath")
 system.nav.swapTo(windowPath)

 your project and launch the and test out the Tree View navigation. Save Vision Client

https://legacy-docs.inductiveautomation.com/display/DOC79/Component+Events#ComponentEvents-MouseEventHandlers

1.

Navigation - Forward and Back Buttons

Another navigation strategy in Vision is to set up Forward and Back Buttons to navigate between
different windows. This strategy is perfect for a small business process with ordered steps. It does
not have a docked window, tree view, or tabs to navigate around. It is one big main window and
has buttons to navigate forward and back from one Main Window to the next in the list.

On this page

...

Forward and Back
Buttons Example

Navigation - Back
and Forward
Buttons

Watch the Video

Forward and Back Buttons Example
In this example, we'll use the forward and back buttons on a main window to navigate between different windows in a project.

In the , right click on the Main Windows folder and create a new . Enter a name for your window to Project Browser Main Window
whatever best describes the window (i.e., Main Window 1). Add a label to the window for clarity (i.e., Main Window 1) so when you
navigate through different windows, you know precisely what window you're viewing. Repeat this step to create Main Window 2 and
Main Window 3.

https://www.inductiveuniversity.com/videos/navigation-back-and-forward-buttons/8.0/8.0

1.

2.
3.

4.
5.

6.

From the in Designer, drag a component to your Main Window 1. Label the button, . Component Palette Button Main Window 2
Next we'll add a right green arrow to the Button component. With the Button component selected, click the folder to the right of the Im

property . This opens the . age Path Image Management Tool
Open the Built-in/icons/24/ folder and select a right green arrow. Close the Image Management Tool.
Set the property to in the Property Editor. Horizontal Text Position Left

Now you need to tell the Main Window 2 button what to do when a user clicks on it. Right click on the button, select Main Window 2
. The component scripting dialog box will open. Scripting

https://legacy-docs.inductiveautomation.com/display/DOC80/Images+and+SVGs+in+Vision#ImagesandSVGsinVision-UsingImages

6.

7.
a.

b.
c.

8.
9.

Under the Event Handlers, open the folder and select . action actionPerformed
Click the and radio buttons. The Swapping function builds a simple script to go back and forth between Open / Swap Swap
different windows. The Swap function ensures only one main window will be open at a time.
From the , select . Window dropdown box Main Windows/Main Window 2
Click OK.

Save and Publish your project.
Open your Click on the button and Main Window 1 will be swapped out with Main Window 2.Client. Main Window 2

https://legacy-docs.inductiveautomation.com/display/DOC79/Component+Events#ComponentEvents-ActionEventHandlers

9.

10.

11.

Repeat Steps 2 and 3 to create Main Windows 2 and 3, respectively. On Main Window 2 make sure you have a button for both Main
Window 1 and Main Window 3. Set your window path for the Main Window 1 button to (refer to step Main Windows/Main Window 1
4). For the Main Window 3 button, set the window path to . Main Windows/Main Window 3
In this image, Main Window 2 is open. By clicking either button, it open the respective window. Click on the button, Main Window 1
and Main Window 2 swaps out and opens Main Window 1. Click on the Main Window 3, and Main Window 2 swaps out and opens
with Main Window 3. You'll notice that you always have one main window open.

1.
2.

3.
4.

a.
b.
c.

Navigation - Drill Down

Another popular navigation strategy is to drill down into various areas of your project using a map.
The Drill Down navigation strategy is ideal if you have different geographical locations. A good
example is to have a main window that has an image representing a plant or factory. The image
can have any type of drawing tool component, such as an rectangle, circle, etc., that overlays the
image. When the user selects one of the overlay components, the Client swaps windows with a
window that displays information that pertains to the selected area of the plant.

It is a very simple navigation strategy to setup and is popular because it lets users select different
areas on an image and drill down to access specific information about that geographic location.

On this page

...

Drill Down
Navigation Example

Navigation - Drill
Down

Watch the Video

Drill Down Navigation Example
This example demonstrates how to use a US map and configure it to get information about different geographical facilities sprinkled across
the US.

Drag an on to a Main Window. It can be any type of image including a photo. This example uses an image of a US Map. image
Add a shape such as a rectangle, circle, polygon over an area on your image to identify the location. In the example, Drawing Tool
we use different color circles.
Right click your drawing tool and select . Scripting
Select the event handler, and with the selected.mousePressed Navigation tab

Select the radio button.Open/Swap
From the drop-down box, select the window that relates to the selected area on the map.Window
Click .OK

https://www.inductiveuniversity.com/videos/navigation-drill-down/8.0/8.0
https://legacy-docs.inductiveautomation.com/display/DOC79/Component+Events#ComponentEvents-MouseEventHandlers

4.

c.

5.

6.

a.
b.
c.

7.
a.
b.

c.

 In the Project Browser, select your US Map window and set it to .Open on Startup

On your area window, add a component so you can navigate back to the main window containing the overview map. (If you Button
have multiple area windows, copy and paste this button on to each window).

Open your area window.
Add a component.Button
Right click on the component and select .Button Scripting

Select the event handler, and with the selected:mousePressed Navigation tab

Select the radio button.Open/Swap
From the drop-down box, select the window that is your overview map.Window

Area windows already created

This example assumes you already have your area windows created in your Project Browser.

https://legacy-docs.inductiveautomation.com/display/DOC79/Component+Events#ComponentEvents-MouseEventHandlers

7.

c.

8.
9.

10.

Click .OK

In , test your window navigation by switching between windows.Preview Mode
Save your project.
Now, try it out by opening your , and clicking on a shape to navigate to the area selected. A new window will open each time Client
you select a designated area on the map. You'll notice that in the following image, the property was used to display Mouseover Text
the location information when you hover over one of the circles.

11. Click on the to go back to the US Map. US Map button

1.

2.

3.

Navigation - Menubar

You can set up a special menu within the that allows you to navigate throughout the Menubar
project using the scripting functions. They can be simple, like swapping to a window, or be more
complex in how they navigate around the project. The benefit of using the Menubar for navigation
is that it keeps navigation tucked away instead of using up valuable screen space.

On this page

...

Menubar Navigation
Example

Menubar Navigation Example
In this example, we'll setup a new menu option or sibbling on the menubar as well as a child option. This example assumes you have these
additional windows created.

In the menubar of the Designer, click on then select Project Client Events.

This opens the screen below in the space. Click on the under Client Event Scripts.Client Event Scripts Menubar

Select the icon to add a Menu Item. Update the Name to a new menu option (i.e., Navigation). You can also add a Add Sibling
path to an icon if desired.

https://legacy-docs.inductiveautomation.com/display/DOC80/Client+Event+Scripts#ClientEventScripts-MenubarScripts

3.

4.

5.
a.
b.

6.
7.
8.
9.

10.

Click the button. Apply

Click the icon to add a new option under the Navigation menu. Add Child
Give the menu item a name that is appropriate for the window it will be navigating to (i.e., Overview).
Add a script that will swap to the window.

Code Snippet - Menubar navigation

system.nav.swapTo("Overview")

Repeat step 5 to add as many windows as needed. New groups of windows can even be nested within the parent Navigation Menu.
Click to save your new menu structure.OK
Save your project.
Now, open the to navigate from one window to another using the menubar structure. Notice that Navigation menu option is Client
located in the menubar because it was created as sibbling. All the other menu options were created as children under Navigation.
By default, there are three commands under the Command menu option: Logout, Lock Screen, and Exit.

10.

1.

2.

Navigation - Retargeting

Retargeting is a special form of navigation which involves navigating to an entirely different project.
Retargeting is accomplished through scripting, usually as a response to a button press or
other component event. The system.util.retarget() function allows you to 'retarget' the Client to a
different project. You can have it switch to another project on the same Gateway, or another
Gateway entirely, even across a WAN. This feature makes the vision of a seamless, enterprise-
wide SCADA application a reality.

The retarget feature will attempt to transfer the current user credentials over to the new project /
Gateway. If the credentials fail on that project, the user will be prompted for a valid username and
password. Once valid authentication has been achieved, the currently running project is shut
down, and the new project is loaded.

You can pass any information to the other project through the parameters dictionary. All entries in
this dictionary will be set in the global scripting namespace in the other project. Even if you don't
specify any parameters, the system will set the variable _RETARGET_FROM_PROJECT to the
name of the current project and _RETARGET_FROM_Gateway to the address of the current
Gateway.

Retargeting can be as simple as 1 line of code, just make sure you are using the project name (no
spaces allowed), and not the title. See the function in the appendix for more information.retarget

A typical retargeting strategy actually combines this strategy with one or more other navigation
strategies. A simple landing project could be made that all users would have access to, which
would allow users to do some basic user management functions, as well as a screen with a button
that retargets out to other projects, with each project having a specific purpose, or targeting a
specific area of operations. The buttons that retarget to these projects can be hidden or shown
based on the user, allowing you to build in an extra layer of security to your projects. Additionally,
each of the other projects would utilize navigation strategies that best suit those areas.

On this page

...

Retargeting
Navigation Example

Retargeting

Watch the Video

Retargeting Navigation Example
In this example, we have two projects that we will setup to retarget to each other.

On a blank window, add a component, and either change the button text or add a label that informs the user that the button Button
retargets to a new project.
Right click on the Button and select the option. On the event, add this script to the script builder, and Scripting actionPerformed
click . OK

Python - Retargeting to Another Project

Retarget to another project on the same gateway.
This script can be run from any button in a project.
system.util.retarget("My_Other_Project")

https://legacy-docs.inductiveautomation.com/display/DOC79/system.util.retarget
https://legacy-docs.inductiveautomation.com/display/DOC79/system.util.retarget
https://inductiveuniversity.com/video/retargeting/8.0

2.

3.
4.

The script below was added to the button in the project. A similar script was also added to the project. Tank Motor

This can be repeated with more buttons and scripts that lead to other projects. your projects.Save
Open the , and use the retargeting feature to navigate between two different projects. Press the buttons to navigate Client Retarget
between the project and project. Tank Motor

Working with Vision Components

The Vision Module comes with a host of built-in components that you can select from for use in
your project. One thing that you'll find when working with components is there are a few different
ways to manipulate and layout components on a window when working in the Designer. Here is a
small sampling of the components available in Vision. See the Appendix page Vision Components
for a complete list of components.

This section introduces you to how to work with components so you can learn how to quickly
select, move, resize, duplicate, and group components during the design process.

On this page

...

Selecting
Components

Mouse Selection
Tree Selection

Component
Properties

Data Types
Dataset Editor

Manipulating
Components

Resizing
Moving
Duplicating
Rotating
Size and Position
Component
Grouping
Component
Layout
Relative Layout
Font Scaling
Anchored Layout

Component
Overview

Watch the Video

Selecting Components
There are a number of different ways to select components within a window, each of which have
their own advantages.

Mouse Selection

Using the mouse is the most common way to select components. Click the Selection icon,
then click on a component to select it. If the component you want to select is obscured by other
components, hold down and keep clicking, the selection will step down through the z-order. Alt

You can also select components using window-selection. Click-and-drag within a container to draw
a selection rectangle. If you drag the window left-to-right, it will select all components that are
completely contained within the rectangle. If you drag the window right-to-left, it will select all
components that the rectangle touches.

Selecting
Components

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Components
https://www.inductiveuniversity.com/videos/component-overview/8.0/8.0
https://www.inductiveuniversity.com/videos/selecting-components/8.0/8.0

Lastly, you can start dragging a window selection and then hold down the key to use touch Alt
selection. This will draw a line as you drag, and any components that the line touches will
become selected. As you're using these techniques, components are given a yellow highlight
border.

Tree Selection

By selecting nodes in the you can manipulate the current selection. This is Project Browser
a handy way to select the current window itself, which is hard to click on since it is behind the
Root container. However, you can click to it, using to step down through the z-order. It is Alt-click
also the only way to select components that are invisible.

Component Properties
Each component has a unique set of properties that can be set and modified within the Property

. A property is simply a named variable with a distinct type that affects something about the Editor
component's behavior or appearance. You can also create your own on the custom properties
component, which act like variables that can store any information that you want on the
component.

Data Types

There are a wide variety of datatypes across all of the Vision Module's components. Each property
has a distinct type, which dictate what values will be allowed. Below are the common data types.

Component
Properties

Watch the Video

Numeric Types

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Designer+Interface#VisionDesignerInterface-PropertyEditor
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Designer+Interface#VisionDesignerInterface-PropertyEditor
https://www.inductiveuniversity.com/videos/component-properties/8.0/8.0

Bool
ean

A true/false value. Modeled as 0/1 in Python. Technically, 0 is false and anything else is true.

Short A 16-bit signed integer. Can hold values between -32,768 to 32,767, inclusive.

Inte
ger
/int

A 32-bit signed integer. Can hold values between -2,147,483,648 to 2,147,483,647 inclusive.

Long A 64-bit signed integer. Can hold values between -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 inclusive.

Float A 32-bit signed floating point number in IEEE 754 format.

Dou
ble

A 64-bit signed floating point number in IEEE 754 format.

Non-Numeric Types

String A string of characters. Uses UTF-16 format internally to represent the characters.

Color A color, in the RGBA color space. Colors can easily be made dynamic or animated using Property Bindings or Styles.

Date Represents a point it time with millisecond precision. Internally stored as the number of milliseconds that have passed since the
"epoch", Jan 1st 1970, 00:00:00 UTC.

Data
set

A complex data structure that closely mimics the structure of a database table. A Dataset is a two-dimensional matrix (also known
as a table) of data organized in columns and rows. Each column has a name and a datatype.

Font A typeface. Each typeface has a name, size, and style.

Bord
er

A component border is a visual decoration around the component's edges. You can make a border dynamic by using the Style
, the expression function, or scripting with the .Customizer toBorder() Java border object

Dataset Editor

The Dataset Editor icon appears next to the binding icon for the Data property. Clicking the icon brings up the Dataset Editor window
where you can view and make changes to the raw data. Note, that any changes will be overwritten the next time your binding polls.

With the Dataset Editor you can add and delete columns and rows, delete all rows, and copy information to or from the clipboard. When
adding columns you have multiple formats to choose from: string, date, integer, double, float, etc.

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Animation+in+Vision#ColorAnimationinVision-StyleCustomizer
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Animation+in+Vision#ColorAnimationinVision-StyleCustomizer
https://legacy-docs.inductiveautomation.com/display/DOC80/toBorder
https://docs.oracle.com/javase/8/docs/api/javax/swing/border/Border.html

The Dataset Editor icons and their corresponding actions are shown in the table below.

Icon Action

Add row

Delete selected rows

Add a column

Delete selected column

Delete all rows

Add to clipboard

 Paste from clipboard

Manipulating Components
Manipulating components can be done with both the mouse and the keyboard. You can move
components around, resize them, and rotate them.

Resizing

When you select the component you want to resize, they'll get eight resize-handles displayed
around the edge of the selection. These handles look like double-sided arrows around the
perimeter. Use the mouse to drag them to change the size of the components in the selection. To
maintain the selection's aspect ratio, hold down as you resize. To resize around the center of Ctrl
the current selection, hold down . These can be used at the same time.Shift

Manipulating
Components

Watch the Video

You can also resize the current selection using the keyboard. To nudge the right or bottom edge of the selection in or out, use combinedShift
with the arrow keys, which resizes by the nudge distance, which defaults to one pixel at a time. To nudge the top or left edge of the selection,
use combined with arrow keys. To resize faster, hold the key as well, to move the component the alt nudge distance, which Ctrl-Shift Alt

https://www.inductiveuniversity.com/videos/manipulating-components/8.0/8.0

defaults to ten pixels at a time.|

Moving

To move the component, simply drag it anywhere within the container's bounds. You can also move whatever is currently selected by holding
down while dragging, regardless of whether or not the mouse is over the current selection. This is important because it is the primary way Alt
to move a Container component. (Normally, dragging in a container draws a selection rectangle inside that container).

While a component is selected, you may also use the keyboard's arrow keys to move a component around the nudge distance. Just like
resizing with the arrow keys, to move the alt nudge distance, use the key. Alt

Duplicating

Components can be easily duplicated by dragging them as if you were going to move them and holding down the key. This will drop a Ctrl
copy of the component at the desired drop location. It is often useful to also hold down key as you do this to ensure exact alignment. Shift
You may also use the shortcut to quickly duplicate a component in place.Ctrl-D

Rotating

Shapes can be rotated directly using the selection tool. Other components cannot be rotated in this manner. To rotate a shape, first select it
using the selection tool so that you see the resize handles around it. Then simply click on it once again and you'll see the rotation handles
appear. Clicking (but not double-clicking) on selected shapes toggles back and forth between the resize handles and the rotation handles.

Once you see the rotation handles, simply start dragging one to rotate the shape or shapes. Holding down the key will snap your rotation Ctrl
movements to 15° increments. When the rotation handles are present, there is also a small red crosshair handle that starts in the middle of
the selection. This is the rotation anchor: the point that the selection will rotate around. You can drag it anywhere you'd like to rotate around a
point other than the center of the shape.

Size and Position

Components can also be positioned and resized with the Size and Position window. This window allows you to type in an exact pixel size of
the component as well as x/y coordinates that the component will be at (with the upper left point of the component moving to that point). To
access the size and position window, right click on the component and select Size and Position.

Component Grouping

Shapes and components can be grouped together so that they act like a single component in
the Designer. Grouping components is very similar to putting them in a Container. In fact, it is the
same thing as cutting and pasting them into a perfectly-sized container and then putting that
container into group mode, with one exception. If the group contains only shapes and no other
kinds of components, it will be a special shape-group that has the ability to be rotated and has
some other shape-like properties.

When components or shapes are in a group, clicking on them in the Designer will select the
group instead of the shape. If you double-click on a group, it will become "super-selected", which
will allow you to interact with its contents until you select something outside of that group.

Groups can contain other groups, creating a nested structure. Groups themselves are
also components, meaning that you can add custom properties to groups, bind them, and so on.

Difference between a Container and a Group

It is helpful to use Groups and Containers to organize the components on your window. You can
select multiple components and right-click to convert them into a group, then right-click again
convert that group to a container.

Component
Grouping

Watch the Video

https://www.inductiveuniversity.com/videos/component-grouping/8.0/8.0

Layout works differently for groups. The layout setting for components and shapes inside a
group is . All members of a group act as if they are in relative layout with no aspect ratio ignored
restrictions. This special group-layout mode is also active when resizing a group inside of the
Designer, whereas traditional (container) layout doesn't take effect in the Designer.

Component Layout

Layout is the concept that a component's size and position, relative to its parent container's size
and position, can be dynamic. This allows the creation of windows that resize gracefully using
either or layouts and can optionally keep the original aspect ratio. Anchored Relative

This is a very important concept because of the web-launched deployment of Vision clients - they
often end up being launched on many different monitors with many different resolutions.

This is also important for components that have user-adjustable windows like popup windows.
Imagine a popup window that is mostly displaying a large table or chart. If you're running on a
large monitor, you may want to make the window bigger to see the table or chart easier. Of
course, this is only useful if the table or chart actually gets larger with the window.

Changing a component's layout is as simple as right-clicking on the component and opening
the Layout dialog box. You can also alter the default layout mode that gets assigned to new
components. See .Designer/Window Editing Properties

There are two layout modes, and they are set on a per-component basis. Both affect the
component's size and position relative to its parent container. The root container's size is dictated
by the window size. To edit the layout of a component, right-click on the component and select Lay

 from the menu. the Layout Constraints window displays showing all the default settings. These out
default settings can be altered in the Project Properties.

Layout Modes

Relative
This mode makes a component's size and location relative to its parent's size and
location. When the parent changes size, the component changes accordingly. This
creates components that auto-scale.

Anchored
This mode makes the edge of a component's two axes (horizontal and vertical) anchored
to the edge or edges of its parent.

Component Layout

Watch the Video

Relative Layout

Relative Layout is the default mode. This is a simple and effective layout mode that simply keeps a component's size and position constant
relative to its parent container, even when the parent container grows or shrinks. More precisely, it remembers the component's position and
size as a percentage of its parent's bounds at the last time the window was saved. Relative Layout also has the option of scaling a
component's font appropriately.

https://legacy-docs.inductiveautomation.com/display/DOC80/Project+Properties#ProjectProperties-WindowEditingProperties
https://www.inductiveuniversity.com/videos/component-layout/8.0/8.0

Note, that Relative Layout mode respects aspect ratio. So if the parent component is distorted, the contents will not be. The extra space is
distributed evenly on both sides of the contents.

Relative Layout Options

Maintain Aspect Ratio
If selected, the component's original aspect ratio is preserved. Otherwise, it can stretch tall or wide.

Center
When maintaining the aspect ratio, centers the component with respect to its parent.

Leading
When maintaining the aspect ratio, aligns the component with the parent's leading edge.

Trailing
When maintaining the aspect ratio, aligns the component with the parent's trailing edge.

Scale Font
If selected, the component's font will scale along with its size as the relative layout adjusts the component. This will override other
font size settings. If this setting is applied to a Group, then all components in the group will use this setting.

Font Scaling

By default, font scaling is enabled on all components, but it can behave differently on some components so it’s good to test it out before
putting it into production. You can change the default Component Layout settings in under Project Properties Vision > Design > Relative
Layout Options.

Font Scaling on Individual Components

When individual components are dragged into a window, the following default Layout settings for each component are applied. All
components on the window default to font scaling.

Font Scaling on Groups

When individual components are grouped together, the default Layout settings are applied to the new group component, and to each
component in the group. All the components in the group default to font scaling.

Font scaling on individual components in a group can be disabled by selecting the group, and double clicking on a single component. You
will get a red outline around the group, then you can select the individual component(s), and disable font scaling. The individual Note:
component font scale setting takes precedence within a group.

When you remove the group (right-click and select), all the individual components within that group will get reset to the default Ungroup
Layout settings including font scaling, even if font scaling was set differently.

Font Scaling on Containers

You can convert a group to a container to change the way scaling works. Ignition remembers the last Layout Settings you made to each
individual component in that group prior to the conversion to a container (i.e., if any of the components had font scaling disabled, once the
group is converted to a container, those same components will still have font scaling disabled).

Anchored Layout

Anchored Layout lets you specify various "anchors" for the component. The anchors dictate how far each of the 4 edges of the component
stay from their corresponding edges in the parent container.

Anchored Layout Options

North/South
If one of these is selected, the distance between that edge of the component and that edge of the container is preserved. If both are
selected, the component will stretch its to maintain both distances.height

West/East
If one of these is selected, the distance between that edge of the component and that edge of the container is preserved. If both are
selected, the component will stretch its to maintain both distances.width

Center Vertically
When selected, both top and bottom buttons will be deselected. This option maintains the height of the component and centers it vert

 in the container.ically

Center Horizontally
When selected, both left and right buttons will be deselected. This option maintains the width of the component and centers it horizo

 in the container.ntally

For example, if you anchor top and left, then your component will stay a constant distance from top and left edges of its parent. Since you
didn't specify an anchor for the right or bottom sides, they won't be affected by the layout.

If you anchor bottom and right instead, the components will again stay the same size (since you didn't specify an anchor for their other
edges, but they will stay a constant distance from their parent's right and bottom edges.

Of course, you can mix and match the various modes for the different components in a given container. The following image shows the
following:

The uses a horizontal and vertical centering anchor. It is centered, and stays the same size.square
The is anchored south and west.triangle
The is anchored north, west, south, and east. This means that its edges are all anchored and stay a fixed distance to each of circle
its parent's edges, so it grows.

In This Section ...

1.
2.
3.
4.

Creating Vision Components

Adding Components to a Window
There are four primary methods for adding Vision components to a window:

Select the component in the palette, and then clicking and dragging on the window.
Drag a component's icon from a palette onto a container.
Drag one or more Tags onto a window.
Adding shapes using the drawing tools or SVGs.

The Component Palette

There are two styles of component palette in Ignition Vision: the tabbed palette and the
collapsible palette. These palettes work in the same way, but the tabbed palette docks to the north
or south edge of the , and the collapsible palette docks to the east or west edge. By workspace
default, the collapsible palette is visible in the window workspace. To switch palettes, navigate to
the menu, and select either orView > Panels Component Palette - Tabbed Palette Component
Palette - Collapsible Palette.

Creating Components Using Click and Drag
Components can be created on the window by first selecting them in the component palette, and
then clicking and dragging on the window space. Draw a rectangle in the container to
specify where the component should be placed and what size it should be.

On this page

...

Adding Components
to a Window

The Component
Palette

Creating
Components Using
Click and Drag
Creating
Components by
Dragging from the
Palette
Creating
Components Using
Tags
Creating
Components Using
Shapes
Custom Palette

Creating
Components

Watch the Video

Creating Components by Dragging from the Palette
Components can be created by dragging them from the component palette to the window. The component will be placed where they were
dropped at its default size. Once on the window, the component can be resized using its resize handles.

https://legacy-docs.inductiveautomation.com/display/DOC80/General+Designer+Interface
https://www.inductiveuniversity.com/video/creating-components/8.0

Creating Components Using Tags
Components can also be created by simply dragging a Tag onto a container. Depending on
the datatype of the Tag, you will get a popup menu prompting you to select an appropriate type
of component for that Tag. This technique is great for rapid application design as it does two things
for you:

The component is created at the position you dropped it.
A variety of property bindings are created automatically.

Tags are used in windows to power property bindings on components. The easiest way to
make some components that are bound to Tags is to drag and drop some Tags onto
your window. If you don't have Tags yet, see the page for more Browsing and Creating OPC Tags
info.

In the example above, we dragged the DayTank Memory Tag onto the window and were given the
option of Display, Control, or Templates. Within the display components, we were given the option
of displaying the tag in a Numeric Label, LED Display, Multistate Indicator, Progress Bar, or Tank
component.

The bindings depend on what kind of Tag was dropped and what kind of component was created.
For example, lets suppose you have a Float8 point that represents a setpoint, and you want to set
it. Drop the Tag onto a container and choose to control it with a Numeric Text Field. The following
bindings will be set up automatically:

The text field's property gets a bidirectional Tag binding to the Tag's pdoubleValue Value
roperty.
The text field's and properties get Tag bindings to the Tag's minimum maximum EngLow
 and properties, respectively.EngHigh
The text field's property gets a Tag binding to the Tag's prodecimalFormat FormatString
perty.
The text field's property gets a Tag binding to the Tag's property.toolTipText Tooltip

It is important to realize that multiple property bindings are created when creating components
this way. These bindings not only using the Tag's value, but much of the Tag's metadata as well.
Using the Tags metadata in this way can greatly improve a project's maintainability. For example,
if you decide that the setpoint needs 3 decimal places of precision, you can simply alter the Tag's F

to be , and anywhere you used that Tag will start displaying the correct ormatString #,##0.000
precision because of the metadata bindings.

Tag Binding - Drag
and Drop

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC80/Understanding+Tags
https://www.inductiveuniversity.com/videos/tag-binding-drag-and-drop/8.0/8.0

Creating Components Using Shapes
All of the shapes that you can draw using the shape tools are themselves components. As such, they have properties, event handlers,
names, layout constraints, and all of the other things that you'll find on other components.

Custom Palette
Custom palettes are like expanded copy/paste clipboards. You can put customized components or groups of components into a palette for
quick access.

To create a custom palette, right-click on a tab in the tabbed palette or a header in the collapsible palette, and choose New Custom Palette.
Your custom palette will appear as the last palette. You can rename it by right clicking on the palette. Your custom palette has one special

icon in it, the Capture icon. To add components to your palette, select them and press the capture button. This effectively does a copy,
and stores the captured components as a new item in the clipboard. You can then use that item much like a normal component, and add
multiple copies of it to your windows.

You can assign your custom component a name and it will appear under the Custom Palette. Note that these are simple copies, and are not
linked back to the custom palette. Re-capturing that palette item will not update all uses of that item across your windows.

1.

2.

3.

Vision Component Customizers

The Vision module provides a number of customizers to configure components in ways that are
more complex or detailed for basic properties.

The two main customizers are the Component Customizer and the Style Customizer. These
two customizers are used repeatedly for many different components. For special purpose
components like the , , , and , they have their own Easy Chart Table Tab Strip Multi-State Button
special customizers for you to create your own custom properties.

Component Customizers
To use a customizer, right-click on the component, choose , and select the Customizers
customizer for the the component you are working with. You can also select the component and

click the icon in the Vision Main Toolbar at the top of the window. The following Customizer
is an example of the customizer for the Multi-State Button Component.

On this page

...

Component
Customizers
Custom Properties
Style Customizer

Configuring the
Style Customizer
Example 1
Example 2
Value Conflict

Custom Properties
In addition to the component's basic property settings, you can also create your own custom
properties to enhance and add functionality to a component. You can use the custom properties
like any other properties - with data binding, scripting, styles, and so on. Custom properties are
important for passing parameters from one window to another, especially with a . popup window
Properties on the window's Root Container are special in that they double as a window's
parameters. For example, when you click on a Button component to open a popup window, it can
pass a set of values into the window, which then get set to the custom property on the Root
Container for use on that window.

To configure a custom property, right click on the component, and select Customizers >
. Custom Properties

Click the plus icon to add a row. Enter the (i.e., motorNum) of the custom Name
property and data . Click Type OK.

Custom Properties

Watch the Video

Expert Tip

Often, a Customizer works as a user-friendly user interface to one or more expert properties. For example, the Easy Chart Custom
 modifies the contents of the pens, tagPens, calcPens, axes, and subplot dataset properties. This means you can also use izer

Property Bindings and scripting to modify the values of these expert properties at runtime, giving you the ability to dynamically
perform complex manipulations of components.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Easy+Chart+Customizer
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Table+Customizer
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Tab+Strip
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Multi-State+Button
https://www.inductiveuniversity.com/video/custom-properties/8.0
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Easy+Chart+Customizer
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Easy+Chart+Customizer

3.

1.
2.

3.

In the , scroll to the bottom of the panel to see your custom property in Property Editor
blue.

Custom Properties can be any of the basic property types, but can also be a User Defined Type
 from a UDT that was created earlier. The UDT property contains values for each of the (UDT)

Tags within the UDT, each of which can be bound to and used. The custom UDT property itself is
typically bound to a to pull in the entire instance Tag.UDT instance

Style Customizer
Many support the Style Customizer which lets you define a set of visual styles that components
change based on a single property. Typically, you'll have a (often a custom) on property property
your component that you want to use as a driving , usually a discrete state, and you have property
multiple visual properties, like the font, border, foreground color, visibility, and so on that you want
to change based on that one driving . The enables you define these property Style Customizer
relationships all at once, and lets you preview them as well. Without styles, you would have to go
to every and them all individually. property bind Component Styles

Watch the Video

Configuring the Style Customizer

Some have styles already setup and others do not. The following example involves a Cylindrical Tank component that already components
has a styles defined. This example shows you how to change styles using the Style Customizer for the Cylindrical Tank.

Drag in a from the on to your window. Cylindrical tank component palette
Right click on the Cylindrical Tank and scroll down to . There are four driving component Customizers > Style Customizer
properties that can have styles configured: Capacity, Data Quality, Value, and Visible.

For this example, click on > and then the Capacity Liquid Color Add Property icon. Repeat this step for the Show Value and T
ank Color Properties.

https://legacy-docs.inductiveautomation.com/display/DOC80/User+Defined+Types+-+UDTs
https://legacy-docs.inductiveautomation.com/display/DOC80/User+Defined+Types+-+UDTs
https://legacy-docs.inductiveautomation.com/display/DOC80/UDT+Instances
https://www.inductiveuniversity.com/video/component-styles/8.0

3.

4.
5.

6.
7.

Next under Styles, click the icon. Add
Click the icon to see the color palette for the Liquid Color. Expand

Choose a color from the palette. Repeat this step for the and Properties.Show Value Tank Color
Then click the to save your updates.OK

1.

2.
3.

4.
5.

6.
7.

8.

Example 1

In this example, we have a component that is displaying the level in a tank. Let's say that you want to have its appearance Level Indicator
change based on the state of the tank's temperature. We'll do this using a custom property.alarm

In the Vision window, right click on the component and choose . Custom Properties

Click the Add icon.
Name the new property and set it to an Integer type. Click .Severity OK

Right click on the component and choose . Style Customizer
Choose your as the driving , and the and properties as the styled properties. Severity property property Border Filled Color

Under Styles, click the icon three times Add
Now create three styles for the three alarm states you want to show. For the first style, enter a value of -1 (not an alarm) and don't
change anything else.
For the second, enter a value of 2 (medium alarm). Set the filled color to orange.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Level+Indicator

8.

9.
a.
b.

c.
d.
e.
f.

For the third style, enter a of 4 (high alarm). Value
Click the icon.Expand
Select the checkbox. Animate

Click the icon.Add
Set the to 500 for both frames.StepDuration
For the first frame set the to red.FilledColor
For the second frame, set the to yellow.FilledColor

9.

f.

10. Click Notice that the styled properties you chose are now bold and have the icon next to them. This is to help remind OK. Styles
you that those properties are being driven, so if you change their values directly, your changes will be overwritten.

10.

11. In the Property Editor, click on the icon for the custom property. Bind it to the tank temperature tag's Binding Severity Alarms.
.HighestActivePriority property

11.

12.

1.

2.

Now, when the alarm state for the tank's temperature changes, the color of the appearance of the indicator will change based on the
settings in the Style Customizer. In this image, the indicator flashes red and yellow because the high alarm was triggered.

Example 2

Let's look at another example that uses the and the Styles feature together. For example, the component seems Custom Properties Label
pretty plain at first: it just displays a string. You can use its foreground color, background color, and border to make it look interesting.

Drag a Label component onto a window.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Label

2.

3.
4.

5.
6.

Rght click on the Label component and choose . Custom Properties

Click the Add icon.
Name the new property and set it to an type. Click .State Integer OK

Bind that to a discrete state Tag coming out of a .property PLC
Next use the to drive its Styles configuration to make the component look different and display different text based on State property
the state being 0, 1, or 2 (maybe for a Hand/Off/Auto indicator).

6.

We could have used the component from the very beginning, but understanding this example will let you create your Multi-State Indicator
own types of by combining the existing in creative ways.components components

Some like the , , , , , and have default styles components Easy Chart Table Power Table Tab Strip Multi-State Button Multi-State Indicator
already setup, but you can modify them however you like. If you don't like the default styles, change them. They are there to simply help you
get started.

Value Conflict

You can a that is already being used by a style, but a warning icon will appear on the , and the name turns red bind property property property
in the In the Property Editor. This means there is a conflict between the binding on the , and the style on the component. As a property
general practice, only the style or binding should write to the , not both. property

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Multi-State+Indicator
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Easy+Chart
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Table
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Power+Table
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Tab+Strip
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Multi-State+Button
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Multi-State+Indicator

Drawing Tools

Drawing Tools Overview
Vision comes with its own set of drawing tools so you can draw your own vector graphics on a
window. Using the drawing tools you can create your own shapes such as lines, rectangles, and
circles. These shapes are components with their own set of properties. Shapes or graphics such
as lines, rectangles, and circles can be created using the 2D drawing tools in Vision. All SVG
(Scalable Vector Graphics) images are importable in Vision and are made up of these basic
shapes.

Using Drawing Tools

By default, the drawing toolbar is always located on the right side, but you can drag it to anywhere

on your window that you prefer. At the very top of the toolbar is a tool that allows Selection
you to select various components on a window. You can use the Selection tool to change the
component's size and position as well as to configure the component. Below the Selection tool are
all the tools that draw graphics. Click on the tool's icon to make it the active tool, then click in the
Designer and drag to place the tool in your workspace. Once you draw a graphic, and want to drag
a different graphic tool on to your window, click on the Selection tool. When a drawing tool is
active, a toolbar will appear in the top menubar that has specific settings and actions for that tool.

Types of Drawing Tools
There are multiple drawing tools that each fulfill a different purpose. Some, like the selection tool
simply allow you to select different components, while others like the rectangle tool allow you to
create shapes. When you create a shape it has a default Fill Paint color of white. After a shape is
created, you can change its Fill Paint color, Stroke color, and Stroke Style properties. All shapes
can be treated as paths and be used with to alter or create other composite geometry functions
shapes.

On this page

...

Drawing Tools
Overview

Using Drawing
Tools

Types of Drawing
Tools

Selection Tool
Rectangle Tool
Circle Tool
Polygon Tool
Arrow Tool
Pencil Tool
Line Tool
Path Tool
Gradient Tool
Eyedropper Tool

Shape Size,
Position, and Angle

Drawing Tools
Overview

Watch the Video

Selection Tool

The tool is active by default. When this tool is active, you can select shapes and components. Selected components can be Selection
moved, resized, and rotated. For more on using the Selection tool to manipulate components and shapes, see .Manipulating Components

https://www.inductiveuniversity.com/video/drawing-tools-overview/8.0
https://legacy-docs.inductiveautomation.com/display/DOC80/Working+with+Vision+Components#WorkingwithVisionComponents-ManipulatingComponents

Rectangle Tool

The tool creates and edits rectangle shapes. To create a rectangle, select the tool and then click and drag inside a window to Rectangle
create a new rectangle. Hold down to make it a perfect square, and the key to make it grow from the center point. Once Ctrl Shift
a rectangle is created, you can use the square handles to change the rectangle's height and width. This is important because it is the only
way to resize a rotated rectangle and let it remain a rectangle. If you resize a non-orthogonally rotated rectangle using the Selection tool, it
will skew and become a parallelogram. If you double-click on the rectangle so the tool is active, you can change the rectangle's width and
height using the tool-specific handles. From the toolbar, you can also change the rectangle's location (in pixels) on the window using the X
and Y axes.

There are also small circle handles on the rectangle that allow you to alter the rectangle's corner rounding radius. Simply drag the circle
down the side of the selected rectangle to make it a rounded rectangle. Hold down to drag each rounding handle independently if you Ctrl

want non-symmetric corner rounding. You can use the button in the rectangle's toolbar () to return a rounded rectangle to Make Straight
be a standard, straight-corner rectangle.

Circle Tool

The tool creates and edits circles and ellipses. It is used in much the same way as the rectangle tool. While it is the active tool, Circle
you can click and drag inside a window to create a new ellipse. Hold down to make it a perfect circle, and the key to make it grow Ctrl Shift
from the center point. When an ellipse is selected, use the width and height handles to alter the shape. You can also use the ellipse toolbar
at the top of the Designer to change the width and the height as well as the X and Y axes.

Polygon Tool

The tool is used to create polygons and stars. Use the polygon toolbar at the top that becomes visible when this tool is active to Polygon
alter the settings of the shape that is created when you drag to create a polygon. This tool can be used to make any polygon with three
corners (a triangle) or more. On the Polygon menu you can specify the number of corners for the polygon. Once created, you can use the
center square handle to move the polygon around, and the diamond handles to alter the size and angle of the polygon. Hold down to Ctrl
keep the polygon's rotation an even multiple of 15°. For a star shape, specify the number of corners (points) and select the Star check box.
A second handle that is between each corner will appear on the polygon allowing you to make a star shape.

Arrow Tool

The tool is used to create single or double-sided arrow shapes. When it is active, simply drag to create a new arrow. Use the Arrow
checkbox on the arrow toolbar to choose a single or double-sided arrow. To alter the arrow, use the diamond handles to change the two
ends of the arrow, and the circle handles to change the size of the shaft and the arrow head. When changing the arrow's direction, you
may hold down to snap the arrow to 15° increments. Ctrl

Pencil Tool

The tool is used to draw freehand lines and shapes. When this tool is active, you can draw directly on a window by holding down Pencil
the mouse button. Release the mouse button to end the path. If you stop drawing inside the small square that is placed at the shape's origin,
then you will create a closed path, otherwise, you'll create an open path (line).

On the pencil toolbar, there are options for simplification and smoothing, as well as a toggle between creating straight line segments or
curved line segments. The simplification parameter is a size in pixels that will be used to decrease the number of points used when creating
the line. Points will be in general as far apart as this setting. If you find the line isn't accurate enough, decrease this setting. If you choose to
create curved segments, then the segments between points will be Bézier curves instead of straight lines. The smoothing function controls
how curvy these segments are allowed to get.

Line Tool

The tool can be used to draw lines, arbitrary polygons, or curved paths. Unlike all of the Line
other tools, you don't drag to create new paths with the line tool. Instead, you click for each vertex
you'd like to add to your path.

To draw a straight line, simply click once where you want the line to start, and double-click where
you want the line to end. To make a multi-vertex path, click for each vertex and then double-click,
press enter, or make a vertex inside the origin box to end the path.

As you draw the line, "locked-in" sections are drawn in green and the next segment is drawn in
red. Hold down at any time to snap the next segment to 15° increments. Ctrl

On the line toolbar, you can choose between three different type of line settings:

straight-line segments
perpendicular-line segments
curve-line segments

Drawing a Line

Watch the Video

https://www.inductiveuniversity.com/video/drawing-a-line/8.0

Perpendicular-line segment is just like a straight-line segment except that each segment
is restricted to either horizontal or vertical.

The curve-line segment will create a path by attempting to draw a smooth curve Bézier curve
between the previous two vertices and the new vertex.

Path Tool

All shapes and paths can be edited directly by using the tool. This tool lets you directly Path
modify the nodes in the path, adding new nodes, removing nodes, and toggling segments between
straight or curved. For more information, see .Shape Geometry

Editing Shape Paths

Watch the Video

Gradient Tool

The tool is used to affect the orientation and length of any gradient paints. They work Gradient
hand-in-hand with the property. Gradients smoothly blend any number of colors that can Fill Paint
be positioned along a straight line or form an ellipse across the shape. A gradient uses a Linear
horizontal line drawn across the width of the shape by default. By switching to the gradient tool,
the horizontal line can be changed to move in any direction by dragging the handles. The Radial
gradient uses a 45° angle drawn over the shape which starts at the center and moves out. Just
like the Linear gradient, the Radial gradient can also be changed by dragging the handles around.

Gradients

Watch the Video

Eyedropper Tool

With the tool you can set a selected shape(s) and/or component(s) foregroundEyedropper
/background or stroke/fill colors by pulling the colors from somewhere else in the window. Select
the component you want to change, and then activate the eyedropper tool. When this tool is
active, left-click to set the selection's fill or background color, and right-click to set the selection's
stroke or foreground color.

Eyedropper Tool

https://legacy-docs.inductiveautomation.com/display/DOC80/Shape+Geometry#ShapeGeometry-B�ziercurve
https://www.inductiveuniversity.com/videos/editing-shape-paths/8.0/8.0
https://www.inductiveuniversity.com/videos/gradients/8.0/8.0

1.
2.
3.
4.
5.

Remember to turn off the Eyedropper tool when you're finished by clicking the Selection tool,
otherwise, you will continue to change colors on your component each time you do a mouse
click. Note that this tool works on most components as well as shapes. For example, right
clicking will set the font color on a Button component, or left-clicking will set the background color.

Watch the Video

Shape Size, Position, and Angle
Shapes are different from other components in that they have properties that determine their size and position that can easily be bound.
These properties are called X, Y, Height, and Width. The values of these properties are always relative to the shape's parent container's
width and height, even in a running Client where that container may be a wildly different size due to the layout mechanism.

For example, let's say that you have a shape that is located at x=100, y=100, and was 125 by 125 inside a container that is 500 by 500. If
you want to animate that shape so that it moves back and forth across the screen, you'd set up a binding so that X changed from 0 to 375.
(You want X to max out at 375 so that the right-edge of the 125px wide shape aligns with the right edge of the 500px container). Now, at
runtime, that container might be 1000 by 1000 on a user's large monitor. By binding X to go between 0 and 375, the true X value of your
shape (whose width will now be 250px due to the relative layout system), will correctly move between 0 and 1750, giving you the same effect
that you planned for in the Designer.

Another ability unique to shapes is the ability to be rotated. Simply click on a selected shape and the resize controls become rotate controls.
There's even an Angle property that can be edited directly or bound to something dynamic like a Tag.

If you want to both dynamically rotate and move a component, special care must be taken since rotation alters the position. You don't want
your position binding and the rotation binding both fighting over the position of the component. The way to both rotate and move a shape is
as follows:

Bind the rotation on your shape as you wish.
Create a shape (for example, a rectangle) that completely encloses (in other words, it's bigger than) your shape at any rotation angle.
Set that rectangle's visible property to false.
Select your shape and the rectangle and group them.
Bind the position on the resulting group.

If you follow these steps, you can animate both the rotation and position of a shape.

In This Section ...

Use caution when binding the rotation. When you change a shape's rotation, its position also changes. The position of any shape
is the top-leftmost corner of the rectangle that completely encloses the shape. Because of this effect, if you wish to both
dynamically rotate and move a component, special care must be taken since rotation alters the position

https://www.inductiveuniversity.com/videos/eyedropper-tool/8.0/8.0

Shape Geometry

Shape Paths
Once you draw shapes using the drawing tools in Vision, it's possible to alter and edit shapes after
they've been created. By default, all shapes have a white fill color. Editing the paths of your vector

graphic shapes is done by using the tool. Simply select any shape or line while the Path Path
tool is active to start editing. If the shape is already a path, you can switch to the Path tool by
double-clicking on the shape.

You can convert any shape into a general path by selecting the function under the To Path S
 menu. Shapes will also implicitly turn into paths if they are altered in a way not supported by hape

the underlying shape. For example, if you stretch a rotated rectangle, thereby skewing it into a
parallelogram, it will become a path automatically.

Editing a Shape Path

Each point on the path is represented by a diamond-shaped handle when the path editor is
active. These handles can be dragged to move them around. They can also be selected by
clicking on them or dragging a selection rectangle to select multiple points. This allows groups of
points to be altered simultaneously.

To change a line segment between open, straight, and curved, select the tool and use Path
the toolbar functions that become visible. Points can also be added and removed using
the functions on the Path Editor toolbar.

Filling a Shape

Filled shapes have two fill settings that control whether or not holes in the shape should be filled.

To remove the fill entirely, simply set the property in the Property Editor to .Fill Paint No Paint

On this page

...

Shape Paths
Editing a Shape
Path
Filling a Shape

Bézier Curve
Making Bézier
Curves

Creating and
Editing Shapes
Using Constructive
Area Geometry

Union
Difference
Intersection
Exclusion
Division

Shape Geometry

Watch the Video

https://www.inductiveuniversity.com/videos/shape-geometry/8.0/8.0

Bézier Curve
A , also sometimes called a quadratic curve, is a type of curved line used in vector Bézier curve
graphics that connects two points, allowing you to create smooth vector graphic shapes. A Bézier
curve is configured using four points: the two end-points and two control points. The curve starts
along the line between the an endpoint and the first control point, and then curves to smoothly
meet the line between the second control point and the next endpoint.

Bezier Curves

Watch the Video

Making B zier Curvesé

Curves are made using the . toolLine

When editing paths directly, it is often useful to be zoomed in on the path. Don't forget that you can zoom in on a location by
holding down and using your mouse wheel to zoom in on a particular area without having to zoom in and then scroll. Also, if Ctrl
you press your mouse wheel in, you can pan around your window.

https://www.inductiveuniversity.com/videos/bezier-curves/8.0/8.0
https://legacy-docs.inductiveautomation.com/display/DOC80/Drawing+Tools#DrawingTools-LineTool

1.

2.

3.

4.

In the Designer, select the tool icon on the toolbar on the right side of your window. When the Line tool is active, a toolbar Line
will appear in the top menubar. There are three different type of line settings: straight-line segments, perpendicular-line segments,
and curved-line segments.
Select the curve-line segment on the menubar. Click on the window to begin drawing your image. Each time you want to make a
curve, click on the screen. The curve-line segment will draw a smooth curve between points creating a smooth vector graphic
shape.

The line tool can make lines as well as shapes. To complete the line, simply click a second time on your final location. To make the
line into a shape, click on the starting point as your final location.

Using the Path tool in the drawing toolbar, you can see a vector graphic shape showing where the points meet and the smooth
curves between each point. If you want to edit or alter the shape after you create it, use the Path tool and drag the circles or
diamonds to change the shape.

Creating and Editing Shapes Using
Constructive Area Geometry
Editing paths directly can be a bit awkward. Using Constrictive Area Geometry is usually a
much easier and more intuitive way to get the shape that you want. These functions are accessed
from the menu and operate when two (or more) shapes are selected.Shape

Editing Shape Paths

Watch the Video

https://www.inductiveuniversity.com/videos/editing-shape-paths/8.0/8.0

Union

The function combines two or more paths into one. The resulting shape will cover the area that any of the shapes covered initially. Union
The example shows how the union of a circle, rectangle, and triangle can be unioned together to create a basic pump symbol. Creating the
symbol using this method took a few seconds, whereas attempting to draw this shape by hand using paths would be quite frustrating.

Difference

The function can be thought of as using one shape as a "hole-punch" to remove a section of another shape. The example Difference
shows how a zigzag shape drawn with the line tool can be used to punch a cutaway out of a basic tank shape. The level indicator is added
behind the resulting shape to show how the area where the zigzag shape was is no longer part of the tank shape.

Selection Order Matters

The order that you select the shapes is important for many of these functions. Typically,
the first shape you select is the shape you want to retain, and the second shape is the
shape that you want to use as an "operator" on that first shape.

Intersection

The result of an function will be the area only where where two shapes overlap. The example shows how the "top" of the Intersection
tank in the difference example was easily made using two ellipses.

Exclusion

The function, sometimes called X-OR, creates a shape that occupies the area covered by exactly one of the source shapes, Exclusion
but not both.

Division

The function divides or cuts one shape up along the outline of another shape. This works the same as an intersection for the Division
first shape selected, and a difference for the second.

1.

2.

3.

4.

5.

Fill and Stroke

All shapes have three properties that affect how they look: , , and Fill Paint Stroke Paint Stroke
. Style

Fill Paint: Determines the interior color of the shape.
Stroke Paint: Represents the color of the shape's outline.
Stroke Style: Determines the thickness, corners, and dash properties of the shape's
outline.

Fill Paint

Editing Paints

Both the Fill and Stroke paints can be a variety of different types of paints. To edit a shape's fill or
stroke paint, you can either use the paint dropdown in the Property Editor table by clicking on the E

 icon or open up the dedicated panel from the menu.dit Fill and Stroke View

Paint Types

The top of the paint editor is a selection area that allows you to choose between the five different
types of paints.

No Paint when used as a fill paint, then the interior of the shape will be transparent. If
used as the stroke paint, then the paint's outline will not be drawn.

Solid Color Paint is equivalent to the Color type used elsewhere throughout the
component library. A solid color is any color, including an alpha (transparency) level.

Linear gradient smoothly blends any number of colors along a straight line across
the shape. Each color is called a Stop. Each stop is represented as a drag-able control on
a horizontal preview of the gradient in the gradient editor. You can click on a stop to select
it and change its color or drag it to reposition it. You can right-click on it to remove it. You
can right-click on the preview strip to add new stops and change the gradient's cycle
mode.

Radial gradient are similar to linear paints except that the colors emanate from a
point creating an ellipse of each hue. Radial paints are configured in the same way as
linear paints.

Pattern paint uses a repeating pixel-pattern with two different colors. You can pick a
pattern from the dropdown or create your own using the built-in pattern editor.

On this page

...

Fill Paint
Editing Paints
Paint Types

Gradients
Gradient Paint
Bounds
Gradient Cycles
Setting a
Gradient

Stroke Style

Fill and Stroke

Watch the Video

Gradients

Gradient Paint Bounds

The two gradient paints, and , are more than a list of colored stops, they also need Linear Radial
to be placed relative to the shape. The same gradient may look wildly different depending on how
it is placed against the shape. By default, a Linear gradient will run horizontally across the width of Gradients

https://www.inductiveuniversity.com/video/fill-and-stroke/8.0

1.

2.

3.

1.

2.
3.
4.
5.

the entire shape, but this is readily changed. By switching to the Tool located on the Gradient
drawing tools toolbar, you can drag handles around to change the orientation of the gradient. You
can even make the gradient larger or smaller depending on how big you want it to be.

Gradient Cycles

The two gradient paints (Linear and Radial) both have a cycle mode that you can change by right-
clicking within the preview strip.

The cycle modes are illustrated below: No Cycle, Reflect, and Repeat.

No Cycle - The first and last stops are repeated forever after the edge of the gradient
bounds.
Reflect - Beyond the bounds of the gradient, it will be reflected and drawn in reverse, and
then reflected again, creating a smooth repetition.
Repeat - Beyond the bounds of the gradient, it will be repeated forever.

 Setting a Gradient

In the , select your component.Designer

In the under , click the icon.Property Editor Appearance Edit
Select either the or gradient.Linear Radial
You will see two stops: white and black. Click on each and choose a different color. Stop
If you want to add an additional stop, right click on the color bar and select Add stop. You
can also add / remove , and select your desired cycle: , or .Stops No Cycle Reflect Repeat

Watch the Video

https://www.inductiveuniversity.com/video/gradients/8.0

5.

6.

7.

8.

a.
b.
c.
d.

Close the by clicking the X in the upper right corner.Color Selector

With your component still selected on your window, and click the tool in the Gradient
toolbar. You'll notice a line on your component. Now, you can drag the line's handles to
change the orientation and lengthen or shorten the gradient.

Here are a few examples of what you can do with gradients:

Radial - No cycle
Linear - Reflective
Linear - with a 3rd Stop
Linear - Repeat

Stroke Style
A shape's stroke paint is only half the story. The is also an important component of how an outline is drawn. Primarily the style Stroke Style
controls the thickness of the line drawn, but it also can be used to create a dashed line. The setting for thickness is specified in pixels, and
creating a dashed line is as easy as picking the style from the list. The effect of the thickness and dash pattern settings is fairly self-
explanatory, but the other stroke settings are a bit more subtle. You can notice their effect more readily on thick lines.

You can access the in the Property Editor under .Stroke Style Appearance

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Cap style is a setting that controls what happens at the end of a line segment. You can either have the line simply be terminated with no
decoration (#1), round-off the end with a semi-circle (#2), or cap the end with a square (#3).

Join style is a setting that affects how a line is drawn where two segments meet (a corner). The default setting is called a miter join (#1),
where the stroke is extended into a point to make 90-degree angle. The other options are rounded corners (#2) or beveled edge corners (#3).

Miter Limit style joins can become a problem for very sharp angles. With a sufficiently sharp angle, the miter decoration can become
extremely long. To control this, there is a miter length setting to limit the length of a miter decoration. The illustration below shows the same
miter join with two different miter length settings. The first drawing illustrates the length of the miter join.

Images and SVGs in Vision

Using SVGs
Ignition can import SVGs (Scalable Vector Graphic) into a Vision window. Once imported, SVGs
can be modified and styled. To use an SVG in your project, simply drag the SVG file directly onto
the window you want the SVG to appear on. The SVG becomes a new polygon component on the
window.

Sometimes the way the SVG imports may result in the SVG appearing very small, in which case
you can manually expand the SVG to your desired size.

SVGs as Grouped Components

All SVG images are made up of a group or groups of several (and often many!) paths. These
paths are Ignition's , and are the basic building blocks of all SVGs in Ignition. You Drawing Tools
can select each path individually from the Project Browser, or by double-clicking on an SVG then
single clicking on an object inside it.

On this page

...

Using SVGs
SVGs as
Grouped
Components

Coloring an SVG
Coloring SVG
Parts
Coloring SVG
Example

SVG Tinting
Tinting Example

Using Images
Using the Image
Management
Tool
Using Local
Images

Scalable Vector
Graphics (SVGs)

Watch the Video

Coloring an SVG
With SVGs, one useful HMI technique is to color the SVG (Scalable Vector Graphic) to show the
state of whatever the SVG represents. Whether you are bringing in a vector graphic from the
Symbol Factory or importing an SVG from your computer, you can easily color the SVG to suit
your needs. There are two ways of coloring an SVG: coloring an individual piece of the SVG, or
placing a tint over the whole SVG.

Coloring SVG Parts

Individual pieces of the SVG can be pulled out and colored, by finding the path that corresponds
with the part of the SVG that you want colored and applying a color to it. This can be done for a
single piece of the SVG, or multiple different pieces. These colors can even be made dynamic by
setting up a binding on the Fill Color. Since the property is expecting a value with a data type of Col

, you can either set up an expression binding which uses the function to create a color or color()
object, or use Ignition's built in , which will automatically be made Number to Color Translator
available to you when selecting a binding that will typically return a value, such as a Tag or
Property binding.

Color SVG
Dynamically

Watch the Video

Some elements, attributes, and properties in an SVG are not supported.

The Vision module uses the Apache Batik library to handle SVGs, so a list of supported
elements, attributes, and properties can be found on Apache Batik's website.

https://docs.inductiveautomation.com/display/DOC80/Drawing+Tools
https://inductiveuniversity.com/video/scalable-vector-graphics/8.0
https://legacy-docs.inductiveautomation.com/display/DOC80/color
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Animation+in+Vision#ColorAnimationinVision-TheNumbertoColorTranslator
https://www.inductiveuniversity.com/video/color-svg-dynamically/8.0
https://xmlgraphics.apache.org/batik/status.html

1.
2.

3.
4.

Coloring SVG Example

In this example, we selected an individual piece in a push button symbol and added a color to that area.

Place a push button image or any image from Symbol Factory onto the window.
Right click on the image and select . Ungroup

Right click in the center of the image and select again.Ungroup
Click on the larger inner circle in the image, then select the Fill Paint color you want. We chose red #D90000.

4.

5.

6.

To get color in the "highlight" section of the graphic, click on the highlight. You'll see that the Fill Paint is a Radial Gradient. Click on

the icon to change the colors in the gradient.Edit
Click on the left side stop and select white. Click on the right side stop and select red.

6.

7. To regroup all the parts of the SVG, drag a box around them with your mouse. Then right click and select Group.

Alternately, you can create a style using the to change the color of an SVG path based on a driving property on that path. Style Customizer
This is typically done by setting up a custom property to use as the driving property, and then binding the custom property to the property or
Tag that will drive the color change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Animation+in+Vision#ColorAnimationinVision-StyleCustomizer

1.
2.
3.

4.

5.

6.
7.
8.
9.

10.
11.

SVG Tinting
Because an SVG is typically composed of many smaller shapes, it is difficult to color the entire
object, as it would require changing the color on every shape within the SVG. So instead of
changing the color of the entire SVG, we can make a new shape that is the same shape and size
as the SVG, and make it opaque, so that its color acts like a tint on top of the SVG. A clever way to
do this is to duplicate the SVG, union together the new SVG, so that all shapes combine into one
shape, and then change the color.

Tint SVG

Watch the Video

Tinting Example

Let's say you chose one of the many grayscale symbols, such as the symbol from the category, and you want to tint the 3-D Valve Valves
valve green when the valve is open, red when the valve has a fault, and keep it gray when the valve is closed. Suppose you have a Tag
called , that is 0 for closed, 1 for open, and 2 for faulted.ValveStatus

Drag the symbol onto the screen.
Duplicate the symbol by selecting it and choosing from the menu, or pressing . Duplicate Edit CTRL-D
Now, select the duplicate symbol, which will be above the original.

Click the icon in the toolbar or find the item under the menu. Union Union Shape
This will combine the duplicate SVG into a single shape.

Remove the outline by setting the property to .Stroke Paint No Paint
Click on the icon next to the Fill Paint property. Binding
Select the binding type. Tag
Navigate to the Tag you want to use. For this example, we used a Tag.Valve_Status
In the Number-to-Color Translation, double click the color next to the Value 0 and select white.
Click the Add New Translation icon. Set the Value 1 at 40% opaque green.
Click the Add New Translation icon. Set the Value 2 at 40% opaque red.

https://www.inductiveuniversity.com/video/tint-svg/8.0

11.

12.
13.
14.
15.
16.

1.

2.

Click to save the binding.OK
On the window, place another copy of the original symbol.
Select the colored symbol and select . Alignment > Move to Front
Next place the colored symbol on top of the original.
Select them both, then select .Component > Group

In summary, what we did to tint the symbol was to make a flat shape that had the exact same outline as the symbol, and used semi-
transparent fills to achieve a tint effect for the underlying symbol.

Using Images
Images can be very useful for displaying important information, such as giving visual
representations of real world objects. There are a few ways that images can be brought into a
Vision project. The first is by pulling images from The Image Management Tool, where the images
are stored in the Gateway. The other way is to grab images using a filepath.

Using the Image Management Tool

Bringing in images using the Image Management Tool is easy.

Place an Image component on the Window.

In the Vision Property Editor, scroll down to Data and click on the icon Folder Search
next to the Image Path property. This will bring up the . Image Management Tool

Images (png, jpg,
gif)

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC80/Image+Management+Tool
https://www.inductiveuniversity.com/video/images-png-jpg-gif/8.0

3. In the Image Management Tool, find the image you want, and double click to select it.

The path to the image is now displayed in the components property. Images can be Image Path
displayed in the image component, but they can also be used in components like labels and
buttons.

Using Local Images

Instead of using images in the Image Management Tool in Image Path properties of components,
you can use the file path to a local image. This is done by prefixing the file path with . file:///
An example Image Path would look like this:

file:///C:/Users/Public/Pictures/Sample Pictures/Chrysanthemum.jpg

It is important to understand that this will only work if the image is accessible from where the client
is running. So if you access an image from the Designer on the local machine, clients that launch
elsewhere may not have the image stored in the same location. For this reason, we recommend
storing the images in a location that everyone can reach, such as a shared drive.

Adding Icons to
Labels and Buttons

Watch the Video

Related Topics ...

Symbol Factory
Image Management Tool

You can add any images you want to the , which are stored on Image Management Tool
the Gateway.

When working with images found online, make sure to follow all applicable copyright
laws.

https://inductiveuniversity.com/video/adding-icons-to-labels-and-buttons/8.0
https://legacy-docs.inductiveautomation.com/display/DOC80/Symbol+Factory
https://legacy-docs.inductiveautomation.com/display/DOC80/Image+Management+Tool
https://legacy-docs.inductiveautomation.com/display/DOC80/Image+Management+Tool

Comparison Charts

Overview
This page provides an overview of the various comparison charts in Ignition, or charts that allow
you to compare difference sets of data. Comparison charts differ from trending charts in that they
tend to utilize a timestamp to visualize records over a period of time. Several types of comparison
charts and how they are used are described on this page.

Bar Chart
The is an easy-to-use chart that is driven by the property, and expects a specific Bar Chart Data
format. The first column in the Data property defines the names of the categories, and each
additional column defines the groupings for each item in the series (depending on the Extract
Order).

Note that additional datasets may not be added to the Bar Chart, so all values must be aggregated
into the Data property via SQL Binding, or scripting. If multiple datasets are desired, then the Classi

 configured with a bar renderer should be used instead.c Chart

On this page

...

Overview
Bar Chart

Using the Bar
Chart
Initial Dataset
Extract Order

Chart
Using the Chart
Initial Dataset

Radar Chart
Using the Radar
Chart
Initial Dataset
Min and Max

Pie Chart
Using the Pie
Chart
Initial Dataset
Extract Order

Box and Whisker
Chart

Box Anatomy
Using the Box
and Whisker
Chart
Initial Dataset

Using the Bar Chart

Typically, data is pulled into the chart from a database using either a or binding on the property. This data is Named Query SQL Query Data
typically category based, which typically means there is no timestamp. Generally, if values are split up by time, it is into large chunks of time,
like the different months as shown in the example above.

Initial Dataset

When a Bar Chart is first created, the component will contain a dataset that looks like the following:

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Bar+Chart

"#NAMES"
"Label","North Area","South Area"
"#TYPES"
"str","I","I"
"#ROWS","5"
"Jan","15","35"
"Feb","21","36"
"Mar","17","23"
"Apr","11","39"
"May","16","32"

Extract Order

The property on the chart determines how data series are defined. By default, the property is set to , which means Extract Order By Row
each row is a , and each column (except the first) is a . Based on the initial dataset, datapoints are grouped by area (column) series category
and then grouped by each month (row). If we set the property to , then we see that each data point is grouped by Extract Order By Column
the month (row), and then grouped by each area (column). Note that the underlying data has not changed, but rather how it is rendered as
shown in the images below.

Chart
The component, also known as the Classic Chart can be used to create many different types of charts by rendering the data in Chart
different ways. This means that depending on the type of data you have, you may use the Chart component in very different ways.

By default the chart is setup to be used as a , with default data that shows this behavior. However with the right data, the time series chart
chart can also display an XY coordinate plot or a categorical plot.

Using the Chart

The default settings on the Chart allow it to be used as a time series chart. Simply alter the dataset in the Data property with new time series
data to display it in the chart. You can also alter the renderer in the Dataset Properties to any of the XY renderers to change the way the data
is displayed.

To use the chart as an XY coordinate plot, data should be loaded with a two column dataset, where one column is the Y coordinate, and
another is the corresponding X coordinate. The chart will also need to be setup with a new X axis, since the default axis is a date axis.

To use the Chart as a categorical plot, a few things need to change from the defaults. The Data property will need to be loaded with some
categorical data. Categorical data will have one column of the dataset be categories of information in the form of a string. The chart will also

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Chart

need to be setup with a new categorical X axis, as well as a category renderer in the Chart Customizer. Lastly, the Chart Type will need to be
a Category Chart. When the chart is a Category Chart type, the Extract Order property can be changed to alter how the data is pulled out
and displayed in the chart. It works very similarly to the Bar Charts Extract Order seen above.

Initial Dataset

Each new Chart randomly generates a new dataset. This Data property will use the default timeseries behavior of the chart, with a t_stamp
column for the domain, and two other columns (Process Temp and Output Temp) as values at the specified times.

"#NAMES"
"t_stamp","Process Temp","Output Temp"
"#TYPES"
"date","I","I"
"#ROWS","200"
"2018-04-30 00:07:15","64","35"
"2018-04-30 01:07:15","60","35"
"2018-04-30 02:07:15","56","36"
"2018-04-30 03:07:15","52","31"
"2018-04-30 04:07:15","53","26"
"2018-04-30 05:07:15","57","28"
"2018-04-30 06:07:15","60","27"
"2018-04-30 07:07:15","57","26"
"2018-04-30 08:07:15","59","31"
"2018-04-30 09:07:15","57","36"
"2018-04-30 10:07:15","55","39"
"2018-04-30 11:07:15","52","41"
"2018-04-30 12:07:15","56","40"
"2018-04-30 13:07:15","51","41"
"2018-04-30 14:07:15","52","36"
"2018-04-30 15:07:15","53","32"
"2018-04-30 16:07:15","57","30"
"2018-04-30 17:07:15","52","32"
"2018-04-30 18:07:15","57","32"
"2018-04-30 19:07:15","55","29"
"2018-04-30 20:07:15","53","30"
"2018-04-30 21:07:15","54","31"
"2018-04-30 22:07:15","50","29"
"2018-04-30 23:07:15","54","25"
"2018-05-01 00:07:15","49","21"
"2018-05-01 01:07:15","53","21"
"2018-05-01 02:07:15","50","16"
"2018-05-01 03:07:15","51","19"
"2018-05-01 04:07:15","49","23"
"2018-05-01 05:07:15","48","25"
"2018-05-01 06:07:15","51","20"
"2018-05-01 07:07:15","55","18"
"2018-05-01 08:07:15","50","22"
"2018-05-01 09:07:15","49","26"
"2018-05-01 10:07:15","53","22"
"2018-05-01 11:07:15","50","27"
"2018-05-01 12:07:15","46","26"
"2018-05-01 13:07:15","48","27"
"2018-05-01 14:07:15","52","26"
"2018-05-01 15:07:15","51","24"
"2018-05-01 16:07:15","55","24"
"2018-05-01 17:07:15","58","23"
"2018-05-01 18:07:15","61","22"
"2018-05-01 19:07:15","60","27"
"2018-05-01 20:07:15","59","32"
"2018-05-01 21:07:15","60","33"
"2018-05-01 22:07:15","56","38"
"2018-05-01 23:07:15","51","35"
"2018-05-02 00:07:15","47","34"
"2018-05-02 01:07:15","45","32"
"2018-05-02 02:07:15","46","27"
"2018-05-02 03:07:15","43","31"
"2018-05-02 04:07:15","39","33"
"2018-05-02 05:07:15","39","30"
"2018-05-02 06:07:15","40","26"
"2018-05-02 07:07:15","41","27"
"2018-05-02 08:07:15","46","29"
"2018-05-02 09:07:15","43","25"

"2018-05-02 10:07:15","47","24"
"2018-05-02 11:07:15","49","19"
"2018-05-02 12:07:15","45","19"
"2018-05-02 13:07:15","42","20"
"2018-05-02 14:07:15","43","20"
"2018-05-02 15:07:15","43","23"
"2018-05-02 16:07:15","39","25"
"2018-05-02 17:07:15","37","22"
"2018-05-02 18:07:15","33","22"
"2018-05-02 19:07:15","31","21"
"2018-05-02 20:07:15","35","22"
"2018-05-02 21:07:15","34","21"
"2018-05-02 22:07:15","30","22"
"2018-05-02 23:07:15","34","27"
"2018-05-03 00:07:15","35","27"
"2018-05-03 01:07:15","36","32"
"2018-05-03 02:07:15","39","32"
"2018-05-03 03:07:15","39","33"
"2018-05-03 04:07:15","41","38"
"2018-05-03 05:07:15","40","35"
"2018-05-03 06:07:15","36","39"
"2018-05-03 07:07:15","38","41"
"2018-05-03 08:07:15","33","41"
"2018-05-03 09:07:15","30","38"
"2018-05-03 10:07:15","30","42"
"2018-05-03 11:07:15","33","38"
"2018-05-03 12:07:15","37","42"
"2018-05-03 13:07:15","33","37"
"2018-05-03 14:07:15","29","38"
"2018-05-03 15:07:15","24","37"
"2018-05-03 16:07:15","24","42"
"2018-05-03 17:07:15","21","45"
"2018-05-03 18:07:15","24","44"
"2018-05-03 19:07:15","28","49"
"2018-05-03 20:07:15","24","45"
"2018-05-03 21:07:15","24","49"
"2018-05-03 22:07:15","19","51"
"2018-05-03 23:07:15","24","48"
"2018-05-04 00:07:15","19","45"
"2018-05-04 01:07:15","16","44"
"2018-05-04 02:07:15","20","40"
"2018-05-04 03:07:15","25","38"
"2018-05-04 04:07:15","29","40"
"2018-05-04 05:07:15","27","36"
"2018-05-04 06:07:15","24","36"
"2018-05-04 07:07:15","29","41"
"2018-05-04 08:07:15","34","45"
"2018-05-04 09:07:15","37","47"
"2018-05-04 10:07:15","40","48"
"2018-05-04 11:07:15","42","52"
"2018-05-04 12:07:15","45","57"
"2018-05-04 13:07:15","46","58"
"2018-05-04 14:07:15","51","59"
"2018-05-04 15:07:15","46","56"
"2018-05-04 16:07:15","46","59"
"2018-05-04 17:07:15","47","56"
"2018-05-04 18:07:15","43","56"
"2018-05-04 19:07:15","46","53"
"2018-05-04 20:07:15","49","55"
"2018-05-04 21:07:15","51","51"
"2018-05-04 22:07:15","46","51"
"2018-05-04 23:07:15","50","50"
"2018-05-05 00:07:15","52","50"
"2018-05-05 01:07:15","51","51"
"2018-05-05 02:07:15","49","51"
"2018-05-05 03:07:15","46","55"
"2018-05-05 04:07:15","51","54"
"2018-05-05 05:07:15","56","52"
"2018-05-05 06:07:15","61","54"
"2018-05-05 07:07:15","62","52"
"2018-05-05 08:07:15","57","47"
"2018-05-05 09:07:15","54","47"
"2018-05-05 10:07:15","59","46"
"2018-05-05 11:07:15","56","44"
"2018-05-05 12:07:15","58","46"

"2018-05-05 13:07:15","62","44"
"2018-05-05 14:07:15","64","41"
"2018-05-05 15:07:15","62","45"
"2018-05-05 16:07:15","66","42"
"2018-05-05 17:07:15","61","37"
"2018-05-05 18:07:15","63","38"
"2018-05-05 19:07:15","61","38"
"2018-05-05 20:07:15","64","40"
"2018-05-05 21:07:15","64","44"
"2018-05-05 22:07:15","60","40"
"2018-05-05 23:07:15","64","44"
"2018-05-06 00:07:15","63","45"
"2018-05-06 01:07:15","61","47"
"2018-05-06 02:07:15","61","52"
"2018-05-06 03:07:15","61","48"
"2018-05-06 04:07:15","61","47"
"2018-05-06 05:07:15","60","46"
"2018-05-06 06:07:15","58","44"
"2018-05-06 07:07:15","56","43"
"2018-05-06 08:07:15","61","45"
"2018-05-06 09:07:15","66","49"
"2018-05-06 10:07:15","68","51"
"2018-05-06 11:07:15","63","54"
"2018-05-06 12:07:15","66","58"
"2018-05-06 13:07:15","69","63"
"2018-05-06 14:07:15","69","63"
"2018-05-06 15:07:15","67","58"
"2018-05-06 16:07:15","71","54"
"2018-05-06 17:07:15","74","50"
"2018-05-06 18:07:15","79","49"
"2018-05-06 19:07:15","75","51"
"2018-05-06 20:07:15","80","49"
"2018-05-06 21:07:15","79","50"
"2018-05-06 22:07:15","82","50"
"2018-05-06 23:07:15","80","53"
"2018-05-07 00:07:15","85","54"
"2018-05-07 01:07:15","87","49"
"2018-05-07 02:07:15","87","51"
"2018-05-07 03:07:15","84","56"
"2018-05-07 04:07:15","82","60"
"2018-05-07 05:07:15","81","57"
"2018-05-07 06:07:15","83","55"
"2018-05-07 07:07:15","83","55"
"2018-05-07 08:07:15","81","52"
"2018-05-07 09:07:15","77","49"
"2018-05-07 10:07:15","75","46"
"2018-05-07 11:07:15","79","45"
"2018-05-07 12:07:15","82","47"
"2018-05-07 13:07:15","81","48"
"2018-05-07 14:07:15","82","53"
"2018-05-07 15:07:15","81","48"
"2018-05-07 16:07:15","81","43"
"2018-05-07 17:07:15","85","40"
"2018-05-07 18:07:15","90","37"
"2018-05-07 19:07:15","94","34"
"2018-05-07 20:07:15","90","38"
"2018-05-07 21:07:15","89","40"
"2018-05-07 22:07:15","85","45"
"2018-05-07 23:07:15","81","48"
"2018-05-08 00:07:15","83","43"
"2018-05-08 01:07:15","78","42"
"2018-05-08 02:07:15","73","40"
"2018-05-08 03:07:15","72","44"
"2018-05-08 04:07:15","71","42"
"2018-05-08 05:07:15","75","44"
"2018-05-08 06:07:15","71","46"
"2018-05-08 07:07:15","67","50"

Radar Chart

, also known as web charts, spider charts, and spider plots, are useful for displaying values that are out of spec, and several of Radar Charts
them at once. Each value is plotted on a separate axis with the middle of the axis representing the ideal value. The chart draws a line
between the different values, which create a shape that changes as those values change. Inside the chart, there is a polygon that represents
what the chart would look like if all of its values were in their ideal range. A good use of radar charts is to display realtime information in such
a way that outliers can be quickly identified. This can be an efficient way to convey if a process is running on-spec or off-spec at a glance. So
the Radar Chart lets you quickly see where the values are in comparison to where they should ideally be.

Using the Radar Chart

The Radar Chart can be used to show realtime values by dragging and dropping Tags from the on to the chart. Doing so will Tag Browser
create a binding on the Data property that is tied to the Value, EngLow, and EngHigh properties on the Tag. Adding additional Cell Update
Tags will add additional spokes to the chart. Alternatively, a or a binding on the data property can be used to Named Query SQL Query
display historical values, or aggregate previous historical values.

Initial Dataset

Each new Radar Chart randomly generates a new dataset. The property on the Radar Chart must have at least a , , and Data Value Min Max
column. Any additional columns are ignored.
To render properly, the dataset must have at least three rows. Datasets with only one or two rows will be drawn as a vertical line.

Min and Max

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Radar+Chart

The and column, aside from determining the limits on the the chart, are also used to determine the desired value. The valuMin Max Desired
e is drawn as the midpoint between the and for a single row in the Dataset. Each row of the dataset has a and column. Min Max Min Max
The values in these columns are used to determine the scale of the spoke for that variable with the midpoint representing the desired value.

Below we see the white polygon in the center of the chart. This represents the midpoint between and Min Max

"#NAMES"
"Value","Min","Max"
"#TYPES"
"D","D","D"
"#ROWS","8"
"41.51196715968135","18.0","86.0"
"72.21343683086239","2.0","88.0"
"98.91484924220774","16.0","98.91484924220774"
"23.189112936965692","1.0","78.0"
"33.45468212322838","23.0","82.0"
"77.17126241429432","7.0","100.0"
"53.529302336166836","25.0","79.0"
"62.058120439146435","6.0","94.0"

Pie Chart
A displays values from several categories, each category is a separate "wedge" of the chart. The total is the sum of all wedges. Pie Chart
The key to the Pie Chart component is the Data property, which contains the items that will be displayed as pie wedges.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Pie+Chart

Using the Pie Chart

Typically, data is pulled into the chart from a database using either a or binding on the property. The data Named Query SQL Query Data
typically consists of a list of name-value pairs of things that are related.

Initial Dataset

The Pie Chart component contains an initial dataset with two columns, and . As the name implies, the column determines Label Value Label
the text associated with each wedge of the pie, while the value is the weight of the wedge.

"#NAMES"
"Label","Value"
"#TYPES"
"str","I"
"#ROWS","5"
"Apples","15"
"Bananas","56"
"Kiwis","19"
"Oranges","33"
"Grapefruit","7"

Extract Order

When is set to , then the data must be formatted differently. This order expects each column to be a wedge. Note that Extract Order By Row
only the first row is utilized when extracting by row: subsequent rows are ignored.

"#NAMES"
"Grapefruit","Apples","Bananas","Kiwis","Oranges"
"#TYPES"
"I","I","I","I","I"
"#ROWS","1"
"7","15","56","19","33"

Box and Whisker Chart
A displays pertinent statistical information about sets of data. Each 'Box and Whisker' item on the chart should Box and Whisker Chart
represent a large amount of data: The high, low, median, and where the middle 50% of the data falls. The dataset that is required for this
chart type will be all of your raw data, and it will calculate the box and whiskers for you.

Box Anatomy

The upper and lower bounds of each box (the colored in parts) represent the 1st and 3rd quartiles (quarters of a dataset range). This means
the space filled in by the box is 50% of your raw data.
The horizontal line inside of the box represents the median (middle) value.
The lines that stick out above and below the box (whiskers), represent the minimum and maximum values from the raw data.

Using the Box and Whisker Chart

Typically, data is pulled into the chart from a database using either a or binding on the property. The data Named Query SQL Query Data
typically comes in categories separated by an optional key column, with each category containing multiple values.

Initial Dataset

The first column in the Box and Whisker Chart's dataset is the column. The Key column determines which series the data pertains to Key
(domain labels). Values in the column are case sensitive.Key

The second and additional columns denote categories (legend labels). The initial dataset contains two categories: and . Granite Limestone
Additional columns in the dataset would add additional boxes to the chart.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Box+and+Whisker+Chart

"#NAMES"
"Key","Granite","Limestone"
"#TYPES"
"str","I","I"
"#ROWS","200"
"Lot A","28","108"
"Lot A","46","81"
"Lot A","103","57"
"Lot A","16","93"
"Lot A","41","91"
"Lot A","55","68"
"Lot A","23","93"
"Lot A","49","97"
"Lot A","36","69"
"Lot A","47","106"
"Lot A","75","86"
"Lot A","14","115"
"Lot A","42","70"
"Lot A","100","129"
"Lot A","16","118"
"Lot A","62","125"
"Lot A","14","51"
"Lot A","73","64"
"Lot A","35","55"
"Lot A","96","113"
"Lot A","50","93"
"Lot A","97","72"
"Lot A","7","80"
"Lot A","86","62"
"Lot A","87","78"
"Lot A","80","51"
"Lot A","100","94"
"Lot A","79","124"
"Lot A","39","107"
"Lot A","16","119"
"Lot A","20","60"
"Lot A","50","124"
"Lot A","37","50"
"Lot A","36","98"
"Lot A","46","77"
"Lot A","33","106"
"Lot A","49","75"
"Lot A","84","60"

"Lot A","17","94"
"Lot A","44","93"
"Lot A","72","105"
"Lot A","35","106"
"Lot A","20","119"
"Lot A","90","51"
"Lot A","37","88"
"Lot A","75","103"
"Lot A","13","104"
"Lot A","47","55"
"Lot A","65","126"
"Lot A","32","90"
"Lot A","85","126"
"Lot A","95","77"
"Lot A","74","123"
"Lot A","104","68"
"Lot A","90","109"
"Lot A","63","66"
"Lot A","60","90"
"Lot A","28","65"
"Lot A","64","69"
"Lot A","55","62"
"Lot A","98","64"
"Lot A","69","100"
"Lot A","35","110"
"Lot A","31","115"
"Lot A","51","106"
"Lot A","16","76"
"Lot A","91","93"
"Lot A","90","77"
"Lot A","93","64"
"Lot A","98","84"
"Lot A","61","95"
"Lot A","65","97"
"Lot A","67","54"
"Lot A","80","92"
"Lot A","104","123"
"Lot A","104","112"
"Lot A","20","71"
"Lot A","95","99"
"Lot A","37","98"
"Lot A","91","51"
"Lot A","101","106"
"Lot A","68","94"
"Lot A","9","96"
"Lot A","14","77"
"Lot A","46","95"
"Lot A","45","95"
"Lot A","79","90"
"Lot A","92","110"
"Lot A","29","80"
"Lot A","42","80"
"Lot A","15","126"
"Lot A","68","77"
"Lot A","69","98"
"Lot A","52","119"
"Lot A","11","72"
"Lot A","14","122"
"Lot A","36","115"
"Lot A","41","66"
"Lot A","98","73"
"Lot A","46","116"
"Lot B","49","75"
"Lot B","33","46"
"Lot B","53","32"
"Lot B","51","58"
"Lot B","34","81"
"Lot B","44","73"
"Lot B","71","43"
"Lot B","64","37"
"Lot B","58","77"
"Lot B","35","37"
"Lot B","76","88"
"Lot B","11","42"
"Lot B","11","64"

"Lot B","28","85"
"Lot B","26","58"
"Lot B","78","43"
"Lot B","43","69"
"Lot B","66","32"
"Lot B","7","42"
"Lot B","17","71"
"Lot B","59","68"
"Lot B","7","31"
"Lot B","53","48"
"Lot B","20","52"
"Lot B","71","58"
"Lot B","57","85"
"Lot B","14","61"
"Lot B","34","47"
"Lot B","59","74"
"Lot B","78","58"
"Lot B","64","81"
"Lot B","19","31"
"Lot B","43","48"
"Lot B","58","38"
"Lot B","22","48"
"Lot B","20","83"
"Lot B","36","61"
"Lot B","40","69"
"Lot B","64","50"
"Lot B","67","70"
"Lot B","46","36"
"Lot B","9","51"
"Lot B","10","41"
"Lot B","66","35"
"Lot B","46","44"
"Lot B","10","62"
"Lot B","13","35"
"Lot B","74","49"
"Lot B","69","64"
"Lot B","15","68"
"Lot B","56","38"
"Lot B","35","69"
"Lot B","61","37"
"Lot B","25","80"
"Lot B","38","89"
"Lot B","79","56"
"Lot B","6","64"
"Lot B","49","58"
"Lot B","5","54"
"Lot B","6","35"
"Lot B","38","75"
"Lot B","6","77"
"Lot B","39","36"
"Lot B","27","63"
"Lot B","72","78"
"Lot B","55","38"
"Lot B","9","36"
"Lot B","40","65"
"Lot B","57","76"
"Lot B","65","55"
"Lot B","74","81"
"Lot B","47","85"
"Lot B","66","84"
"Lot B","10","38"
"Lot B","23","53"
"Lot B","79","80"
"Lot B","27","58"
"Lot B","71","58"
"Lot B","27","32"
"Lot B","73","43"
"Lot B","24","57"
"Lot B","27","59"
"Lot B","56","30"
"Lot B","32","55"
"Lot B","7","40"
"Lot B","20","63"
"Lot B","68","74"
"Lot B","64","57"

"Lot B","57","31"
"Lot B","54","61"
"Lot B","33","35"
"Lot B","61","73"
"Lot B","36","61"
"Lot B","26","34"
"Lot B","9","59"
"Lot B","47","60"
"Lot B","61","86"
"Lot B","45","88"
"Lot B","5","87"
"Lot B","6","36"

Related Topics ...

Bar Chart
Classic Chart
Pie Chart
Radar Chart
Box and Whisker Chart

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Bar+Chart
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Chart
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Pie+Chart
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Radar+Chart
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Box+and+Whisker+Chart

HTML in Vision

HTML stands for HyperText Markup Language. It is commonly used to style text within web pages.
The features that HTML brings to style web pages can be applied to many components within
Ignition to style the text within components.

Using HTML in Components
Many Vision components display a text string. By default, a component's text is displayed in a
single font and color and will not wrap when its content exceeds the space the component has
made available to the text. However, y f you want to mix fonts or colors within ou can use HTML i
the text or if you want formatting such as multiple lines. HTML formatting can be used in Vision
components such as buttons, labels, and tables. It can be used in common properties such as the
mouse over text property.

To specify that a component's text has HTML formatting, just put the element at the <html>
beginning of the text, then use any valid HTML element in the remainder.

Common HTML Elements
HTML Tags are the special characters that instruct text to become stylized differently than other
text within the same text. The following table describes the most common HTML elements that you
can use within Ignition.

HTML
Element

Name Description

<html>...</html> HTML Initiates an html formatting. In most cases closing the html with
</html> is optional.

... Bold Applies a bold style to the contents of these elements.

<u>...</u> Underline Underlines the text contained within the elements.

<s>...</s> Strikethro
ugh

Draws a line through the text contained within the elements.

 Break Applies a line break at this specific location.

... Ordered
List

Places the text into an ordered list. Text inside list items are
ordered by number.

... Unordere
d List

Places the text into an unordered list. Text inside list items are
ordered by bullets.

... List Item Used to represent a list item. Should be contained in an order
list () or unordered list ().

<center> Center Centers the contents of the text. Used directly after the HTML
Tag (that is, <html><center>...)

<font color="red"
>...

Font Colors the contents red. Works with standard color names, hex
numbers, or RGB numbers.

On this page

...

Using HTML in
Components
Common HTML
Elements
Applying HTML to
Components

HTML in Ignition

Watch the Video

Applying HTML to Components

Closing the HTML element is optional. In other words, there is no need to place a <
 at the end of your stylized text. Also, the HTML elements are not case sensitive./html>

https://inductiveuniversity.com/video/html-in-ignition/8.0

In Vision, you can add HTML to the text property of any component such as, a label, button, or
table. These examples aren't unique to their specific components, but can be used on any
component that has a Text or Mouseover Text property.

For example, individual words or phrases within the text can be made bold:

<html>This is a bold word

You can also create a list, such as instructions in the Mouseover Text on a component:

HTML in mouseover property

<html>
These are the instructions:

Stop the process.
Check on this.
Remove that.

Multi-Line Labels
and Buttons

Watch the Video

A good rule of thumb for what can be html formatted is text on components that is used
for display, not for input. So while the Label components have a Text property that
accepts html formatting, the Text Field component's Text property does not accept html
formatting, as a user may type into the component.

https://inductiveuniversity.com/video/multi-line-labels-and-buttons/8.0

Localization in Vision

Overview
Localization in the Vision module utilizes the terms in the . Once platform's Translation system
terms have been defined, translations can be enabled by either component or scripting.

Selecting a Language on Client Startup
Once you create a second language, the Client Login Screen will automatically display a
Language Selector where you can select your preferred language. There is Project Property
setting that allows you to Show or Hide the Language Selector at login. By default, it is set to
Automatic so you will see the Language Selector at login when two or more languages are created
unless you choose to hide it.

If a user that has a preferred language selected in their , Ignition will login to user profile settings
the Client with their preferred language automatically.

Language Selector
A single Language Selector on a window has the potential to trigger translations on all windows.
There is no binding involved in selecting a language because they are compared directly against
the Translation Manager database, so the component only needs to be placed onto a window after
a second language has been defined.

The component also offers an easy way to switch languages without forcing the user to log out
first. This way a single Language Selector component can exist on a navigation window and
provide language translations for all components on all windows.

More information on the can be found in the Appendix.Language Selector Component

On this page

...

Overview
Selecting a
Language on Client
Startup
Language Selector

Switching the
Current Language

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC80/Localization+and+Languages
https://legacy-docs.inductiveautomation.com/display/DOC80/Managing+Users+and+Roles
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Language+Selector
https://inductiveuniversity.com/video/switching-the-current-language/8.0

Related Topics ...

Localization and Languages

https://legacy-docs.inductiveautomation.com/display/DOC80/Localization+and+Languages

Binding Types in Vision

Binding is perhaps the most important concept to understand when designing a project using the
Vision module. It is primarily through property bindings that you bring windows to life and have
them display useful things. A binding simply links one component's property to something else.

When you initially place a component on a screen, it doesn't really do anything. Changing
its properties in the Designer will make it look or act different, but it has no connection to the real
world and this is what bindings adds.

Binding, as its name suggests, lets you bind a property to something else, such as

A Tag
The results of a SQL query executed against a remote database
Another component's property
An expression involving any of these things

For example, bind the Value property of an LED Display to an OPC Tag, and voilà - the
value property will always be the value of that Tag - creating a dynamic display. Bindings can also
work the other way, using a . Bind the value of a numeric text box to a Tag, bidirectional binding
and that Tag will be written to when someone edits the value in the text box.

The power of bindings comes from the variety of different binding types that exist, and the fact that
you can bind nearly any property of a component to anything else. Want its foreground to turn
red when an alarm is above a certain severity? Bind its property color to a Tag's LED Lit Alarms.

property. Want it to only appear if a supervisor is on shift? Bind its visible HighestActivePriority
property to the result of a SQL query that joins a personnel table with a shift table. The possibilities
are nearly endless.

On this page

...

Property Binding
Types
Setting Up Bindings
Event-Based
Bindings vs. Polling
Bindings

Polling Options
Copying Bindings

Property Binding Types
A property can have one of many different types of bindings. Instead of setting a label statically,
the text might change based on a PLC value or on-screen selection. There are many ways to bind
your components to show values from PLCs, databases, other components, or user input. You can
even bind some or all of the properties on each component. You can bind component values using:

Property simply binds one property to another. When that property changes, the new
value is pushed into the property that the binding is setup on.
Tag binds a property directly to a Tag property (typically the value) which sets up a Tag
subscription for that Tag, and every time the chosen Tag property changes, the binding is
evaluated, and pushes the new value into the bound property.
Indirect Tag is similar to the standard Tag binding except that you can introduce any
number of indirect parameters to build a tag path dynamically in the runtime.
Tag History is used for Dataset type properties. It runs a query against the Tag Historian.
Expression uses the simple to calculate a value which can involve expression language
lots of dynamic data.
Named Query executes a Named Query that had been previously created.
SQL Query is a polling binding type that runs a SQL Query against any of the database
connections configured in the your Gateway.
Database Browse is equivalent to the SQL Query binding except that it helps write the
queries for you.
Cell Update enables you to easily make one or more cells inside a dataset dynamic. This
is useful for components that store configuration information inside datasets like the Easy
Chart.
Function is a generic binding type that lets you bind a dataset property to the results of a
function. It allows any of the function's parameters to be calculated dynamically via Tag
and property bindings.
Style Customizer is not one of the standard bindings, but changes properties to create
cohesive styles based on different states.

Property Binding

Watch the Video

Property Binding -
Bidirectional

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC80/Tag+Bindings+in+Vision#TagBindingsinVision-BidirectionalTagBindings
https://legacy-docs.inductiveautomation.com/display/DOC80/Expression+Overview+and+Syntax
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Animation+in+Vision#ColorAnimationinVision-StyleCustomizer
https://www.inductiveuniversity.com/videos/property-binding/8.0/8.0
https://www.inductiveuniversity.com/videos/property-binding-bidirectional/8.0/8.0

Setting Up Bindings
Every component that you put on the screen has various properties that change the component's appearance and behavior. To make
components do something useful, like display dynamic information or control a device register, you configure bindings on the component. It's
the bindings that brings your components to life and have them do useful things. Components can be configured to do just about anything

using bindings. To set up a binding on a property, simply click the Binding icon to the right of the property in the Property Editor.

In this image, bindings were set to make these random components do something. You can quickly view dependencies to determine what is
linked to what by going to . As shown below, a line is drawn from the Tank to the Slider letting you know View > Dependencies > Show All
the Tank is bound to the Slider.

Event-Based Bindings vs. Polling Bindings
While there are quite a few different binding types, they fall into two broad categories: event-based and polling. Some complex bindings can
span both categories.

Event-based bindings are evaluated when the object they are bound to changes. For example, when you bind a property to a Tag, that
binding listens to the Tag, and every time the Tag changes, it assigns the Tag's new value into the property that it is on. If you bind the value
of a Cylindrical Tank to the value of a Slider, every time the slider changes, it fires a propertyChangeEvent. The binding is listening for this
event, and when it is fired, the binding updates the tank's value. The following bindings are event-based:

Tag and Indirect Tag bindings

Property bindings
Some Expression bindings
Cell Update bindings

Polling bindings are evaluated when a window first opens, on a timer, or when they change. For example, if you bind the data property of a
Table to the results of a SQL query, that query will run on a timer, updating the Table every time it executes. The following bindings are
based on polling:

Bindings that query a database, including Named Query bindings, DB Browse bindings, SQL Query bindings, and Tag History
bindings
Some Expression bindings, like runScript() or now()
Function bindings

Many bindings can combine elements of a polling binding and event-based binding. An expression binding may combine lots of other
bindings to calculate a final result. A query binding will often itself be dynamic, altering the query based on other bindings.

For example, you might have a dropdown on a window that lets the operator choose a type of product that is produced. Then you can use a
query binding like the following to calculate the defect rate for the given product:

SQL - Using a Component Property Reference

SELECT
 SUM(defective) / COUNT(*) AS DefectRate
FROM
 production_table
WHERE
 productCode = '{Root Container.ProductPicker.selectedValue}'

The codeblue is a property binding inside of the query binding. Every time this (event-based) binding fires, the query will run again, but will
also run on a set timer based on its polling schedule. Using bindings like this, you can create highly dynamic and interactive screens with no
scripting whatsoever.

Polling Options

The following are the options you can choose from for bindings that poll:

Polling Off
The query will run once when the window is opened, and again whenever a reference inside of the the binding changes.
Relative Rate
The binding will poll at the project's Base Polling Rate, which is , plus or minus the given Polling Rate.5 seconds by default
Absolute Rate
Using this option, you can specify an absolute rate for the binding to execute at, instead of one that is based off the relative rate.

Regardless of which option is selected, polling bindings always fire when the window the component is on opens. This allows the component
an opportunity to fetch an initial value.

Additionally, all three types will update if the binding contains a reference to something else, such as a Tag or property value (noted always
with the brace-notation "{}"), and the value of that reference changes. Typically this is seen in SQL query bindings: polling can be turned off,
and the query can reference a component value in a WHERE clause. When the referenced property value changes, the query will execute
and retrieve new results.

Copying Bindings
When you copy a component, all bindings, scripts, etc. are copied along with it, but you can also copy a property binding from one property
to another. Bindings can be copied from one property to another by right clicking on a property with a binding on it and selecting Copy

. Then, on another property, right click and select to paste the binding onto the property. This can be on the same Binding Paste Binding
component or a completely different component. The only prerequisite is that both property bindings must use a compatible property type.
(For example, a binding that resolves to a string will not work on an integer property.)

https://legacy-docs.inductiveautomation.com/display/DOC80/Project+Properties#ProjectProperties-Timing

In This Section ...

1.
2.

3.

4.

5.

Property Bindings in Vision

Property to Property Binding
A property binding is a simple type of binding. It binds one component's property to another. When
that property changes, the new value is pushed into the property that the binding is set up on.

On this page

...

Property to Property
Binding
Bidirectional
Property Bindings

Property Binding

Watch the Video

In the following example, we'll bind the value of a Numeric Text Field to a Slider component.

Place a Numeric Text Field component and a Slider component on window.
Select the .Numeric Text Field
Click the Binding icon next to the Value (Integer) property.

Select the Binding Type. Choose the property.Property Slider's Value

Click . Put the in .OK Designer Preview Mode

Why aren't all properties listed?

You may notice that the list of properties available to bind to is smaller than the list of all
properties. While nearly all properties can be bound, only some properties can be bound
to. Only properties that fire a may be bound to.propertyChangeEvent

https://www.inductiveuniversity.com/video/property-binding/8.0

6. Move the slider. You'll see that the value from the Slider component appears in the
Numeric Text field.

This can be useful to provide visual feedback to what a user is doing. The operator would input
something, and they would see another component adjust to match the setting they just changed.
Notice though, how if I were to change the value of the Numeric Text Field, the Slider will not
update. Bindings are one direction only by default.

Bidirectional Property Bindings
Property Bindings have the ability to become Bidirectional, meaning instead of having the binding
go one way only, it will work both ways, even with just the one binding. Take the previous example
with the Numeric Text Field and Slider again. When changing the value of the Slider, the Numeric
Text Field would update, but updating the value of the Numeric Text Field would not update the
Slider. If we reopen the binding on the Value (Integer) property of the Numeric Text Field, we can
see in the bottom left corner a checkbox for .Bidirectional

Check the option and then save the binding. It will now be a bidirectional binding. Bidirectional

Property Binding -
Bidirectional

Watch the Video

https://www.inductiveuniversity.com/video/property-binding-bidirectional/8.0

Tag Bindings in Vision

Binding Properties to Tags
A Tag binding is a very straight-forward binding type. It simply binds a property directly to a Tag.
This sets up a subscription for that Tag, and every time the chosen Tag changes, the binding is
evaluated, pushing the new value into If you choose a Tag in the tree, and not the bound property.
a specific property of that Tag, the Value property is assumed.

Drag and Drop
There are several ways to drag and drop Tags onto a component allowing you to create screens
very quickly. You can quickly bind a Tag by dragging it from the Tag Browser into a component or
into the component property.

Binding to a Component

Ignition automatically creates the Tag bindings to several of the component properties when you
choose to bind a Tag to a component by dragging and dropping. This is true for both creating a
component by dragging and dropping a Tag onto empty space on a window at the same time
Ignition prompts you for what type of component you want to create, and by dragging and dropping
a Tag directly onto a component that already exists on a window. In both cases, Ignition
automatically creates the Tag bindings on the component.

In addition, some of the bindings will be bidirectional or they may be expression bindings. How
Ignition handles the binding depends on the disparity between the datatypes of the Tag and the
target component. For example, binding a numerical Tag to a label component will result in an
expression binding that formats the number to a string.

Binding to a Component Property

Ignition automatically creates a Tag binding to the property that you dropped the Tag into in the
Property Editor, resulting in the property binding to the value of the Tag. In addition, it is possible
to bind the Tag attributes to the component's property. For example, the Tag's Engineering High
Limit attribute could be bound to the capacity property of a cylindrical tank component.

On this page

...

Binding Properties
to Tags
Drag and Drop

Binding to a
Component
Binding to a
Component
Property

Bidirectional Tag
Bindings
Bindings to Tag
Properties

Tag Binding

Watch the Video

Tag Binding – Drag
and Drop

Watch the Video

Bidirectional Tag Bindings
Tag bindings can be made bidirectional simply by checking the checkbox at the Bidirectional
bottom of the window. A Tag can be set as a bidirectional binding, if it has a Property Binding
read/write permission and if the user has the security permission to write to the Tag. The Fallback
Delay is the amount of time that the value will remain at the written value, waiting for a Tag change
to come in. If no Tag change comes in within the allotted time (specified in seconds), the property
will fall-back to the value as it was before the write. This is needed, because sometimes even if a
write succeeds, another write or ladder logic in a PLC might have written something different, even
the old value, in which case no Tag change event will be generated. As a rule of thumb, the
fallback delay should be twice the Tag's scan class rate.

Tag Binding -
Bidirectional

https://www.inductiveuniversity.com/video/tag-binding/8.0
https://inductiveuniversity.com/video/tag-binding-drag-and-drop/8.0

Watch the Video

Bindings to Tag Properties
Aside from binding a property to a Tag's value, you can also bind to properties on a Tag, such as or Tooltip, Quality, AlarmActiveAckCount
. This is useful when you don't need the value of the Tag, but rather the state, or some other configuration on the Tag. Here we see a
boolean Memory Tag. It has a property indicating the Tag's quality. We can easily display that quality property on a component.

The simplest approach involves a . This can be achieved by dragging-and-dropping the Tag Property onto a Window, Tag Binding
component, or component property. This example uses a Label component.

This is similar to creating a standard Tag Binding, except we're using a property on the Tag instead of the Tag's value. The resulting Tag
Binding would look like the image below. Note that the property name has been appended to the path.

The Label component now displays the current value for the Tag's Quality property.

https://www.inductiveuniversity.com/video/tag-binding-bidirectional/8.0

Indirect Tag Bindings in Vision

Binding Properties to a Dynamic Set of Tags
An Indirect Tag binding is very much like a standard Tag binding, except that you may introduce
any number of indirection parameters to build a Tag path dynamically in the runtime. These
parameters are numbered starting at one, and denoted by braces, for example, {1}. The binding
will be linked to the Tag represented by the Tag path after the indirection parameters have been
replaced by the literal values they are bound to. An indirection parameter may represent a property
on any component in the same window.

For example, instead of binding straight to a Tag's path, like

[TagProvider]MyPlant/EastArea/Valves/Valve4/FlowRate

or

[TagProvider]MyPlant/WestArea/Valves/Valve2/FlowRate

You can use other properties to make that path indirect. Suppose the "area" and "valve" number
that we were looking at was passed into our window via parameter passing. Then we might use
those parameters in the Tag path, like this:

[TagProvider]MyPlant/{1}/Valves/Valve{2}/FlowRate
{1}=Root Container.AreaName
{2}=Root Container.ValveNumber

Now our binding will change which Tag it is pointing to based on the values of those Root
Container properties.

Indirect Tag Binding

Watch the Video

Creating an Indirect Tag Binding
When setting up an Indirect Tag Binding, there are a few tools in the binding window that help make it easier.

First there is the Indirect Tag Path. This field is where the Tag Path with parameters needs to be entered. Indirect Tag Bindings use
numbered parameters at places in the Tag Path where indirection is going to occur. To the right of the Indirect Tag Path field are the Tag and
Property reference helper buttons. The Tag button will enter the full Tag Path of the selected Tag into the Indirect Tag Path, while the
Property button will add a new parameter reference to the Indirect Tag Path, and bind it to the selected property. The last area is the list of
references, where each row in the list corresponds to a {1} parameter reference, and each row can be bound to property on the window. To
bind a parameter reference to a property, simply select its corresponding row, and use the property selector to the right of the References list
to select a property from the window.

Bidirectional Indirect Tag Binding
Indirect Tag Bindings can also be made Bidirectional by clicking the checkbox at the bottom of the binding window. This will Bidirectional
allow any input from a user on that property to be written back to the Tag. To work properly, the Tag needs to have the proper security to

Putting some thought into your Tag structure will make using the Tags indirectly much easier!

https://www.inductiveuniversity.com/video/indirect-tag-binding/8.0

1.
2.
3.

accept writes.

Indirect Tag Binding Example
In this example, we have some different motors, where each motor is a folder of Tags. Each motor has an amps Tag that is within the folder,
so that our Tag paths look like the following:

Motor 1/Amps
Motor 2/Amps
Motor 3/Amps
Motor 4/Amps

Instead of creating four different displays for these four different Tags, we can create a single display and make it indirect. We need two
things for this example: a component to display the value in, and a component which allows the user to select which motor they are looking
at.

Drag an component onto the window.LED Display
Then drag a component onto the window. This we will use to enable the user to select which motor they are looking at.Spinner
There are four motor Tags, so change the property of the Spinner to 4, and the property to Numeric Maximum Numeric Minimum
1. You may also need to change the to 1.Value (Integer)

3.

4.
5.

a.
b.

c.

d.

Select the component. Click on the Binding icon next to the property of the LED Display.LED Display Value
 Select the type.Indirect Tag

Click the Tag icon and select the Tag.Motor 1/Amps
Delete the '1' in the Tag Path, and replace it with .{1}

In the References section, select the row, and click the Insert Property Value icon. Select the (Integer) property Value
of the Spinner.
Click to save the binding.OK

6. To test it out, put the Designer into . Notice how the value represented in the LED Display depends on what value Preview mode
is in the Spinner. Because the Spinner has the maximum value set to 4, users won't be able to set a motor number that does not
exist. Additionally, adding new motors simply means adjusting the maximum value on the Spinner.

1.

2.
3.

4.

5.

6.

7.

8.

Tag History Bindings in Vision

Binding Properties to the Tag Historian
The Tag Historian binding type, which is only available for Dataset type properties, runs a query
against the Tag Historian.

Selected Historical Tags

For this type of query, you must select at least one Tag path from the Available Historical Tags
to query. The Dataset returned by the query will have a timestamp column, and then a column for
each path that you select here.

Date Range

Choose either a Historical or Realtime query. Historical queries use a date range that must
be bound in from other components on the screen, typically a or a pair of Date Range Popup

. Realtime queries always pull up a range that ends with the current time, so all Calendars
they need is a length.

This example uses a Historical query and two Popup Calendars for the start and end dates. The
history is presented in the Table below.

In the Designer, drag two components and a component from the Popup Calendar Table
Component Palette into your workspace.

Select the and right click on the Binding icon for the property.Table Data
Drag a sine0, sine1, and sine2 under the Tag Path column under the Selected Historical

 area. Tags
Under Date Range, select . Historical

Under , click on the Property icon and under one of the Popup Start Date Binding
Calenders, select . Date

Under the End Date Binding, click on the Property icon and under the second Popup
Calender, select . Date
Click . OK

Now you can see the history of the three Sine tags along with a timestamp. You can scroll
through the information in the table to see the history that was logged. To change the
date range, click on dropdown buttons to bring up the popup calendars to change the date
range.
The tag history binding type allows you to bring back this history.

On this page

...

Binding Properties
to the Tag Historian

Selected
Historical Tags
Date Range

Sample Size and
Aggregation Mode

Aggregation
Mode
Sample Size
Return Format
Advanced
Options

Indirect Tag History
Binding

Tag Historian
Binding

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Date+Range
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Popup+Calendar
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Popup+Calendar
https://www.inductiveuniversity.com/video/tag-historian-binding/8.0

8.

Sample Size and Aggregation Mode
In places where the History system can be queried, a and caTag Sample Size Aggregation Mode
n be selected that will determine how the results will be queried out and how the raw values will be
aggregated.

Tag History
Aggregates

Watch the Video

Table – Fixed
Sample Size

Watch the Video

Aggregation Mode

The dictates what happens when multiple raw values are encountered for a given sample window (the size of which is Aggregation Mode
determined by the number of requested rows, or the interval size).

Aggregation
Mode

Description

Time-
weighted
Average

The values are averaged together, weighted for the amount of time they cover in the interval.

Min/Max The minimum and maximum values will be returned for the window. In other words, two rows will be returned. If only one
value is seen in the interval, only one row will be returned.

Closest
Value

The value closest to the ending time of the interval will be returned.

Basic
Average

The values are summed together and divided by the number of values.

Sum The values in the interval are summed together.

https://www.inductiveuniversity.com/video/tag-history-aggregates/8.0
https://inductiveuniversity.com/video/table-fixed-sample-size/8.0

Maximum The maximum value in the interval.

Minimum The minimum value in the interval.

Duration On Returns the number of seconds that the value was recorded as non-zero.

Duration Off Returns the number of seconds that the value recorded as zero.

Count On Returns the number of times the Tag's value went from a zero value to non-zero.

Count Off Returns the number of times the Tag's value changed from a non-zero value to zero.

Count Returns the number of times a value was recorded

Percent
Good

Time-weighted percentage of good values over the date range.

Percent Bad Time-weighted percentage of bad values over the date range.

Range Returns the range between the highest and lowest value for the period.

Standard
Deviation

Standard Deviation - Returns the standard deviation of values, or how much spread is present in the data; low standard
deviation shows the values are close to the mean, and high standard deviation shows that the data points are spread out
over a large range of values. Only good quality values are used when calculating

Variance Returns the variance of values. Similar in concept to standard deviation. Only good quality values are used when
calculating.

Sample Size

The sample size determines how many data points will be returned from the query.

On Change

An On Change query will return points as they were logged, and can be thought of as a "raw" query mode. This means that the results may
not be evenly spaced. Also, it is important to note that every changed value will result in a row, and therefore if you are querying multiple tags
and once, you may end up with more rows than you anticipated. For example, if A and B both change, you would end up with [[A , BTag Tag 0 0
],[A , B], [A , B]].1 0 1 1

If you want to essentially retrieve raw values, while coalescing them down into fewer rows, try using the Interval sample mode, with an
interval set to your largest acceptable time between rows, and select "prevent " from the advanced settings.interpolation

Natural

A Natural query will look up the logging rate for the queried tags (when possible), and return results spaced apart at that rate. This means
that the return size will vary with the date range.

Fixed

You can use the and on the binding type to fix the number of records that are retrieved. The Sample Size Aggregation Mode HistoryTag
Fixed sample size will cause the binding to retrieve all records from the date range, and aggregate them evenly between a fixed number of
points. This will ensure that the number of rows will remain the same without regard to the size of the . In where users are dataset windows
able to select a large range of data, Fixed is recommended as it will prevent the from loading an excessive number of records. property

In cases where the number of points can not evenly represent the data from the date range, an extra point will be added, making the final
size of the the fixed value + 1. dataset

Selecting the aggregation mode returns two rows of data for every row requested. Each pair represents a minimum and a Min/Max
maximum result from the underlying data. Therefore, a table with a fixed length, would return double the requested amount with Min/Max
aggregation mode selected. With Min/Max aggregation mode selected, and with a fixed row length of one, the data set returns the oldest tag
value of the time range

The following image shows a History Binding pulling data from the last one day. The is configured to with a value of Tag Sample Size Fixed 1
, and the is set to . This means that the binding will query for data from the last one day, regardless of 00 Aggregation Mode Basic Average

how many records there are, and create 100 time-slices that are evenly dispersed between the start and end periods of that range. Then, a

basic average of the tag values are calculated for each time-slice. The resulting values are then returned to the . property

Note the icon next to . This allows a binding to determine the number of data points, so you could Insert Property Sample Size property
change the size to increase or reduce the amount data points on the chart from the client.

Interval

Where as the sample size will calculate time slices based on the date range, the sample size allows you to determine the size Fixed Interval
of the time slices. This sample size will divide the date range by the interval size to determine the size of each slice. Because of this, it is
recommended to use an interval that is evenly divisible by the date range. However, in the event that the date range is dynamic or user
driven, will handle any partially built slices. Even though the binding may attempt to evenly distribute the slices, there may be an interpolation
extra row that represents the current values as they are building an interval.

The image below shows a range of . The is set to , and the iRealtime 60 minutes Aggregation Mode Time-weighted Average Sample Size
s set to for . This means that the binding will query for data ranging from 60 minutes ago to now (or whenever the binding Interval 5 minutes
last executed, in the case that has been turned off). That 60 minute window will be divided as evenly as possible into 5 minute time-polling
slices, so there should around 12 time-slices. Each time slice will aggregate its value based on the time-weighted average of all values within
that slice.

The example uses a Realtime range, but a Historical range could easily be used instead.

Note the icon next to . This allows a binding to determine the number of data points, so you could Insert Property Sample Size property
change the size to increase or reduce the amount data points on the chart from the client.

Return Format

Return format dictates how the requested data will be returned. The options are "wide" (default), in which each Tag has its own column, and
"tall", in which the Tags are returned vertically in a "path, value, quality, timestamp" schema.

Advanced Options

These options affect the query results in more subtle ways.

Ignore Bad Quality - Only data with "good" quality will be loaded from the data source.
Prevent Interpolation - Requests that values not be interpolated, if the row would normally require it. Also instructs the system to
not write result rows that would only contain interpolated values. In other words, if the raw data does not provide any new values for
a certain window, that window will not be included in the result dataset.
Avoid Scan Class Validation - "Scan class validation" is the mechanism by which the system determines when the Gateway was
not running, and returns bad quality data for these periods of time. By enabling this option, the scan class records will not be
consulted, which can improve performance, and will not write bad quality rows as a result of this check.

Tags Historian information is often easiest to work with in the component, which handles all of these options Easy Chart
automatically.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Easy+Chart

Indirect Tag History Binding
The Tag History Binding can be made indirect but using indirection parameters in the Tag Paths of
the Selected Historical Tags. This works similarly to the , which uses Indirect Tag Binding
Indirection References within the Tag Paths to substitute something into the path. Valid Indirection
references consist of a reference number within curly braces. Simply type the indirection
parameters (for example, {1}) into a selected Tag path by double-clicking in the list of selected
paths. All valid parameters will appear in the lower indirection table.

In this example, the Tag Path points to the Spinner component for the indirection parameters. Indirect Tag History
Binding

Watch the Video

https://inductiveuniversity.com/video/indirect-tag-history-binding/8.0

Expression Binding in Vision

Binding Properties to the Outcome of an
Expression
An expression binding is one of the most powerful kinds of property bindings. It uses a simple expr

 to calculate a value. This expression can involve lots of dynamic data, such ession language
as other properties, Tag values, results of Python scripts, queries, and so on. Any time
information needs to be massaged, manipulated, extracted, combined, split, and so on,
expressions can get the job done.

Event Based and Polling

Expression bindings fall into the unique category of having the possibility of using both Events and
Polling to update. How an expression updates depends on what is being done in the expression.
Expression bindings will always update immediately when the window they are in is opened. When
they update again depends on if they are driven by events or polling. Typically, expressions are
driven by events. If the expression was adding multiple values together, then when one of those
values changed the expression would update, regardless of whether those values came from other
properties or Tags. However, the expression function has some unique functions that can update
at a set rate such as the . When these functions are used within the expression, the now() function
expression binding will update based on the specified polling rate.

Using Expression Bindings
The expression language has lots of tools available that help calculate a specific value such as built

, , and the ability to reference Tags. While all of these -in expression functions multiple operators
can be manually typed into the expression, the expression binding window makes it easy to
reference these options.

Helper Icons

To the right of the expression binding window, there are four icons that can be used to reference
specific objects or functions easily.

Properties - Places a property reference into the expression at the cursor, pulling in
that property's value into the expression at the time of evaluation.

Tags - Places a Tag reference into the expression at the cursor, pulling in that Tag's
value into the expression at the time of evaluation.

Operators - Places the operator into the expression at the cursor. Mostly used as a
reference to what operators are available for use.

Functions - Places the function into the expression at the cursor. Can be used as a
reference for what functions are available, as well as the parameters the function is
expecting.

On this page

...

Binding Properties
to the Outcome of
an Expression

Event Based and
Polling

Using Expression
Bindings

Helper Icons
Expression
Binding Examples

Expression Binding

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC80/Expression+Overview+and+Syntax
https://legacy-docs.inductiveautomation.com/display/DOC80/Expression+Overview+and+Syntax
https://legacy-docs.inductiveautomation.com/display/DOC80/now
https://legacy-docs.inductiveautomation.com/display/DOC80/Expression+Functions
https://legacy-docs.inductiveautomation.com/display/DOC80/Expression+Functions
https://legacy-docs.inductiveautomation.com/display/DOC80/Expression+Overview+and+Syntax
https://www.inductiveuniversity.com/videos/expression-binding/8.0/8.0

Expression Binding Examples

Example 1

You have a button that starts a batch, but you only want to let it be pressed after the operator
entered a scale weight. An expression binding can be set up on the enabled property of the button:

{Root Container.EntryArea.WeightBox.doubleValue} > 0.0

Example 2

You want to display a process's current state, translating a code from the PLC to a human-
readable string. The examples below will yield the same results, but in different ways.

This first example uses nested "if" statements to produce the string. Notice that the false return for
the first "if" statement is another "if" function, and the same with the second "if" function. Since
the "if" function can only do simple if/than/else logic, this method allows us to do an if/than/else if
/else.

if ({CurrentProcessState} = 0, "Not Running",
if ({CurrentProcessState} = 1, "Warmup phase - please wait",
if ({CurrentProcessState} = 2, "Running", "UNKNOWN STATE")))

This example will yield the same result as the previous example, but works differently. Instead of
using multiple functions, this example uses a single switch function to decide which string to use.

switch ({CurrentProcessState},
 0,1,2,
 "Not Running",
 "Warmup phase - please wait",
 "Running",
 "UNKNOWN STATE")

For more examples, see .Expression Overview and Syntax

https://legacy-docs.inductiveautomation.com/display/DOC80/Expression+Overview+and+Syntax#ExpressionOverviewandSyntax-AdditionalExamples

Named Query Bindings

Binding Properties to a Named Query
The binding is where you can configure a property to call a Named Query that you Named Query
had previously created in the project. Using Named Query binding instead of a or SQL Query DB

 helps to make your project more secure due to the built-in Browse binding Security Zone and User
.Role restrictions

Polling Mode
Each Named Query binding type will use polling to determine when to update the results and run
the query again. The Polling Mode dictates how often the query will execute, and works in a similar
fashion to .polling on other bindings

Creating Named Queries
In order to use a Named Query, first one has to be created. You might already have some that
another developer created but if not, you will have to make one by going to the Named Query
section in the Designer or converting a SQL query.

On this page

...

Binding Properties
to a Named Query
Polling Mode
Creating Named
Queries
Using Named
Queries on Dataset
Properties
Using Named
Queries on Scalar
Properties

Named Query
Binding

Watch the Video

Using Named Queries on Dataset Properties
The majority of your Named Query bindings will most likely be on a dataset type property. When placed on a Dataset type property, only a
single Named Query needs to be specified. An explanation of the various fields on the binding are detailed below:

Path: Here you can enter in the path to the Named Query. Click on the Search icon to view a list of available Named Queries.
Parameters: Here you can see a table of all defined . You can pass in property or Tag values to the Named Query parameters

parameters by first highlighting the parameter and then selecting either the icon or the iconInsert Property Tag
Query: The Query section shows what Named Query looks like. Note that you can't modify the query on this page.
Polling : Here you can set the Polling Mode of the Named Query binding based on the .Mode Polling Rate
Retain : If true, any rows that you have returned within the Designer will be saved along with the window. This may slow Rows
window load times.

https://legacy-docs.inductiveautomation.com/display/DOC80/Named+Queries
https://legacy-docs.inductiveautomation.com/display/DOC80/Named+Query+Workspace#NamedQueryWorkspace-Settings
https://legacy-docs.inductiveautomation.com/display/DOC80/Named+Query+Workspace#NamedQueryWorkspace-Settings
https://legacy-docs.inductiveautomation.com/display/DOC80/Binding+Types+in+Vision#BindingTypesinVision-PollingOptions
https://legacy-docs.inductiveautomation.com/display/DOC80/Named+Queries
https://inductiveuniversity.com/video/named-query-binding/8.0
https://legacy-docs.inductiveautomation.com/display/DOC80/Named+Query+Parameters
https://legacy-docs.inductiveautomation.com/display/DOC80/Binding+Types+in+Vision#BindingTypesinVision-PollingOptions

Using Named Queries on Scalar Properties
When placed on a non-dataset type property (such as a String or Integer), then the Named Query binding allows for a second Named Query
to be specified in the case that the user can update the value on the property. This provides an opportunity to both return and update values
in the database from the same component.

The configuration is very similar to a Named Query binding on a dataset property. You need to specify a Named Query path, set up your
Parameters, and choose a . You can finish setup at this point, leaving the update query disabled so that the property will simply Polling Mode
pull the value from the database.

However, if you want the binding to be bidirectional, you need to specify an UPDATE query. This works similar to a SELECT query, in that
you need to select the path to the Named Query and set up any Parameters. However, it is important to make sure that the Named Query
chosen for the UPDATE query is in fact setup as an UPDATE query by setting the of the Query Type property on the Authoring section
Named Query.

https://legacy-docs.inductiveautomation.com/display/DOC80/Binding+Types+in+Vision#BindingTypesinVision-PollingOptions
https://legacy-docs.inductiveautomation.com/display/DOC80/Named+Query+Workspace#NamedQueryWorkspace-Authoring

Related Topics ...

Cell Update Bindings
Named Queries
Named Query Parameters

https://legacy-docs.inductiveautomation.com/display/DOC80/Named+Queries
https://legacy-docs.inductiveautomation.com/display/DOC80/Named+Query+Parameters

DB Browse Bindings

Binding Properties to Database Tables
The DB Browse binding is technically equivalent to the , except that it helps SQL Query binding
write the queries for you. Using the Database Browse binding type, you can pick the table from a
list of tables in each database that you want to pull content from. If you have a fixed range of data
you need to return, simply select it in the table, and watch the query get generated.

In the Browse Database tree, you can choose which columns in your table should act as your keys
(these columns get put in the WHERE clause based on your selection) and which columns should
be used to sort the data (these columns are put in the ORDER BY clause).

On this page

...

Binding Properties
to Database Tables
Configuring the
Binding

Key Column
Sort Order

Dynamic Filters
Scalar Query Update

DB Browse Binding

Watch the Video

Configuring the Binding
After selecting a table in the Browse Database tree, you can customize which columns the query is selecting by selecting one or more
columns under the table to select just the highlighted columns, or selecting the table to use the * symbol to select all columns.

Key Column

The DB Browse binding has the ability to designate key columns within the query. A key column is used within the select query's where
clause, and can be given a value. A column is denoted as a key column when it has a key symbol next to it.

Clicking the Key icon to the right of the Browse Database tree will designate a column as a key column. Alternately, if the highlighted

column is already a key column, then clicking the Key icon will remove that column as a key column.

This binding type also serves as a convenient jumping-off point for the more flexible
SQL Query binding. Construct the basic outline of your query in the DB Browse section,
and then select the SQL Query radio button to convert to the new binding type. Your
query will be retained and can then be modified manually.

https://www.inductiveuniversity.com/video/db-browse-binding/8.0

1.

2.
3.

4.

Sort Order

In the DB Browse binding, you can also sort data in ascending or descending order. Select the column that you want to sort by and click the

Sort icon. Multiple columns can be used for sorting.

Dynamic Filters
DB Browse bindings also give the ability to bind a property to a key column to allow for dynamic
filtering of the returned data. Simply click the binding icon next to the key column field. This
allows you to give the operators some control over the data they are seeing.

DB Browse Binding
- Dynamic Filters

Watch the Video

In the Designer, drag a Table component and a Text Field component on a window.

With the Table component selected, click the Binding icon next to the property. Data
Chose DB Browse under Binding Types > Database.

Let's pull all the data from this Table except for the id, and filter on state. Remove the Key from the column and place it on the id
 column.state

https://www.inductiveuniversity.com/video/db-browse-binding-dynamic-filters/8.0

4.

5.

6.

7.

Select the , , , and columns. You can do this with Control+Click, or by clicking and dragging in Tank_Number Lot_ID Notes t_stamp
the results table in the upper right.
Instead of statically typing in a value like we in did in the above example, let's make it dynamic using the Text Field. Click the Insert

Property Value icon next to the value in the section, and select the Text property of the Text Field. Key Columns

Notice there is now a property reference in the as well as the .Key Column Generated SELECT Query

7.

8.
9.

10.

Click to confirm the binding.OK
Put the Designer into Preview mode.
Enter the Lot_ID that you want to view. You'll see the Table update to display just the data for that Lot ID.

Scalar Query Update

Similar to the SQL Query Binding, the DB Browse Binding has the ability to become bidirectional
by doing a database write back when the property being bound is a non-dataset type. In this case,
the select query should be configured to only return a single row from a single column.

For example, this option can provide a single value to the Text property of a Text Field component.
If you check the checkbox, then any user input will write back to the Enable Database Writeback
database. This will automatically generate an update query that will push the input value into the
database from the location where the original value was retrieved.

SQL Query Binding
- Scalar Query and
Update

Watch the Video

https://www.inductiveuniversity.com/videos/sql-query-binding-scalar-query-and-update/8.0/8.0

SQL Query Bindings in Vision

Binding Properties to a SQL Query
The SQL Query binding is a that will run a SQL Query against any of the polling binding type
database connections configured in the Gateway. It is very similar to the type DB Browse binding
in that both query a database to return data. The difference is the SQL Query Binding can
manually be modified. This is useful for complex queries where you will use the more advanced
functions of the SQL language that can not be accomplished with the DB Browse binding.

Dataset Binding
The majority of SQL Query bindings will return a dataset. These will return many rows with multiple
columns. For example, showing all customer details from a certain account, or all downtime events
in the facility. This type of SQL binding is used on properties of type like the Data property dataset
on a . Table component

On this page

...

Binding Properties
to a SQL Query
Dataset Binding
Dynamic Filters

Example
Scalar Query Update
Scalar Query
Fallback
Stored Procedures
Named Query
Conversions

SQL Query Binding

Watch the Video

Pro Tip!

The query that gets generated by the DB Browse will transfer over to the SQL Query
binding when you switch the binding type. It may be useful to build the basic query
structure with DB Browse first, then switch to SQL Query binding to modify the query to
fit your needs.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Table
https://www.inductiveuniversity.com/video/sql-query-binding/8.0

Dynamic Filters
Using the curly brace {} notation, you can include the values of component properties (within the
same window) and Tag values inside your query. This is a very common technique to make your
query dynamic. The values of the property or Tag represented are simply substituted into the
query where the braces are.

Note that because the substitution is direct, you'll often need to add quotes to literal strings and
dates to make your query valid. If you're getting errors running your query complaining about
syntax, it is important to realize that these errors are coming from the database, not from Ignition.
Try copying and pasting your query into the Query Browser and replacing the braces with literal
values.

SQL Query Binding
- Dynamic Filters

Watch the Video

Example

A common requirement is to have a query filter its results for a date range. You can use the component or a pair of Date Range Popup
 components to let the user choose a range of dates. Then you can use these dates in your query like this:Calendar

SQL - SQL Query Binding with Parameter References

SELECT
 t_stamp, flow_rate, amps
FROM
 valve_history
WHERE
 t_stamp >= '{Root Container.DateRange.startDate}' AND
 t_stamp <= '{Root Container.DateRange.endDate}'

Notice the single quotes around the braces. This is because when the query is run, the dates will be replaced with their literal evaluations.
For example, the actual query sent to the database might look like this:

https://www.inductiveuniversity.com/video/sql-query-binding-dynamic-filters/8.0
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Date+Range
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Popup+Calendar
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Popup+Calendar

SQL - SQL Query Binding with the Values Replaced

SELECT
 t_stamp, flow_rate, amps
FROM
 valve_history
WHERE
 t_stamp >= '2010-03-20 08:00:00' AND
 t_stamp <= '2010-03-20 13:00:00'

Scalar Query Update
You can bind a non dataset type property to a SQL query to allow a singular value to be returned
from the database with a scalar query. Now instead of returning multiple rows and columns, the
query returns a single value from the first row of the first column. These types of SQL Query
bindings can also be used to update the database on input components like a Text Field.
Essentially, we mimic the bidirectionality of Tag and property bindings by adding in an update
query to run whenever a value gets entered into the property with the binding. In our update query,
we use the special parameter to denote the new value from the bound property. If is a {this} {this}
string, it needs single quotes around it.

Take a Text Field with a simple query on it.

SQL - Simple Select Query

SELECT Name FROM area WHERE ID = 1

This will return a single value that can populate our text field. We then enable the Update Query at
the bottom of the Property Binding window, and add in the update query.

SQL - Using Ignition's 'this' Keyword

UPDATE area SET Name = '{this}' WHERE ID = 1

After confirming the binding, we can see that our text field contains the value from the database
and will update the database cell if we enter in a new value into the text field. This is a good way to
alter very specific cells in a database table.

SQL Query Binding
- Scalar Query and
Update

Watch the Video

Scalar Query Fallback
If the property that is being bound is a scalar datatype (that is, not a Dataset), the value in the
first column in the first row of the query results is used. If no rows were returned, the binding will
cause an error unless the Use Fallback Value option is selected. The value entered in the fallback
value text box will be used when the query returns no rows.

It is important to use single quotes and not double quotes (t_stamp = "2010-03-20 08:00:00") because these mean something
different in certain databases like Microsoft SQL Server.

https://www.inductiveuniversity.com/video/sql-query-binding-scalar-query-and-update/8.0

When binding a Dataset to a SQL Query, no fallback value is needed, because a Dataset will
contain zero rows. SQL Query Binding

- Scalar Query and
Fallback

Watch the Video

Stored Procedures
While queries can manually be written on a SQL Query binding, may also be called from a SQL Query Binding. Note SQL Stored Procedures
that the exact syntax is highly dependent on the type of database you are using.

For example, calling a Stored Procedure from MySQL would involve using the CALL command, while SQL Server utilizes the EXEC
command.

SQL - MySQL Stored Procedure Call

CALL retrieve_daily_total

SQL - SQL Server Stored Procedure Call

EXEC retrieve_daily_total

Named Query Conversions
You can convert the SQL Query created here to a Named Query. For more information, see .Named Query Conversions

https://www.inductiveuniversity.com/video/sql-query-binding-scalar-query-and-fallback/8.0
https://legacy-docs.inductiveautomation.com/display/DOC80/SQL+Stored+Procedures
https://legacy-docs.inductiveautomation.com/display/DOC80/Named+Query+Conversions

Cell Update Bindings

Binding a Dataset Property to Realtime Values
The Cell Update binding enables you to easily make one or more cells inside a dataset dynamic.
This is particularly useful for components such as the Table to easily display realtime Tag
information, or in the Linear Scale which stores configuration information in a dataset. The Cell
Update binding allows you to bind a cell inside of a dataset to a Tag or to a property.

Cell Update Bindings work really well with the Easy Chart component, allowing you to indirectly
show Tag history on the same Easy Chart. See for more details.Indirect Easy Chart

The cell update binding has a few tools that help you make certain cells dynamic.

On this page

...

Binding a Dataset
Property to
Realtime Values
Adding Values to
the Cell Bindings
Rows

Row Column
Column Column
Value Column

Realtime Tag
Values in a Table
Example
Adding a Realtime
Indicator to the
Linear Scale
Example

Cell Update Binding

Watch the Video

The top table called displays the original dataset, while the bottom table displays each of the cell updates that will be Dataset Cell Bindings
occuring. Each Cell Update binding can have multiple cell updates happening on a single dataset. To the right of the Cell Bindings table are
four buttons that are used to create the Cell Bindings:

 Add Row - Adds a new empty row to the Cell Bindings table, which can be customized with a new Cell Binding. If a cell is
selected in the Dataset table, it will instead add a row with the Row and Column values already filled in with the appropriate values.

 Delete Row - Removes one of the rows in the Cell Bindings table.

 - Inserts a property reference into the Value cell of the selected row.Insert Property

Insert Tag - Inserts a Tag reference into the Value cell of the selected row.

 the current selection to the clipboard.Copy

 the contents of the clipboard into the current context.Pastes

Adding Values to the Cell Bindings Rows
Each row in the Cell Bindings table needs three values to work properly: a which is used to figure out which row the cell Row identifier
binding is on, a to determine the column of the cell, and a which will replace the original value of the cell. These Column identifier Value
three values can pinpoint a specific cell, and replace its value with the dynamic Tag or property value specified. The examples in this section
use the dataset in the image above.

Cell Update Binding

The Cell Update binding type will only appear when setting up a binding on a dataset
property, otherwise, it won't be present.

No two rows should specify the same cell, as this will throw an error.

https://www.inductiveuniversity.com/video/cell-update-binding/8.0

Row Column

The Cell Bindings column can be filled one of two ways.Row

Row Index

The easiest and most often used way is by specifying the row index of the cell that you want to target for an update. It is important to
remember that the row index is zero based, so the index of the first row is always 0. There can be multiple rows, each with the same row
index, as long as the Column is different. The order of the rows in this case does not matter, as in the image below, where it specifies a cell
with a row index of 0, then 5, then 0 again.

Column Value

The other way to identify the row that the intended cell belongs to, is to use the value of a different column. This is done using the syntax:

columnName=value

Where the columnName is the name of the column and the value is the value that needs to match. The columnName and value are both
case sensitive, so you will need to use care when filling in these values.

There are three things that make using the Column Value unique. The first is that there is the possibility for duplicates to happen. Take the
image above, with both a Row index of 0 and a Column Value of 'String Column=Test 1'. Looking at the original dataset, both of those point
to the same row, and with both of them pointing to the Boolean Column, they both refer to the same cell in the dataset. This instance of
duplicates will not throw an error, but instead will work. In this case, the updates happen from top to bottom, so the 'String Column=Test 1'
would be what writes to the cell last and what ultimately gets displayed.

The second is that there is the potential for multiple possible matches to that evaluation. For example, if I had this in the Row value:

Boolean Column=True

This could potentially be true for multiple rows of my dataset, in which case, the binding will apply to all of them. This allows you to change
multiple cell values that should all be the same.

The final thing that makes the Column Value unique is that it itself is ultimately dynamic. The 'Boolean Column=True' Column Value matches
the rows at index 1, 3, 4, 7, and 9 in the original dataset. However, if any of those were to change to False through another cell update, then
that row would no longer be updated as part of this cell update. Conversely, if any of the currently False values were to change to a True,
then those rows would fall under this cell update and the appropriate cell will be updated.

Column Column

The Cell Bindings column named , or , expects the name of a column that will match in the "Dataset" table above. Column Column column
These values are case sensitive, so care should be taken when entering them manually.

Value Column

The is what will get pushed into the cell that is being updated. There are three possible types of values that can be placed in Value column
here.

1.

Static Value

A static value can be written in here. This will overwrite the existing value of the cell with whatever static value is in the cell update. This does
defeat the purpose of using the cell update though, since the static value could just be placed directly in the original dataset.

Tag or Property Reference

A Tag or Property reference can be used for the cell updates value, updating the value of the cell whenever the value of the Tag or Property
changes. The Tag or Property Selectors to the right of the Cell Bindings table can be used to add in the reference.

Both Static Values and a Reference

The Value column can also accept a combination of a reference and static values. This allows you to build unique strings or numeric values
within the Value cell. The syntax used is:

numbers1234{tagOrPropertyReference}orcharacters

The reference value will be concatenated into the Value at the location specified. For example, if my Value was

{MemoryTags/IntegerTag}000

and the IntegerTag had a value of 5, the updated cell value would be 5000. This method of combining both a reference and a static value is
great for updating Tag paths, such as in an Easy Chart's Tag Pens dataset.

[~]Motors/Motor {Root Container.MotorNumber}/Amps

Here, the MotorNumber property on the root container is replacing the motor number inside of the Tag path. See for more Indirect Easy Chart
details.

Realtime Tag Values in a Table Example
The Cell Update binding allows you to place the value of a Tag into a dataset easily. With a dataset property like the one on the compoTable
nent, getting updating values into it requires either a SQL query, or some constantly running script. With the Cell Update binding, that isn't
necessary. The simple static table, as shown below, contains four rows for four different tags, and each having a value. As an alternative,
you could use four numeric text fields and labels, but the Table component looks much nicer compared to all of those labels and numeric text
fields.

Let's use the table above table to create a Cell Update binding to get the pressure readings into the table.

When adding a Tag or Property reference, be sure that the cell is only selected and that the cursor is not placed in the Value cell.
The cursor in the cell is used for typing in a static value, and trying to enter in a Tag or Property reference will not work.

This is used to enter in static text:

This accepts Tag and Property references:

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Table

1.

2.

3.

4.

Open the property binding icon on the property. Click the binding type, and you'll see your dataset along with Data Cell Update
a area.Cell Bindings
Select the first value, and click the Add icon in the Cell Bindings area to add a row. You'll notice it added a row number, column
name, and blank value cell because we selected a cell from above. What you place in the blank cell determines what the Value
value will be in the table.

Select the first and first cell in the Cell Binding area. Use the Tag icon to the right to select the Tag reference (i.e., Row Value
Ramp0). You can also manually type in your Tag reference, or place in a property reference instead. Click . OK

Now, you have the value of that Tag to the Value column in row 0. Repeat Step 3 for the other three Tags so that the Cell Binding
area looks like the image below, then click . OK

4.

5.

1.

You can see that the Table values are now updating with the value of their respective Tag.

Adding a Realtime Indicator to the Linear Scale Example
The is a component that has a special Scale Indicators customizer that allows you to configure setpoints. You can setup the Linear Scale
value, color, style, and more for each of the indicators. During runtime, these values are normally static, as there is no way to setup a binding
in the customizer. However, the customizer merely configures a dataset that the component uses to create the indicators. If you look at the
Indicators dataset property of the Linear Scale, it has all of the properties that are configurable in the customizer. Changing them from the
customizer will alter the dataset, and changing the dataset values will alter what you see in the customizer. Knowing this, we can setup a Cell
Update binding to manipulate the values during runtime.

Let's add another indicator to the Linear Scale component and configure it.

Select the Linear Scale and right click on the . Customizers > Scale Indicators

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Linear+Scale

1.

2.
3.

a.
b.
c.

Click on the icon to add a new indicator.Add
Click the radio button and set the following properties for the Arrow. Arrow

Value: 65.0
Length: 50.0
Width: 4.0

3.

4.

5.

a.

b.
c.
d.
e.

Click . This new indicator will be whatever the current value is.OK

In addition to changing the value of the realtime Indicator, you can also change its color based on its value. If the value is above the
high indicator (i.e., 85), the Arrow will change to red, and if the value is below the green indicator (i.e., 15), it will change to green.
To accomplish this, setup a on the Linear Scale of type color: custom property

With the Linear Scale selected, right click on the .Customizers > Custom Properties

Click the icon to add a property.Add
Enter as the Name of the property."Color"
In the Type column, choose Color from the dropdown list.
Click to save the custom property.OK

https://legacy-docs.inductiveautomation.com/display/DOC80/Working+with+Vision+Components#WorkingwithVisionComponents-CustomProperties

5.

e.

6.

7.

Next, we'll setup a Tag binding on the custom property. Select the Linear Scale component, then click the Number-to-Color Color
Binding icon next to the property. Color

The values shown in the image below are based on the static setpoints that were set in the Linear Scale customizer.

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Animation+in+Vision#ColorAnimationinVision-TheNumbertoColorTranslator

7.

8.

a.

b.

c.

Finally, setup a Cell Update binding on the dataset property of the Linear Scale. Notice below that both of the cell Indicators
bindings are for the same row, just different columns. This is fine, as long as there aren't duplicate bindings for the same cell.

Bind the Value cell to the same Tag used in the custom property Color binding to get the value. Click the icon, Add

click the icon and select the tag, then clickTag Ramp1 OK.

Bind the Color cell to the Color custom property we just created. Click the Add icon, click the Property icon and
select the property, then clickColor OK.
Click OK.

8.

9. Now, the Linear Scale has an Indicator that moves to show a realtime value and changes color whenever it goes outside the
setpoints. The image below shows the indicator below the setpoint, within range, and then exceeding the setpoint.

Related Topics ...

Function Bindings
Property Bindings in Vision
Tag Bindings in Vision
Indirect Tag Bindings in Vision

1.

2.
3.
4.

5.

Function Bindings

Binding Properties to Prebuilt Functions
The Function Binding is a generic binding type that lets you bind a dataset property to the results
of a function. It allows any of the function's parameters to be calculated dynamically via Tag and
property bindings. The function that you choose determines the parameters that are available. The
most common functions are the Alarm Status, Alarm Journal, and Audit Log functions, but there
may be more depending on the modules you have installed.

Using Function Bindings to Customize

While there may already be an Alarm Status Table component, it may not be able to customize to
exactly fit your needs. The Table component has more customization options. When you use a
Function Binding on the alarm status, you can pull that same data into a Table component, and
then customize the table exactly how you need.

The following example shows the default settings for the Function binding. Notice how each field
has Tag and property binding buttons next to them. This allows you to make this entire function
dynamic by binding either Tag or property values to the different values of the function.

In the Designer, drag a component into your workspace. Table

Select the binding icon for the property.Data
This opens the property binding window. Select the binding. Functions
Select a from the dropdown. In this example, we used the Binding Function Alarm
Status binding function and the default settings for alarm state.

Now our Table component is pulling in similar information as the Alarm Status Table, but
we have the freedom to customize the table exactly how we need using any of its
available scripting or extension functions, or its customizer. We can also add our own
buttons to acknowledge or shelve alarms using our own scripting functions. This may be
more work in setting it up then the generic Alarm Status Table component, but it allows for
full control over what is being displayed and what can be done with that information.

On this page

...

Binding Properties
to Prebuilt Functions

Using Function
Bindings to
Customize

Function Binding

Watch the Video

https://www.inductiveuniversity.com/video/function-binding/8.0

5.

Color Animation in Vision

Using Color on Components
Using color on components is an important part of creating effective HMIs. While static colors can
help identify specific features on the screen, dynamic colors can help draw the users attention to
certain areas. Making color type properties such as Fill Paint dynamic works a little bit differently
than other properties with simple types. There typically aren't Tags of type color, so the way we set
up bindings on these types of properties works a little bit differently, and we have a few options
available to us.

Using Expression Bindings
You can use the expression language to calculate a color using the function. If you have a color()
color that depends on multiple properties, then using an express is recommended to evaluate
correctly. This first example returns a static color using the Fill Color property.

Expression

// binding on the Fill Color property
color(255,0,0) // static red color

On this page

...

Using Color on
Components
Using Expression
Bindings
The Number to
Color Translator
Style Customizer

Style Customizer
Window
Value Conflict
Style Customizer
Example

This example takes a Tag value and translates it to a color that ranges from white to blue as the Tag value increases.

Expression

// binding on the Fill Color property
color(255,255,255-({tag value}/100*255)) // fades from white to blue when Tag value goes from 0 to 100 %

If you have multiple properties or Tags, you can use the logic Expression Functions to select between a few colors.

Custom Properties

if({Tag1}>50,
 if({Tag2},
 3, // if tag1>50 and tag2 is true
 1), // if tag1>50 and tag2 is false
 if({Tag3},
 2, // if tag1<=50 and tag3 is true
 0)) // if tag1<=50 and tag3 is false

This example takes one integer value and selects from several options.

Expression Referencing a Tag

 // binding on the fill color property
switch({HOA tag},
 0,1,2, // off, on, hand
 color(255,0,0), color(0,255,0), color(255,255,0), // red, green, yellow
 color(0,0,0)) // black (fallback color)

The Number to Color Translator
The Number-to-Color Translation, commonly known as Color Mapping is where you map a value to a color within a binding. When selecting
a binding type where producing a color won't be possible, the Number-to-Color Translator will appear at the bottom of the binding window.
This includes , , and . The way the Number-to-Color Translator works is that for every Property Bindings Tag Bindings Indirect Tag Bindings
number range there is a set color. The binding then translates the numeric value into a color based on the mapping table. You can choose a
different color for each value, and even make it blink between two different colors. If you need to add or remove values, use the Add New

 icon or icon on the right side of the Number-to-Color Translation table. There is a Translation Delete Selected Translation Low
 option so when a value falls below your lowest value, a default color can be setFallback Color .

https://legacy-docs.inductiveautomation.com/display/DOC80/color

In this example, the fill color two parts of the conveyor symbol has been bound to the Ramp1 tag, enabled value. When the Ramp is enabled
(value = 1), the symbol displays parts in the normal, yellow color. When the Ramp is disabled (value = 0), the fill color on those two parts is
red, indicating the conveyor belt is not running. For more information on how this was applied to a symbol, see .Images and SVGs in Vision

Style Customizer
Many Vision components support the , which lets you define a set of Style Customizer
visual styles that change based on a single . Typically, you'll have a property on Driving Property
your component that you want to use as a driving property (like a discrete state), which then drives
multiple visual properties, like the font, border, and foreground color, to change to a specific style
that was setup per state beforehand. Style Customizer lets you define these relationships all at
once, and lets you preview them too! Without styles, you would have to go to every property and
bind them all individually. Component Styles

Watch the Video

Style Customizer Window

The Style Customizer window has multiple parts to it.

Driving Property - The value of the selected property will be used to determine the style used. Only certain properties on the
component can be used as driving properties, but the most common are discrete state properties. Custom Properties can also be
used here.
Styled Properties - Here you can select which properties will be used in the styles. Any properties that are in the left panel are
available to be used in the styles, while properties in the right panel are already being used in the style. Properties can be moved
between the panels by selecting it and clicking the appropriate arrow button.
Styles - The list of styles that will be available for this component. Each style has a Value property on the left. When the value of the
Driving Property is greater than or equal to the value of a style, that style will be applied to the component. Each style gives a
preview of what it looks like, and can be expanded to by clicking the expand icon to edit the properties within that style.

You will notice in the image below that the properties being used in the Styled Properties are the Background Color, Border,
Foreground Color, and Text, which corresponds to the properties we have available within each style in the Styles area. Each style
can also be animated by clicking the animation checkbox. This allows you to add different steps to the style, where each step of the
style can have its own unique style. Each step also gains a Step Duration (ms) property that is used to determine how long the step
is active for, as shown in the fourth row. This is typically used to create a flashing effect, where the component will flash between two
different colors such as red and gray.

Value Conflict

https://www.inductiveuniversity.com/video/component-styles/8.0

1.
2.
3.
4.

You can bind a property that is already being used by a style, but a warning icon will appear on the property in the Property Editor. This
means there is a conflict between the binding on the property, and the style on the component. As a general practice, only the style or
binding should write to the property, not both.

Style Customizer Example

The best example of the Style Customizer in action is the , as this component uses the style customizer to work properly Multi-State Indicator
and switch between different states, so it can be used as an example already built in. However, the many other components can use the
Style Customizer, so this example sets up styles for a Cylindrical Tank.

Add a Cylindrical Tank component to the window, and add a Tag to the property. (This example uses a Rampt1 tag).Value
Right click on the Cylibdrical Tank and go to .Customizers > Style Customizer
Select a . Here, the Value is a good choice as we can change the tank to flash when the contents get too high.Driving Property
In the the Border, Liquid Color, and Show Value.Styled Properties select

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Multi-State+Indicator

4.

5.
6.
7.

a.
b.

c.

8.

9.

Next, we need to set up the different styles. Click the icon three times to add three styles.Add
Leave the first style set to Value 0.00, and don't change any of the other settings.
Set the second style to Value 45.

Click the icon. Expand
In the Border Chooser, select the style, set the line width to 5px, and the line color to yellow. This way, it is Line Border
obvious the tank is filling up.
Set the to blue or keep the default color. Liquid Color

For the third style, we're going to animate it and and create two steps to alert the user that the tank is almost full. Set the third style
to 90, then click the icon. Set the following options for the first step:Value Expand

Animate checkbox - checked
Step Duration 500 ms.
Border - Line Border Orange and set the Line Width to 5px, and the line color to Orange.
Liquid Color - Orange
Show Value checkbox - checked

Click the icon to add another step. Set the following options for the second step:Add
Step Duration 1000
Border - Line Border Red and set the Line Width to 5px, and the line color to Red.
Liquid - RedColor
Show Value checkbox - checked

9.

10.
11.

Click to save the style.OK
In the Vision Property Editor, when the changes to >/= 90, the Tank component and border will change to reflect the style Value
settings. The tank colors and border will flash between red and orange.

Vision Templates

Templates are a simple but a very powerful feature in Ignition that you can use with the Vision
windows. The power comes from the ability to modify only the template in one location while
affecting all of the instances used throughout the project. HMI and SCADA systems typically have
a lot of repetitions in their screens. You might use a group of the same components over and over
within your project. The data driving each set of graphics is different, but the graphics themselves
are copies of each other. You can make a single template and use instances of the template over
and over again.

When using templates, you define the graphical display in one place, called the master template.
You then use this master template many times in your project on multiple windows, thus making a
number of template instances. Any changes made to the master template are then reflected in
all of the template instances. Using templates early in your project development for any repeating
displays can save a significant amount of time later on.

Without templates, the only way to do this is to copy-and-paste the components then re-bind them
each time you want another. This is simple, and it works, but it can cause major headaches and
time consuming corrections later on because if you ever want to make a change to how they are
represented, you're stuck making the change to each copy of the group.

On this page

...

Template Properties
Template
Parameters and
Internal
Properties

Indirection and UDT
Tags

Standard
Indirection
UDT Parameter

Changing Template
Path
The Drop Target
Parameter
Resizing Templates
Nested Templates
Accessing
Components Inside
a Template Instance

About Templates

Watch the Video

Template Properties
Template Properties (called Template Parameters) allow each template instance to reference different data. Because the primary use of
templates are the ease of maintaining repeated user interface elements, correct use of Template Parameters is very important. This is very
similar to the concept of Parameterized Popup Windows. In that case, any Custom property on the Root Container of the window is used as
a parameter, and is passed into the window when it is opened. With Templates, you have a property in the root of the master template that is
exposed when you drop a Template Instance on a window.

Template Parameters and Internal Properties

When you open the window (right-click the checkered-box of the template and select Custom Properties Customizers > Custom
), you'll notice it is different than the Custom Properties of all other components. There are two kinds of custom properties here, as Properties

follows:

Template Parameters
These parameters appear on each , allowing each instance to be configured differently. Commonly, this is some template instance

https://www.inductiveuniversity.com/video/about-templates/8.0

sort of indirection. For example, if you have a template representing motors, you might have MotorNumber as a parameter property.
Then you can use that property as an indirection variable in other bindings within the template. Parameter properties are not
bindable from the template master design. When you use the template to create a template instance, the property becomes within
bindable. This ensures that the property only has a single binding configured for it.

Internal Properties
These properties cannot be used as parameters in your instances. They show up when designing the template master, but it does
not show up on the template instances. Internal properties are bindable from within the template master design. These properties
are intended to be used for the internal workings of the template.

Indirection and UDT Tags
There are two primary ways to achieve indirection when using templates. Let's continue to use the example of a motor. Your system has
many motors in it, and your template is used to display the status of the motors and control the motor's running mode. The goal is to be able
to drop instances of the template onto your windows, and configure them in a single step to point to the correct motor's Tags.

Standard Indirection

If the Tags representing the datapoints of each motor are arranged in an orderly way in folders or with a consistent naming convention, you
can use to configure your template. You can add a parameter such as MotorNum to the template. Then you configure standard indirection
the contents of the template using indirect Tag binding, where the value of MotorNum is used for the indirection.

UDT Parameter

If your motors are represented by a , you can save some effort and directly. Make User Defined Type (UDT) use a property of that type
your indirection property the same type as your custom data type. Then inside your template, you can use simple property bindings to create
a link to the members of the UDT. When you create a template instance, you can simply bind that property directly to the correct Motor Tag,
and all of the sub-Tags of motor are correctly mapped through the property bindings.

Changing Template Path
An instance of a template on a window has a property called . You can change Template Path
this property on a window dynamically, and it can be bound to anything that produces a valid
template path. For example, if there are two tank templates in a folder called Tanks, one template
is called Tank A and the other is called Tank B. Each tank has a different look, but they have the
same Custom properties. Their respective template paths are Tanks/Tank A and Tanks/Tank B.
The template rendered on a window can swap between Tank A and Tank B by binding the
instance's Template Path property to any string reference that says Tanks/Tank A or Tanks/Tank
B.

Changing Template
Path

Watch the Video

The Drop Target Parameter
When you specify parameters in the Custom Properties window (right-click the checkered-box of the template and select Customizers >

), you can set one of the parameters as the Drop Target. This allows you to drop a Tag of that type onto your template Custom Properties
instances or onto a window to facilitate even quicker binding. For example, let's say that you have a parameter that is an integer and you've
made it the drop target. If you drop an integer Tag onto a window, your template appears in the menu dropdown list of components which is
displayed. Choosing your template creates a template instance and binds that parameter to the Tag.

This also works for UDT Tags. Let's say you have a custom data type called Motor and a template with a Motor-typed parameter set as the
drop target. If you drop a motor Tag onto a window, it creates an instance of your template automatically. If you have more than one template
configured with Motor drop targets, you have to choose which template to use.

https://legacy-docs.inductiveautomation.com/display/DOC80/Template+Indirection#TemplateIndirection-IndirectBinding
https://legacy-docs.inductiveautomation.com/display/DOC80/User+Defined+Types+-+UDTs
https://legacy-docs.inductiveautomation.com/display/DOC80/Template+Indirection#TemplateIndirection-UDTsinTemplates
https://www.inductiveuniversity.com/video/changing-template-path/8.0

Resizing Templates
You can configure the layout of each template so it resizes properly.

By default, when you drag a template into the window from the Project Browser, the size of the
instance is exactly the same size as the master template. You can make the size larger or smaller.
To go back to the same size as the master template, right-click on the instance and choose Revert

.to Master size

For every component or template instance you add to the window, you can pick a Layout option as
to how it is going to resize in the Client. Right-click on the instance, select from the menu, Layout
the Layout Constraints window displays showing all the default settings.

Template - Resizing
and Enable Layout

Watch the Video

https://www.inductiveuniversity.com/video/template-resizing-and-enable-layout/8.0

To learn more about layout, .see the pageComponent Layout

If your template instance resizes in the client, then it will stretch all of the components inside it in
the same way a works. That is: it will ignore any layout settings and stretch Component Group
without maintaining aspect ratio. If you want the template instances to respect your layout settings,
set the property to true in the template definition. Enable Layout

Nested Templates
You can embed templates inside of other templates. The nested template behaves like a
component. This can be useful if the project can be broken down into many similar, small parts.
Instead of building a template for a tank with a gauge, a motor with a gauge, and a compressor
with a gauge, it might instead be better to first build a simple gauge template that can then be
added to each of three templates so that it already is setup correctly.

Simply drag the already made template into the new template, just like you would onto a window. I
can easily use an indicator template that I made to display values from a motor template, or values
from a tank template, as long as I setup the indicator template with the proper indirection. This
way, I only have to setup the indicator once and write in a few parameters, instead of having to
customize the indicator the same way for every template that it gets added to.

Template
Composition

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC80/Working+with+Vision+Components#WorkingwithVisionComponents-ComponentLayout
https://legacy-docs.inductiveautomation.com/display/DOC80/Working+with+Vision+Components#WorkingwithVisionComponents-ComponentGrouping
https://www.inductiveuniversity.com/video/template-composition/8.0

Accessing Components Inside a Template Instance
When working with a Template Instance, the components inside that instance or normally hidden, and otherwise inaccessible. However, you
can access these components via scripting. It helps to think of Template Instances as multi-layer containers. In most cases, users interact
with only the Outer Layer, which contains the Template parameters, and the other default Template Instance properties. A Python script can
access the Inner Layer, which then provides access to the components within.

A script can traverse to the Inner Layer from the Outer Layer with a call. getComponent

Pseudocode - Acessing the Inner Layer

myTemplate = event.source.parent.getComponent('MyTemplate')

The '0' in the first getComponent call effectively refers to an index value of a component, which
happens to be the Inner Layer.
myTemplate.getComponent(0)

From the Inner Layer, a script can then call again to access any components within. Assuming a Template with a Label getComponent
component named "Label", we could access the Text property with the following:

Pseudocode - Accessing a Component From the Outer Layer

myTemplate = event.source.parent.getComponent('MyTemplate')

print myTemplate.getComponent(0).getComponent('Label').text

In This Section ...

1.

2.

3.

4.

5.

Creating a Template

Templates are a simple but very powerful feature that you can use with your Vision windows.
Templates are a built once, in one place, which is called the master template. You then create
template instances throughout your project. Each of these instances will have the same
components and properties as the master template, and will automatically update as changes are
made to the master template.

Creating a template is easy. To start, right click on the Templates section of the Project Browser
and select New Template.

Basic Template
Here we create a basic template. After the template is configured, you can create multiple
instances of it throughout your project.

In the Project Browser, right-click and select .Templates New Template

A checkered box is displayed in the design space where you design your template. The
checkered box means that the template is completely transparent. You can set a
background if you want.
Right-click on and click to change its name to something else, for New Template Rename
example "Tank".
Drag a Cylindrical Tank and a Label component onto the screen. Resize the components
to fill the area of the template.
Bind the Value of the tank to a Tag, and set up the label to be a name for the tank.

Now that we made a template, use that template on a window. Navigate to a window, and
then click and drag our tank component onto the window. The template can be dragged
onto the window multiple times to create multiple instances of the template, or even added
to other windows.

On this page

...

Basic Template
Dynamic Templates
Edit a Template

Example - Send
a Template to a
Different Project

Template Custom
Properties
Creating the
Template Instances

Basic Template

Watch the Video

https://www.inductiveuniversity.com/video/basic-template/8.0

1.
2.

3.

Dynamic Templates
While the basic template is a good example of what a template is, the real power of the template is its ability to be dynamic. The template
can create parameters that can accept values from the instance, and use them throughout the template. This way, instead of always
displaying Tank 1 values, we can pass in a tank value for the cylindrical tank component to use.

In the Tank template, right click on the gray background and go to .Customizers > Custom Properties
Click the plus button to add a Template Parameter. Give it a name like tankValue, and click OK. There should now be a new
property on the Tank Template object called tankValue.

Now bind the Value property of the cylindrical tank to the tankValue property that we just made. Note that it will be 0 right now, but
we will pass in a value later.

3.

4.

5.

We also want to change the label, since this template won't always be pointing at Tank 1. So we can bind the Text property of the
label to Tank Template's Instance Name. This way, whatever we name the template instance is what the label will show.

Back on our window, we want to change our two instances so that the first one is called Tank 1, and the second is called Tank 2.
Notice how the labels change when we change the name of the template. Select your second Tank, and change the property Name
to Tank 2.

5.

6.

7.

We also want to bind the property of each instance to separate Tags. In this example, you can do this simply by tankValue

selecting Tank 2 and clicking on the binding icon for the property and selecting another Tag.tankValue

We now have two instances of the same template, but they are displaying different information because we are passing different
values into each.

Edit a Template

You can open a template for editing by double-clicking on it in the Project Browser, or by double-clicking any instance of that template within
a window. You design your template the same way you design windows: by adding components to it, and configuring those components
using property bindings and scripting.

There are a few differences between templates and windows from an editing perspective. Templates, unlike windows, have a transparent
background by default. This can be changed simply by editing the background color of the template. Templates also do not have the concept
of the "Root Container" - the template itself acts like a container.

Once you change the master template, all the instances of that template are updated.

Templates are a project resource. As such they can be copied, duplicated, protected and more. There are several actions available with a
right click menu.

Action Description

Use in
Window

Places the selected template on the current window.

Scripting
The following feature is new in Ignition version 8.0.11

 to check out the other new featuresClick here

Opens the Component Scripting Window where you can set scripting on this template. For more information, see Script
.Builders in Vision

Notes Opens a popup window where you can make notes about the template.

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.11

1.

2.

Duplicate Duplicates the template in the Templates folder.

Rename Renames the template.

Cut Cuts the template, but leaves it on the clipboard.

Copy Makes a copy of the template on the clipboard.

Copy
Path

Copies the path to the template and places it on the clipboard.

Paste Pastes a template that's currently on the clipboard.

Delete Deletes the selected template.

Protect Once a project resource protected, it cannot be changed except by someone that has the permission to unprotect it, and
modify it. For more information, see .Project Security in Designer

Send To Sends this template to another project on this Gateway.

Export Opens export Project Resources window. where you can export this template and other resources. For more information, see P
. roject Export and Import

Example - Send a Template to a Different Project

You can share Templates with other projects.

To send a Template to a different project, right click on the template name and choose . Send to

A list of existing projects is displayed. Choose a specific project, or select All other projects if you want to send the template to all
projects.

If a Template by the same name already exists in the target project, it will be overwritten.

https://legacy-docs.inductiveautomation.com/display/DOC80/Project+Security+in+Designer
https://legacy-docs.inductiveautomation.com/display/DOC80/Project+Export+and+Import
https://legacy-docs.inductiveautomation.com/display/DOC80/Project+Export+and+Import

3. A confirmation message is displayed. Click Yes to confirm.

Template Custom Properties
Templates have the capability to incorporate custom properties. In this way, they are the same as any other Ignition components. The main
difference between the custom properties for an Ignition component and a template is that the template has internal properties and template
parameters.

Internal Properties - Internal properties help facilitate the bindings within a template in the same way that a window's root container
will help facilitate bindings between components that make up the template. When a template is deployed onto a window the internal
custom properties are not exposed to the world outside the template.
Template Parameters - The template parameters are the template's custom properties that are exposed to the outside world. In
other words, when a template is deployed onto the root container of a window, the template parameters are available for binding with
the objects on that window or to Tags.

Creating the Template Instances
Once you've made your template, you can use it on any of the windows in your project by doing any one of the following steps:

You can drag the template from the Project Browser into an open window just like you can drag components into the window for
display.
You can right-click on the template in the Project Browser and choose , which will let you place the template inside a Use In Window
window with another click.
You can drag a Tag from the Tag Browser to a window and from the pop-up menu, which is displayed, you can choose a template.
This only works if the template has a configured Template Parameter that been enabled as a .drop target

The template instance can then be moved and resized like any other component.

Related Topics ...

User Defined Types - UDTs

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Templates#VisionTemplates-TheDropTargetParameter
https://legacy-docs.inductiveautomation.com/display/DOC80/User+Defined+Types+-+UDTs

1.

2.

a.

Template Indirection

Indirection in Templates
You can create templates that point indirectly to a set of Tags based on a simple parameter. This
is very helpful when you have a large number of UDTs with the same type of Tags that only differ
in one parameter. For example, lets say you have 100 Tank UDTs that all have the same kind and
number of Tags. The only thing that is different is the Tank number.

If each Tag inside the UDT has a Tag path that looks like this:

Tanks/Tank 1/Volume

You can create a Template Parameter on the Custom Properties that can help make the template
indirect. There are two main ways of doing this. The first method is to pass in an indirection value
so that can be set up within the template. In this case, we would want to Indirect Tag bindings
pass in a tank number, which can be substituted in for the tank number in the Tag Path. The
second method is to pass in a reference to the entire UDT, essentially turning that UDT reference
into a property that we can use within the template.

On this page

...

Indirection in
Templates
Indirect Binding
UDTs in Templates

Indirect Binding
This example demonstrates, how to set up a parameter to be used as an Indirect Tag binding.

Create a new template, and call it Tank. Right click on the background of the template,
and select , and add a Template Parameter called Customizers > Custom Properties
tankNumber of type Integer.

Next, add some components to our template, being sure to utilize the Template Parameter
 that we created earlier to make them indirect.tankNumber

Add a component at the top with a simple expression binding to clearly Label
display what tank is being shown in the template using the property.tankNumber

Expression - Indirect Label

"Tank " + {Tank.tankNumber}

Template - Indirect
Binding

Watch the Video

https://www.inductiveuniversity.com/video/template-indirect-binding/8.0

2.

a.

b.

3.

Add a component that has an Indirect Tag binding to the Cylindrical Tank
Volume Tag using the tankNumber property for indirection.

The only thing left to do is drag a few instances of the Template onto a window. Then
enter a different value into our for each template and all of the templates will tankNumber
now display different Tag values from one another. In addition, it is very easy to bind the
tankNumber property to something, allowing you to easily change what tank the template
is displaying in the client during runtime.

UDTs in Templates

1.
2.
3.

4.

a.

b.

When adding custom parameters to a template definition, the type of the property can be set to a U
. This creates a complex property with several child properties, where ser Defined Type (UDT)

each sub property represents a tag in the UDT. These properties can be bound to within the
template. An can be passed into a Template Instance just like any other Tag instance of a UDT
would.

When using a UDT as a parameter in a template, be mindful that the and Template Canvas Templa
 components can not make use of UDT parameter types on embedded templates: te Repeaters

when using either component, on standard data types is the preferred approach. Indirect Binding
Template – UDT
Parameter

Watch the Video

Create a new template, and call it . Tank2
Right-click on the background of the template, and select Customizers > Custom Property.
Add a Template Parameter called , but this time, we want the type to be a UDT (named "Tank_UDT") that we have already tankUDT
created.

Next, add some components to our template: Label, Cylindrical Tank, and Slider. Be sure to utilize the Template Parameter .tankUDT

Add a component at the top of the template to show the name of the tank. Using a property binding, bind the label to Label
the Tag property of the UDT property in the Meta folder. This will pull the name of the UDT instance in as Name tankUDT
the title of the template. Don't worry if it makes your label blank, as there is nothing in that custom property yet.

Expression - Indirect Label

{Tank.tankUDT::Meta.TagName}

Add a component and bind it to the property within the property.Slider sliderValue tankUDT

https://legacy-docs.inductiveautomation.com/display/DOC80/User+Defined+Types+-+UDTs
https://legacy-docs.inductiveautomation.com/display/DOC80/User+Defined+Types+-+UDTs
https://legacy-docs.inductiveautomation.com/display/DOC80/UDT+Instances
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Template+Canvas
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Template+Repeater
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Template+Repeater
https://www.inductiveuniversity.com/video/template-udt-parameter/8.0

4.

b.

c.

5.
6.

Add a component and bind it to the Slider component's property. Cylindrical Tank Value

Next, add an instance of the template onto a window. In this example, we added three instances. Tank2
Bind the property to each of the UDT instances. In the image below, we selected the and bound thetankUDT Tank 3 instance

 template property to the Tag. The Tag bindings to the UDTs can even be made indirect to allow the passed UDT to tankUDT Tank 3
be changed at runtime.

You can see how easy it is to create these tanks using UDTs.

6.

Related Topics ...

Using the Template Repeater
Using the Template Canvas

1.

2.
a.

b.

Using the Template Repeater

The Template Repeater component lets you easily create multiple instances of a master
template for display on the HMI. Each instance shown in the Template Repeater has the same
look, feel, and functionality of the master template. The instances can be arranged vertically,
horizontally, or in a "flow" layout, which can either be top-to-bottom or left-to-right. If there are too
many instances to fit, a scrollbar is added to the display. The Template Repeater also gives you
the ability to pass parameters to each instance of the template, making the templates dynamic.

The Template Repeater can create multiple template instances in two different ways, which will
also affect how it passes parameters to those instances. The first is mode, which will allow Count
you to specify how many times the Template Repeater will repeat a template. It will then use the
index number of each template as a parameter that it will pass into the template. The second
method is mode, where each row of a dataset will be a new template instance and each Dataset
column will be a parameter that will be passed into the template. This is useful if you have multiple
parameters that need to be passed into a template. See the page for a Vision - Template Repeater
more detailed description of this property and how it works. We will go over both methods of using
the repeater below.

Creating a Template
Before we use the Template Repeater, we need to first have a template that we need multiple
copies of. We used Ramp Tags in the Generic Simulator device built into Ignition. The template
will have a label at the top with the ramp name, and it will display the ramp number value. To do
this, our template needs to have two parameters. One called which will be used to RampNumber,
display the ramp number and also used for in an indirect Tag binding. The second parameter
called , which is passed in a string name that is the name of the ramp that I made up. RampName
The steps for making this template are listed below, or you can skip ahead to the next section if
you are familiar enough with making templates.

On this page

...

Creating a Template
Using the Template
Repeater with
Count Mode
Using the Template
Repeater with
Dataset Mode

Template Repeater

Watch the Video

In the Templates section of our Project Browser, create a new template. I named mine, Ramp_Example. See the section Templates
for a more detailed description on what templates are and how to use them.
We are going to want to pass in a value to the template, so we need to create a Template Parameter.

Right click on the Root Container, select and add a Template Parameter called Customizers > Custom Properties RampN
, and make it an type.umber Integer

Add a second Template Parameter called , and make it a type.RampName String

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Template+Repeater
https://www.inductiveuniversity.com/video/template-repeater/8.0

2.

b.

3.
a.

b.

4.
a.

Next, add some components to our Template.
Add two Numeric Labels and one Label. I also added two extra label components, and manually typed in some static text
into their property. In one label, I entered "Ramp Number" and in the other, "Ramp Value".Text
Resize the components so that they are easy enough to read. Place the blank Label component at the top of the Template,
and place each Label that we wrote text into next to a Numeric Label.

Next, setup some bindings on our Template.
Using a , bind the property of the blank Label component at the top of the Template to the property binding Text RampName
Template Parameter.

4.
a.

b.

c.

Using a property binding, bind the property of the Numeric Label next to the "Ramp Number" label to the Value RampNumb
 Template Parameter.er

Using an , bind the property of the Numeric Label next to the "Ramp Value" label. We bound it to indirect Tag binding Value
a Ramp Tag that is in our Tag Browser, using the Template Parameter as the indirect reference for the RampNumber
number in the name of the Tag. It should look similar to the image below.

Remember to remove the number portion of the tag name and replace it with {1}. For example, [default]Ramp
/Ramp0 becomes [default]Ramp/Ramp{1}.

4.

c.

5.

1.
2.

The template is now finished and ready to use. See the image below for an idea of what mine looks like. Yours should look similar.
Note the two Template Parameters, as well as the placement of the components. The label at the top that can't be seen because
there is no text in it.

Using the Template Repeater with Count Mode
Now let's take a look at how to use the Template we just made in a Template Repeater.

On a new window, drag a component. Resize it so that it is taller than it is long.Template Repeater
With the Template Repeater selected, find the property, and find the name of the template that we just created in the Template Path
drop down menu.

2.

3.

4.
5.

6.

With the Template Repeater still selected, find the property. Enter in ' ', which was the name Index Parameter Name RampNumber
of one of our Template Parameters from our Template.
Ensure that the property of the Template Repeater is set to Count.Repeat Behavior
In the property of the Template Repeater, set the value to '5'.Repeat Count

You should see your Template repeated five times within the Template Repeater. Notice that our Ramp Number value in the
Template corresponds to the index value of the Template, 0 through 4 because it is 0 based. You should also see that the value in
our Ramp Value component corresponds to the value of one of our Ramp Tags.

6.

1.

2.

Your Repeater is complete. You can modify the Repeat Count to change how many times the Template gets repeated.

Using the Template Repeater with Dataset Mode
In our previous example, although we were able to successfully pass in the index parameter into our Template, we were not passing
anything into the Template Parameter and because of this, the blank label at the top of our Template remained blank. This is RampName
because mode only allows a single index parameter to be passed in. However, since we want to pass in two parameters, we can Count
instead use mode. In addition, because we are going to be defining a dataset to pass in parameters, we don't have to use a 0 Dataset
indexed parameter, and can instead use whatever values we want. We will use the same Template and Template Repeater from before.

On the Template Repeater, set the Repeat Behavior to . All of the Templates that were previously in will temporarily Dataset
disappear.

Click the icon on the property of the Template Repeater. You should see a new popup Dataset Viewer Template Parameters
that allows you to build a dataset.

2.

3.

a.

b.

4.

First, we'll add two columns to our dataset.

Click the Add Column icon. Set the Name as ' ' in , and enter as the . Click RampNumber Position '0' 'Integer' Type Ad
.d Column

Click the Add Column icon. Set the Name as ' in , and enter as the . Click RampName' Position '1' 'String' Type Add
.Colum

Next let's add some rows by clicking the Add Row icon. Click it five times to add five rows.

Make sure the name of each column exactly matches the names of the Template Parameters (andRampNumber
. They are case sensitive.RampName)

5.

6.

7.

Add in some values for the column. Since we are defining all of the values, we don't have to start with a RampNumber RampNumber
of '0'. In fact, we don't even need to have them be in sequence! We do need to make sure that the numbers each correspond to one
of our Ramps, so enter in a value through for the column for each row. In this example, we used 2, 5, 7, 3, 8 in '0' '9' RampNumber
that order.
Next, add some values for the . These can be whatever you want, since we are going to be giving unique names to RampName
each of our Ramps. When finished, the dataset should look something like the image below. Click the button to save your OK
dataset.

Notice how we now have our five templates back, and they are using the parameters that we are passing in from the dataset we just
created. The Templates are receiving the parameters in the order that you made them in the dataset. We can also see that each
Template instance corresponds to a specific ramp.

Dataset mode is great when you need to pass in multiple parameters, or if you have a single parameter that is not zero based. In addition to
manually specifying values like we did in this example, you can instead setup a binding on the property to something Template Parameters
like a database table. This allows you to easily modify the templates that are being displayed in the window simply by modifying the database
table.

Related Topics ...

Using the Template Canvas

1.

2.

3.

4.
5.

6.
a.
b.

Using the Template Canvas

The component works much like the Template Repeater in that it can easily Template Canvas
create multiple copies of a master template. What makes the Template Canvas unique is that it
can display instances of multiple master templates, and set their layout in any way you want. The
Template Canvas has a customizer that can help put the templates together within it, but the
customizer is just driven by a dataset property on the Template Canvas. The Template Templates
Canvas can be made dynamic by setting up a binding on the Templates property, such as a query
that pulls in an entirely new dataset of information, or even a cell update binding, which updates
individual cells of the dataset. With that, you can load new templates into the canvas at runtime, or
even move the templates around.

The Template Canvas has two layout systems: , where each template Absolute Positioning
instance has an absolute position within the Template Canvas, and , which Layout Positioning
uses the MiG Layout system to place the instances within a grid like system.

Creating a Template
Before we get started with the Template Canvas, we first need to have a template. Here we are
going to make a simple Form Input template, that consists of a Label and a Text Field. The
template will need two parameters. A parameter which is what will get displayed in the Label_Text
label, and a which we can use to pass user input outside of the template by TextField_Text
making it bidirectional. This template is a great way of quickly making user input forms, by using a
template for each piece of info that needs to be collected. The steps for making the template are
listed below, or you can skip ahead to using the Template Repeater in the next section.

On this page

...

Creating a Template
Absolute Positioning
Layout Positioning
(MiG Layout)
Read User Input

Template Canvas

Watch the Video

In the Templates section of our Project Browser, called . create a new template Form Input We are going to want to pass in values
to and from the template, so we need to create Template Parameters.
Right click in the Form Template workspace, and select . Add a Template Parameter called Customizers > Custom Properties Labe

, and make it a type.l_Text String
Add a second Template Parameter called , and make it a type, and click to save your template TextField_Text String OK
parameters.
Next, drag component onto the Template.a component and a Text Field Label
On the component, set the property to . Label Horizontal Alignment Trailing

Finally, we want to setup some bindings on our Template.
Using a , bind the property of the component to the Template Parameter.property binding Text Label Label_Text
Using a property binding, bind the property of the component to the Template Parameter, Text Text Field TextField_Text
and make it .Bidirectional

https://www.inductiveuniversity.com/video/template-canvas/8.0

6.

b.

7.

8.

9.

a.
b.

Set the Size and Position for the components by right clicking on each componet inside to 20 pixels. Next, set the height for the
Form Input template as shown in the image below.
Note, make sure to drag your two components to the top of the template before adjusting the size.

The template is now finished and ready to use. See the image below. Yours should look similar. Note the two Template Parameters,
as well as the placement of the components.
Once you have the properties added and components bound, type a value into each Template Parameter so we can easily tell that
our bindings are working.

Label_Text: Label
TextField_Text: Text

9.

b.

1.

2.
a.

b.

Absolute Positioning
First, we can set up our Template Canvas using Absolute Positioning, which is a little simpler to understand as each template has a width
and height as well as an x and y position.

Drag a component to a window and open the . The customizer provides an easy Template Canvas Template Canvas Customizer
interface to setting up our templates.

Enter in the following values for the first instance:
Name: First Name

2.

b.
c.
d.

3.

4.

a.
b.
c.

Template: Form Input
Absolute Positioning: 0, 0, 200, 20
Parameters: Label_Text = First Name (leave TextField_Text blank)

Click the button to add the instance. The instance will then be visible in the preview section of the window. Add Note that values for
the components are still using the default values for the Label_Text and TextField_Text. This is intentional. The new values will
appear once you hit and close the canvas customizer.OK

The following feature is new in Ignition version 8.0.6
 to check out the other new featuresClick here

Labels were added to the Absolute Positioning properties: X, Y, width, and height labels. A Z-index field was added indicating where
a given template instance should appear in the z-order within the template canvas (top or bottom).

Let's add another instance. Click on the plus icon in the to clear the Add/Edit Instance fields from the prior entry, Instance area
and enter the following:

Name: Last Name
Template: Form Input
Absolute Positioning: 0, 20, 200, 20

Take note of the yellow outline around the instance in the image, and how First Name is highlighted at the top of the
customizer. This means that the instance is selected, and the customizer is in edit mode. This allows you to make
changes to the selected instance. To exit edit mode and add a new instance, click on the button in the lower of Cancel left
the window. Clicking on the button in the lower will cancel out of the customizer.Cancel right

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.6

4.

d.

5.

6.

7.

Parameters: Label_Text = Last Name (leave TextField_Text blank)

Once entered, click the button again. You'll see that you have two instances visible in the preview section of the window. Once Add
both instances are configured, click the button. OK

Now you will see both instances appear in the Template Canvas.

6.

7.

1.

a.

2.

If a new instance needs to be added, it can be added through the Template Canvas Customizer. However, the Template Canvas
also has a property. This property stores all of the data that was entered into the customizer into a dataset, so new 'Templates'
instances can be configured directly on the Templates property. View the dataset by clicking the button next to the Dataset Viewer T

 property. Furthermore, template instance configurations could be stored in a database table, and the Template Canvas emplates
could fetch the data with a SQL Query binding on the Templates property.

Layout Positioning (MiG Layout)
Instead of having to manually enter a size and position for each instance, we can make use of Layout Positioning to have the Template
Canvas determine the best position for each instance, while also making suggestions as to where each instance is placed in relation to
another. The layout positioning uses a grid-methodology to instance placement. Each instance, unless otherwise specified, is considered a
single "cell" in the grid.

Continuing from the example above, the First Name and Last Name instances are using Absolute Positioning. Let's tell the First Name
instance to use Layout Positioning and enter the . This means the next cell in the grid should be placed on the next row. 'wrap' parameter

With the Template Canvas component selected, open the the again, and make the following Canvas CustomizerTemplate
modification to the instance.First Name

Click the radio button for the property and enter the field.Layout Positioning 'wrap'

Don't Mix Absolute and Layout Positioning

We recommend not using both Absolute and Layout Positioning for instances on the same Template Canvas. Select either
Absolute or Layout Positioning for your instances. Layout Positioning will determine the best position for each instance in your
canvas, where Absolute Positioning allows you to manually specify the width, height, x and y positions for each instance.

2.

3.
a.

4.

Click , and the First Name instance will appear to overlap with the Last Name instance. This is because the grid only accounts Apply
for instances using the Layout Positioning.

Next, we can configure the Last Name with Layout Positioning as well. Make the following changes to the Last Name.
Click radio button and enter in the field below.Layout Positioning 'wrap'

4.

5.

6.

Once the changes have been applied, click . You'll notice in the preview section of the window that both instances are now in OK
line.

Open the property by checking the button. Notice that the x, y, width, and height columns are no longer Templates Dataset View
used, but the columns for First Name and Last Name now have a value of layout 'wrap'.

Like the previous example, new rows can be added directly to this dataset. Furthermore, the value means the next template 'wrap'
instance will begin on a new line. Add three new instances for Street Address, City and Account Name. Use either the Template

6.

Canvas Customizer or simply add two new rows in the dataset viewer with the values shown in the image below.

Read User Input
The last step is to read the user input. Put the Designer into and add some values for each text field component. Once Preview Mode
finished, switch the Designer back to , and add a Button component to the window (not the template canvas)Design Mode

Add a script to the Button component using the Code Snippet below - Place the code on the Read User Input Example. actionPerformed
event of your component by double clicking on the Button component and opening the tab.Script Editor

Reference the template canvas component, and call the getAllTemplates() method.
This will return a list of every instance in the canvas
templateList = event.source.parent.getComponent('Template Canvas').getAllTemplates()

Initialize a list. User input from each text field will be stored in this variable
userInput = []

Iterate through each template instance inside the canvas
for template in templateList:

 # add the user inputted value to the userInput list. The values are originally returned in Unicode.
 # the Python str() function is casting the Unicode values as string values.
 userInput.append(str(template.TextField_Text))

Show the values in a messageBox. This could be replaced with an INSERT query, or some other action.
str() is used again to case the list as a string. This only required to work with the messageBox
function
since the function requires a string argument be passed in
system.gui.messageBox(str(userInput))

When running the script, each value should appear in the message box. If you're not getting a value in the message box, make sure the Text
Field property is bound to the TextField_Text template parameter as mentioned in the section, Step 6b.Creating a Template

This example can easily be expanded to do something more meaningful with the input, like store to a database table.

Security in Vision

Client Permissions
Every project's clients are governed by a set of permissions to control what is allowed to originate
from the client. For example: access to construct queries against the database, or the ability to edit
Users and Roles in your authentication profile. To maintain a secure system, these are all set to
disabled by default, but you can enable them for everyone, for specific users, or even for specific
users that are logged into certain zones. See descriptions of these categories and how to change
them on the page.Project Permissions

Client Login Security
Projects are assigned a User Source to authenticate against. All roles that have been defined in
the User Source can be used to to the project.prevent users from logging in

On this page

...

Client Permissions
Client Login Security
Role-Driven Client
Security
Incorporating
Scripting into
Security

Role-Driven Client Security
On the simplest level, security settings can be applied to . Users with different roles can all view the same individual windows or components
project from the client, but the functionality and readability can change based on the roles assigned to each user. Generally, higher level
access provides full functionality to all contents of a project, and lower level access is restricted to generalized read-only privileges.

Below we see the Security Settings panel in action. This panel is the interface that applies Ignition's built-in security settings. Security
settings can be applied to a single component, multiple components simultaneously, or even a whole window. Users who should be allowed
full access can be selected, and restrictions can be applied for users that should not have full access.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Project+Properties#VisionProjectProperties-VisionPermissionsProperties

Incorporating Scripting into Security
The component-based security settings are fairly simplistic: the user either has the required roles, or a restriction is applied. In situations
where consideration for access should go beyond a simple role check, can provide a larger degree of granularity. security-based scripting
Information about the logged-in user, such as user-name or roles, can be detected by scripting, allowing for the creation of a robust security
system.

In This Section ...

1.

2.

3.

4.

1.
2.

3.
4.

Login Security

Overview
In Gateways with multiple projects, sometimes client access should be limited on a per-user-basis.
The most common use-case is when users from one area of a facility should be able to launch
clients that are specific to their area, but should not be able to launch clients from other areas.
While there are several different ways to approach this, the easiest is to require different roles to
log into each project.

Every project in Ignition is going to have a user source associated with it. For Vision you can
change the (Authentication profile) for a project as well as assign Required Client User Source
Roles within the .Project Properties

In the , click on tab on the menu bar at the top of the , then Designer Project Designer
select . Project Properties

Use the dropdown list to choose a User Source for this project. The selected User Source
 will only allow users from that User Source to access the project.User Source

In the field, enter the roles you want to grant access to this Required Client Roles
project. The Required Client Roles field will show all matching roles as you start typing.
Multiple roles may be specified by separating them with a comma.
Click to save the changes.OK

On this page

...

Overview
Login Issues

Project Security

Watch the Video

Login Issues
If a user is experiencing some issues logging into a project, there are a few things that may be causing the problem.

First, make sure the credentials they are using are valid. This is easily done by going to the Gateway Webpage and testing the login.
If the user's credentials were successfully tested against the user source, you can then verify if that user source is the one being
used by the project that the user is trying to log in to. (See Above)
If the user's credentials failed, they may have forgotten their password, and it may .need to be reset
Alternately, the user source may not be reachable. Depending on the type of user source, this can happen when there are network
problems. For example, a database user source will no longer work if the database connection is faulted.

Related Topics ...

Security
Project Security in Designer

Changing your security settings will not log users out of an open client, but it will
stop them from logging in again.

https://legacy-docs.inductiveautomation.com/display/DOC80/Project+Properties
https://legacy-docs.inductiveautomation.com/display/DOC80/User+Sources
https://inductiveuniversity.com/video/projecty-security/8.0
https://legacy-docs.inductiveautomation.com/display/DOC80/Verifying+a+User+Source
https://legacy-docs.inductiveautomation.com/display/DOC80/Managing+Users+and+Roles#ManagingUsersandRoles-ManagingUsers
https://legacy-docs.inductiveautomation.com/display/DOC80/Security
https://legacy-docs.inductiveautomation.com/display/DOC80/Project+Security+in+Designer

Component and Window Security

Role-based security inside of Ignition works on multiple levels: component, group, container, and
window levels. Each of these levels also have special categories of security that help with tuning
security to various design considerations.

Each window and component can define its own security settings. These settings determine who
can see and/or use the component. It's good business practice to have a well thought out security
policy for your project.

Changing Security Settings on a Component
By default, each component inherits the security that is on its parent which initially gives anyone
with access to the project the ability to use the components. This can be changed on a per
component basis by right clicking on the component and selecting . This brings up the Security
Security Settings panel.

On this page

...

Changing Security
Settings on a
Component

Component and
Window Security

Watch the Video

The checkbox signifies that the component is inheriting the security settings of the parent. Inherit Permissions

In the section on the right, choose the restrictions that will be placed on the component if the user does not have the selected Restrictions
role. Multiple restrictions can be selected to combine their effects.

Restriction Used On Description Image

Access
Denied
Overlay

Compone
nts

Shows an overlay on top of the component when the user doesn't have security clearance. Access
Denied

Disable Compone
nts

Sets the Enabled property to false on the component when the window opens up. Disabled

Disable
Events

Compone
nts, Root
Container

Prevents event scripts from running when the user doesn't have security clearance. N/A

If you choose to disable a component, make sure that it is a component that actually
does something different when it is disabled. For example, buttons and input boxes
can't be used when they are disabled, but disabling a Label component has no effect.

https://inductiveuniversity.com/video/component-and-window-security/8.0

Hide Compone
nts, Root
Container

Sets the Visible property to false on the component when the window opens up. Hidden

Do Not
Open

The
Window
Object

Only used on the window object itself, will prevent the window from opening if the user doesn't
have one of the specified roles.

N/A

Exempt Roles

Unchecking the checkbox enables the role checkboxes under Exempt Roles. Each role that is selected will have Inherit Permissions
access to the component. So if the Administrator role was checked, then all users with the Administrator role will be able to use the
component, while users without the role would have Restrictions to the component. A user only needs to have one of the selected roles to be
able to use the component, not all of them.

If the roles you created do not appear, it is probably because the Designer was open before those roles were created. To update the list of
roles, right-click in the Exempt Roles section and select Refresh .

If the roles you created do not appear, it is probably because the Designer was open before those roles were created. To update
the list of roles, right-click in the section and select .Exempt Roles Refresh

1.
2.

Security in Scripting

While the Vision system has many options for securing individual components and clients, it is
possible to have requirements that go further than the options that are available. With scripting,
you can create any type of security that you may need. This is mainly done through the use of the s

 function, as well as the other functions. The getRoles ystem.security.getRoles system.security
function gets a list of the users roles, which you can check for specific roles within your script. You
can then write code for what would happen if the user has the role and if they don't have the role.

Additionally, while the typical security set up only requires the user to have one of the required
roles, in scripting you can ensure that the user has any combination of roles.

Securing Event Handlers
Security can be added to any of the event handlers in Ignition. This works on both components as
well as on event handlers within the Scripting window. While the typical security settings for a
window only give you the option of not opening it if the user does not meet the required roles, you
can instead do something else like opening a different window.

On this page

...

Securing Event
Handlers

Script Builder
Security Example

Security in Client
Event Scripts

Setting Client to
Read Only

Securing Event
Handlers

Watch the Video

Script Builder Security Example

Each one of the also has the ability to add security to them. The following is an example of setting up security on a Button script builders
component.

Drag a component onto a window. Button
Right click on the component, and choose .Scripting

https://legacy-docs.inductiveautomation.com/display/DOC80/system.security.getRoles
https://legacy-docs.inductiveautomation.com/display/DOC80/system.security.getRoles
https://legacy-docs.inductiveautomation.com/display/DOC80/system.security
https://inductiveuniversity.com/video/securing-event-handlers/8.0
https://legacy-docs.inductiveautomation.com/display/DOC80/Script+Builders+in+Vision#ScriptBuildersinVision-SecurityQualifier

2.

3.
4.
5.
6.

7.

Under the Navigation tab, click the radio button.Open/Swap
From the Window dropdown list, choose a window for this navigation.
Click the button in the section. Click the checkbox. Security Action Qualifiers Required Roles
Select the roles that are required for this navigation. Click .Close

6.

7.

8.

1.

2.

Next, click on the tab. You'll see the script that is generated by the options you chose in the Navigation tab. Script Editor

Click to save the scripting. Now you added security to the Button component.OK

Security in Client Event Scripts
The can also be used to set up security within the project. While any of the Client Event Scripts
Client Events can be used for different security purposes, the most common is the . Startup Script
This allows you to create a customized, secure environment right as the Client is started. A Script
here can do certain things based on the roles of the user such as open certain windows, write to
client Tags to enable or disable certain things within a project, or even retarget to an entirely new
project.

Setting Client to Read Only

There are times when it is best to open a Client in a Read-Only mode to eliminate the possibility
that a Client will affect a device or database. The Client event startup script that sets the Client
mode to Read-Only is an easy way to accomplish this. Similar to the buttons in the Designer, this
function can be used to set Disconnected, Read-Only, and Read/Write modes in any script in
Ignition that runs in a Client. This function can be called in any Client scoped script, but is most
commonly used in the Startup script.

This example creates a Client event script that sets the Connection Mode to Read-Only.

From the Designer, go to .Project Browser > Client Event Scripts
The Client Event Scripts window is displayed.

In the script area, enter the following: Startup system.util.setConnectionMode(2)
where 2 means Read-Only.

Setting Client Read-
Only

Watch the Video

https://inductiveuniversity.com/video/setting-client-read-only/8.0

2.

3. Click . OK The startup script will run the next time a user logs into the Client, resulting in
the Client being Read-Only.

1.

Scripting in Vision

A lot of the scripting that happens in Vision is either located on components and windows, or it
manipulates component and window values. Many times, you can easily add the path to another
component or property from your script. It is important to understand how the component hierarchy
of a window works as well as how to properly access components and properties in a script
anywhere in a project

Component Hierarchy
Every window in a project has a hierarchy to it, with components and containers arranged in a tree
structure, with a single parent up at the top, and many children down at the bottom. While small
windows with only a few components can have a simple hierarchy, windows with many containers
can get more complex. Since the components are arranged like a tree, this means that we can
only move up and down through the tree structure and not sideways. To get from one component
to a sibling component, we must first navigate up towards the common parent, and then back
down to the desired child. Let's take a look at an example of how this works. Here we have a
simple window, with just a few components:

On this page

...

Component
Hierarchy

Accessing
Component
Properties

Accessing a
Component

From an Event
Handler
From an
Extension
Function
From a Client
Event Script
From a Project
Script

Accessing
Components on
Other Windows

Root Container
Edit Table Container

New Value Text Field
Enter Data Button

Alarm Label
Data Table
Header Label

We can flip the tree around to get a better understanding of exactly how the tree works:

Here we can get a better idea of why we can only move up and down through the tree structure, and how getting to a component can be very
different depending on where you start. Let's say we want to go to the New Value Text Field so that we can grab its value.

Start From Path To New Value Text Field

Edit Table Container
Down to New Value Text Field

1.
2.

1.
2.
3.

Enter Data Button
Up to Edit Table Container
Down to New Value Text Field

Data Table
Up to Root Container
Down to Edit Table Container
Down to New Value Text Field

To move up or down within the hierarchy, there are two special commands we can use on component objects: and . parent getComponent()
The property allows us to grab a reference to whatever is directly above the component in the hierarchy, which in most cases is the parent
root container. We could then access any component on the root container by using and then placing getComponent("Component Name")
the name of the component we want to access within the parenthesis.

Pseudocode - Component Hierarchy

This pseudo code shows how to grab the parent of a component
component.parent

This pseudo code shows how to grab a child of a component
component.getComponent("Text Field")

Both and can be used as many times as necessary to reach the desired component, drilling up or down through parent getComponent()
layers of containers or or grouped components. Once you have a component reference, you can then access any one of that component's
attributes by using the name of the property, just like when accessing a property on the source component.

Accessing Component Properties

To access a property within the component, we simply need to use the scripting name of the
property. The scripting name can be found in the description of each property, either by enabling
the description field or hovering over the property until the mouseover text appears. The scripting
names for every property on every component can also be found in the . For a text field, appendix
the scripting name of the text property is just text, so we would need to call that on the text field
which has the text property we want to access.

Pseudocode - Component Properties

This pseudo code will access the text property of a component and
assign it to value.
value = component.text

Accessing
Component
Properties

Watch the Video

Accessing a Component
Now that we have an understanding of how the component hierarchy works, we can apply that knowledge to accessing a component from
anywhere within the project. While moving up and down within the hierarchy remains the same, accessing our initial component can differ
depending on where we start our script from.

From an Event Handler

Event Handlers get a special object that has special properties depending on the type of event. Regardless of the event, all event event
objects have a source property, which gives the component that fired the event. When accessing a component from an event handler, we
can first use to get a component on the window to start at. From there, we can use parent or getComponent() as needed to event.source
get to the component we need to access.

There is one exception to the pattern of using to go up the hierarchy and using to go down. .parent .getComponent(name)
The parent of a root container is not the window, and a reference to the window does not have a .getComponent(name)
function. To get a reference to a window, simply use with any component's object as the system.gui.getParentWindow event
parameter. Once you have a reference to a window, you can use its property to get to the root of .rootContainer
the component hierarchy, and from here you can follow the rules laid out above.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Components
https://inductiveuniversity.com/video/accessing-component-properties/8.0
https://legacy-docs.inductiveautomation.com/display/DOC80/system.gui.getParentWindow

Python - Accessing a Component from an Event Handler

This would access the text property of a Text Field component.
print event.source.parent.getComponent('Text Field').text

From an Extension Function

Extension Functions get a special object which is actually a direct reference to the component that the extension function is on. This self
provides a direct reference point from which to access other components within the component hierarchy.

Python - Accessing a Property of a Component from an Extension Function

This would access the text property of the component running the extension function script.
print self.text

This would access the text property of the component named 'Text Field' if it is in the same container.
print self.parent.getComponent('Text Field').text

From a Client Event Script

Client Event Scripts are special because they don't start with a direct reference to anything on a particular window. So, we have to use
another means of finding a starting point on the window. The function allows us to get a reference to a window which system.gui.getWindow()
we can use to navigate to the root container with and then to any component on that window. However, this will .getRootContainer(),
only work if the window is currently opened. If the window is closed, it will throw an error, which can be handled with normal exception
handling.

Python - Accessing a Component from a Client Event Script

Start the try block in case the window is not open.
try:
 # Grab the window reference and assign it to the variable window.
 window = system.gui.getWindow("Other Window")

 # Use the window reference to get the text property off of a text field.
 print window.getRootContainer().getComponent("Text Field").text

Handle the exception by opening an informative error.
except ValueError:
 system.gui.errorBox("The window is not open!", "Error")

From a Project Script

Project Library are unique in that how they access components can vary depending on where the Script Module is being called from and
what is being passed to it. If the script module is being called from an event handler or an extension function, it is possible to pass in the
event or self objects and use them within the script module.

Python - Accessing a Component from a Project Script

This code would go in a project script. We are defining our function that takes an event object
and uses it to find the value of the text property on the text field in the same container.

When accessing a component from an event on the window, there will be a different path to the component than normal. If you
This allows you to enter in the path to the already have a window object, you can use the function getComponentForPath().

component as a string , and will end up looking something like this:(similar to expression bindings)

Python - Accessing a Component from an Event on a Window

system.gui.getParentWindow(event).getComponentForPath('Root Container.Text Field').text

You can also get the Root Container directly using the getRootContainer() function. This link of code works the same as the one
above:

Python - Accessing a Component from an Event on a Window

system.gui.getParentWindow(event).getRootContainer().getComponent('Text Field').text

https://legacy-docs.inductiveautomation.com/display/DOC80/system.gui.getWindow
https://legacy-docs.inductiveautomation.com/display/DOC80/Project+Library

def func(event):
 print event.source.parent.getComponent('Text Field').text

Python - Calling a Function from the actionPerformed Button

On the action performed of a button on our window, we could then use this to call our function.
myTestScript.func(event)

However, this may not always be the case. In these instances, it is possible to instead use the same method that Client Event Scripts use
and grab the window object instead.

Accessing Components on Other Windows
You can also grab properties from components on other open windows from anywhere in the
project using the same method used in Client Event Scripts. This allows you to grab properties on
a main window from an event handler on a popup window.

Finding
Components on
Other Windows

Watch the Video

Related Topics ...

Project Library

In This Section ...

Remember, you can only grab a property from another window if the other window is
open.

https://inductiveuniversity.com/video/finding-components-on-other-windows/8.0
https://legacy-docs.inductiveautomation.com/display/DOC80/Project+Library

Script Builders in Vision

When creating an Event Handler on a component, you can use one of the handy iScript Builders
nstead of writing your own script. In the Component Scripting window, the Script Builders are
accessible as tabs along the top. Each tab represents a different kind of action that users can
associate with an event. The last tab, , lets you write your own event handler. You Script Editor
can also use the tab to view a script that was generated by one of the builders, Script Editor
which is a good way to get started learning how to write your own event handlers. Each script
builder example on this page shows the actual script in the Script Editor, just simply click the link
under each example.

On this page

...

Navigation Script
Builder

Open / Swap
Forward / Back
Closing Windows

Set Tag Value
Script Builder
SQL Update Script
Builder
Set Property Script
Builder
Script Editor

Advanced
Settings

Action Qualifiers
Security Qualifier
Confirmation
Qualifier

Vision Event
Scripts Overview

Watch the Video

Navigation Script Builder
The Script Builder has various functions that deal with opening and closing windows.Navigation

Open / Swap

Opening is a very straight-forward operation, it simply opens the specified window at the same size it was in the Designer. Simply click on the
 button, and select a Window from the dropdown list that you want to open. There are options to center that window within the Open / Swap

Client, and to close the window that the event was fired from. The opened window can also be opened as an additional instance, meaning
there can be multiple copies of the same window. This is useful when opening dynamic popups, so that a couple of popups can be opened,

Actions are Overwritten when Choosing another Script Builder

Only one Script Builder can be used at a time. If you previously picked another action using a different Script Builder, it will get
overwritten by enabling another Script Builder. If you need to do more than one action at a time, use the Script Editor to combine
scripts, or create your own script.

https://www.inductiveuniversity.com/videos/vision-event-scripts-overview/8.0/8.0

1.
2.

3.

4.

each with different values.

Swapping is the practice of opening another window in the same size, location, and state as the current window, and closing the current
window. This gives the appearance of one window simply swapping into another, seamlessly. The Navigation Builder uses the swapWindow
version of swapping, but most "by hand" script authors will use the version. This last version relies on the fact that the windows swapTo
being swapped are both maximized windows. See the section for more information.navigation strategy

You can also to the opened or swapped-to window. Check the box, and click the icon to add a pass parameters Pass Parameters Add
row, where each row is another passed parameter. The names of these parameters must match names of custom properties on the root
container of the target window. The values can either be literals or values of other properties from the source window. Use the Binding icon

 to navigate to the properties that you want to pass. It will construct the path to the property on the window. To pass parameters in a
navigation window, follow the steps below.

Check the box, and click the icon to add a row.Pass Parameters Add
Choose a custom property from the "Parameter Name" dropdown list. This will be filled with custom properties on the root container
of the selected window. You can also type a name in directly.

Highlight the empty cell in the column of the parameter table, click the icon , select the component property you Value Binding
want to enter the value and press .OK
Press to commit the change. OK

To learn more about passing parameters, refer to the section for more information.parameterized windows

The following Navigation builder script was generated by the Script Editor. If you compare the settings in the Navigation tab with the
documented code in the Script Editor, you'll notice the Tank popup window will be opened and centered in the window, and the

https://docs.inductiveautomation.com/display/DOC79/Parameterized+Popup+Window

4.

1.

2.

3.

4.

value of the "tankNum" passed. parameter

Forward / Back

The actions give you a simple way of implementing -style forward/back buttons in your client. Note, that you must be Forward / Back browser
swapping between windows for this to work, because these functions rely on calls to in order to keep track of what system.nav.swapTo
the sequence of recent windows has been.

Closing Windows

The Closing windows action allow for an easy way to have an event handler close the window that it is a part of, or any other window.

Set Tag Value Script Builder
The Set Tag Value Script Builder responds to an event by setting the value of a Tag. You can set the Tag to either a literal value directly

typed in, but we recommend using the chain link icon to have the event handler use the value of another property from the same Tag
window.

Use the steps below to create a Set Value.Tag

Under the tab, click the radio button. Set ValueTag Set ValueTag

Click the icon and choose a from the browser list to write to (i.e., WriteableInteger1).Tag Tag Tag

In the field, enter a number (i.e., 100) or click the icon to to browse for a component property to use as To this Value Property
the set-to value.
Press to commit the change. OK

4.

1.
2.
3.
4.
5.

6.

The script shown below was generated by the Script Editor. Compare the settings in the Set Tag Value tab with the Set Tag Value
documented code in the Script Editor and you'll see the Tag is set to "WriteableInteger1" and the Tag value is set to "100."

SQL Update Script Builder
The SQL Update Script Builder helps you build an update query using a . Choose a database and table in your database browsing interface
target database, and the update query will be built for you. The key query will help identify a specific row to update, and can be made
dynamic using Update Query and Update Value text boxes.

Under the tab, click the radio button. UpdateSQL Update Query
Select a and choose a table in your . Select an event value in the table on the right.database database
This example has the as the Key Column, so we entered id 'id =2.'
We selected the for 'id 2'.Humidity
To change the value in the database, we entered the new value in the field to replace the previous value when the Updated Value
action is executed.
Press to commit the change. OK

The following Update script was generated by the Script Editor. If you compare the settings in the Update tab with the SQL SQL
documented code in the Script Editor, you'll see your , table, and column name, including the row of the searched value. database id
You'll also see the new update value that will replace the existing value when the action is executed.

1.
2.
3.

4.

5.

6.

Set Property Script Builder
The Set Property Script Builder will respond to an event by altering a property in the window. You must choose the property to alter and
choose the value that you wish to assign to it. The new value can be a literal value or the value of any other property on the window.

Drag a Label component to your window to set the property to.
Select the Button component and open the Scripting window, and select actionPerformed.
In the tab click the radio button.Set Property Set Component Property

On the click on the to browse for the Label component's Set this property Property icon Text property, and click OK.

Type something into the field (i.e., Hello World!), or click the icon to browse for a component property to To this value: Property
use as the set-to value.
Press to commit the change. OK

This Set Property script was generated by the Script Editor. Compare the settings in the Set Property tab with the documented code
in the Script Editor and you'll see the value string "Hello World!" will be written to the Label component when the action executes.

Script Editor
The Script Editor allows you to add more complexity to existing scripts, combine scripts, and even write your own custom scripts. For
example, if you need to perform two or more actions at once, (i.e., set a Tag and navigate to another window), you can update the script by
combining the two actions in the Script Editor. The Script Editor even gives you the flexibility to create your own code for any action you want
to perform on an event handler.

As seen elsewhere on this page, the other builders ultimately generate a script that can be modified from the from the Script Editor Builder.

Advanced Settings

Scoping Dropdown - Allows you to specify the scoping of the script. The scoping of event handlers in older versions of Ignition
work differently that modern versions. This settings was added as a way to provide backwards compatibility when upgrading. All new
scripts should ideally leave the scope set to Standard Scoping, as there is no reason for new scripts to use the Legacy Scoping
option.
Invoke Later - Provides an opportunity to allow the script to run after other events have finished processing. Most scripts will leave
this setting disabled, however if can be useful in some scenarios:

Controlling the focus order in a window, since requesting focus from a component in the middle of an event being processed
can cause undesirable results.
When writing a script on a window's event, you may wish to have your script run after processing. visionWindowOpened

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+The+Window+Object

Action Qualifiers
All of the Script Builders allow you to put Security and/or Confirmation qualifiers onto an event handler. These Action Qualifiers are optional.

Security Qualifier

The Security Qualifier lets you restrict the event handler from running if the current user does not have one of the required roles highlighted
in the Security qualifier dialog box. The roles listed will be all of the roles within the project's default user source. To setup the required roles
for an event handler, select one or use to select multiple roles. Once the roles are selected, they will be highlighted. To deselect CTRL+click
roles, use again. The action will only be executed if the checkbox is enabled. Click .CRTL+click Required Roles Close

Confirmation Qualifier

The Confirmation Qualifier prompts the user with a popup dialog box confirming you want to perform the action. The action will only be
executed if the checkbox is enabled. There is a default message, and if you prefer, you can delete it and enter your Require Confirmation
own message. Click .Close

Related Topics ...

Parameterized Popup Windows
DB Browse Bindings

Component Events

Event Handlers
When running a script on a component, we typically don't want it to be constantly running, but
instead want the script to trigger when the user does something on screen such as clicks with the
mouse. That something the user does is called an and can range from a mouse click or a Event
keypress to a window opening or a component property change. When certain events happen,
they trigger Event Handlers, which use a script to what happens when the event occurs.handle

This page lists out all of the event handlers that are on Ignition's Vision module. Any third party
modules may add new components which may potentially have new event handlers.

Event Object

Every Event Handler contains an object, which allows you to interact with the component event
and the entire window hierarchy within your script. While each object has different properties event
depending on what Event Handler it resides in, each object contains a property, event source
which is a reference to the component that fired the event. Using not only gives event.source
us access to all of the properties available on that particular component, such as the text property
of a text field,

Pseudocode - Event Handler Source Component Properties

Here we start with the event object, then use source to go to the
component that fired the event,
and then use the name of the property to access its value. In this
case, we accessed the text property.
text = event.source.text

but it also provides us with a way to navigate to other components within the hierarchy. For
example, here we have a script on a button that references a text field.

Pseudocode - Event Handler Other Components

Here again we start with event.source to get to the component that
fired the event, but now we use
parent to go up to the root container, and then getComponent to
navigate back down to a different component.
text = event.source.parent.getComponent("Text Field")

On this page

...

Event Handlers
Action Event
Handlers
Property Event
Handlers
Mouse Event
Handlers
MouseMotion Event
Handlers
Key Event Handlers
Focus Event
Handlers
VisionWindow
Event Handlers
InternalFrame Event
Handlers
Cell Event Handlers
Item Event Handlers
Paint Event
Handlers

Vision Event
Scripts Overview

Watch the Video

Action Event Handlers
The category of event handlers pertains to components being "used" from the client, such as a button being pressed or a checkbox Action
component being selected. You can access Event Handlers through the Scripting option.

Events

Events Description

action
Perfor
med

This event is fired when the 'action' of the component occurs. What this action is depends on the type of the component. Most
commonly, this is used with buttons, where the action is that the button was pushed, via a mouse click or a key press. See the
component reference for details on what the action means for other components.

Even when components are disabled, most scripting events can still occur. For example, a mouse click can still happen on a
disabled component, which is why we recommend using the action performed event when placing a script on a button.

https://www.inductiveuniversity.com/videos/vision-event-scripts-overview/8.0/8.0/8.0

1.
2.
3.

4.
5.

It is recommended to use this event over mouseClicked whenever possible.

Event Object Properties

Properties Description

source The component that fired this event.

In this example, let's use a Button component to print "Hello World!' on the the console each time the Button is pressed.

Drag a component to the your Designer workspace.Button
Select your Button and right click on . Scripting
Copy the code in the code block and paste it in the Script Editor tab. Press . OK

Python - Button Action Performed

On the actionPerformed of a button, this will print Hello World! to the console each time the
button is pressed.
print "Hello World!"

Save your project, and put the Designer in .Preview Mode
From the top menubar click on . Press the button and you'll see "Hello World" printed each time the button is Tools > Console
pressed.

Property Event Handlers
Property event handlers typically trigger based on the property of a component.

Events

Events Description

propertyChange Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic)
properties.

Event Object Properties

Properties Description

source The component that fired this event.

newValue The new value that this property changed to.

oldValue The value that this property was before it changed. Note that not all components include an accurate oldValue in their
events.

propertyNa
me

The name of the property that changed.

Python - Printing the Changing Property

On the propertyChange of a component, this script will print out the name of the property that is
changing.
print event.propertyName

Python - Looking for a Specific Property

It is common to use propertyName to look for specific properties to change. This is a great way to
restrict how often your scripts execute
if event.propertyName == 'text':
 print 'The Text property changed'

Mouse Event Handlers
The mouse events all correspond to the clicking and movement of the mouse. They are triggered in the client by an operator interacting with
a mouse. Touchscreen monitors will trigger these events when a user touches the screen, but not all touchscreens will fire the mouseEntered
and mouseExited events.

Events

Events Description

mouseCli
cked

This event signifies a mouse click on the source component. A mouse click is the combination of a mouse press and a mouse
release, both of which must have occurred over the source component.

mouseEn
tered

This event fires when the mouse enters the space over the source component.

mouseEx
ited

This event fires when the mouse leaves the space over the source component.

mousePr
essed

This event fires when the mouse presses down on the source component.

mouseRe
leased

This event fires when a mouse button is released, if that mouse button's press happened over this component.

Event Object Properties

Properties Description

source The component that fired this event.

Remember to always filter out these events for the property that you are looking for! Components often have
many properties that change.

This event fires after the pressed and released events have fired.

button The code for the button that caused this event to fire. Use the constants , , and event.BUTTON1 event.BUTTON2 event.
.BUTTON3

clickCount The number of mouse clicks associated with this event.

x The x-coordinate (with respect to the source component) of this mouse event.

y The y-coordinate (with respect to the source component) of this mouse event.

popupTrig
ger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is operating system dependent,
which is why this abstraction exists.

altDown True (1) if the Alt key was held down during this event, false (0) otherwise.

controlDo
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

shiftDown True (1) if the Shift key was held down during this event, false (0) otherwise.

Python - Printing on a Mouse Enter

On the mouseEntered event of a component, this script will only fire if the mouse enters the bounds of
the component.
print "The mouse is inside the component space!"

MouseMotion Event Handlers
The mouseMotion events deal with the motion of the mouse over a component. Not all touchscreen monitors will fire these events.

Events

Events Description

mouseDragged Fires when the mouse moves over a component while a mouse button is being held.

mouseMoved Fires when the mouse moves over a component, but no buttons are being held.

Event Object Properties

Properties Descriptions

source The component that fired this event.

button The code for the button that caused this event to fire. Use the constants event.BUTTON1, event.BUTTON2, and event.
BUTTON3.

clickCount The number of mouse clicks associated with this event.

x The x-coordinate (with respect to the source component) of this mouse event.

y The y-coordinate (with respect to the source component) of this mouse event.

popupTrig
ger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is operating system dependent,
which is why this abstraction exists.

altDown True (1) if the Alt key was held down during this event, false (0) otherwise.

controlDo
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

shiftDown True (1) if the Shift key was held down during this event, false (0) otherwise

mouseMotion events will not trigger when the project is viewed from a mobile project as these gestures are used by the browser
/device to zoom or pan.

Python - Printing on a Mouse Movement

From the mouseMotion event on a component, this will print each time the mouse moves when it is over
the component.
print "The mouse is moving over the component!"

Key Event Handlers
The key events all have to do with the user pressing a key on the keyboard.

Events

Events Description

keyPress
ed

Fires when a key is pressed and the source component has the input focus. Works for all characters, including non-printable
ones, such as SHIFT and F3.

keyRelea
sed

Fires when a key is released and the source component has the input focus. Works for all characters, including non-printable
ones, such as SHIFT and F3.

keyTyped Fires when a key is pressed and then released when source component has the input focus. Only works for characters that
can be printed on the screen.

Event Object Properties

Properties Description

source The component that fired this event.

keyCode The key code for this event. Used with the keyPressed and keyReleased events. Uses the standard Java key codes, see
below for more information.

keyChar The character that was typed. Used with the keyTyped event.

keyLocation Returns the location of the key that originated this key event. Some keys occur more than once on a keyboard, e.g. the left
and right shift keys. Additionally, some keys occur on the numeric keypad. This provides a way of distinguishing such keys.
The keyTyped event always has a location of KEY_LOCATION_UNKNOWN. Uses the standard Java key locations, see
below for more information.

altDown True (1) if the Alt key was held down during this event, false (0) otherwise.

controlDo
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

shiftDown True (1) if the Shift key was held down during this event, false (0) otherwise.

Python - Printing the Key Released

On the keyReleased event of a component, this will print out the key code of the key that was hit on
the keyboard,
but only on release of the key, and only when the component has focus.
print event.keyCode

Java Keys

The key Event Handlers use the Java KeyEvent class, which has unique identifiers for both keys and locations on the keyboard to help
differentiate which key is actually being pressed on the keyboard. The numeric codes for each unique location and character can be called
from the event object using a constant. For example, the letter "a" has the constant name VK_A. This can then be used to compare against
the keyCode value like this:

Python - Checking Specific Key Codes

if event.keyCode == event.VK_A:
 print "The key press was a"

We listed the locations and some common codes below, but the full list of codes can be accessed by going to https://docs.oracle.com/javase
./8/docs/api/java/awt/event/KeyEvent.html

Key Code Constants

VK_0 - VK_9 VK_END VK_PAGE
_UP

VK_DOWN VK_CONT
ROL

VK_A - VK_Z VK_ENT
ER

VK_RIGHT VK_PAGE_D
OWN

VK_LEFT

VK_F1 - VK
_F24

VK_HO
ME

VK_SHIFT VK_UP VK_TAB

VK_ALT VK_INS
ERT

VK_SPACE VK_ESCAPE

Key Location Constants

KEY_LOCATION_L
EFT

KEY_LOCATION_R
IGHT

KEY_LOCATION_
NUMPAD

KEY_LOCATION_S
TANDARD

KEY_LOCATION_U
NKNOWN

Focus Event Handlers
Focus events deal with focus moving between different components on a window. Opening windows, using tab to move around the screen,
or clicking on components will trigger these events. Note that not all components can hold focus.

Events

Events Description

focusG
ained

This event occurs when a component that can receive input, such as a text box, receives the input focus. This usually occurs
when a user clicks on the component or tabs over to it.

focusLo
st

This event occurs when a component that had the input focus lost it to another component.

Event Object Properties

Properties Description

source The component that fired this event.

oppositeCompon
ent

The other component involved in this focus change. That is, the component that lost focus in order for this one to gain
it, or vise versa.

Python - Printing on Focus Gained

On the focusGained event of a few different components, this script can print out when the component
has gained focus.
print "The component name now has focus!"

VisionWindow Event Handlers

Some Operating Systems reserve certain keys for certain function, and will capture the key press or release before it gets sent to
the Client. For example, many Operating Systems use the TAB key to shift focus to the next field.

https://docs.oracle.com/javase/8/docs/api/java/awt/event/KeyEvent.html
https://docs.oracle.com/javase/8/docs/api/java/awt/event/KeyEvent.html

The visionWindow events are specific to windows and not available elsewhere. Right click on the window name in the Project Browser and
select Scripting to get access to these events. These events are triggered by a window opening or closing.

Events

Events Description

visionWindowOpened This event is fired each time the window is opened and before any bindings are evaluated.

visionWindowClosed This event is fired each time the window is closed.

Event Object Properties

Properties Description

source The vision window that fired this event.

Python - Grabbing Focus on Window Opened in Two Different Ways

From a visionWindowOpened event on a window, you can request the focus of components in the window, to
start the focus on a component other than the upper left most component.

Here we grab the reference to the component using the property selector on the upper right side of the
script editor.
system.gui.getParentWindow(event).getComponentForPath('Root Container.Text Field').requestFocusInWindow()

Here we can manually enter in the path to the component using our knowledge of the component hierarchy
and
the getRootContainer function. Both of these functions work in the same way.
system.gui.getParentWindow(event).getRootContainer().getComponent("Text Field").requestFocusInWindow()

InternalFrame Event Handlers
The internalFrame events are fired by windows: windows are known as "internal frames" in the underlying Java windowing system that the
Vision component uses. Note that the source of these events is the window itself, just like the visionWindow events above.

Events

Events Descriptions

internalFrameAc
tivated

Fires whenever the window is shown or focused. If you want a script to fire every time a window is opened, use this
event.

internalFrameCl
osed

Fires when a window is closed.

internalFrameCl
osing

Fires right before a window is closed.

internalFrameD
eactivated

Fires when a window loses focus.

internalFrameO
pened

Fires the first time a window is opened. Note that when windows are closed and cached, next time they are opened this
event will not be fired. Use internalFrameActivated instead.

Event Object Properties

Properties Description

source The window that fired this event. Use source.rootContainer to get the root container.

Python - Printing on Frame Activation

From the internalFrameActivated event on a window, this will fire each time the window is focused, so
clicking between two different windows will trigger it.
print "This window is now in focus!"

Cell Event Handlers
The cell event is unique in that it only appears on the component. It will trigger when something within a cell changes, and once for Table
each cell changed.

Events

Events Description

cellEdited This event is fired when one of the cells in a table component has been modified.

Event Object Properties

Properties Description

source The table component that fired this event.

oldValue The old value in the cell that changed.

newValue The new value in the cell that changed.

row The row of the dataset this cell represents.

column The column of the dataset this cell represents.

Pseudocode - Updating a Database Table

From the cellEdited event of a table component, this script can update our database table with any new
data that is entered in the table

Get the id of the row we edited and the headers
id = event.source.data.getValueAt(event.row, 'id')
headers = system.dataset.getColumnHeaders(event.source.data)

Build our Update query.
query = "UPDATE User SET %s = ? WHERE id = ?" % (headers[event.column])
args = [event.newValue, id]

Run the query with the specified arguments.
system.db.runPrepUpdate(query, args)

Item Event Handlers

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Table

The item event is unique in that it only appears on components that can be "on" or "off, such as with , , and Radio Buttons Check Boxes Toggle
.Buttons

Events

Events Description

itemStateChan
ged

This event fires when the state of the component changed. This event is the best way to respond to the state of that
component changing.

Event Object Properties

Properties Description

source The component that fired this event.

stateChan
ge

 An integer that indicates whether the state was changed to "Selected" (on) or "Deselected" (off). Compare this to the event
object's constants to determine what the new state is.

SELECTED The constant that the stateChange property will be equal to if this event represents a selection.

DESELEC
TED

The constant that the stateChange property will be equal to if this event represents a de-selection.

Python - Printing on a Radio Button Selection

On the itemStateChanged event of a radio button, this will print when this specific radio button is
selected.
if event.stateChange == event.SELECTED:
 print "This radio button is selected!"

Paint Event Handlers
The paint event is only found on the component, and is used to customize how the component gets painted. This event Paintable Canvas
requires a heavy knowledge of programming using the Java 2D drawing tools, but there is code for a pump shape each time you add a new
Paintable Canvas to a window.

Events

Events Description

repaint This event will fire whenever the component needs to repaint itself. It will repaint when any of its custom properties change, or
when is called on it. When a Paintable Canvas is first dragged onto the screen, the repaint Event Handler will be .repaint()
filled with an example that draws out a pump.

Event Object Properties

Properties Description

source The Paintable Canvas component that fired this event.

graphics An instance of java.awt.Graphics2D that can be used to paint this component. The point (0,0) is located at the upper left of
the component.

width The width of the paintable area of the component. This takes into account the component's border.

height The height of the paintable area of the component. This takes into account the component's border.

Python - Painting a Circle

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Radio+Button
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Check+Box
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Toggle+Button
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Toggle+Button
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Paintable+Canvas

On the repaint event of a paintable canvas component, this will create a circle with a gradient
background color of orange and white.

from java.awt import Color
from java.awt import GradientPaint
from java.awt.geom import Ellipse2D

g = event.graphics

Body
innerBody = Ellipse2D.Float(8,8,72,72)

Scale graphics to actual component size
dX = (event.width-1)/100.0
dY = (event.height-1)/100.0
g.scale(dX,dY)

Paint body
g.setPaint(GradientPaint(0,40,Color.WHITE, 0,100, Color.ORANGE,1))
g.fill(innerBody)
g.setColor(Color.ORANGE)
g.draw(innerBody)

1.
2.
3.

Extension Functions

What Are Extension Functions
Extension Functions are found on the component scripting window of certain components, and
they allow for more advanced customization of the component using scripting. These functions are
generally more advanced and require a better understanding of Python. Unlike , Event Handlers
Extension Functions are not driven by a specific event, but are instead called by the component
itself for a specific purpose when appropriate. This may be when the component first loads in the
window, or whenever the function receives new input.

From an object-oriented point of view, Extension Functions create a custom "subclass" of the base
component type. Your subclass can then override and implement parts of the functionality of the
component itself, in Python. Following Python object-oriented methodology, each extension
function's first argument is called . That is because these are methods that belong to the self
component's class itself, instance methods. The value of will always be the component itself. self
Notice that this is different than Event Handler scripts where you are given an object in your event
scope and the component that fired the event is under . When you write an event.source
Extension Function, there is no object so the component is given to you as the object event self
instead.

Each component Extension Function comes with its own documentation built-into the function's
default implementation using a standard Python "doc-string". You will find that you are unable to
edit the function's signature or docstring. Changing the method's signature (arguments or function
name) would prevent the component from calling it correctly. Changing the docstring could be
misleading or confusing as you'd lose the documentation for how your implementation of the
function should work.

On this page

...

What Are Extension
Functions
Using Extension
Functions

Example - User
Management
Component
Example - Table
Component
Example - Power
Table Component
Example - Ad
Hoc Charting

Component
Extension
Functions

Watch the Video

Using Extension Functions
Using an Extension Function works much like using an Event Handler. First select and the Extension Function within the component Enable
scripting window, and then add in a script. The script will then automatically run when called.

Example - User Management Component

The component has many Extension Functions that provide a way to customize how the component works. The User Management filterU
 extension function is useful for filtering out users you don't want to see in the user source, preventing users from editing that user in ser()

the client. We can add a simple script to the Extension Function that will hide the user from the list if they have the filterUser()
Administrator role.

Drag a component in to your Designer workspace, and right click on .User Management Scripting
Under the Extension Functions folder select and click filterUser Enabled.
Copy the code from the code block below and add it to bottom of the script and click . OK

https://inductiveuniversity.com/video/component-extension-functions/8.0
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+User+Management

3.

4.

Python - User Management Filter User

Check to see if the user has the Administrator role.
if "Administrator" in user.getRoles():
 # Return 0 to hide them if they do.
 return 0
else:
 # Otherwise, show the user in the table.
 return 1

By enabling this script, we now only see the users without the Administrator role in the list of users.

Example - Table Component

The component exposes an Extension Function called . By implementing this function, you can control the Table getBackgroundAt()
background color of each cell of the table component using scripting. Starting with a Table component with some test data, then then add the
following script to the Extension Function.getBackgroundAt()

Here is our sample data. We want to have a clearer indication of what companies have fewer than 30 installations. So, we'll write a script to
make those rows have a light grey background color.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Table

1.
2.
3.
4.

5.

Right click on the component and choose . Table Scripting
Choose the extension function.getBackgroundAt*
Select the check box.Enabled
Copy the code from the code block below and add it to bottom of the script and click . OK

Python - Table Row Color

For each cell, we check the value of the cell in the same row but in Installations.
if self.data.getValueAt(row, "Installations") < 30:
 # If the value is less than 30, we return a light grey color.
 return system.gui.color("lightgrey")
else:
 # Otherwise, we return a white color.
 return system.gui.color("white")

We should see the script run automatically, and the background color of the table will change.

5.

1.

2.
3.
4.

5.

Example - Power Table Component

The component has several extension functions on it that change the way the table looks or behaves. One in particular, called Power Table o
 makes it easy to implement a right click popup menu as it is called each time a user right clicks on a cell of the table. It ,nPopupTrigger()

can be used in conjunction with the function to create your own custom popup menu, as shown in the system.gui.createPopupMenu
following example.

Drag a Power Table component on to your Designer workspace and set the Test Data property to 'true' so you have some data to
test on.
With the selected, click , and then click on the extension function. Power Table Scripting onPopupTrigger
Select the checkbox.Enabled
The extension function will have a pre-built example commented out in the extension function. onPopupTrigger Uncomment the
lines of code to see it in action.

Python - Power Table Popup Trigger

import system
def sayHello(evt, cellValue=value):
 import system
 system.gui.messageBox('Hello, you clicked on %s'%cellValue)
menu = system.gui.createPopupMenu({'Hello':sayHello})
menu.show(event)

Right click on a cell in the table and a "Hello" menu option will have a message box appear that has the value of the cell that was
right clicked.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Power+Table

5.

Example - Ad Hoc Charting

The Easy Chart component has an Extension Function to allow scripting when a Tag is dropped onto it (see). There is a lot Ad Hoc Charting
of customization possible in the Designer, but any client side changes to the Tag Pens dataset must be done here. Generally, people want to
change what axis and subplot a pen goes into based on some other information. Below is a simple example that uses the Tag's name to
determine this. For this example to work, you need to have two subplots and a second axis named "HOA".

Python - Drop Tags on Easy Chart

Alter chart configuration when dropping pens
sample data for the Tag Pens property:
#"NAME","TAG_PATH","AGGREGATION_MODE","AXIS","SUBPLOT","ENABLED","COLOR","DASH_PATTERN","RENDER_STYLE","
LINE_WEIGHT","SHAPE","FILL_SHAPE","LABELS","GROUP_NAME","DIGITAL","OVERRIDE_AUTOCOLOR","HIDDEN","
USER_SELECTABLE","SORT_ORDER","USER_REMOVABLE"
#"HOA","[~]Motors/Motor 1/HOA","MinMax","HOA","2","true","color(85,255,85,255)","","1","1.0","0","true","
false","","false","false","false","true",,"true"

get old pen data and append new info

oldData = system.dataset.toPyDataSet(self.tagPens)
get new info
for fullTagPath in paths:
 # get names for everything in the tag path
 lastSlashIndex = fullTagPath.rfind("/")
 closeBracketIndex = fullTagPath.find("]")
 tagName = fullTagPath[lastSlashIndex+1:]
 tagPath = fullTagPath[closeBracketIndex+1:]
 groupName = fullTagPath[closeBracketIndex+1:lastSlashIndex]

 # find which tags are named "hoa" and put them in the HOA subplot.
 if tagName.lower() == "hoa":
 axis = "HOA"
 subplot = 2
 color = "color(255,85,85,255)" #red
 digital = "true"
 else:
 axis = "Default Axis"
 subplot = 1
 color = "color(85,85,255,255)" #blue
 digital = "false"

 # append to the old pen data
 newData = system.dataset.addRow(oldData, [tagName,tagPath,"MinMax",axis,subplot,"true",color,"","
1","1.0","0","true","false",groupName,digital,"false","false","true","","true"])

push new pens back to the tagPens property
self.tagPens = newData

Custom Component Methods

Custom Methods
Custom Methods function much like in that you write a script and call it from Project Library
somewhere else. However, Custom Methods are written on a component instead of a separate
scripting section, and are also automatically passed the value of , just like an self Extension

. The object provides the script with easy access to everything within the window. In Function self
addition to , Parameters can be added that you can use to pass in other objects into your self
Custom Method.

On this page

...

Custom Methods
Sample Custom
Method

Component
Custom Methods

Watch the Video

Custom Methods can then be called from the same component or from other components. Custom Methods are called just like any other
method on a component: . So if I had a custom method on a text field, and I wanted to call it from the actionPerformed .methodName()
event on a button in the same container, I would use:

Python - Custom Method

The name of the custom method in this instance is myCustomMethod.
event.source.parent.getComponent("Text Field").myCustomMethod()

Templates are another good use for custom methods. By addng a custom method directly to a template, all the components that make up
the template can call the custom method from the template itself. Another advantage of templates is, in the event you want to share your
template with another project, your custom methods (scripts) would not have to be exported separately like they would as if they were in a
Script Library. When you export the template, the custom methods are included in the export automatically.

Sample Custom Method

A great use for Custom Methods is checking for valid input on a form with a lot of text fields. Instead of checking every text field all within a
script on a button press, we can instead build a value check script on each text field that is unique to that Text Field's specific type of input.
This keeps each script organized on the appropriate Text Field component. Take this sample code that can go into a custom method on a
text field which checks for a valid email address using :

Python - Text Field Input Validation

First, we need to import the Regular Expression library
import re

We need to grab the value of the text field.
text = self.text

Here, we put together our regular expression for email addresses.
validAddress = re.compile(r"(^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$)")

Check the text against the regular expression.
If the text does not fit in with the regular expression, it returns a value of None, which we use to
show an error box.
if validAddress.match(text) is None:
 system.gui.errorBox("Please enter a vaild email address!", "Email Not Valid")

https://legacy-docs.inductiveautomation.com/display/DOC80/Project+Library
https://inductiveuniversity.com/video/component-custom-methods/8.0

A similar script can be repeated for each Text Field component, but modified to fit the expected input. Then, the another script can be on a
button that simply calls each of the Text Field's Custom Methods.

Python - Validate Input on Button Press

event.source.parent.getComponent("Email Field").validInputCheck()

Focus Manipulation

Focus Order
How components are laid out on a window determines the focus order. When tabbing through
components on a window, the focus moves from left to right, then top to bottom. Focus will then
cycle back to the first component. When determining order, the top left corner of the component is
used. To see for yourself, drag several components into your window. Go to , and Preview Mode
tab through the components.

On this page

...

Focus Order
Requesting Focus
in the Window

The
getComponetFor
Path Function

Controlling Focus
Between
Components in a
Window

About Invoke
Later

Text Areas and
Focus Requests

Requesting Focus in the Window
You can programmatically request that be given to a component by calling the function on that function. focus requestFocusInWindow()
This function is called on a component and will pull the focus to that component so it is selected and ready to use. It is best used with an
input component, such as a Text Field, so the user can immediately begin typing into the component. You can use it on the internalFrame

 event to bring focus to the component right when the window opens. Activated

The getComponetForPath Function

The example above references the function . This function can be called from a window object, and allows you to getComponentForPath
specify the full path to a component inside of the window as a single string, using the following format:

Pseudocode - Get Component For Path

getComponentForPath('Root Container.ComponentName')

When referencing a component from a window event handler, such as internalFrameActivated, clicking the icon will Property Reference
use the getComponentForPath function. While this function is useful, you never have to use the getComponentForPath function. Instead you
can use the component paths that are seen from event handlers on other components. Below is a comparison of using both
getComponentForPath, as well as the more traditional

Pseudocode - Component Hierarchy from a Window

Both lines below will return a reference to the root container in the window that this script
originates from.

print system.gui.getParentWindow(event).getComponentForPath('Root Container')
print system.gui.getParentWindow(event).getRootContainer()

These lines will both reference the text property on a Label that is nested in a Group on the window.

print system.gui.getParentWindow(event).getComponentForPath('Root Container.Group.Label').text
print system.gui.getParentWindow(event).getRootContainer().getComponent('Group').getComponent('Label').
text

Python - Requesting Focus on Frame Activation

system.gui.getParentWindow(event).getComponentForPath('Root Container.Text Field').requestFocusInWindow()

Controlling Focus Between Components in a Window
In some cases, you may wish to control which component gains focus when the user clicks on a different component, or tabs away, instead
of using the default focus order. You can call from the event to control which component should requestFocusInWindow() focusLost
gain focus next.

However, calling may cause some irregular behavior as shown below. Notice below how the "second" and requestFocusInWindow()
"third" Text Fields both have a text cursor in the component, but the "first" text field has focus. This is because irequestFocusInWindow()
s being called on the focusLost event, which runs when one of our components loses focus. This means that while focus is being pulled to
one component (the "second" Text Field), our script changes focus again to a different component.

The solution to the problem above is to have the call occur as the last part of the event trigger. This can be requestFocusInWindow()
accomplished in one of two ways: using under Advanced Settings, or the system function.Invoke Later invokeLater()

About Invoke Later

The concept of invoking some code later leads to a broader discussion on event handling and timing, which deviates from the purpose of this
page: focus manipulation. The concept of "Invoke Later" simply means to wait for the current event to finish processing before running our
focusLost script. In the scenario above, clicking from one component to another (or tabbing to a different component) natively calls a focus
change event. A script on the focusLost event handler that uses requestFocusInWindow will also cause a focus change event, except it does
so mid-execution of the native focus change event.

The main issue then is that focus is being moved to two components simultaneously from within the same event stack. The solution then is to
have them occur in sequential order instead, with our custom focusLost script occuring last, hence using Invoke Later.

Running a script with one of the invoke later approaches mentioned here is not required on most scripts in Ignition, but it is common when
the script is attempting to set or interact with focus on a window. On a related matter, invoking a script later is not the same as adding a delay
mid execution.

To resolve the focus manipulation issue mentioned above, we can take one of two approaches:

Script Editor Advanced Settings

The simplest approach would be to use the option under Advanced Settings in the Script Editor.Invoke Later

Using the invokeLater System Function

Alternatively, we could address this by using to request focus at the end of the event.system.util.invokeLater

Python - Requesting Focus Later

Create a function for invokeLater that requests focus.
def focus():
 event.source.parent.getComponent('Text Field').requestFocusInWindow()

Call the function once the event has executed.
system.util.invokeLater(focus)

Text Areas and Focus Requests
Text Area components are slightly more complex when it comes to focus requests. Calling directly on the requestFocusInWindow()
component will not allow the user to immediately start typing into the component. However, we can accomplish this by calling getViewport()
, and then calling first as shown in the code below.getView()

https://legacy-docs.inductiveautomation.com/display/DOC80/system.util.invokeLater
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Text+Area

Python - Requesting Focus from a Text Area

Create a reference to the Text Area. This step could be skipped and combined with the line below, but
is segregated in this example for clarity.
textArea = event.source.parent.getComponent('Text Area')

This line demonstrates how to request focus on a Text Area
textArea.getViewport().getView().requestFocusInWindow()

Client Event Scripts

Client Event Scripts Overview
Client Event Scripts execute in the running Client, which means that they may never execute if no
clients are running, or they may execute many times if multiple clients are running. Client Event
Scripts will also execute in the Designer, but only in Preview Mode. Because Clients are full-
fledged applications, Client Event Scripts run on the computer running the Client, not on the
Gateway's host server computer. This means that they don't have access to the Gateway's file
system, and so on.

Note: System functions are available for both Client Event Scripts and Gateway Event Scripts,
but some system functions are specific to either one or the other. When you're writing event
scripts, it's important to remember the scope of where you writing the script: Client or Gateway.
You can check in the Appendix to see list of all system functions, their Scripting Functions
descriptions, and what scope they run in.

On this page

...

Client Event Scripts
Overview
Startup Script
Shutdown Script
Shutdown-Intercept
Script

Preventing Client
Shutdown

Keystroke Scripts
Client Keystroke
Script Interface
Choose
Keystroke
Window

Timer Scripts
Tag Change Scripts
Menubar Scripts

Menubar Script
Interface

Message Scripts
Client Message
Handler Settings

Troubleshooting
Client Scripts

Gateway vs Client
Event Scripts

Watch the Video

Startup Script
These trigger when the user logs into the client. These scripts trigger before any windows in the project are opened, so they are ideal to use
when you need to dynamically open certain windows based on which user logged on.

Configurations for Client Event Startup Scripts are similar to Gateway Event Startup scripts. See the for more Gateway Event Scripts page
information

Shutdown Script
These trigger when the user closes the client, or logs out.

https://legacy-docs.inductiveautomation.com/display/DOC80/Scripting+Functions
https://inductiveuniversity.com/video/gateway-vs-client-event-scripts/8.0
https://legacy-docs.inductiveautomation.com/display/DOC80/Gateway+Event+Scripts#GatewayEventScripts-StartupScript

Configurations for Client Event Shutdown Scripts are similar to Gateway Event Shutdown scripts. See the for Gateway Event Scripts page
more information

Shutdown-Intercept Script
The Shutdown-Intercept Script is unique in that it runs when a user attempts to shutdown a client, but before actual shutdown occurs. The
main reason to use a Shutdown-Intercept script is to prevent the client from closing.

Preventing Client Shutdown

There is a special property on the event object inside the Shutdown-Intercept script that can be used to prevent the client from closing:
simply type "event.cancel = 1." somewhere in your code. Doing this will cancel the shutdown event and leave the client open. This allows you
to set special restrictions in regard to when the client is actually allowed to shut down, such as having a certain role, as seen in the example
below:

Python - Cancel Application Exit

Check to see if the user has a certain role.
if "SuperUser" not in system.security.getRoles():
 # If the role is not present, it will warn the user and cancel the shutdown process.
 system.gui.warningBox("Only administrators are allowed to shutdown the client.")
 event.cancel = 1

Keystroke Scripts
The Keystroke Scripts let you create different events that will activate on certain key combinations,
allowing you to add keyboard shortcuts to your projects.

Client Keystroke Script Interface

Add Script - Adds a new keystroke script.

Delete Script - Deletes the currently selected keystroke script.

Script Settings - Opens the window, allowing you to modify the Choose Keystroke
keystroke that will trigger the script.

Choose Keystroke Window

The following areas are available on the Choose Keystroke window:

Modifiers - Additional keys or mouse buttons that must be held to trigger your script.
Modifiers are inclusive, so multiple modifiers must all be held down when the key is typed
to trigger the script.
Action - Similar to the , determines what action must occur to the key Key Event Handlers
to trigger the script:

Keystroke Scripts

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC80/Gateway+Event+Scripts#GatewayEventScripts-ShutdownScript
https://legacy-docs.inductiveautomation.com/display/DOC80/Component+Events#ComponentEvents-KeyEventHandlers
https://inductiveuniversity.com/video/keystroke-scripts/8.0

Pressed means the key was pressed,
Released means the key was released. When used in conjunction with a
modifier, this action provides the user a means to prevent the script from
happening after the key has already been pressed: if the user releases the
modifier before releasing the key, then the script will not trigger.
Typed means the user typed a specific character. Selecting this action enabled
the field under the key section. This provides an easier way to trigger the Char
script based on non-standard ascii characters.

Key- Which key will trigger the script. A dropdown is available when the Action is set to Pr
 or . A Text Field is available if the Action is set to . essed Released Typed

Special keys like the Function keys (F1) or ESC key are only available in the pressed and released
actions.

Timer Scripts
Run on a timer in the same fashion as their Gateway counterpart, except each instance of the project (i.e., client looking at the project
containing the timer script) has a separate instance of the timer script running. Timer scripts that insert records into a database, or write to a
Tag, are better suited as Gateway Event Scripts, since there will only ever be one running. If there are not any open clients, there will not be
an instances of this script running.

Configurations for Client Event Timer Scripts are similar to Gateway Event Timer scripts. See the for more Gateway Event Scripts page
information

Tag Change Scripts
Monitor one or more Tags, and trigger a script in each instance of the client on Tag change. Unlike the Gateway Tag Change Script, Client
Tag Change Scripts can monitor a Client Tag. Much like Timer Scripts, they only run in each instance of the client, so if there aren't any open
clients, then the script will never execute.

Configurations for Client Event Tag Change Scripts are similar to Gateway Event Tag Change scripts. See the Gateway Event Scripts page
for more information

Menubar Scripts
The Client Menubar Scripts create and control the options available in the menubar of the Client.
As such, these scripts are only available in the Client Scope. By default, a Client will have three
menus: Command, Windows, and Help. The Windows and Help Menu are separate, and
controlled through the project properties, but the Command menu is actually created in the Client
Menubar Scripts.

Some operating systems reserve certain keys for certain functions, and will capture the
key press or release before it gets sent to the Client. For example, many operating
systems use the TAB key to shift focus to the next field.

https://legacy-docs.inductiveautomation.com/display/DOC80/Gateway+Event+Scripts#GatewayEventScripts-TimerScripts
https://legacy-docs.inductiveautomation.com/display/DOC80/Gateway+Event+Scripts#GatewayEventScripts-TagChangeScripts

Below we see a configured list.Menu Structure

Next we see the results of the structure in the client.

Menu Bar

Watch the Video

Menubar Script Interface

The user interface on the Menubar script is divided into two sections.

Menu Structure

 A tree representing the layout of the menu bar. Items at the root of the tree will appear on the menu bar in the client, and nested items will
appear as subitems in the client. In the image of the Client Event Script above, notice that the , , and items are Logout Lock Screen Exit
children of the item. When looking at the image of the menubar in the Client, these three items appear under the Command Item.Command

https://inductiveuniversity.com/video/menubar/8.0

Because the Menu Structure ultimately impacts the order, the following buttons are available to help sort each item.

 Add Sibling - Adds a new sibling, or peer item, to the selected item.

Add Child - Adds a new child to the selected item.

 Move Up and - Moves the selected item up or down in the list. The order in the list determines the order that Move Down
items appear in the menu, so these buttons can be used to group meaningful items together.

 Delete - Deletes the selected item, removing it from the menu.

Item Properties

Name - The text on the item in the menu.
Icon - What image should appear next to the item, if any.
Tooltip - Optional property allowing you to specify a tooltip when the user hovers the mouse cursor on top of the item.
Accelerator - Allows you to define a keyboard shortcut that will quickly select the item. Please see the Accelerator section below for
more details.
Mnemonic Character - Allows you to define a character key that will trigger the option when the menu is open. Please see the
Mnemonics section below for more details.
Action Script - The script that will run when the user selects the item. Every item, even those at the root and branches may have a
script defined.

Note: It is uncommon to have a script defined on a branch, as they usually act as a means to list other items.

Accelerators

An accelerator is a key or key combination that can be pressed at any time in the client to initiate that menu item's event. If an accelerator
has been configured for an item, then it will be listed on the menu in the client. Below we see our initial menu bar has been modified with the
accelerator . Now the Lock Screen item may be called anywhere in the client by holding and pressing the key. Shift+F1 Shift F1

Mnemonics

The mnemonic character is a key that can be pressed when the menu is opened. This is functionally similar to an Accelerator, in that it allows
the user to select an item in the menu without clicking on it. However, mnemonics differ in that they only call an item when the menu is open,
and the item is visible on the screen.

Users can identify mnemonics by a character to the right of the comand in the menu. In the image below, we see that the item has Logout
an "L" character. This means the user can now press the "L" key to select the Logout item. However, this will not work unless the menu is
open, so if the user accidentally presses the L key while the menu is closed, the script will not trigger. Notice, how each command also has a
mnemonic character defined for each command.

Message Scripts
Client Message Handlers are created and called using the same mechanisms as Gateway Event

. There are two main differences that make Client Message Handlers stand out from Scripts
Gateway Message Handlers: they run in the Client, and they have different settings.

Script Messaging

Watch the Video

Client Message Handler Settings

https://legacy-docs.inductiveautomation.com/display/DOC80/Gateway+Event+Scripts#GatewayEventScripts-MessageScripts
https://legacy-docs.inductiveautomation.com/display/DOC80/Gateway+Event+Scripts#GatewayEventScripts-MessageScripts
https://inductiveuniversity.com/video/script-messaging/8.0

Client Message Handlers have the following settings:

Name - The name of the message handler. Each message handler must have a unique name per project.
Threading - Determines the threading for the message handler. Contains the following options:

Shared - The default way of running a message handler. Will execute the handler on a shared pool of threads in the order
that they are invoked. If too many message handlers are called all at once and they take long periods of time to execute,
there may be delays before each message handler gets to execute.
Dedicated - The message handler will run on its own dedicated thread. This is useful when a message handler will take a
long time to execute, so that it does not hinder the execution of other message handlers. Threads have a bit of overhead, so
this option uses more of the Gateway's resources, but is desirable if you want the message handler to not be impeded by
the execution of other message handlers.
EDT - This will run the message handler on the (EDT) which also updates the GUI. If a message Event Dispatch Thread
handler were to take a long time to execute, it would block the GUI from running which may lock up your client. This is
helpful when your message handler will be interacting with the GUI in some way, as the GUI will not be able to update until
the message handler finishes.

For more information on Message Handlers, such as working with the Payload argument, or calling them, please see the Gateway Event
 page. Scripts

Troubleshooting Client Scripts
The Console is very a important tool in Ignition for troubleshooting Client scripts. You can check to see if your script is working directly from
the Client window, or the Designer while in Preview Mode. Any client scripting errors along with printouts go to the Console. The Console will
identify the script name, error message, what line the script error is in, and a description of the problem.

To access the Console from a Client, go to the menubar and select . To access the Console from Preview Help > Diagnostics > Console
Mode in the Designer, go to the menubar . Tools > Console

Related Topics ...

Gateway Event Scripts

https://legacy-docs.inductiveautomation.com/display/DOC80/Gateway+Event+Scripts#GatewayEventScripts-MessageScripts
https://legacy-docs.inductiveautomation.com/display/DOC80/Gateway+Event+Scripts#GatewayEventScripts-MessageScripts
https://legacy-docs.inductiveautomation.com/display/DOC80/Gateway+Event+Scripts

1.

2.

Read a Cell from a Table

After data has been populated in a Table or Power Table component, it may be useful to read or
extract a particular cell from the Table, especially if users can select rows in the Table. On this
page, we'll take a look at how to retrieve information from a particular cell on a Table.

The example on this page utilizes a simple Power Table and Button component. Users select a
row from the table to extract one of the cells from the highlighted row in the Power Table and press
the Sign-In button.

On this page

...

Power Table
Example

Selecting a
Single Cell
Selecting
Multiple Cells -
Same Column
Test Your Script

Power Table Example
This example provides the code that you can use for selecting a single cell and multiple cells in a Table.

Selecting a Single Cell

Retrieve a single cell requires that we reference the Power Table a couple of times in the same script. Because of this, we can create a
variable that references the table, and use the variable later on. Be aware that a Button and Power Table can be in the same container or
separate containers. If your Button and Power Table are in separate containers your path may differ.

Drag a and components to your Designer workspace. Assuming the Power Table has not been renamed, we Button Power Table
can reference the Power Table component with the line of code below as shown in the image below.

Python - Reference the Power Table

Grab a reference to the Power Table.
table = event.source.parent.getComponent('Power Table')

Datasets in Tables

Before we get started, it is important to understand that a cell in a Table is actually a cell in a dataset. Data in a Table is stored in a
property on the component (the property), and the script needs to interact with that property. Data

2.

3.
4.

5.

6.

7.

As mentioned above, if the Button and Table are in separate containers, the path will be different. Double click the Button
component to open the window, select the event handler, and click the Scripting action > actionPerformed Property Reference ic

on to generate the path to a property, but not the component.
Next, select a property from the Power Table in the window and click . Choose Property OK
Remove the portion at the end of the script in the Script Editor, and click . ".propertyName" OK

Next , we simply need to figure out which row contains the cell we want to read from. In our example, the user will select the row for
us, so we simply need to know which row is selected when the Button is pressed. Fortunately, the Power Table contains a Selected

 property that can be used to determine the row that is selected. Furthermore, we can use the that is built Row getValueAt() function
into datasets.

Python - Reference the Name of the Column

Here the "Mechanic_Name" argument references the name of the column.
table.data.getValue(table.selectedRow, "Mechanic_Name")

Alternatively, we can use an integer as the last argument to specify the index of the column our cell is located in.

Python - Reference the Index of the Column

Here the '1' references the index of the column in the Power Table's raw dataset (Data
property).
Remember, indexes are zero-based, so this would retrieve the second column from the left.
mechanicName = table.data.getValueAt(table.selectedRow, 1)

Lastly, we will need to account for scenarios where the user did not selected a row, otherwise, this will throw an exception. An if-
statement can be used here to check for a -1 value on the Power Table's property, and an else-clause can be used Selected Row
to notify the user that a row needs to be selected. Note that there is a property on the Power Table named that Selection Mode
allows users to select multiple rows. By default it is set to only allow a single row to be selected. Change it to test your button.

Here is all the code that you'll need to read a single cell from a Power Table in the same container.

Python - Putting it all Together

Grab a reference to the table.
table = event.source.parent.getComponent('Power Table')

Make sure the user selected something before doing the rest of the work.
if table.selectedRow != -1:

 mechanicName = table.data.getValueAt(table.selectedRow, "Mechanic_Name")

https://legacy-docs.inductiveautomation.com/display/DOC80/Datasets

7.

8.

 # Do something with the mechanicName variable.
 print mechanicName

else:
 print "Please Select a Row!"

To test your script, follow the steps in the section. Test Your Script

Selecting Multiple Cells - Same Column

By default, the Power Table allows for multiple rows to be selected. However, the Selected Row property only shows the row index for the
first row selected. Fortunately, the Power Table also has a built-in that can be used to return all of the indices. getSelectedRows() function
We simply need to iterate over each index. Note, we can still use the Power Table's property to test if any rows are selected, Selected Row
but we could instead check the length of the object returned by getSelectedRows():

Here is all the code you'll need to read multiple cells from a Table in the same container. Copy the code in the code block below and replace
the code in previous example to allow for multiple rows to be selected.

Python - Reading Multiple Cells

Grab a reference to the table.
table = event.source.parent.getComponent('Power Table')

selectedIndices = table.getSelectedRows()

If the length of selectedIndices is greater than 0, then at least one row is selected.
if len(selectedIndices) > 0:

 for index in selectedIndices:

 mechanicName = table.data.getValueAt(index, "Mechanic_Name")

 # We can do something with the value as we iterate, or append to a list and
 # do something with the entire list after the for-loop completes.
 print mechanicName

else:
 print "Please Select a Row!"

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Power+Table#VisionPowerTable-PowerTableScripting

1.
2.

3.

Test Your Script

Now you're ready to test your script whether you are selecting one row or multiple rows.

Open the and select in the menubar. Output Console Tools > Console
In , select a row in the , and click the button. You will see the selected Mechanic_Name Preview Mode Power Table Sign-In
displayed in the console.
To test selecting multiple rows, shift click a couple of rows and press the button, and you'll see the selected Sign-In
Mechanic_Names displayed in the console.

Related Topics ...

Vision - Table
Vision - Power Table

https://legacy-docs.inductiveautomation.com/display/DOC80/General+Designer+Interface#GeneralDesignerInterface-ToolsMenu
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Table
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Power+Table

Historian in Vision

The is a powerful system that can easily be set up to store Tag data to a database to Tag Historian
be accessed at a later time. The Vision system has many components that are designed to easily
pull the information out of the database and display it, most commonly in chart format.

The Easy Chart
The most popular Vision component that trends historical data would be the . This Easy Chart
component is simple to initially configure and contains many ways to customize the look and
behavior of the chart. The Easy Chart also features a customizer that enables you to change the
many different settings of the component.

On this page

...

The Easy Chart
The Classic Chart
The Sparkline Chart
The Status Chart

The Classic Chart
The pulls in data from the Tag History system and can display it in a variety of ways. While not as simple to get started with as Classic Chart
the Easy Chart, the Classic Chart provides the unique ability to trend data that isn't based on a timestamp, but instead something like a
category.

https://legacy-docs.inductiveautomation.com/display/DOC80/Tag+Historian

The Sparkline Chart
The is a simple chart that strives for minimalism rather than many fancy settings. Even with its simplicity, it remains a Sparkline Chart
powerful tool. For example, the Sparkline Chart works great when used in environments, where muted colors and High Performance HMI
lines are used to help draw the users attention to the places that matter.

The Status Chart
The displays discrete data over a period of time. This provides a great way of displaying status information for various Status Chart
machines. It can also accept data in both wide and tall format, making it easy to use with any type of stored historical data.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Sparkline+Chart

In This Section ...

Using the Vision Easy Chart

Trends Made Easy
The was developed with the system in mind. Once an Easy Chart is Easy Chart Tag Historian
created, you can drag and drop historical Tags onto the chart. The chart will immediately retrieve
the results and trend the history. Data that is not set up with Tag Historian can also be displayed
on the chart, as long as the data has timestamps associated with the values. For this type of data,
database pens are created and displayed.

Basic Easy Chart

Watch the Video

Chart Modes
The Easy Chart has a Chart Modes property that changes the behavior of the chart in several ways. The mode is set in the Vision Property
Editor in the Chart Mode Property.

Historical

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Easy+Chart
https://legacy-docs.inductiveautomation.com/display/DOC80/Tag+Historian
https://inductiveuniversity.com/video/basic-easy-chart/8.0

This mode places a component at the bottom of the chart. This mode allows users to select a start and end date for the Date Range Selector
trends. The data density is shown at the bottom of the chart: the more vibrant the color, the higher the density. This the default mode, and
commonly used in situations where users need to look at specific date ranges. It is important to remember that the chart does not poll in this
mode. New values are only added to the chart when the selection box is moved or re-sized.

Realtime

Displays the most recent data for each pen. Users are able determine how far back in time the trend should display with the and Spinner Drop
 components at the bottom of the chart. In this mode, the chart polls for data at the rate specified by the Poll Rate property.down

In some cases, you may notice that the most recent values on tag pens tend to flat-line, and then 'snap' to a different value. This is generally
due to how often the chart polls versus how often history is being generated. If the chart polls at a 1,000ms rate, but history is only recorded
at a 10,000ms rate, then the chart will extrapolate the last recorded value for 9,000ms. After a new value is recorded, the next poll will return
the latest value, and the flat-line will change position.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Date+Range
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Spinner
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Dropdown+List
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Dropdown+List

Manual

Similar to the Historical mode in that trends range from two points in time. However, there is not a built-in method for users to change the
data range. Instead, some sort of binding can be applied to the chart's Start Date and End Date property. This mode is generally used in
situations where only certain date ranges should be shown, such as values recorded during the previous day, or shift.

Pens
Pens on the chart, or each series of data points on the chart, can be customized to take on a number of different styles and colors. There are
three types of pens, and each pen functions in a similar manner. What makes them different is how their data is collected.

Tag Pens - These pens are driven by the Tag history system. Data from any historical provider can be used, and Tag history from
different databases can be shown on the same chart. These are the type of pens that are created when Tags are dragged onto the
chart. Since the Tag History system is being used, an Aggregation Mode must be selected, and the Tag Path needs to be specified
for each pen.
Database Pens - These pens are driven by a SQL query, so they are ideal to use when trending Transaction Group data. However,
they can query for data in any connected SQL database, so it is possible to show historical data recorded by other systems on the
Easy Chart.
Calculated Pens - Pens that derive their data from calculations performed on other pens. Data for calculated pens is not stored
directly into a database, but rather calculated in the runtime based on data from another pen. These type of pens are great for
display running totals, control limits, or specification limits.

Pens can be added manually to the chart with the or added dynamically by modifying the various pens properties Easy Chart Customizer
listed under Chart Configuration in the Vision Property Editor. These properties contain the configuration of each type of pen and can make
use of the binding system. Because of this, pen preferences can be saved to a database table and then queried in the runtime with a SQL
binding. Additional adjustments can be made with or scripting to create a dynamic-yet-robust chart. Cell Update bindings

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Easy+Chart+Customizer

Easy Chart Customizer
Aside from the properties on the component, the allows modifications to be made to the chart. Along with configuring Easy Chart Customizer
pens, the customizer can be used to create , new , and dynamic groups. Once created, each pen can be assigned to any subplots axes
available axes or subplots. This way different values can be shown on different plots with an axis that is specific to data at hand.

Related Topics ...

Easy Chart Customizer

In This Section ...

Wh ll pens will show up en you add pens to the Easy Chart, a
with a white X next to their name. This exists for creating an a

 used with the Tag Browse Tree component. To d hoc chart
remove the ability to delete pens, you must edit the Tag
Pens dataset property. Click on the dataset viewer icon, then
in the last column "User Removable", deselect the checkbox
and click OK.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Easy+Chart+Customizer
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Easy+Chart+Customizer

1.
2.

3.

Easy Chart - Axes

Configuring Multiple Axes on an Easy Chart
The supports the use of multiple axes for displaying data from the Tag Historian. Easy Chart

On this page

...

Configuring Multiple
Axes on an Easy
Chart
Hiding Pens
Configuring an Easy
Chart using the
Symbol Axis

Easy Chart - Axes

Watch the Video

Now, let’s configure multiple axes on an Easy Chart component.

From the Component palette, drag an component to your workspace. Easy Chart
Next, drag your Tags over from the Tag Browser onto your Easy Chart. For the example, we used Sine 1 and Sine 4. Sine 1 and
Sine 4 have completely different value ranges. Sine 1 values range between -10 and 10. Sine 4 values range between -100 and 100.
Since both sines are on the same axis, it is hard to see the details of Sine 1 values because Sine 4 is throwing off the axis due to its
wide range of values.

You have the option of putting Tags into different axes. You can do that in the Customizer of the Easy Chart component. Right click
on the Easy Chart component and choose Customizers > . Easy Chart Customizer

This section assumes that Tags and Tag History have been configured

To learn more, go to the and pages.Tag Configuring Tag History
The examples below use from the driver, OPC Tags Programmable Device Simulator
but can be used instead.Memory, Expression, and Query Tags

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Easy+Chart
https://inductiveuniversity.com/video/easy-chart-axes/8.0
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Easy+Chart+Customizer
https://legacy-docs.inductiveautomation.com/display/DOC80/Creating+Tags
https://legacy-docs.inductiveautomation.com/display/DOC80/Configuring+Tag+History
https://legacy-docs.inductiveautomation.com/display/DOC80/Creating+Tags
https://legacy-docs.inductiveautomation.com/display/DOC80/Programmable+Device+Simulator
https://legacy-docs.inductiveautomation.com/display/DOC80/Creating+Tags

3.

4.

5.
6.
7.
8.
9.

Click on the tab. You'll notice that there is already one axis showing called Default Axis, which both Tags are sharing. Axes

To add an axis, click on the icon. Add
The Edit Axis window is displayed. Assign the a name. In this example, it's the name of the Tag that is being used. Axis
Enter a name, which is a name that you want users to see on your chart. Label
Select the of axis from the dropdown: Numeric, Logarithmic or Symbol. This example uses the default, . Type Numeric
If desired, select the , and that you want to set for your axis.Label Tick Label Tick Color

The property determines which side of the chart the Axis should be drawn on. By default, this property is disabled because Position
the Easy Chart automatically attempts to position each Axis. To manually determine the position of an Axis, locate the Auto Axis

property in the Property Editor of the Easy Chart component, and set it to . Positioning 'False'

By default, the is set to and will apply padding so the pens do not draw at the top and bottom of the axis. Instead Auto Range 'true'
of having the Easy Chart automatically determine the range, Auto Range could be set to 'false', in which case the and Lower Bound

 properties will determine the full range of the axis. Upper Bound

9.

10.

11.

12.

Now, you have two axes: Default Axis and Sine 4 axis.

Once a new axis has been created, you need to assign a pen to the axis. Select the tab, select the pen row you want to Pens

change, and click the icon Edit . This example uses the 'Sine 4' pen. In the Axis field, select the ‘Sine 4’ axis from the
dropdown menu, and click OK to save the pen.
Click again to close the Easy Chart Customizer. OK

12.

13. You'll notice that each pen is now in a different axis: Sine 1 is in the Default Axis, and Sine 4 is in the Sine 4 axis. On the right side,
you can see Sine 4 axis and its values. On the left side, you can see the Default Axis (Sine 1) axis and its values. Now, you are
using a different axes for each pen, and one pen is not going to throw off the values for the other pen.

Hiding Pens
You can also hide or turn off pens so they are not displayed on the Easy Chart. To only see values for the Sine 1 axis, go to , uPreview Mode
ncheck the pen and click To see the values for only the Sine 4 axis, check the pen, uncheck the and Sine 4 , Apply. Sine 4 Sine 1 pen, click

. Apply Also important to note, auto positioning on the Easy Chart will automatically move the axis should pens assigned to an axis be
removed.

https://legacy-docs.inductiveautomation.com/display/DOC80/General+Designer+Interface

1.

2.
3.
4.
5.

6.

Sine 1 Pen

Sine 4 Pen

Configuring an Easy Chart using the Symbol Axis
Another feature of the Easy Chart is the use of the type Instead of showing numerical values on the axis, the Symbol Axis Symbol Axis .
type can show plain text on the axis.

The second in this Easy Chart uses a Multi-State Button component to demonstrate the use of the type. The Multi-subplot Symbol Axis
State Button component is bound to an OPC Tag, and the value of the Tag is stored in the Tag History system. Instead of showing the
numerical values and you can use plain text such as and This is helpful to an operator who immediately '0,' '1,' '2,' 'Hand,' 'Off,' 'Auto.'
knows the state of the equipment instead of having to learn what the numeric values mean.

Click on your Easy Chart component, and select Customizers > Easy Chart Customizer.

Click on the tab, then click the icon to add an axis. Axes Add
Enter a , we chose 'Axis 2'. Enter a , we called 'State'.Name Label
In the field, select from the dropdown.Type 'Symbol'
In the field enter and separated by commas, and no spaces. (Note: The order of the Symbols/Grid Bands 'Auto,' 'Off,' 'Hand'
symbols when you type them in, will be ascending order on the axis).
Click two times. OK

6.

7.
8.

Put the in .Designer Preview Mode
Toggle the Multi-State buttons to begin logging data to your Easy Chart. Data for the Multi-State Button component is collected in the
second subplot which is using the Symbol Axis type. The first subplot is data for another Tag using the Numeric Axis type.

8.

This Easy Chart example above shows the of the Easy Chart component and how easy it is to break up the chart plot subplot feature
area into multiple distinct subplots sharing the same X axis. It is a good way to display lots of data from different Tags in one Easy
Chart.

Related Topics ...

Easy Chart Customizer
Easy Chart - Subplots

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Easy+Chart+Customizer

1.
2.
3.

4.

5.

6.

Easy Chart - Subplots

Subplot Overview
The subplot feature of the Easy Chart component allows you to break up the chart plot area into
multiple distinct subplots sharing the 'X' axis, but they each have their own 'Y' axis. It is a good
way to display lots of data from different Tags in one Easy Chart.

By default, the Easy Chart has one subplot which is the main white area. In this example, there are
three Tags inside the chart, yet it's difficult to see the details of the data. It’s possible to break up
your Tags into multiple subplots which is often useful for discrete data.

Easy Chart -
Subplots

Watch the Video

Configuring Easy Chart Subplots
For each Tag in the Easy Chart example above, let's create its own subplot so the data is easier to view and analyze.

Drag an Easy Chart component onto your window.
Drag three Tags onto the chart. We used Ramp0, Ramp2, and Sine1 from . Programmable Device Simulator
Right click on the Easy Chart component and choose The Easy Chart Customizer Customizers > . Easy Chart Customizer
window opens displaying four tabs.
Click on the tab.Subplots

The Subplots tab lets you add one or more subplots to the Easy Chart. Create two more subplots by clicking the two Add icon
more times.
The size of each subplot corresponds to the ratio between their "Relative Weight" settings. By default, each subplot is assigned a
weight of 1, meaning each subplot will share an equal percentage of space on the chart. In this example, we set has a Subplot 1
weight of , and and have a weight of . Subplot 1 is going to be 2 times larger than Subplots 2 and 3.'2' Subplots 2 3 '1'

This section assumes that Tags and Tag History have been configured

To learn more, go to the and pages.Tag Configuring Tag History
The examples below use from the OPC PC Tags Programmable Device Simulator
driver, but can be used instead.Memory, Expression, and Query Tags

https://inductiveuniversity.com/video/easy-chart-subplots/8.0
https://legacy-docs.inductiveautomation.com/display/DOC80/Programmable+Device+Simulator
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Easy+Chart+Customizer
https://legacy-docs.inductiveautomation.com/display/DOC80/Creating+Tags
https://legacy-docs.inductiveautomation.com/display/DOC80/Configuring+Tag+History
https://legacy-docs.inductiveautomation.com/display/DOC80/Creating+Tags
https://legacy-docs.inductiveautomation.com/display/DOC80/Programmable+Device+Simulator
https://legacy-docs.inductiveautomation.com/display/DOC80/Creating+Tags

6.

7.

a.
b.
c.
d.

8.

9.

Now that we have subplots, we'll put each of the different pens into a different subplot. Click on the tab, select the row for the Pens

Ramp0 Pen and click the icon. For this example, we chose the following settings:, Edit

Chose . Subplot 1
Set the color to pink.
Set the style to .Area
Click .OK

For the Ramp2 pen, we selected the following:

Subplot: 2
Color: Blue
Style: Line w/Gaps

For the Sine1 pen, we selected the following:

Subplot: 3
Color: Red
Style: Digital

9.

10.
11.

12.

Click OK.
Now, you have three distinct subplots on one Easy Chart. You are not limited to the number of subplots on one Easy Chart.

You can be selective about what subplots you want to view. Go to uncheck the Pens you don't want to see, and Preview Mode,
click . Apply

13. Notice how the Ramp2 pen is unchecked and is no longer displayed on the Easy Chart. To add the Ramp2 pen back to the Easy
Chart, check the Ramp2 pen, and click . The Easy Chart only displays subplots that have active Tags. Apply

Related Topics ...

Easy Chart Customizer
Easy Chart - Pen Names and Groups
Easy Chart - Pen Renderer

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Easy+Chart+Customizer

1.
2.

a.

b.
c.

3.

Easy Chart - Pen Names and Groups

Pen Names and Group Overview
You can organize pens on the Easy Chart by creating custom names and groups for each pen. By
default, when you drag Tags from the Tag Browser on to the Easy Chart component, the pen
name is the same as the Tag name and organized into a single group called One of the ‘Pens.'
great things about pens is you can change pen names and organize pens into different groups
making it easier for the operator to quickly analyze the data.

Easy Chart - Pen
Names and Groups

Watch the Video

Configuring Pen Names and Groups

For each Tag on the Easy Chart, let's create unique pen names and organize each pen into a group using the Easy Chart Customizer.

Right click on the Easy Chart component, and choose Customizers > . Easy Chart Customizer
On the Pens tab, we'll edit each of the individual pens and give them a different name as well as put them inside a different group.

Select the first pen row, click the and rename the first Tag from to as shown in the following Edit icon, ‘Ramp0’ ‘R0’
example.
At the bottom of the Edit Pen window, next to , create a new group called Group Name ‘Ramps.’
If other groups exist, you can select one from the dropdown list or enter your own. In this example, this is the first group to
be created, so simply type and . ‘Ramps,’ press OK

Repeat this step for each Ramp pen assigning each pen a new name.

This section assumes that Tags and Tag History have been configured

To learn more, go to the and pages.Tag Configuring Tag History
The examples below use from the driver, OPC Tags Programmable Device Simulator
but can be used instead.Memory, Expression, and Query Tags

https://inductiveuniversity.com/video/easy-chart-pen-names-and-groups/8.0
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Easy+Chart+Customizer
https://legacy-docs.inductiveautomation.com/display/DOC80/Creating+Tags
https://legacy-docs.inductiveautomation.com/display/DOC80/Configuring+Tag+History
https://legacy-docs.inductiveautomation.com/display/DOC80/Creating+Tags
https://legacy-docs.inductiveautomation.com/display/DEP/Simulators
https://legacy-docs.inductiveautomation.com/display/DOC80/Creating+Tags

3.

4.

a.
b.
c.
d.

Next, let's keep the Sine pen names the same as the Tag name, but add them to a group.

Select the pen row, and click the . Sine0
Enter a new group name called '. 'Sines
Click OK.
Repeat this steps a and c. to add each Sine pen to the Sines group.

4.

d.

5. Once you have all your pens configured, click . Operators will see the Pen and Group names organized into two legends on the OK
Easy Chart. You can update the pen and group names on this view by double clicking on any of the fields. It’s a faster way to edit
this information then having to go to the Edit icon for each pen.

Tip for Viewing Specific Pen Values

To see specific Pen values on the Easy Chart, uncheck the Pen and click the Apply button. To see all Pen values, make
sure all Pens are checked, and hit the Apply button.

Related Topics ...

Easy Chart Customizer
Easy Chart - Pen Renderer

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Easy+Chart+Customizer

1.

2.

3.

Easy Chart - Pen Renderer

Customizing the Pen Renderer
You can customize the renderer of each pen on the Easy Chart to change its style, shape, weight
and color. When adding Tags to an Easy Chart component, the default renderer or style of each
pen is a simple line, but it can be customized for each pen.

Easy Chart - Pen
Renderer

Watch the Video

In this example, we will use the Pen Renderer to customize several pens. What's nice is the Easy Chart Customizer allows you to
previewthe style, shape, weight and color. If you don't like it, you can easily change it.

Click on the Easy Chart component, and scroll down to . Customizers > Easy Chart Customizer

From the tab, select the pen row, and click the . On the right side of the Edit Pen window under Style, you can Pens Edit icon
change the line color, style, weight, and shape. The line style, by default, is which means that if you lose ‘Line with Gaps,’
communication to the PLC or don’t have data for a particular time period, you will see a gap. You can change the Style from ‘Line w/
Gaps’ to any other style type listed in the dropdown that fits your needs and preferences.

Edit each style property. If you don't like the result in the Preview window, select another style. You can edit it as many times as you
like. When you're finished, press OK.

https://inductiveuniversity.com/video/easy-chart-pen-renderer/8.0
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Easy+Chart+Customizer

3.

4.

5.

Repeat steps 2 and 3 to customize the style for all the pens you want to change. When you're finished, press OK.

The pens on the Easy Chart now reflect your style changes.

Related Topics ...

Easy Chart Customizer

https://legacy-docs.inductiveautomation.com/display/DOC79/Easy+Chart+Customizer

Easy Chart - Digital Offset

1.

2.
3.
4.

Easy Chart - Digital Offset

Digital pens often share the same subplot on the component. Easy Chart When you have multiple
digital pens on the same Easy Chart subplot, it's hard to see what the values are of each pen
because they may overlap each other. There is a digital offset pen setting that can be set which
prevents the values from overlapping and enables them to be seen better in the subplot.

The following example shows two digital pens on the same subplot: State1 and State2. The
values are a little difficult to see because they are on top of each other.

On this page

...

Adding a Digital
Offset

Easy Chart - Digital
Offset

Watch the Video

Adding a Digital Offset
In this example, we will apply a digital offset on the pen renderer so you can see the values better.

Right click on the Easy Chart component and choose . Customizers > Easy Chart Customizer

On the Pens tab, select the row pen, and click the icon. State1 Edit
Set the is set to .Style 'Digital'
Set the to Click to save the changes to the pen. Digital Offset 'true'. OK

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Easy+Chart
https://inductiveuniversity.com/video/easy-chart-digital-offset/8.0
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Easy+Chart+Customizer

4.

5.
6.

Repeat steps 2-4 for the pen. State2
When you're finished editing your pens, click OK to return to the Easy Chart. You will see a little offset in the values between the
State pens in the 2nd subplot so they don’t overlap each other, making it a lot easier for the operator to read the digital values.

Related Topics ...

Easy Chart Customizer
Easy Chart - Calculated Pens

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Easy+Chart+Customizer

Easy Chart - Calculated Pens

Calculated Pens

Calculated pens display a value that is dynamically calculated based on another pen. This can be
used to calculate certain values for a pen and graph them alongside the original pen values,
allowing you to gain valuable insight into your data. There are many unique calculations that can
be used, with some of them containing unique customization. Almost all of the Calculated pens
require a driving pen, which is a tag or database pen that you have already setup.

On this page

...

Calculated Pens
Calculated Pen
Functions
Configuring
Calculated Pens

Hide Driving Pens

Easy Chart -
Calculated Pens

Watch the Video

Calculated Pen Functions

This section assumes that Tags and Tag History have been configured

To learn more, go to the and pages.Tag Configuring Tag History
The examples below use Tags, but could be OPC Memory, Expression, and Query Tags
used instead.

Note

You cannot bind the Calculated Pen values inside the Easy Chart Customizer. To bind
the function values, use the .Cell Update Binding

https://inductiveuniversity.com/video/easy-chart-calculated-pens/8.0
https://legacy-docs.inductiveautomation.com/display/DOC80/Creating+Tags
https://legacy-docs.inductiveautomation.com/display/DOC80/Configuring+Tag+History
https://legacy-docs.inductiveautomation.com/display/DOC80/Creating+Tags
https://legacy-docs.inductiveautomation.com/display/DOC80/Creating+Tags

There are a variety of functions that can be used to calculate the pen value. The pen functions are located on the Edit Pen screen in the
Function dropdown list. The table below defines the available functions.

Function Display
Name

Description Extra Properties

Constant Constant A constant value on the chart. Constant Value - The constant value of the pen

Upper
Control
Limit

UCL The upper control limit of the driving pen, which is three
standard deviations above the mean of the Driving Pen.

Upper
Warning
Limit

UWL The upper warning limit of the driving pen, which is two
standard deviations above the mean of the Driving Pen.

Average Avg The average of the driving pen.

Lower
Warning
Limit

LWL The lower warning limit of the driving pen, which is two
standard deviations below the mean of the Driving Pen.

Lower
Control
Limit

LCL The lower control limit of the driving pen, which is three
standard deviations below the mean of the Driving Pen.

Moving
Average

Moving
Avg

A series of averages based on subsets of the driving pen.
The subsets are determined by the window size.

Window Size - The size of the moving average
window, specified as a multiplier of the chart's date
range.

Multiply Multiply Multiply each data point of the driving pen by a factor. Factor - The factor that each data point of the driving

1.
2.
3.

4.

5.

Pen pen is multiplied by.

Minimum
Value

Min The minimum value of the driving pen.

Maximum
Value

Max The maximum value of the driving pen.

Running
Sum

Running
Sum

A running sum or running total of the driving pen.

Sum Sum The sum of two different driving pens. Secondary Pen - The second driving pen.

Difference Differen
ce

The difference of two separate driving pens. Secondary Pen - The second driving pen.

Linear
Regressi
on

LinearR
egression

Will create a linear regression line for the driving pen.

Configuring Calculated Pens
In this example, we will configure the following calculated pens on our Easy Chart: Constant, Moving Average, Upper Control Limit (UCL),
and Lower Control Limit (UCL).

Drag an component onto your Designer window.Easy Chart
Drag a onto the chart. In this example, we are using a tag from .Tag 'Realistic1' Programmable Device Simulator
Right click on the Easy Chart component and choose Customizers > . Easy Chart Customizer

The tab will open and you'll notice a at the bottom of the screen. Click the Add icon. Pens Calculated Pens Table

This will open the Edit Pen window. Set the calculated pen options as follows:

Name: High SP
Driving Pen: Realistic1 (Since we only have one tag on our Easy Chart, the Realistic1 tag is the default).
Function field: Constant

Pens

Calculated pens are just like other pens, so you can specify the style, color, axis and subplot in the Edit Pen window.

https://legacy-docs.inductiveautomation.com/display/DOC80/Programmable+Device+Simulator
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Easy+Chart+Customizer

5.

6.

7.

8.

9.

Constant Value: 25

 Click . OK

Click again to save your pen options. Now, view your pen on your Easy Chart. The High SP value of 25 is represented OK High SP
on your Easy Chart by a blue horizontal line.

Next, let's add a second calculated pen. Double click on the Easy Chart to open the Style Customizer. On the Calculated Pens

 at the bottom of the screen. Click the Add icon. Table

On the Edit Pen window, set the calculated pen options as follows:
Name: MovingAvg

9.

10.

Function field: MovingAvg
Driving Pen: Realistic1
Window Size: .2

Click . The chart now displays a running average.OK

 If you have more Tags that you dragged on to your Easy Chart from the Tag Browser, you'll have more pens to
choose from in the Driving Pen dropdown list.

10.

11.

12.

13.

Lets add two more calculated pens: one for Upper Control Limit () and another for Lower Control Limit (), and set the UCL LCL
Driving Property to Select a pen color to change the default color. 'Realistic1.'

Once you add all your calculated pens, you'll see all your pens in the Calculated Pens section at bottom of the window. Press OK.

 Now, all your calculations are displayed on your Easy Chart. The blue pen is the Constant, the pink pen is the Moving Average, and
UCL and LCL are brown and green respectively.

13.

Hide Driving Pens

Once you have your Calculated Pens created, you'll notice that they disappear if you disable the pen driving them. If you want to remove the
Driving Pen but leave the Calculated Pens, set the property of the Driving Pen to .Hidden 'true'

Related Topics ...

Easy Chart Customizer
Ad Hoc Charting

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Easy+Chart+Customizer

1.

2.
3.

4.
5.
6.

a.
b.
c.

Ad Hoc Charting

Using Ad Hoc Charting
In Designer, you can use a special built-in component called the Tag Browse Tree to create Ad
Hoc Charts where you can pick and choose which pens you want to put on an Easy Chart. This
same functionality is also available for an operator in the Runtime.

In Designer, drag a component and component from the Tag Browse Tree Easy Chart
component palette to your workspace.

Put the Designer in .Preview Mode
Expand the Tag folders to see the Tags in your system. By default, the Tag Browser Tree
component shows you all Tags even those Tags that are not logged in Historian.

Put the Designer back in .Design mode
Select the Tag Browse Tree component.
In the , set the following properties: Property Editor

Set to false. Include Realtime Tags
Set to true. Include Historical Tags
Set the to Multiple - Discontiguous. Selection Mode

Ad Hoc Charting

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Tag+Browse+Tree
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Easy+Chart
https://www.inductiveuniversity.com/video/ad-hoc-charting/8.0

6.

7.

8.
9.

10.

Save your project.

Launch a Vision Project or put the Designer in .Preview Mode
Drag some tags over onto the chart. We chose Sine0, Sine2, Sine4, and Sine6. Note that
because we previously set selection mode to Multiple - Discontiguous, we can choose
several Tags using . The Tags don't have to be contiguous within the Tag Shift-Click
browser.

You can click the icon to the right of any of the pens to remove a Tag from the Delete
chart. You can also remove all pens and go back to an empty chart, and pick and choose

10.

which of the Tags you want to drag on to the chart.

Related Topics ...

Indirect Easy Chart

Notes: Things to keep in mind when working with Ad Hoc Charting

When working in the Designer, whatever pens you have on your Easy Chart
when you saved your project, the same pens will also be displayed on the chart
when the client is opened.

You may have multiple axes set up for your Easy Chart, but when dragging
Tags from the Tag Browse Tree component to an Easy Chart, there is no way
for the user to set which axis to use. Because of this limitation, any Tag that is
added in this way will attempt to match their Engineering Units property to an
axis on the chart. If no match is found, the default axis will be used.

1.

2.
3.

Indirect Easy Chart

Configuring an Indirect Easy Chart

It is possible for the Easy Chart component to be indirect and point to a set of Historical Tags
based on any parameter using the type. In this example, suppose you have a Cell Update Binding
small tank farm consisting of Tank 101 through Tank 109. Every tank is identical and uses the
same Tags. Each tank has a Tag and Tag which are set to log to the Level Temperature
Historian.

On this page

...

Configuring an
Indirect Easy Chart

Editor notes are only
visible to logged in users
Put this link in when the
easy chart video is actually
made.

Indirect Easy
Chart

Watch the
Video

Using an Indirect Easy Chart is a good way to see the history of these Tags for each tank in the tank farm. An convenient way to set this up
is using a Dropdown List component where an operator can select various tanks to see a Tank's Tag history. This example will show you
how to configure a cell update binding on an Easy Chart to be indirect and point to a set of Historical Tags.

In the Designer, drag a and an component into your workspace. Tag Browser Tree Easy Chart

Put the Designer in .Preview Mode
Navigate to the Tank Tags in the Tag Browser Tree. Under Tank 101, drag the and Tags from the Tag 'Level' 'Temperature'
Browse tree onto the Easy Chart.

This section assumes that Tags and Tag History have been configured

To learn more, go to the and pages.Tag Configuring Tag History
The examples below use , but can be OPC Tags Memory, Expression, and Query Tags
used instead.

https://inductiveuniversity.com/video/indirect-easy-chart/8.0
https://inductiveuniversity.com/video/indirect-easy-chart/8.0
https://legacy-docs.inductiveautomation.com/display/DOC80/Creating+Tags
https://legacy-docs.inductiveautomation.com/display/DOC80/Configuring+Tag+History
https://legacy-docs.inductiveautomation.com/display/DOC80/Creating+Tags
https://legacy-docs.inductiveautomation.com/display/DOC80/Creating+Tags

3.

4.
5.

6.

7.

8.

9.
10.

Put the Designer back in . Design Mode
Drag a component to your workspace. Using a Dropdown list will make it convenient for the operator to select a Tank Dropdown
and see the history of the and Tags for that tank. Level Temperature

With the Dropdown component selected, click on the icon to the right of the property in the Property Editor.Dataset Viewer Data

Click the icon for as many Tanks that you have in your Tank Farm. Then enter the and for each of the Add Row Value Label
Tanks.
Click . OK

Put the Designer in .Preview Mode
Click the list to see the complete list of Tanks in your Tank Farm that you just entered.Dropdown

10.

11.
12.

13.

Put the Designer back in . Design Mode
Right click on your Easy Chart and choose to . Customizers > Easy Chart Customizer

You'll notice that the Tag Paths are pointing directly to Tank 101. The only difference between Tank 101 and all the Tanks in the
Tank Farm is the Tank number (i.e., 101, 102, 103, etc.). You can manually point to a different Tag Path by replacing 101’ in the ‘
Tag Path with a different Tank number such as ‘102,’ but we'd rather have the Tag Paths change dynamically when the user selects
a Tank. Press . OK

The Easy Chart component has a property called which stores all the configuration information that you have configured Tag Pens

in the Easy Chart about your pens. With the Easy Chart selected, click on the icon in the Property Editor to view all the Dataset
information for your . Tag Pens

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Easy+Chart+Customizer

14.

15.

16.

17.

18.
19.

The dataset is displayed. It contains one row for each Tag. The second column is the Tag Path that you will want to change
dynamically. Press to close the Dataset Viewer.OK

Next we'll use a in order to change an individual cell of a dataset. With a Cell Update Binding, you can select Cell Update Binding

one or more cells and dynamically bind them to a property or to a Tag that you have in your system. Click on the icon Binding

next to property to open the Property Binding window.Tag Pens
Select the binding type. Cell Update

Select Tag Path cell for , and click the icon under the table. Level Add Cell Bindings

Select the first row you just added in the Cell Bindings Table, and click the icon.Insert Property Value
From the Property Window under the folder, click the . This will grab the Tank number the Dropdown Selected String Value
operator selected from the dropdown list.

19.

20.
21.
22.

23.

24.
25.

Click . Ignition fills in the Cell Binding value. OK
Repeat steps 17 through 20 for the Temperature Tag Path.
Next, expand the fields to make the Tag Path dynamic. Update the fields as follows.Value

Cell Binding to make Tag Path Dynamic

[~]Tank/{Root Container.Dropdown.selectedStringValue}/Temperature
[~]Tank/{Root Container.Dropdown.selectedStringValue}/Level

Click to save the bindings. OK

Now you have an Indirect Easy Chart. To test it, put the Designer in .Preview Mode
Select a Tank from the Dropdown List. The Level and Temperature values will change in the chart. Next select a different Tank from
your Dropdown List to see how the history changes on the Easy Chart.

Related Topics ...

Easy Chart Customizer

https://legacy-docs.inductiveautomation.com/display/DOC79/Easy+Chart+Customizer

Charting - Right Click Menu

When viewed from the client (or the Designer's Preview Mode) many
chart components, such as the Easy Chart or Bar Chart, enable users to
right-click and access a menu with additional features. Explanations of
these features are listed below.

On this page

...

Right Click Menu
Functions

Right Click Menu Functions

Note that many of the behaviors listed below may be overridden by a property on the parent component. For example, the Easy Chart
provides a way to define the plot background color with the Easy Chart Customizer, so the Background options on the right-click menu would
not modify the behavior on the component when the user selects them.

Item
Name

Description

Mode Specifies the functionality of a on the chart. The following modes are available:left-click

Z
o
om

Zoom in: Users can left-click and drag on the chart to zoom in or
out. Dragging to the right creates a hollow rectangle. When the user
releases the mouse button, the viewable space in the chart will
zoom in to a rectangle.

Zoom out: Left-click and dragging to the left will not create a
rectangle, but releasing the mouse button will zoom back out.

P
an

Allows users to the chart horizontally or vertically by left-click Pan
and dragging. The mode may be used after using the Zoom Pan
mode: doing so allows panning within the zoomed in view-space.

M
ark

While in mode, a left click will target the closest point on the Mark
nearest pen, and return the value and timestamp of that point.

X-
Tr
a
ce

Similar to , X-Trace will instead show the values of all pens at Mark
the selected point in time.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Easy+Chart+Customizer

Back
ground

Allows the user to change the background color. Available options include and .Black White

Save
as...

Provides a Save window that allows the user to save a PNG of the chart locally.

Print... Provides a Print dialog that allows the user to print an image of the chart. This will send the chart to a physical printer. Note: a
printer must be installed on the client computer.

Zoom
In

Allows the user to Zoom in on the chart. There are three possible options:

All axes: Zooms in on both the Range and Domain.
Domain axis: Zooms in on just the Domain, or X- axis. Reduces the range of viewable values on the domain (typically a
datetime), while leaving the Range axis untouched.
Range axis: Zooms in on just the Range, or Y-axis. Reduces the range of viewable values (typically numeric), while leaving
the Domain axis unmodified. This is helpful when a trend shows very little change over a period of time, as this allows the
user to view the trend with increased granularity.

Zoom
Out

Allows the user to Zoom out on the chart. There are three possible options:

All axes: Zooms out on both the Range and Domain.
Domain axis: Zooms out on just the Domain, or X- axis.
Range axis: Zooms out on just the Range, or Y-axis

Auto
Range

Automatically updates the range, or , on the chart to incorporate all data points. As mentioned above, many viewable space
components have properties/customizations that restrict the capability of these (such as the date range on on the Easy Chart).

All axes: Adjusts the viewable space on both axes.
Domain axis: just the Domain, or X-axis. Adjusts the viewable space on
Range axis: Adjusts the viewable space on just the Range, or Y-axis.

Reset
Axes

Adjusts the Axes back to their initial state.

Related Topics ...

Easy Chart Customizer
Easy Chart - Subplots
Easy Chart

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Easy+Chart+Customizer
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Easy+Chart

1.
2.

3.

4.

a.
b.

c.

Easy Chart - Database Pens

Database Pens
Database Pens are driven by a SQL query, so they are ideal to use when trending Transaction
Group data. However, they can query for data in any connected SQL database, so it is possible to
show historical data recorded by other systems on the Easy Chart.

On this page

...

Database Pens
Configuring
Database Pens

Configuring Database Pens
In this example, we'll configure a database pen driven by a SQL query to show historical data and display it on the Easy Chart.

Drag an Easy Chart component onto your Vision window.
Right click on the Easy Chart component and choose Customizers > . Easy Chart Customizer

In the Database Pens section, we'll create a database pen to trend data stored in our database. Click the icon to create the Add
Database Pen.

The Edit Pen window will open. Here is where you enter your database pen data. In the very least, we'll need values for the following
properties:

We entered the following settings:

Name - The name of the pen on the chart. Works the same as the name on any other pen.
Datasource - The name of the database connection (as configured on the gateway) that contains the table we want to
extract values from.
Table Name - The name of the database table that contains the values that we want to represent on the chart.This
dropdown will automatically populate with available table names once the Datasource property has a valid database
selected.

The following example assumes that Tags and Tag History are configured

To learn more, go to the and pages.Tag Configuring Tag History
The example below use Tags, but any types of tags can be used instead such as OPC M

.emory, Expression, and Query Tags

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Easy+Chart+Customizer
https://legacy-docs.inductiveautomation.com/display/DOC80/Creating+Tags
https://legacy-docs.inductiveautomation.com/display/DOC80/Configuring+Tag+History
https://legacy-docs.inductiveautomation.com/display/DOC80/Creating+Tags
https://legacy-docs.inductiveautomation.com/display/DOC80/Creating+Tags
https://legacy-docs.inductiveautomation.com/display/DOC80/Creating+Tags

4.

d.

e.

f.

5.

Value Column - The name of the column in the database table that contains the values we want to show, representing the
value of the datapoint at a particular time. This column is ultimately responsible for the determining where each point lies on
the chart's Y-axis. This dropdown will automatically populate with column names once a value for the Table Name property
has been set.
Time Column - The name of the column in the database table that contains a timestamp, representing the time of the
datapoint. This column is ultimately responsible for determining where each point lies on the chart's X-axis. This dropdown
will automatically populate with column names once a value for the Table Name property has been set.
Axis - All pens require an axis. We can use the default here.

Click OK to save your database pen settings.

In the Database Pens area, you will see your database pen that you created. Click to exit the customizer and view your Easy OK
Chart.

5.

6. The High Temp database pen is now trending data for the High Temp values we want to show at a selected time.

Related Topics ...

Easy Chart Customizer

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Easy+Chart+Customizer

Using the Classic Chart

Chart
The Chart, sometimes referred to as the , is capable of rendering time series, XY, Classic Chart
and Bar charts.

Configuration

The basic idea behind configuring the classic chart is simple: add datasets, and fill them in with
data in a format that the chart understands. You add datasets to the chart using the chart's
customizer. You then use a bindings to populate each dataset. Commonly you'll use a Query SQL

. Since these datasets are just normal dynamic properties, you can also access them via Binding
scripting.

The Customizer also lets you add additional X and Y axes. There are various types of axes and
each works slightly differently. Lastly, you can configure additional properties for each dataset,
such as which axis it maps to, its visual style, subplot, etc.

Datasets

Each dataset should define one or more "series" (a.k.a "pens"). The expected anatomy of a
dataset for the Classic Chart depends on several settings: namely the property on Extract Order
the chart, as well as the type of renderer specified in the Chart Customizer's Dataset Properties
tab.

Binding Techniques

The Classic Chart can be used to make almost any kind of chart, with some effort. Historical,
realtime, dynamic pen selection, etc., is all possible. Your job is just to fill the datasets with the
pertinent data, and the chart will display it. The most common idea is to make the chart dynamic
by varying the date range that the dataset's Query bindings run. This is easy to do by adding aSQL

 component and using . Date Range Indirect Bindings

On this page

...

Chart
Configuration
Datasets
Binding
Techniques
Chart Type: XY
vs Category

Populating a Chart
with Data

Example - Tag
History
Customizing a
Chart
Adding a Second
Dataset to a
Chart

Chart Type: XY vs Category

The Classic Chart is typically in XY Plot mode. This means that the X-axis is either date or numeric, and the Y-axes are numeric. If your X-
axis is categorical (names, not numbers), you can switch the Chart Type property to Category Chart in the EditorProperty . Don't be surprised
when you get a few errors - you'll need to go and switch your X-axis to be a Category Axis, and fill your dataset in with valid category data,
that is, String-based X-values. This is most often used with the Bar Renderer (see the).Chart Customizer

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Chart
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Date+Range
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Chart+Customizer

Populating a Chart with Data
Populating the Classic Chart involves using Custom Properties to collect data. New Custom Properties are added to the component via the C

. Multiple dataset properties may be configured on the component, and each additional dataset will show as a new subplot. hart Customizer
Populating the Chart with historical data involves populating one of these Custom Properties.

The default configuration of the component expects a dataset where the first column is a timestamp (the first column acts as the always
domain for the chart), and sequential columns are pens that should be drawn on the chart. The default dataset contains a column t_stamp
with values for the domain, and two columns (and) with values that will be drawn against the range. Process Temp Output Temp

Example - Tag History

https://legacy-docs.inductiveautomation.com/display/DOC79/Chart+Customizer
https://legacy-docs.inductiveautomation.com/display/DOC79/Chart+Customizer

1.
2.

3.
4.

5.

The Classic Chart is initially configured in a manner that easily displays Tag History with a . Tag History Binding

Drag a Chart component onto a window.
In the Vision Property Browser, scroll down to the property. It should be located at the bottom of the Property Editor when Data
sorted by section. Click the icon.Binding
Select from the Tag section of the Binding window. Tag History
Browse the . For this example, we chose some ramp Tags. Drag the Tags over to the Available Historical Tags Selected

 table on the right of the window.Historical Tags
Change the to with a set to 10 minutes. Date Range Realtime Most Recent

6. Click the button. The Chart will now show Tag History from the Tags you selected.OK

Note that the timestamp has automatically been included as the first column, so the domain has been automatically configured for you. If you
wish to change the orientation of the axes, use the property in the Property Editor to swap the position of the Domain and Chart Orientation
Range axes.

Customizing a Chart

Once trends are present on the chart, additional customization can be achieved through the . When you open the Chart Customizer
customizer, you'll notice five tabs at the top: , X-Axes, Y-Axes, Properties, and Plot Properties. Each tab has its own set of Datasets Dataset
properties and defaults.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Chart+Customizer

1.

2.
3.

4.

An overview of each section in the Chart Customizer is listed below:

Datasets: Allows additional datasets to be added to the component. Each dataset will appear as a separate custom property on the
component. Data from multiple charts can be drawn on the same chart.
X-Axes and : Allows for the creation of new X and Y Axes on the chart. Y-Axes There are six types of axes to choose from when
configuring a chart, each having its own list of properties: Number Axis, Date Axis, Category Axis, Logarithmic Axis, Elapsed Axis,
and Symbols Axis. Most of the X and Y axes properties are used in the customizer, and some properties are specific to the axis type

See the page for more information on types of axis, associated properties, and have their own unique properties. Chart Customizer
and examples.
Dataset Properties: Specify which axes should a be used with each dataset. Also allows you to specify which subplot each dataset
should be shown on.
Plot Properties: Configure the look of each plot.

This example walks you through adding a new dataset to a chart, and modifying the existing chart properties using the Chart Customizer.
When you first drag a chart to your window, you'll notice that it will display some data, that's because it's using the default dataset provided.
For this example, you can add a new dataset by either copying and pasting the one below or adding your own.

Let's add a new dataset (i.e., SnowPackData) that measures the Snow Pack Level for the month of February. Double click on the
chart to open the Chart Customizer.

Go to the Datasets tab and click the icon to add Add a new dataset.
Enter the Dataset name and then click .OK

In the Vision Property Editor, click on the Dataset Viewer icon.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Chart+Customizer

4.

5.

6.

7.

8.

Highlight and copy the dataset below, then click the Paste Dataset from Clipboard icon.

Classic Chart - SnowPack Dataset

"#NAMES"
"Date","Current Snow Pack","Normal Snow Pack"
"#TYPES"
"date","F","F"
"#ROWS","4"
"2018-02-02 10:41:22","2.25","3.75"
"2018-02-10 10:42:19","3.15","4.5"
"2018-02-15 10:43:27","2.15","5.25"
"2018-02-25 10:44:02","3.75","6.35"

The data will appear in the Dataset Viewer. Click to save the dataset.OK

The Chart component is now displaying both the default dataset and dataset. Let's disable the default database. SnowPackData
Open the Chart Customizer and go to the Dataset Properties tab.

8.

9.
10.

11.

12.

Select the default dataset (i.e., Data) and uncheck the box.Enabled?

Click . You'll notice the chart is now only displaying the values for the new dataset (i.e., SnowPackData).OK
This step uses the default Number Axis type, but if you want to add a new Axis Type, go the X and Y Axes tabs and select a new
Axis type.
Next, let's change a few visual properties on our chart. Go to the and select Default Y Axis, and change the Y-Axes tab Axis Label
(i.e, Snow Pack Level (Feet)).

Lastly, let's make the plot lines thicker on the chart. Go to the Dataset Properties tab, and change the renderer property Line Size
from 1.0 to . 3. 0

12.

13.

1.

2.
3.

Here is the chart with the new dataset and updated properties. As you can see, you can easily configure additional properties for a
dataset, as well as choose from a host of visual style properties to design your charts using the Chart Customizer.

Adding a Second Dataset to a Chart

In this example, we'll add an additional dataset to the chart.

Double click on the Chart component to open the or right-click and select .Chart Customizer (Customizers > Chart Customizer)

Once the Chart Customizer is open, make sure the tab is selected, and click the icon to add a new dataset. Datasets Add
A new row will appear. Give the new dataset a name by typing into the cell under the column. We'll call it . Name NewData

3.

4.
5.

6.

Click the button.OK
Check the bottom of the Property Editor. The newly created dataset will appear and may now be populated with data.

Now that we have a new dataset, you can add data however you like and it will show up in a second subplot.

Other Vision Trending Charts

Along with the Easy Chart and Classic Chart, there are several other types of charts contained in
the Vision Module that can also visualize a trend and track a change in condition, output, or
process through a single data point or multiple data points over time. This page describes the
Sparkline and Status Charts and how they can be used.

Sparkline Chart

The is a minimalistic chart that displays a line-chart history for a single data point Sparkline Chart
that fits well with . It's a great way to show a lot of contextual High Performance HMI screens
information in a very small amount of space. It provides a fast way to display the recent history of a
single data point so the viewer can quickly discern the most recent trend.

Note, the Sparkline Chart can not show multiple trends, however, multiple Sparkline Charts can be
stacked. This chart is often laid over an image or level display to show a simple trend with the
current value.

On this page

...

Sparkline Chart
Usage

Status Chart
Series Data
Color Mapping

Sparkline Chart

Watch the Video

Usage

The trend on the Sparkline Chart is determined by the property located in the Property Editor. Bind the Data property to either a Tag Data
Historian realtime query, or to a database query. The dataset should contain two columns: the first being a , and the second a date number

./value

Any additional columns in the dataset are ignored. Thus, the Sparkline Chart will only show a single pen per instance of the component. The
data should be sorted by date in ascending order.

The red dot on the Sparkline Chart represents the most recent value. The Sparkline Chart can display a band of color across the back of the
chart which indicates the desired operating range of the datapoint. Setpoints can be displayed on the chart by setting a value for the Desired

 and properties. This allows an easy way to view when the value fell out of bounds. Note that both properties must have a High Desired Low
value for the to appear. Desired Range Color

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Easy+Chart
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Chart
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Module
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Sparkline+Chart
https://www.inductiveuniversity.com/video/sparkline-chart/8.0

Status Chart
The allows you to visualize the of one or more discrete data points over a time range. The X-axis is always a time series S Ctatus hart status
axis, and the Y-axis is a category axis, with one entry per data series. The Status C is populated with the property in the hart Series Data Pro

. This chart is good for showing machine states or HOA values over time. It is recommended to include some sort of Legend perty Editor
when using this chart.

Series Data

The first column of the property must contain datetime values. Each additional column should be numeric (the default columns Series Data
are doubles). The order of the columns (left-to-right) determines the order of the entries on the chart (bottom-to-top). Because of this, re-
ordering the entries would involve changing the order of the columns as they appear in the Series dataset by modifying the mechanism that
is populating the dataset (i.e., changing the order of columns in a query).

In Wide format, all of the columns but the first must be numeric. These "series" columns' headers will be used as the names on the y-axis. In
 format, there should be exactly three columns. The first is the timestamp, the second is the series name, and the third is the value. For Tall

example:

Wide Format

t_stamp Valve1 Valve2

2010-01-13 8:00:00 0 2

2010-01-13 8:02:00 0 2

2010-01-13 8:04:00 1 2

2010-01-13 8:06:00 1 1

2010-01-13 8:08:00 0 1

Tall Format

t_stamp Name Value

2010-01-13 8:00:00 Valve1 0

2010-01-13 8:00:00 Valve2 2

2010-01-13 8:02:00 Valve1 0

2010-01-13 8:02:00 Valve2 2

2010-01-13 8:04:00 Valve1 1

2010-01-13 8:04:00 Valve2 2

2010-01-13 8:06:00 Valve1 1

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Status+Chart

2010-01-13 8:06:00 Valve2 1

2010-01-13 8:08:00 Valve1 0

2010-01-13 8:08:00 Valve2 1

 Color Mapping

Apart from getting the data into the series , the only other commonly configured option is the mapping of discrete values to colors. This chart
is done in the Status Customizer. Each named series can have its own mapping of colors, if desired. These mappings are stored in the Chart
expert-level dataset property Series Properties Data so they can be altered at .runtime

Alarming in Vision

The Vision visualization system has a few components that allow you to view alarming information
within the client. The allows you to view the current alarms in the system, Alarm Status Table
providing an easy way to inspect the alarm details, shelve the alarm, and acknowledge it. The Alar

 allows you to view a history of alarms by reading from an m Journal Table Alarm Journal's
database tables. Note, that a valid database connection and an are required Alarm Journal Profile
to use the Alarm Journal Table.

Alarm Status Table
The is a built-in component in Ignition that displays the current status of all Alarm Status Table
alarms in the system into one view. Each alarm is color coded so you can quickly identify the state
of the alarm. The Alarm Status Table is highly customizable and can be configured to show active,
unacknowledged, cleared, and acknowledged alarms. Once alarms have been configured, most
users will want to view the status of alarms from within a client. Alarm and acknowledged shelving
are built directly into the Alarm Status Table making it easy for operators to respond quickly to
alarms.

Alarms can be visualized in several ways. By far the most popular way to visualize alarm status is
with the Alarm Status Table component. This component immediately displays the status of all
alarms in the system from all Tag providers. In addition, the Alarm Status Table has an extensive
list of where you can filter down to specific alarm criteria. For example, the filtering options
component can filter by source path which means a single Tag provider, folder in a Tag path, or
even UDT instances can be focused on by the component.

On this page

...

Alarm Status Table
Configuring the
Alarm Status Table

Filtering Alarms
Viewing Alarm
Information

Alarm Journal Table
Component

Alarm Status
Component

Watch the Video

Configuring the Alarm Status Table
The Alarm Status Table component can be configured to view alarms, and monitor and respond to alarms, but there are a host of properties
for this component to become familiar with. The Alarm Status Table properties are configured in the Designer. When configuring the Alarm
Status Table, you will have to toggle between both the Designer and Preview Modes in order to configure the Alarm Status Table properties
and organize the alarm data in the table.

Alarms

Alarms must be set up on Tags for them to show up in the Alarm Status Table.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Alarm+Status+Table
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Alarm+Journal+Table
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Alarm+Journal+Table
https://legacy-docs.inductiveautomation.com/display/DOC80/Alarm+Journal
https://legacy-docs.inductiveautomation.com/display/DOC80/Alarm+Journal#AlarmJournal-CreatinganAlarmJournalProfile
https://inductiveuniversity.com/videos/alarm-status-component//8.0

When you drag the Alarm Status Table component to your Designer, there are some default properties already configured. Some of the
defaults may work for your client users, but you always have the option to change them. For example, the table shows all the "Active and
Unacknowledged", "Active and Acknowledged", and "Cleared and Unacknowledged" alarms. It also displays the time the alarm went Active
as well as the current State and Priority of the alarm, but you may want to narrow the scope of your alarm state entries and only display
Active and Unacknowledged alarms with a priority of Medium and higher. You can update these property settings in the Property Editor of
the Designer under the Filters group.

Filtering Alarms

The Property Editor has a dedicated Filtering group where you can configure filtering properties for displaying alarm data in your Alarm
Status Table: alarm state, priority, source path, display path, and Tag provider. Once you configure your properties, the alarm table will
refresh with new alarm data based on your filter property settings. When displaying alarms on the Alarm Status Table component, it is
common to filter on either the or the 'Display Path' 'Source Path.'

The can be customized on each alarm. The default value for an alarm's Display Path is a Tag path that leads to the name of Display Path
the alarm. The Integer Tag example below has an alarm named 'Alarm', and is located on a Tag path of 'Alarming Example/Integer Tag', thus
the Display path will resolve to ' '. However, the Display Path can be customized when configuring the Alarming Example/Integer Tag/Alarm
alarm. This is generally utilized to display readable messages as to what the issue is: i.e., "Tank 105 High Temp Alarm".

The is also a path to the alarm, but also notes the Tag provider the alarm is located in. Again using the Tag below, if the name Source Path
of the Tag provider is 'default', then the source path would resolve to 'prov: /Tag: :/alm: '. Unlike default: Alarming example/Integer Tag Alarm
the Display Path, the Source Path on an alarm can never be overridden.

Understanding the functionality of Display Paths and Source Paths allows for much flexibility when filtering alarms by Tag path.

Viewing Alarm Information

In Preview Mode and the Vision Client, you can customize how you want to see the alarm data. You can right click in the header to hide or
show columns, and move columns by clicking them and dragging them around to organzied the alarm data. You can also sort by column by
simply left clicking, or sort by multiple columns by holding the key while clicking the column headers. You will see small numbers next to Ctrl
the column header to indicate the sort order and direction (ascending vs descending). Client users can customize the alarm data in the Alarm
Status Table to however they wish to view the data.

Alarm Journal Table Component
There is a pre-built component in Ignition called the that allows the database Alarm Journal Table
to see alarm history. It provides a built-in view to explore alarm history that has been stored in your

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Alarm+Status+-+General+Filtering#VisionAlarmStatusGeneralFiltering-FilteringonSourcePathandDisplayPath

database. Before viewing alarm history, you must first tell Ignition to log alarms in your database
by creating your . By default, the Alarm Journal Table does not filter out any Alarm Journal Profile
of the alarms, it simply shows you all the alarms stored in the table for the time range set. When
you add an Alarm Journal component to a window and have no start and end dates selected, it
defaults to show the previous 8 hours of alarms and will not refresh itself until the start or end date
properties change. You can use the Start Date and End Date properties to filter on alarms, or you
can use the to filter alarms during a specific time period. Date Range component

Alarm Journal
Component

Watch the Video

The alarms are color coded so you know what each of the states represent. In , you can right click in the header to hide or Preview Mode
show columns, and move columns by clicking them and dragging them around. You can sort by column by simply left clicking, or sort by
multiple columns by holding the key while clicking the column headers. You will see small numbers next to the column header to indicate Ctrl
the sort order and direction (ascending vs descending).

To view an alarm's and , select an individual alarm, then click the icon in the lower right corner of the table to see Details Notes Search
all the information that is associated with the individual alarm.

To close the Details and Notes tabs, click the icon again or click the icon. Search Expand

Refreshing Alarm Journal Table Data

Alarm data in the journal does not refresh automatically. Toggle one of the filters in the
Property Editor, or on the Calendar component you are using. You can also choose to
make the journal table data refresh automatically by setting an expression binding on
the journal's property to End Date .now()

https://legacy-docs.inductiveautomation.com/display/DOC80/Alarm+Journal#AlarmJournal-CreatinganAlarmJournalProfile
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Date+Range
https://www.inductiveuniversity.com/videos/alarm-journal-component/8.0/8.0

Related Topics ...

Configuring Alarms
Alarm Journal

In This Section ...

https://legacy-docs.inductiveautomation.com/display/DOC80/Configuring+Alarms
https://legacy-docs.inductiveautomation.com/display/DOC80/Alarm+Journal

Vision Alarm Status Table - Common Tasks

The Alarm Status Table has a lot of configuration options that can be used to do things like filter
the list of alarms being displayed, to changing how the component displays them. Each of the
pages in this section goes over setting up various aspects of the Alarm Status Table.

Vision Alarm Status - General Filtering
The Alarm Status table component has a lot of properties that allow you to filter on various parts of
alarms. Learn about all of the different built-in ways that the .Alarm Status Table can filter alarms

Vision Alarm Status - Filter on Associated Data
Sometimes, the built in filters of the Alarm Status Table are not enough. The Alarm Status Table
component allows you to and filter on any of the alarms properties, filter alarms through scripting
including user created associated data properties.

On this page

...

Vision Alarm Status
- General Filtering
Vision Alarm Status
- Filter on
Associated Data
Vision Alarm Status
- Row Styles
Vision Alarm Status
- Marquee Mode
Vision Alarm Status
- Acknowledgment
Vision Alarm Status
- Shelving
Vision Alarm Status
- Tag History and
Alarm History
Using Alarm Status
Tags in Vision

Vision Alarm Status - Row Styles
The Alarm Status Table uses different styled rows to differentiate between alarms in different states. These can be completely Row Styles
customized using whatever colors and fonts you want. You can even add a blinking style, allowing you to really draw attention to critical
alarms!

Vision Alarm Status - Marquee Mode
Sometimes, the alarms displayed in the table can build up and it can be a pain to scroll through the list. The Alarm Status Table can be put
into a , where it will slowly scroll through the list of alarms at a pace that you specify. Learn how to set that up and how to use Marquee Mode
it.

Vision Alarm Status - Acknowledgment
Typically, the first step in fixing an alarm is acknowledging that the alarm is happening. can play an important part in any Acknowledgement
alarm system which is why the ability to acknowledge alarms is built right into the Alarm Status Table component. Learn how to acknowledge
alarms and what the different options are.

Vision Alarm Status - Shelving
Shelving alarms allows you to hit the snooze button on an alarm event, postponing the alarm until later. This can be useful when doing
maintenance if Tags are constantly going in and out of alarm.

Vision Alarm Status - Tag History and Alarm History

The Alarm Status Table allows you to view Tag History for Tags that are currently in alarm. As long as history is being stored for that Tag,
you can view to get an idea of what the value was prior to going into alarm. Was it a slow rise to the the history right in the component
setpoint, or was it a large spike?

Using Alarm Status Tags in Vision
While not part of the Alarm Status Table, these system Tags provide the number of . Thes can be used to Tags in specific states of alarm
easily create a small notice of how many alarms are in the system without having to show the entire Alarm Status Table.

In This Section ...

Vision Alarm Status - General Filtering

Filtering in the Designer
There are several different filtering properties on the Alarm Status Table component. Once you
drag the Alarm Status Table component on to a window, by default it shows you all the alarms that
are currently 'Active and Unacknowledged,' 'Active and Acknowledged,' and 'Cleared and
Unacknowledged,' with a priority ranging from Diagnostic to Critical. Some users want to do some
more targeted filtering like only seeing the 'Active and Unacknowledged' alarms for a specific area
or piece of equipment. This is easily accomplished by configuring a few alarm properties in the
Property Editor.

The Alarm Status Table below is similar to what you'll see when you first drag in an TAlarm Status
able to your window. You can filter the alarm list in the table to be a shorter list using the Designer
Filter properties in the Property Editor instead of scrolling through every single alarm in your
system. In the , there is a group called that you can configure to focus on Property Editor Filters
only those alarms you want to see. You can filter on aPriority, State, Source Path, Display Path,
nd .Tag Provider

You'll find, as you continue reading this page, that it is really easy to do some basic filtering using
the alarm filter properties on the Alarm Status Table component in both the Designer and Vision
Client.

On this page

...

Filtering in the
Designer

Filtering on
Priority
Filtering on
Alarm State
Filtering on
Source Path and
Display Path

Filtering in the
Vision Client

Alarm Status -
General Filtering

Watch the Video

Filtering on Priority

You can filter on any Priority by changing the field in the Property Editor. You will only then see alarms displayed in the Alarm Min Priority
Status Table for the priority you set in the Property Editor and higher alarms. This example sets the to priority, and the Min Priority 'High'
table displays only High, and Critical alarms. The number of alarms operators have to view can be narrowed down by using the Min Priority
filter.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Designer+Interface#VisionDesignerInterface-VisionPropertyEditor
https://legacy-docs.inductiveautomation.com/display/DOC80/Alarm+Event+Properties+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Understanding+Tags
https://inductiveuniversity.com/videos/alarm-status-general-filtering//8.0

Filtering on Alarm State

There are four alarm states that an alarm can be in; 'Active and Unacknowledged', 'Active and Acknowledged', 'Clear and Unacknowledged',
and 'Clear and Acknowledged'. Each of the four alarm states has a different color so you can quickly identify and respond to the most critical
alarms. To enable and disable filtering for any of the alarm states, go to the group in the Property Editor.Filters

This example shows only alarms for , and . A good business practice is to show only the Active Active and Unacked Clear and Acked
alarms that are either Unacknowledged or Acknowledged. It also reduces the number of alarms an operator has to scroll through.

Filtering on Source Path and Display Path

The Alarm Status Table has the capability to filter alarms based on the Source Path or Display Path.

Source Path

The is the actual which means you can also use Tag folders in Ignition to filter for specific alarms. For example, you may Source Tag path
want to filter for all Motor alarms in the Motors folder. You can enter (using as a wildcard) to look for all alarms with the Motor Tag *Tank* *
Path. The and properties allow you to restrict the results of the query to one or more paths. Multiple paths may be specified Source Display
with a comma. Additionally, these properties all use the asterisk (*) as wildcard character to denote any number of leading or trailing
characters, depending on placement.

You can see in this example, all the alarms have in the . 'Tank' Source Path

Source Path Examples

Example Filter Result

prov:tagProvider:/tag:Inputs
/PS_1:/alm:MyAlarm

Retrieve alarm information from the alarm at precisely the specified path:
prov:tagProvider:/tag:Inputs/PS_1:/alm:MyAlarm

*PS_1:/alm:MyAlarm Retrieves alarm information from any path that ends with . Thus the PS_1:/alm:MyAlarm
following paths would be returned:

prov:tagProvider:/tag:Inputs/PS_1:/alm:MyAlarm

prov:tagProvider:/tag:anotherFolder/different_Path/PS_1:/alm:
MyAlarm

prov:tagProvider:/tag:PS_* Retrieves alarm information from any source path starting with prov:tagProvider:
/tag:PS_

prov:tagProvider:/tag: :/alm:MyAlarmPS_1/MyAlarm

prov:tagProvider:/tag:PS_2/MyAlarm:/alm:MyAlarm

MyAlarm Retrieves any alarm information that has somewhere in the path.MyAlarm

Display Path

The is the Tag path that leads to the of the alarm which can be customized when you configure your alarm. Display Path Name In this
example, is the that was setup in the ‘High Speed’ Name Alarm Configuration, and the Display Path is set to the Name you want the
operator to see. The Alarm Status Table below is filtered by with a value of .Display Path 'High Speed'

https://legacy-docs.inductiveautomation.com/display/DOC80/Configuring+Alarms

Filtering in the Vision Client
In the Vision Client, the Alarm Status Table provides a host of built-in filtering options that are immediately available and easy to modify to
help you get started. You can choose to filter on any of the filter properties by right clicking in the Alarm Status header and selecting any of
the available properties.

You can even arrange the columns in any order you want by simply right clicking on the individual column header and dragging it to the right
or left within the table. You can also sort in ascending or descending order by clicking in the column header.

Related Topics ...

Vision - Alarm Status Table
Configuring Alarms

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Alarm+Status+Table
https://legacy-docs.inductiveautomation.com/display/DOC80/Configuring+Alarms

1.
2.
3.
4.

Vision Alarm Status - Filter on Associated Data

Filtering on Associated Data
Another way to filter alarms in the is using that was added to Alarm Status Table associated data
an alarm. You can easily and quickly search, filter, and display on specific alarms based on
associated data configured in an alarm.

Using a Script to Filter on Associated Data

It's a common design practice to associate alarm groupings on associated data of an alarm.
Scripting gives you the ability to filter on associated data, but also gives you the freedom to filter
on anything that you want. In the following example, we used a script to filter on associated data,
but first we need to add associated data and setup an alarm group.

Here we have a Memory Tag called with a configured alarm called To add 'Speed' 'High Speed.'

associated data, click the icon at the top of the Tag Editor, scroll down the list of alarm Add
properties to Associated Data, rename to and add a static value called 'New Data' 'Group' ‘Produ

. Click and save your Tag.ction ’ Commit

On this page

...

Filtering on
Associated Data

Using a Script to
Filter on
Associated Data

Alarm Status -
Filter on
Associated Data

Watch the Video

Next, create a script to filter for all alarms in the Alarm Status Table that have the associated data called Scripting allows you ‘Production.’
to use the extension function specifically for filtering on associated data. 'filterAlarm'

Right click on your Alarm Status Table component, and scroll down and select . Scripting
In the Component Scripting window, under , select Extension Functions 'filterAlarm.'
Click the checkbox.Enabled
Enter the code below into the script. You can filter on anything you want here, but in this example, we are going to filter 'filterAlarm'
on 'Production.'

Extension Function - filterAlarm for 'Production'

group = alarmEvent.get("Group")
if group == "Production":
 return True
return False

Your script will look like the image below. This script will only display alarms matching the associated data for For 'Production.'
every alarm matching it will return and show alarm results in the Alarm Status Table. If the associated data ‘Production,’ ‘True’
does not match it will return and the Alarm Status Table will be empty. Note, when you're finished filtering on ‘Production,’ ‘False,’
associated data, don't forget to disable your script.

https://legacy-docs.inductiveautomation.com/display/DOC80/Alarm+Associated+Data
https://www.inductiveuniversity.com/videos/alarm-status-filter-on-associated-data/8.0/8.0

4.

5.

6.

Click . OK

Now the Alarm Status Table below shows all the alarms in the group. Select an alarm and click the icon to'Production' Search
see all the about the alarm. Details

Related Topics ...

Alarm Associated Data

Checking Alarm Results

If you see alarms that do not match your associated data, check your filter settings in the Property Editor of the
Alarm Status Table. You may need to uncheck the 'Show Clear and Unacked' and 'Show Clear and Acked'
settings depending on what you want your operators to see.
If you have an error in this filtering script, it will return 'true' for every alarm instance (and show all alarms) instead
of displaying many errors to your users. You can find more information about the error from the Output Console
under the in the Designer, and selecting the Tools Menu and from the Vision Client under Help > Diagnostics Co

tab.nsole

https://legacy-docs.inductiveautomation.com/display/DOC80/Alarm+Associated+Data
https://legacy-docs.inductiveautomation.com/display/DOC80/Output+Console

Vision Alarm Status - Row Styles

The Alarm Status Table comes with a particular set of colors associated with each of the alarm
states. You can change these colors for each of the states by going to the Alarms Row Styles
Customizer that the Alarm Status Table component provides.

By default, the Active and Unacknowledged alarms are at the very top of the table and are red and
blinking, and Cleared and Unacknowledged alarms are teal and at the bottom of the table, as
shown in the image below.

On this page

...

Customizing Alarm
Row Styles

Creating a Row
Style

Alarm Status - Row
Styles

Watch the Video

Customizing Alarm Row Styles
In the Alarm Row Styles Customizer is where you can modify an existing row style, add more styles, or delete a style. Each style has an
expression, a color and the option if you want it to blink. The expression allows you to do any evaluation you want using any filter properties
of the alarm such as Priority, State, Display Path, Active Time, and Clear Time.

In the Designer, right click on the component, go to to see the default row styles. Alarm Status Table Customizers > Alarm Row Styles
Alarm Row Styles is an ordered list and each style has an expression. How it works is, the first style that returns for a given alarm is ‘True’
the one that is going to be used. So you want to make sure the order is the correct order that you want. If you want to change the order,

https://www.inductiveuniversity.com/videos/alarm-status-row-styles/8.0/8.0

1.

2.

3.

4.

5.

select a row and click on the up or down arrow icons. Click on each of the row styles to view the expression and row style.

Creating a Row Style

Let's create another state alarm with a new row style. Call this new alarm state and make it 'ActiveUnacked' 'Critical.'

With the Alarm Row Styles customizer open, click on the icon, and call this new alarm and make it Add 'ActiveUnacked' 'Critica
l'.
Copy and paste the expression from the code block below into the Expression block of the Alarm Row Styles window. Notice that we
are making this alarm state a priority 4.

{state}='ActiveUnacked' && {priority}>=4

The new alarm state by default is added to the bottom of the list. Style order is very important. If you keep this style at the bottom of
the list, the alarm will never be visible in the Alarm Status Table. Move with a to the top of the row ActiveUnacked Priority >= 4
styles list so it is evaluated before the other styles.
Since this is a critical alarm, you want it to catch the operator’s attention, so it’s a good idea to make the style standout. Make the
Foreground color and the background color Check the and make the foreground color and 'Black' 'Red.' Blink Box 'Black'
background color 'Yellow.'
Press .OK

Alarm State Priority Numbers

Priorities are numbered behind the scenes, but named when you are creating them. 0 = Diagnostic, 1 = Low, 2 = Medium,
3 = High, and 4 = Critical. This allows you to use operations like '>=' (greater than or equal) when filtering on priority.

5.

6. The critical alarms will now blink red and yellow and will definitely catch the operator’s attention.

To learn more about states and priorities including all the alarm configuration properties, refer to the sections on Alarm Event Properties
. Reference

https://legacy-docs.inductiveautomation.com/display/DOC80/Alarm+Event+Properties+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Alarm+Event+Properties+Reference

1.

2.

Vision Alarm Status - Marquee Mode

The Alarm Status Table can take up a lot of space on your Ignition client window as shown
below. In many production environments, a small Alarm Status Table is often displayed at the very
bottom of the Client window taking up very little space. The problem is when an operator has quite
a few Active alarms, they have to manually scroll through the list of alarms to see them all. This
can be a little tedious for operators. If you want to minimize the size of your Alarm Status Table,
and not miss any alarms, you can turn on the option. Marquee Mode

On this page

...

Setting Up Marquee
Mode

Alarm Status-
Marquee Mode

Watch the Video

Setting Up Marquee Mode
The nice feature with Marquee Mode, is it automatically scrolls through all the alarms when there is not enough vertical space on the client
window to show them all at once.

Select the Alarm Status Table. In the of the Alarm Status Table, set the to Property Editor Marquee Mode ‘true.’

This client screen shows you a typical Alarm Status Table using the Marquee Mode located at the bottom of the window. The Alarm
Status Table automatically scrolls through all alarms that are currently visible. Marquee Mode makes it very easy for operators to
see what’s going on without having to manually scroll through the entire list of alarms to identify all the alarms that are Active or that
need attention.

https://inductiveuniversity.com/video/alarm-status-marquee-mode/8.0

2.

Set filters and inform operators that Marquee Mode is a scrolling list of alarms

When using Marquee Mode, it is even more important to pay attention to the filters configured on the Alarm Status Table since
there is limited room. Make sure your operators know that even though the Alarm Status Table may be small, when Marquee Mode
is enabled it becomes a scrolling list.

Vision Alarm Status - Acknowledgement

Using Alarm Acknowledgement
One of the most important things an operator is going to do in the client is acknowledge alarms.
Alarm acknowledgement is built-in to the Alarm Status Table component. As soon as the operator
selects and presses the Acknowledge button, the current state of the alarm will change, and the
operator's credentials and the time the alarm was acknowledged will be recorded in the Alarm
Status Table.

The Alarm Status Table component allows you to select an individual alarm or multiple alarms.
You can also use the Shift+Click multi select feature to select a range of alarms, or the Select All
checkbox in the header bar. Check all the alarms you want to acknowledge, and press the Acknow

 button. In this example, two alarms were checked, and two alarms were Acknowledged at ledged
the same time. The Alarm Status Table will record the time the alarm was acknowledged and the
user that acknowledged the alarm.

If you don't have the Ack'ed By or Ack Time column in the header of the Alarm Status Table, you
can simply add them in the Designer in as well as in the . Right click on the Preview Mode Client
header bar, and from the dropdown list check and , and any other information Ack'ed By Act Time
you want to display or remove from the Alarm Status Table.

If any of the selected alarms require , a small window will appear in Acknowledgement Notes
which the operator will be required to add notes, otherwise, the alarm cannot be acknowledged. If
the operator wants to cancel the Acknowledgement Notes and close the window, click on the Searc

icon or icon to close the Acknowledgement Notes window. h Expand

Acknowledgement Notes are setup on the alarm's configuration settings. To setup
Acknowledgement Notes, go to your alarm configuration settings and set 'Ack Notes Required'

On this page

...

Using Alarm
Acknowledgement
Security for Alarm
Acknowledgement

Alarm Status -
Acknowledgement

Watch the Video

https://inductiveuniversity.com/video/alarm-status-acknowledgement/8.0

1.
2.

3.
4.
5.

to For more information refer to .'true.' Configuring Alarms

Security for Alarm Acknowledgement
If you want to restrict who can use the Acknowledge button, there is the in the Property Editor that can be set to BShow Ack Button 'False.'
y setting the to this hides the Acknowledge button on the Alarm Status Table. Show Ack Button 'false,'

In order for operators to acknowledge alarms, the correct permission must be assigned. This example shows how to set permissions to
acknowledge alarms for users in the role. You can setup permissions for any role, user and user source in your system. Operator

Select the Alarm Status Table component, and click the binding icon to open the Property Binding window.Show Ack Button
Under , select .Property Binding Type Expression

Click the icon and scroll down to and select ' This enters the function name.Function Users, hasRole.'
Edit the expression to read: hasRole("Operator")
Click . OK

If you currently have the "Operator" role you will notice that the property is now otherwise, it will be Show Ack Button 'true,' 'false.'

https://legacy-docs.inductiveautomation.com/display/DOC80/Configuring+Alarms

Vision Alarm Status - Shelving

Another important feature of the is the capability to shelve . Shelving Alarm Status Table alarms
alarms allows you to temporarily silence an alarm for a fixed period of time. This feature is
extremely handy when an alarm is already active and you want to temporarily surpress the alarm
while you're working on the issue. The Alarm Status Table component will not send any
notifications while the alarm is shelved, and will be temporarily dropped from the Alarm Status list
so operators don't get confused and think it's active. When the shelved time period is up and if the
alarm is still active, it will return into the Alarm Status list.

How to Shelve an Alarm

To shelve an alarm, select one alarm or multiple alarms, then press the button. The Shelve Shelvi
tab will automatically open so you can set a duration to silence an alarm You can set a ng

duration from 5 minutes to 4 hours in which to shelve selected alarms. Choose the duration and
click . Apply

On this page

...

How to Shelve an
Alarm
Custom Shelving
Duration

Alarm Status -
Shelving

Watch the Video

To view all the alarms that are currently shelved, go to the bottom right of the Alarm Status Table and click on the icon. Shelved Alarms
A Shelved Alarm tab will open and show all of the shelved alarms, as well as when the shelved time period expires. To close the Shelved

Alarm tab, click either the icon or the button icon.Shelved Alarm Expand

After the amount of time expires on a shelved alarm it will be evaluated, and if it is still active, it will automatically return to the Alarm Status
list. If the alarm transitions to a cleared state during the time shelved period, the alarm will show up as 'Cleared' in the Alarm Status list
instead of 'Active.'

Active Alarms

Active alarms must be present in the Alarm Status Table before you can shelve an
alarm.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Alarm+Status+Table
https://legacy-docs.inductiveautomation.com/display/DOC80/Alarming
https://inductiveuniversity.com/video/alarm-status-shelving/8.0

1.

2.
3.

To unshelve an alarm, select one or more alarms under the tab, click the link and the alarm will return back to Shelved Alarms Unshelved ,
the Alarm Status list.

Go to and test out shelving some of your alarms.Preview Mode

Custom Shelving Duration
The shelving duration values on the Table component can be customized. By default, the component has several shelving Alarm Status
preset times, but you can add or remove times based on your requirements. One thing to note when modifying the shelving times, is that
there is no option to set a shelving time indefinitely. Shelving times are meant to be temporary, not long term.

In the Property Editor, there is a called This is where you can add, remove, or change the shelving times for property Shelving Times.
alarms. In the following example, was added to the list of shelving times. 90 minutes

Select the Table component, and click on the icon next to the property to open Alarm Status DatasetViewer Shelving Times
the Dataset Viewer.

Select a row and click the green icon to insert a new row. Enter the amount of time and unit of time (i.e., 90 minutes).Add Row
Click . OK

3.

4.
5.

To verify your new time was entered correctly, select the s you want to shelve and click the button. alarm Shelve
Choose shelve time from the dropdown list. Click to temporarily silence your s. Note, you may need to close 90 minute Apply alarm
and reopen your window to see the new shelve time duration.

Vision Alarm Status - Tag History and Alarm History

The component has a unique feature built into it that lets you view the actual Alarm Status Table
trend of a Tag's value and an alarm's history for any alarm that is currently active. It shows you
exactly where the alarms occurred, when it was cleared, and when it was acknowledged.

For the trend feature to work, you must have your Tag history setup so it’s logging to the Tag
 as well as an configured so that the log history gets logged to a Historian Alarm Journal Profile

database. As long as both the Tag Historian and Alarm Journal are configured, you will see the
trend for any given alarm that is currently active or in the Alarm Status Table list.

The Tag Browser will display the icon when alarm history is enabled. Tag History

In the Alarm Status Table, select any and click on the icon located on the bottom alarm Trend
right of the table. The Trend Chart shows you the trend of the selected alarm's value over time.
You can look at the last 5 minutes, 30 minutes, 1 hour, 8 hours or up to 24 hours to view the exact
history of that Tag's value, as well as all the alarms that occurred over time.

The yellow triangles denote when the alarm was active, the green circles identify when the alarm
was cleared, and a vertical black bar shows when the alarm was acknowledged. It’s all built into
the Alarm Status Table component and you don’t have to go to a separate window to view an
alarm trend or alarm history.

Alarm Status - Tag
History and Alarm
History

Watch the Video

Related Topics ...

Configuring Alarms
Alarm Journal
Configuring Tag History

Alarm Journal Property

If you have more than one alarm journal configured, the property field is Journal Name
blank. Make sure you enter the name of the Alarm Journal you intend to use, otherwise
your alarm log history will not get logged to the database.

https://legacy-docs.inductiveautomation.com/display/DOC80/Tag+Historian
https://legacy-docs.inductiveautomation.com/display/DOC80/Tag+Historian
https://legacy-docs.inductiveautomation.com/display/DOC80/Alarm+Journal
https://inductiveuniversity.com/video/alarm-status-tag-history-and-alarm-history/8.0
https://legacy-docs.inductiveautomation.com/display/DOC80/Configuring+Alarms
https://legacy-docs.inductiveautomation.com/display/DOC80/Alarm+Journal
https://legacy-docs.inductiveautomation.com/display/DOC80/Configuring+Tag+History

1.

2.

3.

4.

5.
6.

Using Alarm Status Tags in Vision

Ignition displays four that give you the number of alarms that are Active Gateway System Tags
and Acknowledged, Active and Unacknowledged, Cleared and Acknowledged, and Cleared and
Unacknowledged. A quick way to see if any alarms are active, and to get an active alarm count is
to add a Label component on a Vision .navigation window

Alarm Status Tags

Watch the Video

Add a Label with Alarm Status
Let's setup an Active Alarm on a Navigation window using a component for the Tag showing how many alarms Label Active and UnAcked
are currently active and unacknowledged.

In the open your , and and name it This Project Browser Navigation window drag in a component Label "Active Alarms."
example uses a Tree View as the navigational component.
Next, we need to link the Label to the alarm Tag, but first we'll need a custom property. In the right click on the Property Editor, Lab

 component, and select on . The Custom Properties window will open. el Customizers > Custom Properties

To add a custom property, click the icon, and enter the name with an data type. Click Add 'activeAlarms' 'integer' OK.

You'll find your new custom property in the Property Editor under the category. Now, let's bind our new custom Custom Properties
property, to the Tag. Select the icon next to the property. The 'activeAlarms' 'Active and Unacked' binding 'activeAlarms'
Property Binding Window will open.
Select type and choose the Tag.Tag System > Gateway > Alarming > Active and Unacked
Click to save.OK

https://legacy-docs.inductiveautomation.com/display/DOC80/Types+of+Tags#TypesofTags-SystemTags
https://inductiveuniversity.com/video/alarm-status-tags/8.0
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Label

6.

7.

8.

Now, let's display the number of alarms that are active on the Label. Bind the property of the Label to the following expression. Text
Click on the icon for the property and select the binding type.binding Text Expression
Copy and paste the following expression in the Expression area. You'll notice the the expression contains a literal string value '

Click twice. Active Alarms.' OK

{Root Container.Active Alarms.activeAlarms} + " Active Alarms"

You can also create the expression by navigating to the custom property (i.e., activeAlarms). Ignition will build the expression for

you. Click on the icon for the property and click on . Click the icon and select the binding Text Expression Property active
 property, then click to save the property. Click again to save your binding. Alarms OK OK

8.

9.

10.

11.

The last thing to do is setup a style to make the Active Alarms label stand out on the Navigation window. Let's change the color to
something bright and make it blink. Right click on the and select Label Customizers > Style Customizer.
For the , select For the , select (one at a time): , Driving Property 'activeAlarms.' Available Properties Background Color Foregro

, and , and click on the green arrow pointing to the right and add them to the list. und Color Border Visible Used Properties

Under the section, click on the Add icon twice times to add two . Click the icon to open and Styles Values Expand
customize the style for the Active Alarm Label. Set the following values for : Styles

Value 0
Background Color: Red
Border: Etched (Raised)
Foreground Color: White
Visible: check the box

Value 1
Click the box. Use the green plus icon to add 2 . Change the values toAnimate animation steps

 Duration: Step 1 1000
Background Color: Red
Border: Etched (Raised)
Foreground Color: White
Visible: check the box

 Duration: Step 2 1000
Background Color: Yellow
Border: Etched (Raised)
Foreground Color: Black

11.

Visible: check the box

Click OK.

Now, you have a label on the Navigation window that provides an active alarm count and blinks when there is an active alarm.

Vision Alarm Journal Table - Common Tasks

The Alarm Journal Table has a lot of configuration options that can be used to do things like filter
the list of alarms being displayed, to changing how the component displays them. Each of the
pages in this section goes over setting up various aspects of the Alarm Journal Table. Note that an

 must first be set up with a valid database connection for the Alarm Journal Table to Alarm Journal
see alarm history from the database.

Vision Alarm Journal - General Filtering
The Alarm Journal Table component has many built in properties that allow you to filter on various
parts of an alarm. Learn about the different that the Alarm Journal Table built in filtering options
provides.

Vision Alarm Journal - Filter on Associated Data
The Alarm Journal Table provides the ability to being write scripts to filter the alarm history
displayed. While the script can filter on any properties of the alarm, this page goes over how to
filter on the user created associated data properties.

On this page

...

Vision Alarm
Journal - General
Filtering
Vision Alarm
Journal - Filter on
Associated Data
Vision Alarm
Journal - Filter on
Date Range
Vision Alarm
Journal - Focusing
on Alarms
Vision Alarm
Journal - Row Styles
Vision Alarm
Journal - Searching

Vision Alarm Journal - Filter on Date Range
The Alarm Journal has start and end date properties that determine the from which to grab the alarm history. This can be bound time range
to a Date Range component that allows you to filter for specific alarm events by choosing a start date and end date.

Vision Alarm Journal - Focusing on Alarms
Sometimes, it may be useful to see only specific events in the history. Without changing the filters, the Alarm Journal Table allows you to focu

, and see all instances of it by filtering out other events.s on a specific alarm

Vision Alarm Journal - Row Styles
The Alarm Journal Table colors each row a specific way depending on what type of event it is. These can be completely Row Styles
configured, allowing you to not only change the colors and fonts for different events, but also to setup rows styles on based on other
properties as well.

Vision Alarm Journal - Searching
The Alarm Journal Table has a built in that allows you to search for specific events based on a set of keywords or priorities.search tool

In This Section ...

https://legacy-docs.inductiveautomation.com/display/DOC80/Alarm+Journal

Vision Alarm Journal - General Filtering

Alarm Journal Table Filtering
Ignition provides a host of filters to view alarm history data in the Designer and Vision Client. Not
only can you filter the Alarm Journal Table on a to see alarm history data within a date range
specific time period, but there are also a number of other filters you can use as well.

In the Designer you can filter alarms using the filter properties in the Property Editor. In the Vision

Client, you can filter alarms by clicking on the icon at the bottom of the Alarm Journal Filter
Table.

Filtering in the Designer

In the Designer, drag an Alarm Journal Table component into your window. By default, Ignition
filters on four different type of alarm events: System Events, Active Events, Cleared Events and

. It also filters on all alarm priorities ranging from to . In the Acked Events Diagnostic Critical
Property Editor you can see each type of alarm event. You can show only those alarm events you
want to see by checking the specified alarm event and leaving the other events unchecked.

On this page

...

Alarm Journal Table
Filtering

Filtering in the
Designer
Filtering in the
Client

Alarm Journal -
General Filtering

Watch the Video

You can also filter on , , properties, and even create your own . In the following example, Source Path Priority Display Path Search String
we searched the for and and applied a basic filter to show only and events as you can see by Display Path 'Sine' 'Speed' Active Acked

Alarm Journal Profile

 To view alarm history, an must be created first before logging Alarm Journal Profile
alarms to the database.

When an Alarm Journal Table component is initially placed on a Vision window, the
table displays the last 8 hours of alarm events stored in the . From Alarm Journal Profile
here, you can filter alarms using the host of filtering properties in the Property Editor to
expand or narrow the list of alarms.

https://www.inductiveuniversity.com/videos/alarm-journal-general-filtering/8.0/8.0
https://legacy-docs.inductiveautomation.com/display/DOC80/Alarm+Journal
https://legacy-docs.inductiveautomation.com/display/DOC80/Alarm+Journal

the different alarm state colors. We also set the to see 'Medium' to 'Critical' alarms. You can see that all the and Priority 'Sine' 'Speed'
results are shown in the column of the journal table.'Display Path'

In Preview Mode and in the Vision Client, you can right click in the column header to show or hide columns, reorganize the columns, and
resize the columns. You can also sort by column by simply left clicking, or sort by multiple columns by holding the key while clicking the Ctrl
column headers. You will see small numbers next to the column header to indicate the sort order and direction (ascending vs descending).

You can also filter alarms based on a and . If you configure alarms in particular folders, you can use the Tag Path Tag Provider Source Filter
 to find alarms by Tag Path. In this example, * was entered using wildcards in the Source Path field to find all the alarms that *Sine1 'Sine1'
are and in all the folders with a of 'Medium' to 'Critical.' Active Acked 'Sine' Priority

You can also filter on alarms by using the filter, which is the alarm name that was setup when you . Name Display Path configured the alarm
In this example, was entered in the field to find all the alarms in the system with a name, and a 'High Speed' Display Path 'High Speed' Pri

 of to ority 'Medium' 'Critical.'

https://legacy-docs.inductiveautomation.com/display/DOC80/Configuring+Alarms

You can also create your own to find specific alarms, events, and conditions. In this example, and Search String 'High Speed' 'High Level'
were entered in the field to find all alarms that matched the string criteria.Search String

Filtering in the Client

You can filter alarms in the Vision Client using the tab by clicking on the icon at the bottom of the Alarm Journal Filter Filter
Table. Let's filter on using the Filter tab. When you first open the Alarm Journal Table, it displays every single alarm on all the Priority
priorities from Diagnostic to Critical. If all you want to display is High to Critical alarms, select from the first dropdown on the ‘High’ Priority
left and from the second dropdown box. You'll notice a field and , , and alarm events are ‘Critical’ Search System Active Cleared Acked
also available to filter alarms.

In this example, we set the filter to find all alarm events with a of To close the Filter Search 'Sine0' Active and Acked Priority 'Critical.'

tab, click on the icon or the icon. Filter Expand

All of the Alarm Journal Filter properties are bindable so you can design your Visions windows and let the operator choose and filter the
alarm data based on how they want it displayed.

Related Topics ...

Configuring Alarms
Alarm Journal

https://legacy-docs.inductiveautomation.com/display/DOC80/Configuring+Alarms
https://legacy-docs.inductiveautomation.com/display/DOC80/Alarm+Journal

1.

Vision Alarm Journal - Filter on Associated Data

Just like the Alarm Status Table you can filter the Alarm Journal Table based on associated data
that you added to your alarms.

Set Up the Alarm Journal to Filter on
Associated Data
It's a common design practice to associate groupings on associated data of an . If you alarm alarm
create alarm groupings on associated data of an alarm, you'll most definitely want to filter on your
associated data in the Alarm Journal Table. Associated data is outside the Source Path and
Display Path, and s gives you the ability to filter on associated data using the ecripting 'filterAlarm'
xtension function. It also gives you the freedom to filter on anything that you want, such as alarms
in another area of the plant or for a certain set of alarms. The script is only going to show you the
alarms matching the associated data. You can also add other filters as well.

In the following example, we'll use the extension function to filter on associated data, 'filterAlarm'
but first we need to add associated data on an existing alarm.

On this page

...

Set Up the Alarm
Journal to Filter on
Associated Data

Alarm Journal -
Filter on
Associated Data

Watch the Video

This example uses a Memory Tag called that has an alarm configured called . An asssociated data property 'Speed' 'High Speed'
was added to the alarm called with a static value of You can filter on what is shown in the alarm list of the 'Group' 'Production.'
Alarm Journal Table based on the associated data. In this example, we are going to filter on a called 'Group' 'Production.'

Configuration of Alarm Journal Profile, Alarms and Associated Data

This section assumes that an Alarm Journal Profile, alarms, and associated data are
already configured before filtering on associated data in the Alarm Journal Table. To
learn more, go to the Configuring Alarms, Alarm Associated Data, and Alarm Journal
pages.

https://www.inductiveuniversity.com/videos/alarm-journal-filter-on-associated-data/8.0/8.0
https://legacy-docs.inductiveautomation.com/display/DOC80/Configuring+Alarms
https://legacy-docs.inductiveautomation.com/display/DOC80/Alarm+Associated+Data
https://legacy-docs.inductiveautomation.com/display/DOC80/Alarm+Journal

1.

2.

3.

4.

Once your is configured in your alarm, setup your script to filter for all the alarms in your history that have the associated data
associated data named with a value of Right click on your Alarm Journal Table component and select 'Group' 'Production.' Scripti

. The Component Scripting window will open.ng

On the left side of the window under the folder, click Extension Functions 'filterAlarm.'

Check to enable the script, and enter the code you want to filter on for your associated data. The script used in this Enabled
example is shown below. If you want to use this example, copy the code from the code block and paste it at the end of the script and
click to save your script.OK

group = alarmEvent.get("Group")
if group == "Production":
 return True
return False

https://legacy-docs.inductiveautomation.com/display/DOC80/Alarm+Associated+Data

4.

5.

6.

The filterAlarm script will find every alarm matching and return 'true' and display the alarms in the journal table. If the 'Production'
associated data does not match it will return 'false' and no alarms will be displayed in the journal table. 'Production,'

The alarm list below shows all the alarms with associated data filtering for the called within the dates displayed 'Group' 'Production'
on the . Date Range component

As long as the script is enabled, the Alarm Journal Table will display all alarms matching the criteria for the associated 'filterAlarm'
data. To disable the script, open the and uncheck . 'filterAlarm' Enabled

Related Topics ...

Configuring Alarms
Alarm Associated Data
Vision Alarm Journal - Filter on Date Range

Refreshing the Data in the Alarm Journal Table

By default, the Alarm Journal Table does not refresh the data in the table automatically if you are working in the Designer.
Toggle one of the filters on the table to refresh the data and you'll see the table refresh with your associated alarm data. If
you are opening a Client window, the data will automatically refresh.

https://legacy-docs.inductiveautomation.com/display/DOC80/Configuring+Alarms
https://legacy-docs.inductiveautomation.com/display/DOC80/Alarm+Associated+Data

1.

2.

a.

b.
c.
d.

Vision Alarm Journal - Filter on Date Range

Alarm Journal Table
The Alarm Journal Table displays the complete history of all alarms within a specific time
period. Ignition offers several types of date pickers under the Calendar tab of the Component
Palette, but it's far easier and more common to use the component for filtering alarms Date Range
over time.

When the Alarm Journal Table component is initially placed on a window, the component shows
the last 8 hours of alarm events stored in the . Typically, operators want to Alarm Journal Profile
filter alarm events within a specific time period rather than scroll through a long list of alarm
events. Selecting Start and End Dates is very easy using a . Date Range component

Alarm Journal -
Filter on Date
Range

Watch the Video

Setting up Alarm Journal Table to Filter on Date Range

 The Start Date and End Date are built into the Date Range component so you can select the Start Date and End Date all in one place.

In the Designer, drag the from the Component Palette to your window and place it above your Alarm Journal Date Range component
Table.

Link the Alarm Journal Table component to the Date Range component beginning with the .Start Date

Select the , click the icon. The Property Binding window will Alarm Journal Table component Start Date binding
open.
Click the binding type Property .
Select the component's Date Range Start Date.
Click OK.

Alarm Journal Profile and Alarms Configuration

This section assumes that an Alarm Journal Profile and alarms are already configured
before proceeding with filtering alarms using a date range. To learn more about alarms,
go to and pages.Configuring Alarms Alarm Journal

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Date+Range
https://legacy-docs.inductiveautomation.com/display/DOC80/Alarm+Journal#AlarmJournal-CreatinganAlarmJournalProfile
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Date+Range
https://www.inductiveuniversity.com/videos/alarm-journal-filter-on-date-range/8.0/8.0
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Date+Range
https://legacy-docs.inductiveautomation.com/display/DOC80/Configuring+Alarms
https://legacy-docs.inductiveautomation.com/display/DOC80/Alarm+Journal

2.

d.

3.

a.
b.
c.
d.

4.

 Now, let's link the Alarm Journal Table to the Date Range component's End Date.

Select the , click the icon. The Property Binding window will open.Alarm Journal Table component End Date binding
Click the binding type Property .
Select the End Date for the component Date Range .
Click OK.

The Alarm Journal Table will refresh with all alarm events within that time period. Click on and drag the slider on a Preview Mode
specified date range on the timeline. You can drag or stretch the selection box around the timeline. The selected date range is
always a whole number of units, where the unit is determined by the current zoom level. You can also zoom in or out on specific
time periods to see the alarm events that exist in the alarm history table.

4.

Related Topics ...

Vision - Date Range Component

Refreshing New Alarm Events

Alarm Journal Table fetches data only when the window is first opened and when the Start or End Dates change. To see
new alarm events come into the table, use the slider to change the dates.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Date+Range

Vision Alarm Journal - Focusing on Alarms

The Alarm Journal Table can focus on specific events in the alarm list. The Focus feature filters
out alarms while reducing the number of alarm events displayed in the Alarm Journal Table, thus,
allowing you to view specific instances of an alarm source. You can focus on one Target Alarm

 or the to look at when alarms occur. It’s a nice way of filtering through the Source Target Event Id
Alarm Journal Table without having to scroll through the entire list of alarms to match up the Alarm
Events, Times and States since the Active, the Cleared and the Acknowledged states are not
going to be in sequential order depending on when the event times actually happened.

The Alarm Journal Table shows you a complete history of all alarm events within a specific time
period which can be quite large. The following examples will show you how to use the focus
feature to pare down the list of alarm events and to focus strictly on those alarms of interest to you.

Using the Focus Feature
The Alarm Journal Table can become quite large with alarm events over a period of time. The Foc

 feature allows you to focus in on one specific alarm and view the history for that alarm using us Tar
 and . Notice, the examples on this page are using the get Alarm Source Target Event Id Date
 to focus on the Target Alarm Source and Target Event Id within a given time Range component

period.

On this page

...

Using the Focus
Feature

Target Alarm
Source
Target Event Id

Target Alarm Source

If you want to see alarms from just a single Source Path, select any alarm event in the journal table, click on the icon, and choose Focus
. This returns the complete alarm history of that Source Path within that given time range. Note, make sure to have Target Alarm Source

your column set in the journal table. Refer to for more information on configuring table Source Path Alarm Journal Table Component
columns.

In this example, we focused on the High Speed alarm with a source path: . prov:default:/tag:Speed:/alm:High Speed

Once the Target Alarm Source option was clicked, all alarm events from the selected Source Path were displayed in the journal table within
the specified date range, including any changes to the state, as well as acknowledgments.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Date+Range
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Date+Range
https://legacy-docs.inductiveautomation.com/display/DOC80/Alarming+in+Vision#AlarminginVision-AlarmJournalTableComponent

To remove the Focus, click on the icon again, and you will see all alarms events in the journal table refresh within the given date Focus
range.

Target Event Id

In this example, with an Active event state was selected and the Motors/Motor 1/Amps/Low Amps dated 6/26/19 at 1:59 PM Tar
 option was chosen. Note, make sure you have the column set in the journal table. Refer to get Event Id Event Id Alarm Journal Table

 for more information on configuring table columns. Component

The Target Event Id returned all the alarms events with that specific Event Id during within the given date range. You can see when the alarm
went Active, Cleared, and Acknowledged.

https://legacy-docs.inductiveautomation.com/display/DOC80/Alarming+in+Vision#AlarminginVision-AlarmJournalTableComponent
https://legacy-docs.inductiveautomation.com/display/DOC80/Alarming+in+Vision#AlarminginVision-AlarmJournalTableComponent

Click the icon to remove the focus and you will see all alarms events in the journal table refresh within the given date range.Focus ,

Vision Alarm Journal - Row Styles

The Table allows you customize row styles for different states of alarm history. Just Alarm Journal
like the Alarm Status Table, the comes with a particular set of colors Alarm Journal Table
associated with each of the alarm states as shown in the image below. You can change these
colors for each of the states by going to the Alarms Styles Customizer that the Table Alarm Journal
component provides.

On this page

...

Customizing Alarm
Row Styles

Creating Row
Styles for
Different Alarm
States

Alarm Journal -
Row Styles

Watch the Video

Customizing Alarm Row Styles
Alarm Row Styles is where you can modify an existing row style, add more styles, or delete a style. The Alarm Row Styles Customizer gives
you a head start for building a new expression. The expression allows you to do any evaluation you want using any filter properties of the
alarm such as Priority, State, Display Path, Active Time, and Clear Time.

In the , right click on the component, go to to see the default row styles. Designer TableAlarm Journal Customizers > Alarm Row Styles
Alarm Row Styles is an ordered list and each style has an expression. How it works is, the first style that returns for a given is ‘True’ alarm
the one that is going to be used. So you want to make sure the order is the correct order that you want. If you want to change the order,

select a row and click on the up or down arrow . Click on each of the row styles to view the expression associated with the row icons

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Alarm+Journal+Table
https://www.inductiveuniversity.com/videos/alarm-journal-row-styles/8.0/8.0
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Alarm+Journal+Table

1.
2.

3.

4.

5.

style.

Creating Row Styles for Different Alarm States

The main reason to create a new row style is for overlapping conditions for styling. Let's create another state with a new row style and alarm
state.

With the Alarm Row Styles customizer open, click on the .Add icon
By default, the new state is added to the bottom of the list. The following expression creates a new state for alarms alarm 'Ack by

Copy and paste the expression into the Expression area of the Row Styles window.the user admin.'

{ackUser}='usr-prov.default:/usr:admin'

To make this alarm state catch the attention of the operator, let's make the row style standout by making it blink. Make the
foreground color and the background color Check the box and make the foreground color and 'Black' 'Yellow.' Blink 'Black'
background color 'Red.'
Move the new state for above the state so it gets evaluated first, otherwise if state is evaluated 'Ack by the user admin' 'Ack' 'Ack'
first, it will become first and the new state will never be evaluated. 'True' 'Ack by the user admin'
Press to save your updates.OK

5.

6. Now, when the user acknowledges an alarm, it will blink yellow and red in the Alarm Journal Table. 'admin'

Refer to the section to learn more about alarm properties and how they are used in the Alarm Alarm Event Properties Reference
Row Style Customizer.

https://legacy-docs.inductiveautomation.com/display/DOC80/Alarm+Event+Properties+Reference

Vision Alarm Journal - Searching

Using the Search Feature
The Alarm Journal Table component can search through alarm history and filter for particular
alarms with any criteria. The Search feature is built into the Alarm Journal Table component and

found on the bottom right side of the table. Click on the icon to start your search. Filter

On this page

...

Using the Search
Feature

The Filter tab will open at the bottom of the Journal Table. You can type in any search criteria you want as well as filter on and Priority Event
types. When you hit the carriage return in the Search field, or change the Priority or Event fields, the alarm list will automatically refresh.

This example shows how to find all event alarms within the given time period on the with a priority of 'Tank 100' Date Range component 'Med
 to You can increase or decrease the size of the Filter window by dragging the top edge up or down. Click either the ium' 'Critical.' Expand

 or icons to close the Filter tab window. Filter

This example searches the alarm list for all alarms with events and a priority of to within the given time 'Motors' 'Active' 'High' 'Critical'

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Date+Range

period on the Date Range component.

As you can see, the operator has the ability to search and filter on anything they want by entering the alarm criteria in the Alarm Journal
Table filter area.

Reporting in Vision

Included with the Reporting module are many unique Vision components, all of which are added
into a new section of the Component Palette. The commonly used allowsReporting Report Viewer
you to view your reports within a Vision Client. The others, such as the and PDF Viewer Row

, do not directly interact with a Report, but instead enhance the capabilities of your Vision Selector
Clients.

On this page

...

Report Viewer
Report Viewer
Properties
Using the Report
Viewer
Save and Print a
Report

Row Selector
Column Selector
PDF Viewer
File Explorer

Reports in Vision
Clients

Watch the Video

Report Viewer
The Report Viewer component provides an easy way to view reports in Vision windows. Once you drag a Report Viewer component onto
your window, you choose the report you want to view from the property dropdown list. Parameters added during report creation Report Path
are provided as properties in the Report Viewer, and will override any default values set in the Report Resource. Scroll down to the bottom of
the Property Editor and you'll see your report parameters available as properties. The Report Viewer allows you to bind your report
parameters to other components on your window.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Report+Viewer
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+PDF+Viewer
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Row+Selector
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Row+Selector
https://www.inductiveuniversity.com/videos/reports-in-vision-clients/8.0/8.0

Report Viewer Properties

While you're in the Property Editor, take a moment to scroll through all the Report Viewer properties. You'll notice that you can customize the
visual style of your report by adding page number, change the zoom factor, and the background colors of the report. More information on the

 properties can be found in the the Appendix.Report Viewer's

Using the Report Viewer

Once you have your reports designed, you're ready to view them in a Vision window using the Report Viewer component. (You need to have
a report created before you can view it using the Report Viewer. For information on how to design a report, refer to . Report Design

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Report+Viewer
https://legacy-docs.inductiveautomation.com/display/DOC80/Report+Design

1.
2.

3.

In the , drag a component to a window. Designer Report Viewer
With the Report Viewer selected, go to the and set the property to display any of your existing reports Property Editor Report Path
from the dropdown list.

Scroll down to the bottom of the Property Editor, and you'll see . This sample report is using a parameter we Report Parameters
called "maximum." Any events that are longer than the duration set in the maximum parameter are highlighted.

4. Put the Designer in to see the report as it would appear in the Client.Preview Mode

Save and Print a Report

In and from the , you can right click on the report and print it. You can even save the report to PDF, HTML, or PNG Preview Mode Client
format.

Row Selector
The component allows users to filter a dataset based on unique values of one or R Sow elector
more columns. Each level in the sorting tree is based on these properties. The user will see a
dynamically generated expandable tree that groups their data by any number of choices. As a user
clicks down the tree, objects bound to the dataset will indicate the filtered data.

A common way to filter the data is by time. For example, you can feed the R S an input ow elector
dataset that represents a large time range, and have it break it up by Year, Month, and Day. Then
you can power a report with the output dataset that lets the user dynamically create reports for any
time range. When configuring the Row Selector for the first time, you'll notice some default Date
filters in the Row Selector Tree Customizer to help you quickly configure and filter raw data by

Row Selector

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Row+Selector
https://inductiveuniversity.com/video/row-selector/8.0

1.
2.

3.

4.

5.
6.

time. If you don't want to filter your data by time, then simply delete the default filters and create
your own.

See the Appendix for more information on the .Row Selector

A Row Selector has two important properties: and . The Row Selector component filters the data in the property Data In Data Out Data In
and pushes the filtered result to the property. Let's configure a Row Selector to filter on some raw data. (This example uses a Data Out
Power Table component which gives you the option of using some sample test data, or you can create your own data).

Drag a Power Table component on to your window and change the of the Power Table to " ".Name Data In Table
Scroll down the Property Editor and set the property to . This will populate the property with some test data. TestData 'true' Data
Alternatively, you could manually populate the property using either the Dataset Viewer or by creating a binding on the property.Data
Drag a Row Selector component on to your window. With the Row Selector selected, click the icon on the Row Binding
Selector's property.Data In
Select the Binding Type, and bind it to the property in the , and click . Property Data Data In Table OK

Drag another Power Table component on to your window, change the Name to "Data Out Table".
With the still selected, bind the property to the Row Selector's property, and click .Data Table Out Data Data Out OK

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Row+Selector

6.

7. Now let's configure your filters. Right click the Row Selector component and scroll down to Customizers > Row Selector Tree
Customizer.

Don't worry about the 'Unknown' nodes in the Row Selector component. The Row Selector has three default Date filters
which haven't been configured for your data yet. You will need to reconfigure them, or delete them and configure your own
unique set of filters. Once configured, the 'Unknown' nodes will disappear.

7.

8.

9.
10.

11.

The Row Selector Tree Customizer provides three default Date filters. Here you can customize the parameters of each Date filter or
choose another filter type that is more appropriate for your dataset. Each column on the Data In Table will be listed in the Available
Filters tree, and the types of filters available to each column depends on the datatype of the column.

To start customizing, select the first filter, then change the to Data Column. (Column Name This example uses the Date column to
filter on the Month, Day, and Time combination.)
Change the to MMMM yyyy.Format String
Click .OK

Put your Designer into .Preview Mode

12.

1.
2.

3.

4.

Select Month, Day, or Time to filter on. The filtered results are displayed in the Table. In this example, we filtered on June Data Out
20th, so the Data Out Table only contains records that match that date.

Here are a few more Row Selector examples:

A Line Graph bound to a Row Selector - Set up grouping to be first by month and year, then day, then hour, like the example above.
Clicking on a month and year will dynamically update the graph for that time period. Further clicking to a specific day or hour will re-
filter the graph for that period.

A bound to a Row Selector - Grouping by department (String) would allow selection by department, automatically Report Viewer
regenerating the Report on selection.

An "Alarm History" Table bound to a Row Selector - This could first be broken down severity level (Integer), then broken into "Alarm
Acknowledged" / "Not Acknowledged" (Boolean based). Clicking "Severity 3" would filter the table to all Severity 3 alarms. Selecting
"Unacknowledged" would then filter the table to Unacknowledged alarms of Severity 3.

Column Selector
The Column Selector is similar to the Row Selector except that instead of filtering rows, it filters out
entire columns from the output dataset. Each from the input dataset is shown as a column
checkbox and allows users to show or hide variables in the datasets via the checkboxes, then
output the resulting dataset.

The Column Selector allows users to choose which columns in a dataset they wish to use. If an
object is bound to the Column Selector it will update itself whenever a user checks or unchecks a
column. This allows users to dynamically show or hide Table columns, "pens" on a graph, data in a

, or any other component set up to use a dataset.Report Viewer

Column Selector

Watch the Video

Drag a Power Table component on to your window and change the of the Power Table to " ".Name Data In Table
Scroll down the Property Editor and set the property to True. This will populate the property with some test data.TestData Data
Drag a Column Selector component on to your window. With the Column Selector selected, click the icon on the Binding
Column Selector's property.Data In
Select the Binding Type and bind it to the property in the , and click .Property Data Data In Table OK

When designing your report window, it's not necessary to display the Data In Table only the Data Out Table. You also don't need a
component to house the data: the Data In property on the Row Selector could simply retrieve the raw data with a binding.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Report+Viewer
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Report+Viewer
https://www.inductiveuniversity.com/video/column-selector/8.0

4.

5.
6.

7.

Drag another Power Table component on to your window, change the Name to " .Data Out Table"
Bind the of the property to the Column Selector property, and click .Data Data Out Table Data Out OK

7.

8.

9.
10.
11.

12.

Put your Designer into . Preview Mode In Preview Mode, you can can hide specific columns by unchecking the boxes in the
Column Selector.
Use the check boxes to select columns you want displayed or hidden. In this example, we hid the and columns as Boolean Int
shown in the Data Out Table.

If you want to customize the column display for all users, put the Designer back into Design mode.
Right click on the Column Selector and choose . Customizers > Column Selector Customizer
Click the box next to any column that you don't want displayed. Excluded from Selection The "Excluded from Selection" option
determines if the user is allowed to hide the column from the client via the Column Selector.
Click .OK

13. Now, the columns are excluded from the selection in the Customizer (Int and Boolean columns) and are not displayed in the Column
Selector of the Client and prevented from being hidden by the user.

See the Appendix for more information on the .Column Selector

PDF Viewer
The allows you to take PDF files and embed them into your Ignition Client. This can allows you to view PDF documents without PDF Viewer
having to leave the Ignition Client, perfect when running a client at full screen, or to view any reports that were saved in PDF format.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Column+Selector
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+PDF+Viewer

1.
2.

3.

File Explorer
The component displays a file system tree structure that allows users to navigate File Explorer
around various folders. It can be rooted to any folder including shared network folders, and can
filter file types by their file extension like 'pdf.' The File Explorer is typically used in conjunction
with the PDF Viewer component in order to create a PDF viewing window. This is very useful for
viewing documents from within a project.

File Explorer and
PDF Viewer

Watch the Video

Let's setup the File Explorer and the PDF Viewer to create a window to view a PDF documents.

In Designer, drag a component and component on to a window and place them side by side.File Explorer PDF Viewer
Select the component and click the binding icon next to the property.PDF Viewer File Path

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+File+Explorer
https://www.inductiveuniversity.com/video/file-explorer-and-pdf-viewer/8.0

3.

4.

Select the binding type, and drill down to the property. Click . Property File Explorer Selected Path OK

Next, select the component. In the Vision Property Editor, set the property to a folder path. You can File Explorer Selected Path
type in a path or bind the root directory by clicking on the binding icon for the as shown in the image below. The Selected Path
Root Directory restricts which directories are accessible on the component. This is typically used to restrict access to a particular
folder so that the user doesn't have access to the entire file system. All folders nested within the Root Directory can be accessed on
the component.

If you set the File Explorer's Root Directory to a folder, all clients will be able to access documents within all network
folders in that folder.network

4.

5.

6.

To filter for only PDF file types, enter (without quotes) in the property, otherwise, all file types will be 'pdf' File Extension Filter
displayed inside the Root Directory.

In , click on one of the reports in your Root Directory. The works by passing the file path of the file you Preview Mode PDF Viewer
selected to the PDF Viewer. You'll also notice several PDF Viewer properties that drive the appearance of the PDF Viewer: Page Fit
Mode, Hide or Show Toolbar, Utility Bar, Highlight, Select, Save, Print, and more.

Clicking on the Save icon in the runtime saves a copy of the report to the client computer, not the Ignition Gateway.

6.

1.

Vision Client Tags

Client Tags, as the name implies, are only available for use in Clients. Their values are isolated to
a Client runtime. All clients will have the same list of client Tags, however, the actual values are
unique and independent for each running Client. In other words, even though client Tags are
created in the Designer, each client will create their own instances. This makes them very useful
as in-project variables for passing information between screens, and between other parts of the
clients, such as scripting.

Client Tags support most of the data types that standard Tags do (including datasets), but
excluding the array types. Additionally, Client Tags do not have a Tag Group property, so the
value will only update when the polling property executes, or a reference in the Client Tag's
expression updates.

Often, users will create parameterized windows that take in a line ID or machine name. A Client
Tag can to be used across multiple windows without users on store this value for indirection
different clients fighting over the current value as they would with a standard Tag.

If you are using Perspective, there are no Client Tags available to a Session. See Session
 for a similar system.Properties

On this page

...

Expression Type
Create a Client Tag

Using Vision
Client Tags
Overriding Vision
Client Tags

System Client Tags

Client Tags

Watch the Video

Expression Type
Client Tags can be configured in one of several ways, based on the property. The following options are available. Expression Type

None: Causes the Tag to behave like a .Memory Tag
Expression: Allows the Tag to utilize Ignition's Expression Language, much like an .Expression Tag
Query: Executes a SQL Query, similar to a . Query Tag
Named Queries: Client Tags may call Named Queries

Create a Client Tag
This example shows how to create a client Tag.

From the , right-click on the folder and select . The will open.Tag Browser Vision Client Tags New Tag > Client Tag Tag Editor

https://legacy-docs.inductiveautomation.com/display/DOC80/Session+Properties
https://legacy-docs.inductiveautomation.com/display/DOC80/Session+Properties
https://www.inductiveuniversity.com/videos/client-tags/8.0/8.0
https://legacy-docs.inductiveautomation.com/display/DOC80/Types+of+Tags#TypesofTags-MemoryTags
https://legacy-docs.inductiveautomation.com/display/DOC80/Types+of+Tags#TypesofTags-ExpressionTags
https://legacy-docs.inductiveautomation.com/display/DOC80/Types+of+Tags#TypesofTags-QueryTags
https://legacy-docs.inductiveautomation.com/display/DOC80/Named+Queries

1.

2.

In the enter the Tag name and the following general properties, then click Tag Editor OK.

Name: Area
Value: Processing
Data Type: String

3.

1.

2.

A new Tag called is created in the folder.Area Client

Using Vision Client Tags

Once a Client Tag is created, it can be used just like any other . You can drag-and-drop, bind to it, use it in scripting, or add it to a Tag Transac
.tion Group

Overriding Vision Client Tags

When you open a Client, your Vision Client Tags default to the value that was saved in the Designer. If you want to open a Client with
different values in your Client Tags, you can override them in the (either for all applications, or an individual Vision Client Launcher
application). A Client Tag can be overridden in the section of the .Client Tag Overrides Vision Client Launcher

Use the button to override a client Tag in all applications.Settings
Select on the individual application to override a tag on that specific application.Manage

The following feature is new in Ignition version 8.0.7
 to check out the other new featuresClick here

Client Tags can be overriden within a folder. You can also pass client Tag overrides with spaces by using a '+' icon as an escape character.
This happens automatically if you are configuring overrides in the Client Launcher.

The following example shows how to override client Tags on a single application.

In the , create a client Tag inside a folder and bind it to something that can be displayed on a window. This example has Designer
two Tags: one Tag is directly under Vision Client Tags folder, and another one under a nested folder. Each tag is bound to a TagA
different Label components.

Open the . On your application, click the three vertical dots to open the screen.Vision Client Launcher Manage

https://legacy-docs.inductiveautomation.com/display/DOC80/Understanding+Tags
https://legacy-docs.inductiveautomation.com/display/DOC80/Understanding+Transaction+Groups
https://legacy-docs.inductiveautomation.com/display/DOC80/Understanding+Transaction+Groups
https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.7

2.

3.

4.
5.

From the Client Tag Overrides section, click the icon on the right side of the table to add a Tag override. In this example, let's '+'
configure two client Tag overrides. The first TagA is for a client Tag directly under Vision Client Tags. Enter the andTag Name Tag

The second override is for the nested TagA Tag. In the Tag Name, the folder name must precede the Tag name followed by Value.
a forward slash. Notice how the value has a that denotes a space. The launcher will automatically enter the space for you in the '+'
client launcher when you save your updates. Enter the (including the folder name) andTag Name Tag Value.

Click the button on the top right corner of the screen. This will take you back to your screen. Save Changes My Applications
From the top menubar, click on to launch your application in your client. You will see Tools > Launch Project > Launch Windowed
the new values that you overrided in the Client Launcher.

System Client Tags
System Tags provide status about the Ignition system, such as memory usage, performance metrics, and so on. Client-scoped System Tags
provide status information about the Vision Client's system. Every individual Vision client is going to have its own values like IP address,
hosting name, username, and more. You cannot modify Client System Tags. For more information, see .System Tags

https://legacy-docs.inductiveautomation.com/display/DOC80/System+Tags

Related Topics ...

 Vision Client Launcher

Vision Project Properties

There are a number of properties you can set for your Vision projects within the Designer. For
example, there are properties for setting the touchscreen mode, customizing a client's auto-login,
or configuring how the clients receive updates, and more.

To access the Project Properties, in the , click on tab on the menu bar. Then Designer Project
select .Project Properties

Alternatively, you can click on the icon at the top of the Project Browser.Project Properties

On this page

...

Vision Design
Properties
Vision General
Properties
Vision Launching
Properties
Vision Login
Properties
Vision Permissions
Properties
Vision Timing
Properties
Vision User
Interface Properties

Project properties span several functional areas each containing settings applicable to that area. Scroll down to the Vision section.

When properties in a section have been updated but not saved yet, the section heading will change to italicized text. In the following
example, changes have been made in the the Vision General, Permissions, and User Interface properties but they have not been saved or
applied yet.

Vision Design Properties
This section of properties apply to the Vision Client in general.

Window & Template Committing

Property Description

Commit on Close Prompt - Prompt whether the user wants to commit changes when closing a window or template.
 - Always commit changes when closing a window .Always or template

Template Auto Commit On - Always commit changes when switching to a different window or template.
- Do not automatically commit changes when Off switching to a different window or template.

Component Manipulation

Constrain to Parent
Container Bounds

Disabling the constraint on parent bounds allows you to position outside of their parents bounds, components
which can be helpful in advanced layouts.

Nudge Distance The number in this box is the distance (in pixels) that a nudge moves (when using the arrow keys) or resizes a
component.

Alt-Nudge Distance The number in this box is the distance (in pixels) that an alt-nudge moves (when using the arrow keys plus the
Alt key) or resizes a component.

Default Component Layout

Layout Mode Relative - All newly created will be configured with a Relative layout, further configured by the components Rel
 .ative Layout Options property

 - All newly created will be configured with an Anchored layout, further configured by the Anchored components
.Anchored Layout Options property

Relative Layout Options When the is set to Relative, these options determine the layout options of new Layout Mode property compone
. For more information, refer to .nts Component Layout

Anchored Layout
Options

When the is set to , these options determine the layout options of new Layout Mode property Anchored compo
. For more information, refer to .nents Component Layout

Default Color Mapping The initial color mapping when configuring a new binding.number-to-color

Vision General Properties

General

Property Description

Timezon
e
Behavior

The Vision can emulate any timezone. By default, it will appear to be in the same timezone as the . Client TimezoneGateway
This has the effect of all Clients behaving the same, regardless of the timezone setting on the 's host operating system. Client
Depending on your project's requirements, this may not be optimal. You can have the use the host's timezone by Client
choosing the option, or you may specify any explicit timezone for all Clients to emulate. Timezone Client

Notify /
Push

Updates sent to the Client when a designer Saves the projects can either Notify the user by showing an update banner at the
top of the Client, or Push the the changes without warning the users. See .Client Update Modes

Touch Screen

Touch
Screen
Mode
Enabled

All Clients can operate in touch-screen mode. When enabled, clicking on editable numeric and text entry fields (i.e., Text
Fields, Numeric Text Fields, etc.) will pop up on-screen keyboards that can be used for data entry. You can optionally set the
width of any scrollbars (number of pixels wide/tall).

Touch
Screen
Mode
Active

Configures the Clients to start up with the touch-screen mode active.
More details can be found on the page.Using Touch Screen Mode

https://legacy-docs.inductiveautomation.com/display/DOC80/Working+with+Vision+Components#WorkingwithVisionComponents-ComponentLayout
https://legacy-docs.inductiveautomation.com/display/DOC80/Working+with+Vision+Components#WorkingwithVisionComponents-ComponentLayout

on
Startup

Data

Disable
HistTag

ory
Data
Cache

The Clients normally maintain a cache of data retrieved from Tags History, improving repeat operations on graphs and tables.
When this option is disabled, no data is cached, and the full queries execute against the each time data is required.Gateway

Vision Launching Properties
These properties affect the Vision Client's launching process.

Gateway Launch Page

Property Description

Default
Launch
Mode

Determines the mode for a Client launched from the button that appears next to the project in the Client Launcher. Launch
Available modes are Windowed or Full Screen.

Window
ed
Button

Each launch mode can also be enabled individually, which allows that mode to appear in the Dropdown list next to the Launch
button on the Gateway page.Home

/Full
Screen
Button

Hide
From
Launcher

The following feature is new in Ignition version 8.0.7
 to check out the other new featuresClick here

This option hides the project from the Client Launcher and prevents the project from being selected in the Vision Client
Launcher.

Launch Icon

Launch
Icon

The image specified here is used to represent the project on the launch page and desktop shortcut. This needs to be a path to
an image that has been . Use the browse button to choose or upload a new image.uploaded to the Gateway

Windowed Properties

Vendor This property is displayed as the project is launching through Web Start, as well as in the JWS application manager. Java

Homepa
ge

A URL that is displayed in the JWS application manager.

Width The width of the window when launched in Windowed mode. Client

Height The height of the window when launched in Windowed mode. Client

Screen
Index

The number here is the index of the screen to use for Full Screen mode, it starts at 0. This property is not supported on all
operating systems.

Start
Maximiz
ed

If the box is selected, when the is launched in Windowed mode, it starts maximized. Note that this is not the same thing Client
as Full Screen mode, which is only available when the is launched in Full Screen mode. In Full Screen mode, the width, Client
height, and start maximized properties have no effect. When launched in Full Screen mode, the user is given an button on Exit
the login screen by default. For terminals where the application should not be exited, this button can be removed by checking
the box. Hide Exit Button

Start
Centered

If the box is selected, when the is launched in Windowed mode, it starts centered.This property is ignored if Client Start
is enabled.Maximized

Hide
Exit
Button

If the box is selected, when the is launched in Full Screen mode, the exit button is hidden to prevent the application from Client
closing.

Client Memory

Initial Governs how the Client use RAM resources on its host machine. The initial memory setting is how much memory the will Client
require on startup. While this is typically left alone, boosting it a bit can improve performance somewhat.

Maximum Governs how the Client use RAM resources on its host machine. The maximum memory setting sets a cap on how much
memory the VM is allowed to use. When you launch a on a machine with plenty of RAM, you'll also need to boost Java Client
this setting to allow the to use more RAM.Client

Vision Login Properties
These properties affect how the Vision Client's login process behaves and appears.

Customizing Client
Login Screen

Watch the Video

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.7
https://legacy-docs.inductiveautomation.com/display/DOC80/Images+and+SVGs+in+Vision#ImagesandSVGsinVision-UsingImages
https://www.inductiveuniversity.com/video/customizing-client-login-screen/8.0

Login Screen

Property Description

Welcome
Message

The message that appears in the upper-left corner of the Login screen. If left blank, no message is displayed. (HTML
formatting is allowed).

Welcome
Image

The image that appears in the upper-left corner of the Login screen. If left blank, uses a default image.

The following feature is new in Ignition version 8.0.3
 to check out the other new featuresClick here

Images are resized/forced to fit into a square format. If you use a more rectangular image, the scaling on the image will
automatically be adjusted.

Username
Text

The text that appears next to the username field.

Password

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.3

Text The text that appears next to the password field.

Login
Button Text

The text that appears on the Login button.

Show
Locale
Selector

Determines if the Locale Selector should appear on the Login screen. This property interacts with Ignition's Localization
system.

Automatic - Show the selector if more than a single Languages exists in the project.
Show - Always show the selector, regardless of how many Languages exist.
Hide - Never show the selector.

Auto Login

Enable
Auto-Login

By enabling auto-login, you can have the launched skip the login process. The will log in behind the scenes Client Client
using the supplied here. If they fail, the login screen will be presented. credentials

Property Description

Username User name of the user to automatically log in when Client is launched.

Password Password of the user to automatically log in when Client is launched.

Password (repeat) Password of the user to automatically log in when Client is launched.

See also .Setting Up Auto Login

SSO Login

Enable
SSO Login

Enable Single Sign-On for the project. The Project's default Authentication Profile must use , and SSO must Active Directory
be enabled in the Profile. See for more details. AuthenticationActive Directory

Vision Permissions Properties
These properties allow you to limit the 's ability to perform certain tasks. The tasks are Client
grouped by category. Access can be configured statically for all users, or require specific roles.

Client Permissions

Watch the Video

Permissions

Property Description

Enable? Determines if the has access to this category. If unselected, the category will be disabled in the for all users. If Client Client
selected, the text field will also be used to determine if the has access.Required Roles Client Client

Require
d Client
Roles

A of and/or that have access to the category while the comma separated list Managing Users and Roles ZonesSecurity Enab
 checkbox is selected. While these fields have , the on the keyboard may be pressed to make a list led focus down arrow key

of available roles appear. There are several ways to use roles and zones in this field, and they can be used together in the
comma separated list.

https://legacy-docs.inductiveautomation.com/display/DOC80/Localization+and+Languages
https://legacy-docs.inductiveautomation.com/display/DOC80/Active+Directory+Authentication
https://inductiveuniversity.com/video/client-permissions/8.0
https://legacy-docs.inductiveautomation.com/display/DOC80/Managing+Users+and+Roles
https://legacy-docs.inductiveautomation.com/display/DOC80/Security+Zones

Blank Field - anyone can use this, regardless of their roles.
Role name - users with this role can use this regardless of their zone.
roleName@zoneName - users must have this role AND be logged in from this zone.

Categor
y
Descripti
ons

The following is a list of the initial categories. Note that the categories you see in your Designer are dependent on which
modules are installed on the Gateway. Additionally, modules can add to this list. third-party

Category Description

Alarm
Management

Allows the Client to cancel, shelve, and acknowledge alarms. Applies to both local and remote Alarms.

Datasource
Management

Allows the Client to modify Gateway datasource connections.

Device
Management

Allows the Client to modify device connections.

DNP3
Management

Allows the Client to freeze DNP3 operations via scripting.

Legacy
Database
Access

Allows Clients to run queries directly against the database. This doesn't effect named queries.

OPC Server
Management

Allows the Client to modify OPC server connections.

SFC
Management

Allows the Client to start or stop Sequential Function Charts.

Tag Editing Allows the Client to add, edit, or delete Tags through scripting.

Translation
Management

Allows the Client to modify translations in the localization system.

User
Management

Allows the Client to modify schedules, holidays, and users through scripting or components.

The image below contains the following configuration: is only available if the logged in users have the Alarm Management
"Administrator" or the "Operator" role (regardless of their current zone), has been disabled for all Datasource Management
users, and is available if the logged in user has the "Administrator" role and the is in the ZDevice Management Client Security
one named "Default".

When creating a new project, all of these settings will be disabled by default.

With this setting off, all Query Bindings will cause a red overlay on the component in the Client but
not the Designer.

Running queries directly in the Client is inherently insecure, which is why this setting exists. It is
recommended to use Named Queries instead of query bindings and leave this setting off.

Vision Timing Properties
These properties affect the Vision Client polling rate and timeout settings.

Setting Project
Polling Base Rate

Watch the Video

Timing

Property Description

Polling
Base
Rate

The base rate, in milliseconds, for all polling bindings.

Connect
Timeout

The maximum amount of time to wait for connections to the to be established. Specified in milliseconds.Gateway

Read
Timeout

The maximum amount of time for socket connection to the to remain open. Specified in milliseconds.Gateway

OPC
Browse

Maximum amount of time, in milliseconds, to wait for the response to a request. (default: 120,000)

https://www.inductiveuniversity.com/video/setting-project-polling-base-rate/8.0

Timeout

Connecti
on
Concurr
ency

By default, Clients are not limited by the number of concurrent connections to the . These connections are used to Gateway
send Tag writes, return database results, as well as any other action that requires information to be passed between the Gatew

 and the . Depending on what is running in the , your network's bandwidth could be hindered. Enabling this ay Client Client
property will limit the amount of concurrent connections the can maintain. Note that this may negatively impact perfClient Client
ormance, but is usually preferable on busy networks.

Vision User Interface Properties
These properties affect how the Vision Client appears and behaves while it is running.

Setting Client
Minimum Size

Watch the Video

User Interface

Property Description

MInimu
m Size

Typically, a Vision is designed to run on multiple different resolution and sizes of monitors. The various component Client
layout features help design elastic screens, but sometimes you need to set a lower bound as to how small you'll allow the Client
's usable area to shrink. This is what the Minimum Size settings are for. You can see these settings visually represented in the

 as lines on the Vision .Designer workspace when the Root Container is smaller than the configured Minimum Size.

Whenever the usable space shrinks smaller than these bounds, scrollbars will appear, capping the and to these Width Height
minimums. This defaults to 800 x 600. In the image below, the project was set to a minimum size of 400 x 300. Since the
window is smaller, the outline is visible.

https://www.inductiveuniversity.com/video/setting-client-minimum-size/8.0

Client
Backgro
und
Color

This option allows you to specify the color of the Vision which will be visible when not obscured by .workspace windows

Client
Menu

These options change the appearance of the Client Menu:

Client Menu

Property Description

Menu
Font

Changes the font type, font style, and font size of the Menu Bar.

Hide
Menu
Bar

Hides the entire Menu Bar in the Client. Usually enabled in situations where users should not be able to close
the client. Changes to this setting are applied on client startup, meaning clients will need to be relaunched after
changing this setting.

Hide
Window
s Menu

Hides the automatically-generated "Windows" menu that lets users switch between open windows. Enabled
when users should not be able to close windows in the Client.

See also Menubar Scripts.

Touch
Sceen
Keyboar
d Width

Determines how wide the Touch Screen Keyboard should appear in the Client. Percentage of the client window the touch
screen keyboard displays.

Docking Docked are locked to the edges of the and fill all the space on that edge. Docking options are:windows Client

Docking

Property Description

Axis
Precede
nce

Defines which axis takes precedence for docked windows. (i.e., East/ West or North/South). When windows are
docked on adjacent sides, this property determines which sides should take precedence. When set to "East
/West", windows docked to the East or West sides will expand vertically from the top to the bottom of the Client,
and will push any North or South docked windows out of the way.

Prevent
Popup
/Docking
Overlap

By default, popup windows are not allowed to overlap any docked window. Disabling this property will allow
Popup windows to be placed on top of docked windows in the client.

Infinite

https://legacy-docs.inductiveautomation.com/display/DOC80/Client+Event+Scripts#ClientEventScripts-MenubarScripts

Desktop If true, the desktop area will be expanded if floating windows are dragged out of frames. If false, popups are
prevented from being dragged beyond the bounds of a window so they don't get distorted.

Related Topics ...

Client Update Modes
Using Touch Screen Mode
Working with Components
Docked Windows - Axis Precedence

In This Section ...

https://legacy-docs.inductiveautomation.com/display/DOC80/Window+Types#WindowTypes-AxisPrecedenceandDockIndex

1.

2.

3.

Client Update Modes

Notify Versus Push
When a Client is launched, the most recent version of the project is used. If you make changes to
the project and save the changes (by doing a) while a Client is open, the Client is File > Save
notified about the updates. The Clients can receive the updates in two different modes: or Notify P

 mode.ush

Notify
This is the default mode to automatically operators when project updates are notify
available. In this mode, every time you update a project in the Designer and save the
changes, Clients will display an orange information bar at the top of their display. This
orange bar notifies the operator that an update is available. By clicking on the notification
banner, the new project modifications are downloaded and applied.

Push
When you save your changes in the Designer, this mode automatically pushes all project
changes and updates to all running clients with no operator interaction, that is, the new
version is downloaded and applied automatically. This is often desirable when a Client is
running in a situation where keyword and mouse access is inconvenient, such as in a
large overhead display.

On this page

...

Notify Versus Push
Setting Client
Update Modes

About Client
Updates

Watch the Video

Setting Client Update Modes

This example shows how to change the Client Update Mode.

In the Project Browser of the Designer, select from the top menubar. The window will Project > Properties Project Properties
open.

Under the folder, select , set either or as your Client Update Mode. The default is set to Notify.Vision General Notify Push

Click OK.

This property (and many other project properties) are only read when a client is launched. When you change from Notify to Push
Mode, client updates will not get pushed when you save, clients need to be re-launched to start using the Push Update Mode.

https://www.inductiveuniversity.com/video/about-client-updates/8.0

3.

Now, in the Client (with Update Mode set to the operator will have to click the banner to update the Client. Notify),

Then the operator clicks on the confirmation message. Update

Now the client version is updated with the most recent version of the application.

Related Topics ...

Using Touch Screen Mode
Vision Project Properties

1.

2.
3.
4.
5.

6.

Setting Up Auto Login

Client Auto Login
Clients can log in automatically when launched, once you specify the settings in the Auto Login Cli

 section of the window. This is typically used in situations where the ent/Login Project Properties
client should login with a low access user, such as a 'guest' account.

Set the Clients to Automatically Login

In this example, we will set the project properties to allow Ignition clients to automatically login.

In Designer, go to .Project > Properties
The window is displayed.Project Properties
Scroll down to . Vision > Login
Click the checkbox.Enable Auto-Login
Enter a Username and Password.
Click OK.

Select the to save your changes to the Gateway and your project.File > Save All

When in a client that has auto login setup, if the user accidentally logs out there is a button on the
login screen to allow the user to enter in the auto login credentials. That way there is no need for
them to know any login credentials.

On this page

...

Client Auto Login
Set the Clients to
Automatically
Login

Setting up Client
Auto Login

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC80/Project+Properties
https://www.inductiveuniversity.com/video/setting-up-client-auto-login/8.0

Related Topics ...

Gateway Backup and Restore

https://legacy-docs.inductiveautomation.com/display/DOC80/Gateway+Backup+and+Restore

1.

2.

3.

Using Touch Screen Mode

It is very common to deploy Ignition Vision projects on touchscreen computers, such as industrial
panel-PCs acting as Human Machine Interface (HMI) or Operator Interface Terminal (OIT). In
situations where the PC does not have a keyboard attached, Touch Screen Mode can be used to
assist with user-input. For this reason, all of the Input components in Vision are touchscreen-
enabled.

Under normal circumstances, you don't have to do anything special other than enable Touch
Screen Mode on your project. This will allow the operator to activate Touch Screen Mode when
they log in. You can also enable Touch Screen Mode via scripting.

Simply click in the Username field and the Touch Screen keyboard will appear. Enter your
Username and click enter, do the same for your Password, and then click Login.

Touch Screen-enabled components all have an expert level property called Input Touch Screen
. This property has three settings:Mode

Single-Click: The keyboard will appear on a single click
Double-Click: The keyboard will only appear after a double-click
None: Disable touch screen support on the component. The component will no longer
invoke the touch screen keyboard.

On this page

...

Enabling Touch
Screen Mode
Invoke the Touch
Screen Keyboard
with Scripting
To Change the Size
of the Touch Screen
Keyboard

Using Touchscreen
Mode

Watch the Video

Enabling Touch Screen Mode
Touch Screen support is built into Ignition. Turn it on through the or scripting in the Designer.Project Properties

From the Project Browser, click onthe Project Properties icon, or from the menubar go to . Project > Project Properties
The window is displayed. Project Properties

Scroll down to page, to see the options.Vision > General Touch Screen
Touch Screen Mode Enabled: By default, this is enabled, which means an operator can activate the mode on the startup
screen. All Clients can operate in touch screen mode. When Touch Screen mode is enabled, clicking on numeric and
text entry boxes will pop up on-screen keyboards that can be used for data entry. You can optionally set the width of any
scrollbars (number of pixels wide/tall)
Touch Screen Mode Active on Startup: This option sets the Clients to start up with the touch-screen mode active.

Change the settings as desired then click .OK

Comm Read/Write

 Make sure is enabled in Project Properties of the Designer.Comm Read/Write

https://www.inductiveuniversity.com/video/using-touchscreen-mode/8.0
https://legacy-docs.inductiveautomation.com/display/DOC80/Project+Properties
https://legacy-docs.inductiveautomation.com/display/DOC80/General+Designer+Interface#GeneralDesignerInterface-ProjectMenu

3.

These settings are helpful for mixed-use projects, that is, those that are launched on both touch screen devices and traditional
computers and laptops. Once Touch Screen Mode is enabled through Project Properties, the Touch Screen icon will appear on top
right corner of the project login screen. Click in any of the login fields to bring up the Touch Screen keyboard.

Invoke the Touch Screen Keyboard with Scripting
To handle touch screen logic via scripting, the general pattern is to respond to a mouse event, popup up a keyboard, and then set the
component's value to whatever was entered in the keyboard. For example, for a text field, you would write a script like this:

1.
2.

3.

if system.gui.isTouchscreenModeEnabled():
 currentText = event.source.text
 newText = system.gui.showTouchscreenKeyboard(currentText)

See also: system.gui.setTouchscreenModeEnabled

To Change the Size of the Touch Screen Keyboard
You can control the size of the Touch Screen keyboard that is displayed in a Vision Client.

In the Designer, go to . Project Properties > Vision > User Interface
Change the percentage for the Touch Screen Keyboard Width property to anything you want.

When you launch a Vision Client, the Touch Screen keyboard will be displayed in the default percentage of 75%. After you're logged
into the client, the Touch Screen keyboard will be set at the value you entered into the Touch Screen Keyboard Width property field.

https://legacy-docs.inductiveautomation.com/display/DOC80/system.gui.setTouchscreenModeEnabled

3.

Alphanumeric Keyboard

The following feature is new in Ignition version 8.0.4
 to check out the other new featuresClick here

The Touch Screen Keyboard Width setting controls both the alphanumeric keyboard and the numeric keypad.

Numeric Keypad

Related Topics ...

Setting Up Auto Login

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.4

Common Tasks in Vision

This section contains examples for items we've identified as "common" tasks: undertakings that
many users are looking to utilize when first starting out with a specific module or feature in Ignition
. Additionally, this section aims to demystify some of the more complex or abstract tasks that our
users may encounter.

The examples in this section are self-contained explanations that may touch upon many other
areas of . While they are typically focused on a single goal or end result, they can easily Ignition
be expanded or modified after the fact. In essence, they serve as a great starting point for users
new to , as well as experienced users that need to get acquainted with a new or unfamiliar Ignition
feature.

Below is a list of common tasks related to this section of the manual.

Component Animation
Creating animation within a Vision project. The page walks through the Component Animation
different ways to animate graphics on a window. The different methods vary in complexity and
offer different solutions for different needs.

On this page

...

Component
Animation
Custom Input
Template
Client Tags for
Indirection
High Performance
HMI Techniques
Open Dynamic
Windows on Startup
Tank Cutaways

Custom Input Template
Creating a simple template that can be used many times to create simple user input fields. The is relatively simple to Custom Input Template
put together, but can be a powerful tool that can quickly build out screens that are heavy on user input.

Client Tags for Indirection
Vision TagsClient can be used as a variable across all to indirectly point to a set of Tags, such as an area of the plant. For windows
example, setting up can enable the user to choose an area of the plant from a Dropdown List component, and Client Tags for Indirection
have Ignition display the correct windows for that area.

High Performance HMI Techniques
Using techniques that relay information more quickly than standard a P&ID display. help create simpler High Performance HMI Techniques
screens that have much less noise and useless "fluff" that takes up screen space. The suggestions and examples help guide better practices
to increase efficiency and performance across any industry.

Open Dynamic Windows on Startup
It can sometimes be necessary to , so that certain users see one set of windows while other users with Open Dynamic Windows on Startup
potentially different privileges sees a different set. While it is easy to set a window to , that same window will always open for open on startup
anybody that logs in to the project. By utilizing scripting with the , what windows get open can be customized Client Event Startup Script
based on any criteria.

Tank Cutaways
The in Symbol Factory may seem like just a random shape, but they can be used to remove parts of other SVG diagrams to Tank Cutaways
create a way to "look inside" the tank or other machine and view information like how much material is available.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Windows#VisionWindows-OpenonStartup

In This Section ...

Component Animation

Making Components Move
Animation can be a useful tool to help visualize what is happening at any given time. Animations
make it easy to tell if a machine is running, or a conveyor is moving with a quick glance at the
screen, and it can help highlight which components aren't currently in use. There are two main
ways of creating animation: actually moving all or part of a component, or cycling through a few
different static images of a component that give the illusion of moving. Each method has its
advantages. For example, making a dump truck move forward and backwards may be better
accomplished with actually moving the component. It would be fairly simple to make the whole
component move forward on its x coordinate, and then back the same amount. But, if the truck
was instead stationary, and just its bed were moving up and down to simulate the truck dumping
its cargo, it may be difficult to seamlessly move the component, since it would not just be moving
on one axis, but would require careful rotation and movement combined. In this instance, it would
be far easier to create a few static images of the truck with its bed in various states, and then cycle
through those images fairly quickly so it looks like it is moving. Let's go over both methods below.

Animation in Scripting
The best way of moving components around on the screen is using the scripting function system.

. This function can move and resize components from a Python script. It provides gui.transform
many options for moving and resizing components, all in one simple scripting function. This can be
called on a property change when a user enters a new value, or based on other conditions that
happen on the window.

On this page

...

Making
Components Move
Animation in
Scripting
Components that
Actually Move
Giving the Illusion of
Moving

Component
Animation

Watch the Video

Components that Actually Move
To actually move components around during runtime usually involves binding all or part of an image or SVG to the value property of a timer
or signal generator. The Enhanced components all contain an Angle property. Binding the Angle property of a spinning part Symbol Factory
of a motor can help us visualize when the motor is running or not.

When searching Symbol Factory, make sure to select the Enhanced radio button in the search window. The enhanced symbols
have groupings that enable you to more easily animate them.

https://legacy-docs.inductiveautomation.com/display/DOC79/system.gui.transform
https://legacy-docs.inductiveautomation.com/display/DOC79/system.gui.transform
https://www.inductiveuniversity.com/video/component-animation/8.0
https://legacy-docs.inductiveautomation.com/display/DOC80/Symbol+Factory

1.

1.

2.

Pick out a component that you would like to animate. For this example, we used the from Symbol Single Stage Compressor
Factory. You will also want to drag a component onto your window. Timer

In the Project Browser, click the Expand icon to expand the Single Stage Compressor component. You will notice that the whole
component is made up of many smaller pieces. We want to select the piece called Group_Impeller.

In the Property Editor, bind the property to the property of the .Group_Impeller's Angle Value Timer

2.

3.

4.

5.

We now need to modify the properties of the Timer to ensure a good rotation. Select the component, and set the (ms) Timer Delay
to , the to , and the to .200 Step By 10 Bound 360
Set the Timer's Running? property to .True

Put the Designer in and your Compressor symbol component will now animate. You can adjust the Delay (ms) to be Preview Mode
lower or higher to adjust the speed at which the component rotates.

Giving the Illusion of Moving
With this method, you can make components look like they are moving without actually moving anything. What we do here is duplicate the
component multiple times and modify each component to be a little different than the others, and then show and hide them in the correct
order to make it seem like they move.

1.

2.

3.
4.

5.

6.

The following example uses a Signal Generator component to drive the animation, but any incrementing value can be used, such as the
Value property on a Timer component, an accumulating value in a PLC, or the current time in seconds.

Pick out a component to animate. For this example, we chose the from the . Horizontal Conveyor with Perspective Symbol Factory
We also placed a signal generator symbol on the window.

Duplicate this component 10 times for a total of 11 conveyors on the window.

Select the first instance of the component then choose . Component > Ungroup
In the Project Browser, expand the Group_Conveyor_Belt. Select .Path 5

Move to the left and then move the same distance to the left. In this example, we moved them both an equal distance Path 5 Path 4
left so that the leftmost component is on the left edge of the conveyor.

Repeat this with the rest of the components, except move them slightly to the right of the previous instance. Notice how the gray
bars slowly move from left to right over all the components when viewed in sequence.

https://legacy-docs.inductiveautomation.com/display/DOC80/Symbol+Factory

6.

7.
8.

9.

10.

11.

12.

13.

Select each Conveyor image individually select . Component > Group
Next, select the first Conveyor from the Project Browser (the one that has the bars on the far left), and place an expression binding
on its property that looks like this:Visible

if({Root Container.Signal Generator.value} = 0, 1, 0)

Duplicated this across all of the conveyors, but increment the first number by each time. The last conveyor (the one that has the 1
bars on the far right) should have the following expression:

if({Root Container.Signal Generator.value} = 10, 1, 0)

Repeat across all of the conveyors, but increment the first number by each time. The last conveyor (the one that has the Step 8 1
bars on the far right) should have the following expression:

if({Root Container.Signal Generator.value} = 10, 1, 0)

Next, stack all of the conveyer images them all on top of each other exactly. This is easily done by selecting all of the conveyors,

going into the Alignment menu, then selecting icon and icon.Align Centers Horizontal Align Centers Vertical
Select the component. Set the to , the Period to , the Values/Period to , the Signal Generator Signal Type Ramp 1000 11 Upper

 to , and the to . Bound 11 Lower Bound 0
Set the property of the Signal Generator to and it will now cycle through showing all of the conveyors, which will Running? True
make it look like it is moving.
Save the project.

1.
2.

3.

4.

5.
6.

7.

8.

Custom Input Template

Sometimes you may need to have text fields in your project for the user to input data. Rather than
copying and pasting these text fields into each window, you can create a template that includes a
single label and text field. Parameters can then be passed in so that the label and text can be used
for different types of input. The template can then contain an expression to validate that there is
data in the text field. This template can be reused many times on multiple windows to allow users
to input data.

Custom Input Template Example
In this example, we'll create a template containing a Label and Text Field components. We'll add
two parameters to be passed into the components. We will also copy the expression in the code
block below to let the user know that there is data in the text field. Once you get the template
created, you can copy the template to a window and test it out.

In the Project Browser, right-click and select .Templates New Template
Right-click on and click to change its name it to something New Template Rename
meaningful such as .Text Entry
To add a parameter, right-click the checkered area and select Customizers > Custom

.Properties
In the window, add two by clicking the AddCustom Properties Template Parameters

 icon twice and entering the following:

1st Parameter
 Name: display
 Type: String
2nd Parameter
 Name: text
 Type: String

Click .OK
From the Component Palette, drag a and a to the checkered area of the Text Field Label
template, resizing so that the label and the text box occupy the majority of the space.

Select the component, go to the , and click on the iconLabel Property Editor Binding
 of the property. The Property Binding window is displayed.Text

On this page

...

Custom Input
Template Example

Custom Input
Template

Watch the Video

https://www.inductiveuniversity.com/video/custom-input-template/8.0

8.

9.

10.

11.

12.

13.
14.
15.

In the window, click on the binding type, choose the pProperty Binding Property display
roperty. Make sure the box is not selected, and click Don't worry if the Bidirectional OK.
label on the template disappears. It is simply displaying the value of the display custom
property, which is currently blank.

Now select the Text Field component, go to Property Editor, and click on the Binding

 icon of the Text property.
In the window, click on the binding type, choose the propProperty Binding Property text
erty. Make sure the box is selected, and click . Bidirectional OK

Next, make the background color of the Text Field change depending on whether the user
entered a text value or not. While the component is still selected, go to Text Field Propert

, and click on the binding icon of the property.y Editor Background
In the window, click on the binding type, and copy and Property Binding Expression
paste in the following expression.

Expression - Input Validation

// Inside the if statement is the len and the trim functions
that are available when doing expression bindings.
// The trim function will trim the blank spaces from the text
therefore validating that there is actual text rather than
spaces.
// The len function will count the length of the recently
trimmed text.
// The if statements asks the question: Is the length of the
trimmed text greater than zero?

if(len(trim({textBox.Text Field.text}))>0,color(255,255,255),
color(255,0,0))

Click .OK
Close the template, click on the top menubar, and click again.Save Save
To test it out, drag a few of the templates from to your Text Entry Project Browser
window. Notice that the text field is red because it is expecting some data.

15.

16.

17.

In the , go to the custom property and enter something like . Property Editor display Name
Do something similar for the other templates. Notice how the label gets filled in with the
data we entered.

Put the Designer into , and enter in some values into the text fields. Notice Preview Mode
that the background color changed to white, and the information that was entered is now
in the property that can be bidirectionally bound so that it writes to a Tag or used in a text
script.

1.

Client Tags for Indirection

Vision Client Tags can be used as a variable across all windows to indirectly point to a set of Tags,
such as an area of the plant. Suppose that a window has a Dropdown List component that allows
a user to select different areas of the plant. If the drop-down is bidirectionally bound to a Client
Tag's selected string value property, the user can change the drop-down's value, therefore
resulting in the throughout the project reflecting the change in the Client Tag. indirect binding

The Client Tag can be bound to a on a window's Root Container. This Custom custom property
property can be bound to the Client Tag. The components inside the window can have indirect
bindings on their properties that leverage the Custom property on the window. Therefore, the
components on the window will be dependent on the Client Tag. Client Tags are managed inside
the Client, therefore each Client will be independent of other Clients.

On this page

...

Client Tag
Indirection Example

Testing Your
Work

Using Client Tags
for Indirection

Watch the Video

Client Tag Indirection Example
In this example, we will setup Client Tags for indirection which can be shared between different windows in our project.

We need two windows and a way to navigate between them. If you don't already have a project that meets this criteria, create a new
project using the project template.Vision Tab Nav

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers#VisionComponentCustomizers-CustomProperties
https://www.inductiveuniversity.com/videos/using-client-tags-for-indirection/8.0/8.0

1.

2. Add a Client Tag. In the Tag Browser, right click on , then choose .Vision Client Tags New Tag > Client Tag

2.

3.

4.
5.

a.
b.

c.
d.

Name the Tag and set the to . Machine Number Value 1

Add a window to show data based on the Client Tag. Create a new window named .Machine Overview
Next, we'll add a Custom Property to the Root Container of the window.

In the Project Browser, select the for the Machine Overview window. Root Container
Right click on the desktop and choose Customizers > Custom Properties.

Click the icon. Add
Enter as the name, and make sure the Type is . Click to save the new custom property. MachineNumberRef Integer OK

5.

d.

6.

a.
b.
c.
d.

7.

a.
b.

Next we'll bind the custom property to the Client Tag. In the Project Browser, select the Root Container for the Machine Overview
window.

In the Vision Property Editor, click on the icon next to the custom property.Binding MachineNumberRef
Choose the binding type. Tag
Select the Vision Client Tag. Machine Number
Click to save the binding.OK

Drag a component onto the window. Next we'll add an Expression binding to show the page title.Label
In the Vision Property Editor, click on the icon next to the property.Binding Text
Choose the binding type. Enter the following expression: Expression

"Machine "+{Root Container.MachineNumberRef}+" Overview"

7.

b.

c.

8.
a.

b.
c.

d.
e.

Click to save the binding. OK

Next we'll set up an LED Display component for the value.
Drag an component onto the window.LED Display
Click on the icon next to the property. Binding Value
Select the binding type.Indirect Tag

Click on the icon. Navigate to a Tag you want to use. We used the tag from the simulator.Tag Sine1
Click to save the Tag path.OK

8.

e.

f.
g.

Next, click the icon. Insert Property Value
Choose the property from the root container. Click .MachineNumberRef OK

8.

g.

h.

i.
j.

9.

In the Indirect Tag Path field, delete the "1" before the {1}.

Click to save the binding.OK
Save your project.

Next we'll make a details screen so we can switch between the two. In the Project Browser, right click on the Machine Overview
window and select Duplicate.

9.

10.
11.

12.

13.

Rename the copy as "Machine Details."
On the Machine Details window, select the component. Label
Click on the icon next to the property. Change the word to ." Edit the Expression binding as Binding Text "Overview" "Details
follows:

"Machine "+{Root Container.MachineNumberRef}+" Details"

12.

13.
a.

b.

On the LED Display, update the Indirect Tag binding on the property to point to the Tag instead of the Sine Tags.Value Ramp
Select a tag from the Tag selector and click .Ramp OK

Click the Insert icon. Choose the property from the root container and click .Property Value MachineNumberRef OK

13.

b.

c.

14.
a.

In the Indirect Tag Path field, delete the "1" before the {1}. Click to save the binding.OK

Next we'll add the two new windows to the Navigation. Open the Navigation window.
Right click on the component and select .Tab Strip Tab Strip Customizer

14.
a.

b.

c.
d.

15.
a.

b.

c.

In the , click on the tab. Change the Window name and the display name to Tab Strip Customizer Empty "Machine
."Overview

Click the button. Change the Window name and the display name to " ."Add Tab Machine Details
Click to save the changes to the Tab Strip.OK

Add a way to change the Client Tag value in the Client. There are two ways to do this:
Drag a component onto the Navigation window, and then drag the Client Tag onto Numeric Text Field Machine Number
the component.Numeric Text Field
If your Header doesn't have a background component, you can just simply drag the directly onto the Machine Number Tag
window and select .Control > Numeric Text Field

15.

c.

16.

1.
2.
3.
4.

Save the project.

Testing Your Work

Remember that the point of a Client Tag is to have different values across multiple Clients, so there is no way to test it in the Designer. To
test the functionality of this example, do the following:

Open two Vision Clients.
In the first Client, change the Client Tag Value from "1" to "2" in the header.
Click between the Machine Overview and Machine Details screen. Notice that they are both showing the Tags for Machine 2.
Switch to the second Client. Notice that the Machine Overview and Machine Details screens still show the Tags for Machine 1.

High Performance HMI Techniques

About High Performance HMI Techniques
High performance HMI techniques and practices call for designs and displays which help the
viewer make the best decision in the shortest amount of time after interacting with the HMI.

High performance HMIs often look basic and simplistic. They typically use gray-scale colors rather
than the traditional graphics and bright colors for their displays. Conceptually, the High
Performance HMI operates under the idea of visually contrasting critical and non-critical states.
The power of this design philosophy is when something does go wrong, a high performance HMI
will quickly guide the user to the source of the problem.

Here is a comparison of a traditional HMI next to a high performance HMI.

On this page

...

About High
Performance HMI
Techniques

Traditional HMI
High
Performance HMI

Use of Color
Colors and Alarm
Indicators
Technical
Considerations
with Colors
Accommodating
Color Blind
Viewers

Alarm Indicator
Reducing
Ambiguity

Traditional HMI High Performance HMI

In Ignition, you create the high performance HMIs by using components such as , , and . moving analog indicators sparkline charts radar charts

Moving Analog Indicator Sparkline Chart Radar Chart

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Moving+Analog+Indicator
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Sparkline+Chart
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Radar+Chart

Use of Color
Colors are an important consideration when designing a high performance HMI. Gray-scale colors
are used instead of the traditional bright red, green, and blue colors.

The person that designs the HMI must understand the diverse audience that may view the HMI.
For example, an operator may look at a motor on a traditional HMI. If it the HMI has colored the
motor green, the operator may conclude that the motor is running. However, if a maintenance
technician looks at the same motor, he may conclude that the motor is not faulted. These are
logical conclusions. They reflect the respective interest of the person viewing the HMI where the
operator wants the motor to run and the maintenance technician wants it to be working.

In reality, the motor is simply "scheduled" to run, meaning when it runs depends on its control
mechanism. For example, the motor may run when there is product on the line or boxes on the
conveyor. In other words, the motor may be periodically starting and stopping automatically.

A high performance HMI can eliminate this confusion by introducing a color that signifies a state of
"scheduled." A common high performance HMI practice is to use a dark gray to signify a
"scheduled" state for equipment. This color should never compete with more alerting colors that
"pop" from the HMI resulting in the viewer's eye's being drawn to the portion of the HMI where the
problem may be occurring.

Use of Color

Watch the Video

Colors and Alarm Indicators

Color can play an important role in how an operator responds when problems do occur. High performance HMI design refrains from coloring
equipment when the equipment is in a state of fault. For example, some equipment may still run when faulted. Instead, an optimized solution
is to place an alarm indicator near the equipment in such a way that when the equipment is undergoing some fault, the alarm indicator
renders with the appropriate color and shape. The object and the consequential color should signify the most important alarm state occurring
for the equipment at that current time.

Technical Considerations with Colors

Some HMIs in industrial settings may temporarily lose their ability to render color because of various environmental factors. High
performance HMI design incorporates this possibility by encouraging the use of descriptive text with color. For example, motors of two
different colors may look the same on a color deficient HMI resulting in confusion for the viewer. Even worse, the viewer may misinterpret the
motor state and assume everything is fine. However, if each motor has a descriptive text such as "Motor 1 is Faulted" and "Motor 2 is
Running", the problem associated with a faulty HMI failing to display color is largely reduced by the HMI's high performance design.

Accommodating Color Blind Viewers

Common color combinations such as red and green and blue and purple cannot adequately be distinguished by those with color blindness.
High performance HMI design accommodates color blind uses by combining colors with descriptive text as well as incorporating alarm
indicators in unique shapes.

https://inductiveuniversity.com/video/use-of-color/8.0

Alarm Indicator
The high performance HMI design techniques make use of an object called the wAlarm Indicator
hich displays a colored shape when there is a problem. This works well with the high performance
HMIs as color is only used when there is a problem. The Alarm Indicator can contain descriptive
text in addition to the shape and color, and is usually placed near the component that is causing
the problem. You can import the Alarm Indicator, shown in the example below, from Ignition

.Exchange

The Alarm Indicator represents different levels of alarm with different shapes, color, and
descriptive text. For example, a motor that exists in an industrial setting is monitored by a high
performance HMI. There are two alarms on the motor. The first is a critical alarm associated with
the motor becoming seized, will display as a red rectangle with the letter 1. The second is a high
priority alarm associated with the motor when overheating, will display as a yellow triangle with the
number 2. An Alarm Indicator is placed near the motor, positioned in such a way to clearly show
motor that the indicator is referring to.

Given this scenario, a high performance HMI will show the Alarm Indicator as in the following
examples:

Alarm Indicator

Watch the Video

Example 1

The motor is critically faulted. This is the
highest priority.

Example 2

Motor is overheating resulting in a high
alarm.

Reducing Ambiguity

A high performance HMI design technique to reduce ambiguity incorporates a line from the Alarm Indicator to the object experiencing the
alarm. The following example shows how a simple dotted line can ensure that the viewer associates the correct Alarm Indicator with the
correct motor.

https://legacy-docs.inductiveautomation.com/display/DOC80/Ignition+Exchange
https://legacy-docs.inductiveautomation.com/display/DOC80/Ignition+Exchange
https://inductiveuniversity.com/video/alarm-indicator/8.0

Open Dynamic Windows on Startup

Sometimes a project needs to change its startup windows depending on who logged in, what
security roles they have, or what computer the Client is launched on. In these cases, rather than
setting a static startup window, you can write a Client Startup Script that uses the system.nav
 library to open a dynamic set of windows based on hostname, IP address, and user who logged in.

This means you will remove the Open on Startup option from some or all of your windows and use
a to determine which windows will be opened. Typically, you will set your Client Startup Script
navigation window to Open on Startup, but decide on a main window in the startup script. The
example below checks the users role before opening a window.

Code Snippet - Client Startup Role Check

Checks the users role and opens a main window depending on the role

Grabs a list of the users roles
roles = system.security.getRoles()

Checks if they have Administrator role
if 'Administrator' in roles:
 system.nav.openWindow('Administrator Screen')

Checks if they have Operator role
elif 'Operator' in roles:
 system.nav.openWindow('Operator Screen')

If they have neither Administrator or Operator
else:
 system.nav.openWindow('Welcome Screen')

Open Dynamic
Window(s) on
Startup

Watch the Video

https://inductiveuniversity.com/videos/open-dynamic-windows-on-startup/8.0

1.

2.

3.

4.

5.

6.

Tank Cutaway

The Symbol Factory images in the Basic > Tank Cutaways category work well when combined
with the other symbols, especially tanks from the Tank Category. Use the following technique to
make a dynamic cutaway tank display:

From your Symbol Factory SVG symbols, drag a and a symbol onto the Tank Cutaway
window. (We used and .)tank 3 jagged cut-away 2
Align the cutaway symbol on the tank where you'd like the cutaway to be placed.

Select the tank symbol , and then select the cutaway while holding to select first CTRL
both symbols.

Click the icon to use the cutaway symbol to make it appear that the area Difference
of the tank is cut away.

Place a component (drag from the Component Palette) on the area Level Indicator
removed by the cutaway.

With the Level Indicator selected, in the Property Editor, enter a value for the Value
property, or use a binding to put a value on the . Level Indicator

Tank Cutaway

Watch the Video

https://www.inductiveuniversity.com/video/tank-cutaway/8.0

6.

7.

8.

Choose to put the Level Indicator behind the tank.Alignment > Move Back

This is an optional step, but you can select the tank, including all the graphics, right click
and Group them so now they can move around as one unit. You can even make a
template out of it, so you can use it multiple times.

Related Topics ...

Symbol Factory

https://legacy-docs.inductiveautomation.com/display/DOC80/Symbol+Factory

Dropdown List Example

Dropdown lists are used when you want to select a single item from a list of options. The
Dropdown component is under the Input section of the component palette. Simply drag it on to
your window. The most important property of a Dropdown component is the Data property. It is a
Dataset that contains one or more rows of data. Each of the rows are different options that you

see on the component. Select the Dropdown component and click on the Dataset Viewer icon
for the property to manually add some options.Data

Data Property's Dataset Modes
There are three modes you can use the property’s dataset: a number/label pair, a single Data
label column, and a code/label pair. Which mode is used depends on what columns are in the Data
 property’s dataset, and will determine the values of the , anSelected Value Selected String Value
d properties. Any additional columns that are added to the dataset will not affect Selected Label
these properties.

On this page

...

Data Property's
Dataset Modes

Number/Label
Pair
Single Label
Column
Code/Label Pair

Setting Dropdown
Options
Displaying Multiple
Columns in a
Downdown List

Dropdown

Watch the Video

Number/Label Pair

In the Number/Label Pair mode, the first column of the Dataset is an integer (often an id) and the
second column is a string (often a label). The first column is the column which is invisible to Value
the user and is usually used in binding. The second column is the column and is visible to Label
the user in the dropdown list.

In this example, the dataset has two rows. Under the column, you see the integers andValue '1' '2'
 respectively. Under the column, you see the and options. Label 'Realtime' 'Historical'

https://inductiveuniversity.com/video/dropdown/8.0

1.

2.
3.

4.

In , select from the list of dropdown options. Notice, you can only see the options in Preview Mode
the column. Select the option. You can see under the Data property section, the Label 'Realtime'

 is which is the first (integer) column in the dataset and is not visible to Selected Value '1'
users. The and the are the same and show the Selected String Value Selected Label 'Realtime'
option which is the second (string) column in the dataset.

Single Label Column

The Single Label Column mode you can use is a string/string combination which are two columns that are both strings.

In the Dataset Editor, remove the Value column from our example by selecting a cell in that column and clicking on the Vertical

Delete icon.

Add another column by clicking on the Vertical Add icon.
Call the new column set the column position to and make it a Click . Both columns are now strings. 'Code,' '0' 'String.' OK

Under the column enter and Click 'Code' 'v1' 'v2.' OK.

4.

5.

1.

2.

In , click on and you can see the because the value is in the first column Preview Mode 'Historical' Selected String Value is 'v2'
and the Selected Label is'Historical.'

Code/Label Pair

The Code/Label Pair mode simply uses a one string column.

In the Dataset Editor, remove the column from our example by selecting a cell in Code

that column and clicking on the icon. Vertical Delete
You are going to see the same two options in the Dataset Viewer: ‘Realtime’ and ‘Histori

 cal.’

Because we added the 'Code' column in position '0,' the users will see the same two options in the dropdown
list: 'Realtime' and 'Historical.' If you see 'v1' and 'v2' instead, that means your 'Code' column is not the first column.

This only applies if there is exactly one column in this dataset.

2.

3.

1.
2.

In , select the option. You will see the same value in the Preview Mode ‘Realtime’ Select
 and properties since there is only the one column.ed Label Selected String Value

Setting Dropdown Options
Now, you can set these dropdown options manually or bind the Data property. In this example, you can take a Dropdown List on the window
and bind the Data property using a SQL query.

Select the Dropdown component, and click on the binding icon for the property. Data
Select the and enter a query that brings back an ID and Name from one of your tables in the database.SQL Query Binding Type

2.

3.
4.

1.
2.

a.
b.
c.

d.
e.

Click to see all the options that came back from the database. OK
In , select any one of these options and you can see the , , and Preview Mode Selected Value Selected String Value Selected

 as shown in the following example.Label

Displaying Multiple Columns in a Downdown
List
Another feature of the Dropdown List component is you can show more than one column to a user.

Drag another Dropdown component to your window.
Go to the and add some options manually. Instead of having only one or Dataset Viewer
two columns you can add as many as you want. The first column needs to be either an int

 or a . Any additional columns will show up in the dropdown.eger string
Open the Dataset View, under , enter andValue ‘1’ ‘2.’
Under , enter ‘ ’ and ‘ .’ Label Realtime Historical
Add another column and call it ‘ ’ in ' , and make it a and Col3 Position 2' string
click Add Column.
Under Col3, enter and .‘This is real’ ‘This is historical'
Click . OK

2.

e.

3.

4.

In the Property Editor, set the to to see both columns.Dropdown Display Mode ‘Table’

Now you can see and and select between those different rows. It’s a nice way Label Col3
to show more information in the Dropdown list. The , Selected Value Selected String

, and properties will behave the same as previous examples Value Selected Label
ignoring any columns beyond the second.

Multi-Monitor Clients

Multiple Desktops
In some situations, such as control rooms, or workstations with multiple monitors, it may be
preferable to have clients open on several monitors so that different windows are simultaneously in
view. Instead of opening several different clients, it is possible to open a single client, and spawn
multiple desktops through scripting. Desktops are additional workspaces where windows may be
opened. They are similar in functionality to a standalone Client in that they may be positioned and
resized independently of other desktops and Clients, but share a session ID with the initial Client
that launched the desktop.

Client Tags and Property Values

The value of Client Tags are shared between each desktop. This provides an easy method to
change values on one desktop from another without interacting with other Clients: simply write to a
Client Tag.

Desktops act as separate clients in regard to property values. For example, if a Text Field is
placed on a window, and multiple Desktops open that same window, values entered into one
Desktop will not overwrite the other Text Fields. If synchronization on these components is
preferred, then simply bind the property to a Tag.

Handles

When creating a new desktop, an optional handle may be assigned to the desktop. This acts as a
name, or reference to the desktop. If a handle is not provided, then the desktop may be referenced
by the screen index. Handles and indices are useful when trying to interact with specific desktops
from a Python script.

On this page

...

Multiple Desktops
Client Tags and
Property Values
Handles
Spotting the
Primary Desktop
Project Updates

Opening Another
Desktop

Navigating
Windows in
Desktops

Opening a Desktop
on Each Monitor

Multi-Monitor
Clients

Watch the Video

Spotting the Primary Desktop

When multiple desktops are open, it is important to know that only the primary desktop will have a menu bar. Additionally, the title bar on the
client will show the name of the project. Additional Desktops will instead show the handle or index of the Desktop by default. However, a
custom title may be used when the desktop is invoked.

Below we see two desktops. The highlighted desktop is displaying the title of the project. Because this is the primary desktop, a menu bar is
present. The other desktop was given a title of "Secondary Desktop". A menu bar is not present because this desktop is not the primary.

https://www.inductiveuniversity.com/video/multi-monitor-clients/8.0

Project Updates

When a project update is pushed to a Client, the Update banner will only appear on the Primary Desktop (assuming the of the Update Mode
project is set to). Updating the Primary Desktop will also push the changes to all other local desktop, so there is no need to update Notify
each desktop individually.

Opening Another Desktop
Another Desktop may be opened by calling :system.gui.openDesktop

#This will open a new desktop without any windows, and a name of "0"
system.gui.openDesktop()

However, without specifying which windows to open, the desktop will open without any opened windows. It is recommended to specify at
least one window, a title, and a handle for the new desktop. Assuming a window exists at the path "Main Windows/Main Window", the
following would open a new desktop, open the specified window, and specify a title and handle for the window.

#Create a list of window paths to open in the new desktop
windowToOpen = ["Main Window"]

#Defines a name for the Desktop, which will be used as both the the title and handle of the window.
name = "Secondary Desktop"

#Creates a new desktop. The desktop will open the windows listed above.
system.gui.openDesktop(windows=windowToOpen, title=name, handle=name)

Navigating Windows in Desktops

Functions for the and scripting modules will execute in the Desktop that originated the call: If the Primary Desktop calls gui nav system.nav.
, then the Primary Desktop will swap to a new window, but all other desktops will remain unaffected. However, it is possible for a swapTo

script on one Desktop to force a navigation or GUI change on another Desktop with the following functions:

system.gui.desktop
system.nav.desktop

to open a popup in your second desktop
if you are identifying desktops by number, they are zero indexed
system.nav.desktop(1).openWindow('Popups/Popup')

Additional scripting functions that interact with desktops exist in the and scripting modules. Please see the in the gui nav Scripting Functions
Appendix for more details.

Opening a Desktop on Each Monitor
Sometimes you may want your client to open a new desktop on each of your other monitors. It's pretty simple to get all of your monitors and
open a client on each, but then you will have two on your main monitor. The following code block shows you how to skip the primary monitor
and even how to open specific windows on each new desktop. This example assumes you have a ' ' window, and Main Window/Overview
that window has a custom string property in the root container named ' ' to pass values into. Bind a label component to that custom Display
property to easily check your script. This script is best placed in a to open a client for each monitor on startup.Client Startup Script

Get the screen information for all of your monitors.
screensDataset = system.gui.getScreens()

Open the first window of the project in the (current) primary monitor.
screenIndex = screensDataset[0][0]
monitorNum = screenIndex + 1
primaryScreenText = 'This is Monitor %d' %monitorNum
system.nav.swapTo('Main Windows/Overview', {'Display':primaryScreenText})

Step through all of the screen information, starting with index 1 instead of 0.
for screenDetails in screensDataset[1:]:
 # unpacks the tuple that is returned for each of the monitors present. Consists of screen index,
width, and height of the screen.

https://legacy-docs.inductiveautomation.com/display/DOC80/system.gui.openDesktop
https://legacy-docs.inductiveautomation.com/display/DOC80/system.nav.swapTo
https://legacy-docs.inductiveautomation.com/display/DOC80/system.nav.swapTo
https://legacy-docs.inductiveautomation.com/display/DOC80/system.gui.desktop
https://legacy-docs.inductiveautomation.com/display/DOC80/system.nav.desktop
https://legacy-docs.inductiveautomation.com/display/DOC80/Scripting+Functions

 screenIndex, screenWidth, screenHeight = screenDetails
 monitorNum = screenIndex + 1
 screenText = "This is Monitor %d" %monitorNum

 # Open an empty frame on the next monitor.
 # Assign a handle and apply the width/height for the monitor you are opening on
 handleName = "Monitor %d" %monitorNum
 system.gui.openDesktop(screen=screenIndex, handle=handleName, width=screenWidth,
height=screenHeight)

 # Open the Main Window on this new desktop and pass the parameters needed.
 system.nav.desktop(handleName).swapTo('Main Windows/Overview', {'Display':screenText})

Related Topics ...

system.gui.openDesktop

https://legacy-docs.inductiveautomation.com/display/DOC80/system.gui.openDesktop

	Vision
	Vision Client Launcher
	Vision Client Launcher Settings
	Deploying Vision Client Launchers
	Client Launchers Commands
	Local Client Fallback

	Vision Designer Interface
	Vision Windows
	Window Types
	Popup Windows
	Parameterized Popup Windows

	Navigation Strategies in Vision
	Navigation - Tab Strip
	Navigation - Two Tier
	Navigation - Tree View
	Navigation - Forward and Back Buttons
	Navigation - Drill Down
	Navigation - Menubar
	Navigation - Retargeting

	Working with Vision Components
	Creating Vision Components
	Vision Component Customizers
	Drawing Tools
	Shape Geometry
	Fill and Stroke

	Images and SVGs in Vision
	Comparison Charts
	HTML in Vision
	Localization in Vision

	Binding Types in Vision
	Property Bindings in Vision
	Tag Bindings in Vision
	Indirect Tag Bindings in Vision
	Tag History Bindings in Vision
	Expression Binding in Vision
	Named Query Bindings
	DB Browse Bindings
	SQL Query Bindings in Vision
	Cell Update Bindings
	Function Bindings
	Color Animation in Vision

	Vision Templates
	Creating a Template
	Template Indirection
	Using the Template Repeater
	Using the Template Canvas

	Security in Vision
	Login Security
	Component and Window Security
	Security in Scripting

	Scripting in Vision
	Script Builders in Vision
	Component Events
	Extension Functions
	Custom Component Methods
	Focus Manipulation
	Client Event Scripts
	Read a Cell from a Table

	Historian in Vision
	Using the Vision Easy Chart
	Easy Chart - Axes
	Easy Chart - Subplots
	Easy Chart - Pen Names and Groups
	Easy Chart - Pen Renderer
	Easy Chart - Digital Offset
	Easy Chart - Calculated Pens
	Ad Hoc Charting
	Indirect Easy Chart
	Charting - Right Click Menu
	Easy Chart - Database Pens

	Using the Classic Chart
	Other Vision Trending Charts

	Alarming in Vision
	Vision Alarm Status Table - Common Tasks
	Vision Alarm Status - General Filtering
	Vision Alarm Status - Filter on Associated Data
	Vision Alarm Status - Row Styles
	Vision Alarm Status - Marquee Mode
	Vision Alarm Status - Acknowledgement
	Vision Alarm Status - Shelving
	Vision Alarm Status - Tag History and Alarm History
	Using Alarm Status Tags in Vision

	Vision Alarm Journal Table - Common Tasks
	Vision Alarm Journal - General Filtering
	Vision Alarm Journal - Filter on Associated Data
	Vision Alarm Journal - Filter on Date Range
	Vision Alarm Journal - Focusing on Alarms
	Vision Alarm Journal - Row Styles
	Vision Alarm Journal - Searching

	Reporting in Vision
	Vision Client Tags
	Vision Project Properties
	Client Update Modes
	Setting Up Auto Login
	Using Touch Screen Mode

	Common Tasks in Vision
	Component Animation
	Custom Input Template
	Client Tags for Indirection
	High Performance HMI Techniques
	Open Dynamic Windows on Startup
	Tank Cutaway
	Dropdown List Example
	Multi-Monitor Clients

