
1. Tag Historian . 2
1.1 Tag History Gateway Settings . 5
1.2 Configuring Tag History . 12
1.3 Data Partitioning and Pruning . 18
1.4 Custom Tag History Aggregates . 21
1.5 Tag History Splitter . 24

2. SQL Bridge (Transaction Groups) . 28
2.1 Understanding Transaction Groups . 32

2.1.1 Types of Groups . 42
2.1.2 Item Types . 49
2.1.3 Hour and Event Meters . 57

2.2 Transaction Group Examples . 63
2.2.1 Block Group . 66
2.2.2 Recipe Group . 73
2.2.3 Update or Insert Group . 77
2.2.4 Trigger Options . 80
2.2.5 Transaction Group Update Modes . 84
2.2.6 OPC to OPC Transaction Group . 89

Tag Historian

Overview
Ignition has two main approaches to recording historical data:

Tag Historian Module: Individual or groups of tags can be configured to record history
based on scan class execution.
Transaction Groups: Groups of OPC items that are recorded on an execution cycle.
More information on Transaction Groups can be found in the SQL Bridge (Transaction

 section.Groups)

The Tag Historian Module provides power and flexibility for storing and accessing historical data.
When history is enabled on an Ignition Tag, data is stored automatically in your SQL database in
an efficient format. This data is then available for querying through scripting, historical bindings,
and reporting. Options for partitioning and deleting old data help to ensure the system stays
maintained with minimal extra work. Also, you can drag-and-drop Tags directly onto an Easy Chart
component to create trends or onto a table to display historical values. Tag Historian's robust
querying features provide you great flexibility in how you retrieve the stored data.

On this page

...

Overview
Historian Tables
Tag Historian
Querying
Vision Historian
Charts
Store and Forward
Other Methods of
Storing Historical
Data

Data storage

Historian Tables
With the or the you can quickly make custom tables that display historical data. You Vision Table component Perspective - Table component
can customize your table to bring back the most recent history, a specific date range, fixed sample size, and interval sample size, In Vision,
you can drag and drop history-enabled tags onto a table component to display historical values.

Tag Historian Querying

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Table
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Table

While the data is stored openly in the database, it does not lend itself well to direct querying. Ignition offers a range of built-in querying
options that are very powerful and flexible. In addition to simple on-change querying, the system can perform advanced functions such as
querying many Tags from multiple providers, calculating their quality, interpolating their values, and coordinating their timestamps to provide
fixed resolution returns. History Bindings allow you to pull History data that is stored in the into a component through a Tag Tag database
binding. The binding type, which is only available for Dataset type properties, runs a query against the Historian. Tag
For more information, see or .Tag History Bindings in Perspective Tag History Bindings in Vision

Querying can be performed on tables and charts through the Historical binding, Nested Queries, and through scripting. You can also query
Tags from the .Reporting Module

Vision Historian Charts
In the Vision module, you can use the to make powerful timeseries charts from Tag Historian data. Drag and drop Easy Chart component
history-enabled Tags onto a chart to create chart pens and data trends. Your charts and graphs can include subplots, axes, digital offsets,
and moving averages. You can quickly and easily turn your historical and realtime data into dynamic charts and graphs for your users. These
charts can be configured in the runtime to give users quick access to data in the time range they need.

To see all the chart options and features for the Vision module's Easy Chart, refer to the section on .Using the Vision Easy Chart

Store and Forward
The system provides a reliable way for Ignition to store historical data to the database. The Store and Forward system is Store and Forward
not exclusively part of Tag History, but systems such as the Tag Historian and Transaction Groups use it to prevent data loss and store data
efficiently using a record cache.

Other Methods of Storing Historical Data
The Module performs a variety of tasks to store data historically. In their simplest form, Transaction Groups SQL Bridge (Transaction Groups)
read values from the OPC addresses and store them into a SQL database. There are four types of Transaction Groups; Standard, Block,
Historical, and Stored Procedures.

Standard Group is the most flexible, and can also write database values to OPC addresses or synchronize data changes between
both the database and PLC. This allows you to create true realtime values tables in a database, and push values to a PLC.
Historical Group can quickly store data from the plant floor into any kind of SQL database.
Block Group transfers large amounts of data very efficiently.
Stored Procedures uses PLC data as inputs and outputs from your existing stored procedures.

Data storage

Historical Tag values pass through the system before they are stored in the database connection associated with the Store and Forward
historian provider. The data is stored according to its datatype directly to a table in the SQL database, with its quality and a millisecond
resolution timestamp. The data is only stored on-change, according to the value mode and deadband settings on each Tag, thereby avoiding
duplicate and unnecessary data storage. The storage of scan class execution statistics ensures the integrity of the data. While advanced
users may change the table according to their database to be more efficient (for example, using a compression engine), Ignition does not
perform binary compression or encrypt the data.

https://legacy-docs.inductiveautomation.com/display/DOC80/Tag+History+Bindings+in+Perspective
https://legacy-docs.inductiveautomation.com/display/DOC80/Tag+History+Bindings+in+Vision
https://legacy-docs.inductiveautomation.com/display/DOC80/Reporting
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Easy+Chart
https://legacy-docs.inductiveautomation.com/display/DOC80/Using+the+Vision+Easy+Chart
https://legacy-docs.inductiveautomation.com/display/DOC80/Store+and+Forward
https://legacy-docs.inductiveautomation.com/display/DOC80/Store+and+Forward

In This Section ...

Tag History Gateway Settings

Configuring Tag History Settings
Tag History storage is easy to set up quickly, but there are also some settings that can be adjusted
to allow for differences in database storage space and performance needs.

Table Partitioning

Ignition has the ability to automatically break up data into different tables of fixed duration. This
can help make data maintenance easier by preventing tables from becoming too large. Tables can
easily be deleted in order to prune old data, and the database is able to better optimize access to
frequently retrieved rows. The built-in partitioning feature can be used with any database.

It is important to note the difference between this feature and any partitioning options that the
database might provide. Most modern databases offer their own faculties for defining "partitions",
offering similar and greater benefits. While Ignition cannot use these features directly, advanced
users may choose to apply these features on top of what Ignition currently offers.

Data Compression

Ignition does not perform any binary compression on the data. That is, values are stored directly in
standard database tables. However, to reduce the number of values stored, Ignition offers two
different algorithms for pre-compressing the data (trimming unnecessary values). The two modes
correspond to the value mode property of the Tag. The value mode (or) dictates Discrete Analog
the type of value that the Tag represents, affects how the deadband is applied to values, and how
interpolation is performed when querying.

Discrete
The value uses a simple deadband and is only stored when a new value is + /- the
deadband value away from the previously stored value.

Analog
The deadband is used to form a corridor along the trajectory of the value. A new value is
only stored when it falls outside the previous corridor. When this occurs, the trajectory is
recalculated and a new corridor is formed.

Typically, Discrete is used for boolean or integers that represent state, and Analog is used for
floats or integers that change more often (which is why you want to perform compression).While
advanced users can change the table according to their database to be more efficient (for
example, using a compressed engine), Ignition does not perform binary compression or encrypt
the data in any way. See Deadband Style, in for more information about the Tag Properties Table
difference between Discrete and Analog values.

On this page

...

Configuring Tag
History Settings

Table Partitioning
Data
Compression

Datasource History
Providers

Editing
Datasource
History Providers
OPC-HDA
Provider

Internal History
Provider
Remote History
Provider
Tag History Splitter

Datasource History Providers
Datasource History Providers can not be created or deleted, but are instead tied to a database connection. They are automatically added
when connecting to a new database and removed after the database connection is removed. It comes pre-configured to partition every
month, but the provider can be edited to change its behavior.

There are two other major options to configure on the provider: pre-processed partitions and data pruning. With pre-processed partitions, the
data that is stored is summarized and then placed into another table in the database. While this takes up more space in the database, it can
improve query speed by reducing the amount of data points that must be loaded. Data pruning will automatically remove old data from your
system after it reaches an age that you set. It will only remove whole tables though. If each partitioned table represents a month and the
pruning system removes data that is three months old, it will wait until all the data in the oldest table is three months old before pruning it.

Editing Datasource History Providers

The following table lists the settings for the Datasource History Providers. To access these settings, go to the tab of the Gateway Config
Webpage and select . Then click the button for the provider you want to update. Tags > History Edit

https://legacy-docs.inductiveautomation.com/display/DOC80/Tag+Properties#TagProperties-TagPropertiesTable

Main

Provide
r Name

Name of the Tag History Provider. By default, this will match up with the name of the database connection.

Enabled If the check box is selected (enabled), the provider is turned on and accepts tag history data.

If disabled, the database is not shown in the list of history providers when configuring tag history from the Designer. Also, any
data logged to the provider, will error out and be quarantined by the store and forward engine, if possible.

Descrip
tion

A description of the provider.

Data Partitioning

Enable
Partitio
ning

To improve query performance, Tag Historian can partition the data based on time. Partitions will only be queried if the query
time range includes their data, thereby avoiding partitions that aren't applicable and reducing database processing. On the other
hand, the system must execute a query per partition. It is therefore best to avoid both very large partitions, and partitions that
are too small and fragment the data too much. When choosing a partition size, it is also useful to examine the most common
time span of queries.

Partitio
n
Length
and
Units

The size of each partition, the default is one month. Many systems whose primary goal is to show only recent data might use
smaller values, such as a week, or even a day.

Enable
d Pre-
proces
sed
Partitio
ns

Pre-processed partitions will use more space in the database, but can improve query speed by summarizing data, reducing the
amount that must be loaded.

Pre-
proces
sed
Windo
w Size
(secon
ds)

When pre-processing is turned on, the data will be summarized into blocks of this size.

Data Pruning

Enable
Data
Pruning

Partitions with data older than a specific age are deleted. The check box is not selected/enabled by default.

Prune
Age
and
Units

The maximum age of data. As mentioned, the data is deleted by the partition, and could therefore surpass this threshold by
quite a bit before all of the data in the partition is old enough to be dropped.

Advanced

Enable
Stale
Data
Detecti
on

If enabled, tracks scan class executions to determine the difference between unchanging values, and values that are flat due to
the system not running.

Stale
Detecti
on
Multipli
er

The multiplier for scan class rate used to determine when values are stale. If scan class execution is not recorded within this
amount of time, values will be considered bad on query.

Data pruning works by deleting old partitions. Therefore, data will only be removed when a partition has no data
younger than the prune age.

1.
2.
3.

4.

OPC-HDA Provider

Establishes a connection to an to read history data that may be stored there from a third party. Ignition can not write to this OPC-HDA Server
type of history provider.

The following feature is new in Ignition version 8.0.4
 to check out the other new featuresClick here

Internal History Provider
As of version 8.0.4, the Edge Historian, an internal history provider, is available on standard Ignition Gateways.

To set up an Edge history provider, do the steps the follow:

Go to the section of the Gateway Webpage and select . Config Tags > History
Click .Create New Historical Tag Provider
Select the radio button and click .Internal Historian Next

Fill in the properties in the table.

Main

Provider
Name

Name of the Edge History Provider.

Enabled If the check box is selected (enabled), the provider is turned on and accepts tag history data. Default is true.

Description A description of the provider.

Limits (Requires Tag Historian Module License)

Time
Limited
Enabled?

Whether or not time limit is enabled. Default is true.

This requires the to be installed.OPC COM

https://legacy-docs.inductiveautomation.com/display/DOC80/OPC+COM#OPCCOM-CreatinganOPC-HDAConnection
https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.4
https://legacy-docs.inductiveautomation.com/display/DOC80/OPC+COM

4.

5.

Time Limit
Size

Size of the time limit. Unit (seconds, weeks, etc) is set in the Time Limit UnitsDefault is 1.

Time Limit
Units?

Options are milliseconds, seconds, minutes, hours, days, weeks, months, or years. Default is WEEK.

Point Limit
Enabled?

Default is true.Whether or not point limit is enabled.

Point Limit
Size

Default is 10,000,000.Maximum number of data points the historian will store.

Sync Settings (Requires EAM Module Licensing)

Remote
Sync
Enabled

Allows you to turn on or off. History SynchronizationTag Default is false.

Remote
Gateway
Name

The Gateway to target for remote synchronization. Must have the module installed, and allow remote Tag Historian
storage. The 's will also need to be configured to allow remote storage.Ignition Gateway settingssecurity

Remote
Provider
Name

The remote history provider to sync data to.

Sync
Frequency

The frequency with which data will be sent to the remote gateway. This setting will be used in conjunction with the
sync schedule, if enabled. Default is 10.

Sync
Frequency
Units

The unit of time that will be used with the Sync Frequency. Options are milliseconds, seconds, minutes, hours,
Default is SEC.days, weeks, months, or years.

Max Batch
Size

The maximum number of data points that will be sent per batch to the remote Gateway. (Default is 10,000.)

Enable
Schedule

If enabled, the data will only be synchronized during the times specified by the pattern provided. Default is false.

Schedule
Pattern

A comma separated list of time ranges. Examples:

9:00-15:00
9pm-5am
20.30-04.30

After filling in the properties in the table as desired, click .Create New Historical Tag Provider

Once an Edge History Provider is set up, you can select it as the storage provider for your tags. For example, in the following image, and
Edge History Provider named "Internal Historian Test" is selected for storing history on a memory tag.

https://legacy-docs.inductiveautomation.com/display/DEP/Edge+Plugins#EdgePlugins-TagHistorySynchronizationProperties
https://legacy-docs.inductiveautomation.com/display/DOC80/Config#Config-Security

1.

2.

Remote History Provider
A Remote History Provider is a link to a historical provider on another gateway. Since it is grabbing
historical tag data from another provider, its only configuration is to ensure it is pointed at the
correct tag provider. You can't change any of the settings like partition length and prune age, but
would instead have to change those settings on the original history provider on the remote
gateway. By default, the remote history provider will fall under the and be Default Security Zone
read only.

To set up a Remote History Provider, do the steps that follow:

Go to the section of the Gateway Webpage and select . Config Tags > History

https://legacy-docs.inductiveautomation.com/display/DOC80/Security+Zones

2.

3.

4.
5.

Select the radio button.Remote History Provider

A list of known Gateways appears. If the Gateway is not currently available or displayed here, you can specify its name manually.

Select a Gateway and click .Next
Fill in the properties in the table.

Main

Provider
Name

Name of the Tag History Provider.

Enabled If the check box is selected (enabled), the provider is turned on and accepts tag history data. Default is true.

If disabled, the database is not shown in the list of history providers when configuring tag history from the Designer.
Also, any data logged to the provider, will error out and be quarantined by the store and forward engine, if possible.

Description A description of the provider.

Remote Gateway

Remote
Gateway
Name

The name of the remote Gateway.

5.

6.

Remote
History
Provider

The name of the provider on the remote Gateway. This does not have to match the provider name on the local
Gateway.

Storage

Allow
Storage

If false, the provider will only be used for querying historical data. If true, the provider will create a store and forward
pipeline for sending data to a remote gateway. Default is true.

Max
Bundle
Size

The maximum number of data points that can be sent per request. This value is used in conjunction with the store
and forward settings to dictate how much data is sent at once. 0=unlimited

After filling in the properties in the table, click Create New Historical Tag Provider.

Tag History Splitter
This provider combines two separate providers into a single new provider. When setting up a Tag to store history, selecting this provider will
write the same data to both providers that it has selected. The Tag History Splitter is useful for automatically creating a backup of your data,
or for reading history from two separate providers. Learn more about setting up the here. Tag History Splitter

Related Topics ...

Configuring Tag History

Configuring Tag History

Logging data is easy with . Once you have a database connection, all you do is set Tag Historian
the Tags to store history and Ignition takes care of the work. Ignition creates the tables, logs the
data, and maintains the database.

The historical Tag values pass through the store-and-forward engine before ultimately being
stored in the database connection associated with the historian provider. The data is stored
according to its datatype directly to a table in the SQL database, along with its quality and a
millisecond resolution time stamp. The data is only stored on-change, according to the value mode
and deadband settings on each Tag, thereby avoiding duplicate and unnecessary data storage.
The storage of scan class execution statistics ensures the integrity of the data.

Tag Configuration
The first step to storing historical data is to configure Tags to record values. This is done from the H

 section of the Tag Editor in the Designer. Select the property to turn on istory History Enabled
history. The properties include an Historical that will be used to check for new values. Tag group
Once values surpass the specified deadband, they are reported to the history system, which then
places them in the proper store and forward engine. Complete information on the History
properties (and all properties in the Tag Editor), can be found on the . Tag Properties Table

On this page

...

Tag Configuration
Sample Mode
Max and Min
Time Between
Samples
Deadband and
Analog
Compression
Seeded Values
Raw Data
Queries

Log Tag History
Data
Setting a UDT to
Log History Data

Configuring Tag
History

Watch the Video

Sample Mode

The Sample Mode setting determines how often a historical record should be collected.

On Change - Collects a record whenever the value on the changes.Tag
Periodic - Collects a record based on the and properties.Sample Rate Sample Rate Units

 GroupTag - Collects a record based on the Group specified under the .Tag Historical GroupTag property

Historical Tag Group

Historical Tag Group setting shows up with Sample Mode is set to Tag Group. Historical Tag Group setting determines how often to record
the value on the Tag. It uses the same that dictate how often your Tags should execute. Typically, the Historical Tag Group Tag Groups
should execute at the same rate as the Tag's Tag Group or slower: if a Tag's Tag Group is set to update at a 1,000ms rate, but the
Historical Tag Group is set to a Tag Group that runs at 500ms rate, then the Tag History system will be checking the Tag's value twice
between normal value changes, which is unnecessary.

Max and Min Time Between Samples

Normally Tag Historian only stores records when values change. By default, an "unlimited" amount of time can pass between records – if the
value doesn't change, a new row is never inserted in the database. By modifying these settings, it is possible to specify the maximum
number of scan class execution cycles that can occur before a value is recorded. Setting the value to 1, for example, would cause the Tag
value to be inserted each execution, even if it has not changed. Given the amount of extra data in the database that this would lead to, it's
important to only change this property when necessary.

https://legacy-docs.inductiveautomation.com/display/DOC80/Tag+Properties
https://legacy-docs.inductiveautomation.com/display/DOC80/Tag+Properties
https://legacy-docs.inductiveautomation.com/display/DOC80/Understanding+Transaction+Groups#UnderstandingTransactionGroups-CreatingaTransactionGroup
https://legacy-docs.inductiveautomation.com/display/DOC80/Tag+Properties#TagProperties-TagPropertiesTable
https://www.inductiveuniversity.com/videos/configuring-tag-history/8.0/8.0
https://legacy-docs.inductiveautomation.com/display/DOC80/Tag+Groups

Deadband and Analog Compression

The deadband value is used differently depending on whether the Tag is configured as a Discrete Tag or as an Analog Tag. Its use with
discrete values is straightforward, registering a change any time the value moves +/- the specified amount from the last stored value. With
Analog Tags, however, the deadband value is used more as a compression threshold, in an algorithm similar to that employed in other
Historian packages. It is a modified version of the 'Sliding Window' algorithm. Its behavior may not be immediately clear, so the
following images show the process in action, comparing a raw value trend to a "compressed" trend.

The Deadband Style property sets the: Auto, Analog, or Discrete.

Discrete

 - The deadband will be applied directly to the value. That is, a new value (V) will only be stored when: |V -V | >= Storage 1 1 0
Deadband.

 - The value will not be interpolated. The value returned will be the previous known value, up until the point at which Interpolation
the next value was recorded.

Analog

 - The deadband is used to form a corridor along the trajectory of the value. A new value is only stored when it falls outside Storage
the previous corridor. When this occurs, the trajectory is recalculated, and a new corridor formed. See below for an example.

 - The value will be interpolated linearly between the last value and the next value. For example, if the value at Time wInterpolation 0
as 1, and the value at Time is 3, selecting Time will return 2.2 1

Auto

The setting will automatically pick either Analog or Discrete, based on the data type of the Tag.
If the data type of the is set to a float or double, then Auto will use the Analog Style.Tag
If the data type of the Tag is any other type, then the Discrete style will be used.

In this image, an analog value has been stored. The graph has been zoomed in to show detail; the value changes often and ranges over time
+/- 10 points from around 1490.0. The compressed value was stored using a deadband value of 1.0, which is only about .06% of the raw
value, or about 5% of the effective range. The raw value was stored using the Analog Tag mode, but with a deadband of 0.0. While not
exactly pertinent to the explanation of the algorithm, it is worth noting that the data size of the compressed value, in this instance, was 54%
less than that of the raw value.

By looking at one specific sequence, we can see how the algorithm works:

1.
2.

3.

4.
5.

1.

2.

The sequence starts with the second stored compressed value on the chart.

A value is stored. No further action is taken.
The next value arrives. A line is made through the value, with the size of the specified deadband value. A line is projected from the
last stored value to the upper (line U1), and lower (line L1), bounds of this new value line. This establishes the initial corridor.
A new value arrives. The same procedure is taken, and new lines are created. However, only lines that are more restrictive than the
previous are used. In this case, that means only line U2, the new upper line.
Another value arrives, causing a new lower line (L3) to be used.
Finally, a value arrives that falls outside of our corridor. The last received value (value 4) is stored, and a the process is started again
from that point.

Seeded Values

Tag history queries sometimes use seeded values (occasionally called "Boundary Values"). When retrieving tag history data, the system will
also retrieve values just outside of the query range (before the start time, after the end time), and include them in the returned result set.
They're generally used for interpolation purposes. If the tag is storing history with an Analog Value Mode, or "Prevent Interpolation" is
enabled on the calling query, then these seeded values will not be included.

Pre-Query Seed Value

These are a single value taken from just before the start of the query range. The value and timestamp for this value is typically the first row in
the resulting query. Pre-query seed values are always included when not using a . raw data query

An exception to this rule is can be found with the system.tag.queryTagHistory function. Setting argument to includingBoundingValues
True and to -1 will return a raw data query with a pre-query seed value. returnSize

Post-Query Seed Value

These extra values are added to the end of the result set, representing the next data point after the query range. Post-query seed values are
only included when interpolation is requested/enabled for the query. Thus, values stored with a Discrete will not include post-deadband style
query seed values in the query results.

If the system knows the query is retrieving records for a tag on the local system, this value will be determined by the current tag's value
instead of retrieving the last recorded value in the database. The current tag's value is also used in cases where the time range extends to
the present time.

Raw Data Queries

In most cases queries returned by tag history will apply some form of aggregation. However it is possible to get a "raw data query", which is a
result set that contains only values that were recorded: meaning no aggregation or interpolation is applied to the results. A raw data query
can be obtained by using one of the following options:

Set the Sample Size on Vision Tag History bindings to On Change
Setting the parameter on or to -1returnSize system.tag.queryTagHistory system.tag.queryTagCalculations
Settting the Query Mode on Perspective Tag History bindings to AsStored

Log Tag History Data

Note: Dataset type tags are not supported by the Tag History system.

Do the following steps to log history data for your Tags:

In the , select one or more Tags. For example, we selected several Tags in the Sine folder.Tag Browser Sine

Right-click on the selected Tags, and then select .Edit Tag
The Tag Editor window is displayed. Here, you can edit the Tag and change the name, data type, scaling options, metadata,
permissions, history, and alarming.

https://legacy-docs.inductiveautomation.com/display/DOC81/system.tag.queryTagHistory
https://legacy-docs.inductiveautomation.com/display/DOC80/system.tag.queryTagHistory
https://legacy-docs.inductiveautomation.com/display/DOC80/system.tag.queryTagCalculations

2.

3.
4.
5.
6.

7.

Scroll down to the section of the Tag Editor. Select the check box. History History Enabled
Choose a database (for example, MySQL) from the dropdown.Storage Provider
Set the Sample Mode to .Tag Group
Set the Historical Tag Group to .Default Historical

Click . Now look in the Tag Browser. To the right of each Sine Tag that is storing history, a icon appears letting you OK History
know it is set up.

7.

1.

2.
3.

4.
5.
6.

7.

If you were to look in your database, you can see all the tables and data Ignition has created for you.

Setting a UDT to Log History Data
You can set a to log history data, then all the instances of that UDT will log data without UDT
having to edit the individual instances.

In the Tag browser, right-click on the UDT (for example, a Motor UDT) and select Edit

.Tag
The Tag Editor is displayed.
In Tag Editor, click a Tag (for example, the AMPS Tag). Scroll down to the section.History
Set the following properties in the Tag Editor:

: trueHistory Enabled
: MSSQLStorage Provider

: Tag GroupSample Mode
: Default HistoricalHistorical Tag Group

Click Apply.
Next, select the HOA Tag.
Set the following properties in the Tag Editor:
History Enabled: true
Storage Provider: MSSQL
Sample Mode: Tag Group
Historical Tag Group: Default Historical

Click to save the changes to the UDT. OK Now every motor instance automatically starts
logging data.

Add History to
Tags in UDT

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC80/UDT+Definitions
https://www.inductiveuniversity.com/videos/add-history-to-tags-in-udt/8.0/8.0

7.

1.
2.

3.
4.

Data Partitioning and Pruning

Tag Historian will partition data into separate tables according to the time setting so that one table
doesn't grow indefinitely, and then will delete old data to ensure the system is maintained for query
performance. By default, partitioning is enabled to improve query performance. Tag Historian
partitions and breaks up the data into separate tables based on time. Partitions will only be queried
if the query time range includes their data, thereby avoiding partitions that aren't applicable and
reducing database processing. On the other hand, the system must execute a query per partition.
It is therefore best to avoid both very large partitions, and partitions that are too small and
fragment the data too much. When choosing a partition size, it is also useful to examine the most

The data prune feature will delete partitions with data older than a common time span of queries.
specific age/time.

On this page

...

Partition and Prune
Data
History Table
Timestamps

Data Partitioning
and Pruning

Watch the Video

Partition and Prune Data
Go to the tab of the Gateway.Config
Select from the menu on the left.Tags > History
The page is displayed. You can see the Databases that have Enabled tag history on and their Status Historical Tag Providers
shows as Running.

Click on at the far right of the provider you want to update.edit
Once you've made changes, click at the bottom of the screen.Save Changes

The following table describes all the settings available for Tag History:

https://www.inductiveuniversity.com/videos/data-partitioning-and-pruning/8.0/8.0

Main

Provider Name Name of the Tag History Provider, for example, MySQL.

Enabled By default, the check box is selected (enabled) meaning the provider is turned on and accepts tag history data.

Description Description of the Tag History Provider (optional).

Data Partitioning

Enable Partitioning The built-in partitioning system breaks up data into separate tables of a specified time frame. This can improve
Default is true.performance and make certain maintenance tasks easier.

Partition Length The size of each partition, the default is one table per month. Many systems whose primary goal is to show only
recent data might use smaller values, such as a week, or even a day. Default is 1.

Partition Units Unit of time for the partition length. Options are: Milliseconds, Seconds, Minutes, Hours, Days, Weeks, Months, and
Years. Default is Months.

Enable Pre-
processed Partitions

Pre-processed partitions will use more space in the database, but can improve query speed by summarizing data,
reducing the amount that must be loaded. Default is false.

Pre-processed
Window Size
(seconds)

When pre-processing is turned on, the data will be summarized into blocks of this size. Default is 60.

Data Pruning

Enable Data
Pruning

Partitions with data older than a specific age are deleted and if the data is not archived, the data is then lost.
Default is false.

Prune Age The maximum age of data. As mentioned, the data is deleted by the partition, and could therefore surpass this
threshold by quite a bit before all of the data in the partition is old enough to be dropped. Default is 1.

Prune Age Units Unit of time for the prune age. Options are: Milliseconds, Seconds, Minutes, Hours, Days, Weeks, Months, and
Years. Default is Years.

Show Advanced
Properties

Select this option to display the Advanced properties below:

Advanced

Enable Stale Data
Detection

If enabled, tracks tag group executions to determine the difference between unchanging values, and values that are
flat due to the system not running. Default is true.

Stale Detection
Multiplier

The multiplier for rate used to determine when values are stale. If execution is not recorded tag group tag group
within this amount of time, values will be considered bad on query. Default is 2.

History Table Timestamps
If you've looked behind the scenes of SQLTags Historian, you've probably noticed the timestamps are not stored as standard SQL
timestamps. They are stored in a variant of Unix time, or the number of milliseconds since January 1, 1970 00:00:00. The time may come
when you need to convert that timestamp to a more human-readable format. The following describes how to do it in MySQL and MSSQL.

Both examples below assume the partition table is named 'sqlt_data_1_2016_08'.

MySQL
It's pretty easy to deal with Unix timestamp in MySQL because they have a built-in function for doing so. The FROM_UNIXTIME() function
will take in a Unix timestamp and return the current timestamp.
Usage:

Data pruning works by deleting old partitions. Therefore, data will only be removed when a partition has
no data younger than the prune age.

SELECT FROM_UNIXTIME(t_stamp/1000) FROM sqlt_data_1_2016_08

MSSQL
In Microsoft SQL Server, it's a little more verbose. We use the DATEADD() function to figure out the timestamp.
Usage:

SELECT DATEADD(s,t_stamp/1000,'1970-01-01 00:00:00') FROM sqlt_data_1_2016_08

1.
2.

3.
4.

Custom Tag History Aggregates

Python Aggregation Functions
The Tag History system has many built-in aggregate function, such as Average, Sum, and Count.
However a custom aggregate may be defined via Python scripting. These functions are used for
calculations across timeframes, and process multiple values in a “window” into a single result
value.

For example, if a query defines a single row result, but covers an hour of time (either by requesting
a single row, or using the Tag Calculations feature), the system must decide how to combine the
values. There are many built in functions, such as Average, Sum, Count, etc. Using a custom
Python aggregate, however, allows you to extend these functions and perform any type of
calculation.

On this page

...

Python Aggregation
Functions
Description

Parameters
Return Value

Usage
Examples

Using a Shared
Script
Creating an
Aggregate
Function on the
Fly

Description
As values come in, they will be delivered to this function. The interpolator will create and deliver values.

For each window (or “data block”, the terms are used synonymously), the function will get a fresh copy of blockContext. The block context is
a dictionary that can be used to as a memory space. The function should not use global variables. If values must be persisted across blocks,
they can be stored in the queryContext, which is also a dictionary.

The function can choose what data to include, such as allowing interpolation or not, and allowing bad quality or not.

The window will receive the following values, many of which are generally interpolated (unless a raw value happens to fall exactly at the time):

The start of the window
1 ms before each raw value (due to the difference between discrete and analog interpolation. A value equal to the previous raw
value indicates discrete interpolation)
The raw value
The end of the window.

At the end of the window, the function will be called with “finished=true”. The function should return the calculated value(s). The resulting
value will have a timestamp that corresponds to the beginning of the block timeframe.

Parameters

qval - The incoming QualifiedValue. This has:
value : Object
quality : Quality (which has ‘name’, ‘isGood()’)
timestamp : Date

interpolated - Boolean indicating if the value is interpolated (true) or raw (false)
finished - Boolean indicating that the window is finished. If true, the return of this particular call is what will be used for the results. If
false, the return will be ignored.
blockContext - A dictionary created fresh for this particular window. The function may use this as temporary storage for calculations.
This object also has:

blockId - Integer roughly indicating the row id (doesn’t take into account aggregates that return multiple rows)
blockStart - Long UTC time of the start of the window
blockEnd - Long UTC time of the end of the window
previousRawValue - QualifiedValue, the previous non-interpolated value received before this window
previousBlockResults - QualifiedValue[], the results of the previous window.

When calling a custom tag history aggregate, the returnSize argument must be set to nat
 (). If the returnSize is set to -1, or left with its default value, the ural returnSize = 0

the custom aggregate will be ignored.

1.
2.

insideBlock(long) - Returns boolean indicating if the time is covered by this window.
get(key, default) - A helper function that conforms to python’s dictionary “get with default return”.

queryContext - A dictionary that is shared by all windows in a query. It also has:
queryId - String, an id that can be used to identify this query in logging
blockSize - Long, time in ms covered by each window
queryStart - Long, the start time of the query
queryEnd - Long, the end time of the query
logTrace(), logDebug(), logInfo() - all take (formatString, Object... args).

Return Value

Object - Turned into Good Quality qualified value
List - Used to return up to 2 values per window
Tuple - (value, quality_int)
List of quality tuples

Usage
Custom Python aggregates can be used in two ways:

Defined as a shared script, where the full path to the function is passed to the query.
Defined as a string, prefaced with “python:”, and passed to the query.

Currently both options are only available through the system.tag.queryTagHistory/queryTagCalculations functions.

Both of these options are used with the “aggregationMode” and “aggregationModes” parameters to system.tag.queryTagHistory, and the
“calculations” parameter of system.tag.queryTagCalculations. If the value is not an Enum value from the defined AggregationModes, it will
be assumed to be a custom aggregate. The system will first see if it’s the path to a shared script, and if not, will then try to compile it as a full
function.

For performance reasons, it is generally recommended to use the shared script whenever possible.

Examples

Using a Shared Script

This example assumes a Shared Scripts named "aggregates" contained the function listed below.

Example

this is a simple count function, called for each value in a time window
def myCount(qval, interpolated, finished, blockContext, queryContext):
 cnt = blockContext.getOrDefault('cnt',0)
 if qval.quality.isGood():
 blockContext['cnt']=int(cnt)+1

 if finished:
 return blockContext.getOrDefault('cnt', 0)

The custom function could be used by using the example below:

Example

#Return tag history using a custom aggregate function you wrote.

system.tag.queryTagHistory(paths=['MyTag'], rangeHours=1, aggregationModes=['shared.aggregates.
myCount'], returnSize = 0)

Creating an Aggregate Function on the Fly

Example

#Create a function on the fly to pass in as a custom aggregate.

wrapper = """\
python:def wrapper(qval, interpolated, finished, blockContext, queryContext):
 return shared.aggregates.customFunction(qval, interpolated, finished, blockContext, queryContext)
"""
system.tag.queryTagHistory(paths=['MyTag'], rangeHours=1, aggregationModes=[wrapper], returnSize = 0)

1.
2.
3.

Tag History Splitter

The Tag History Module has a provider type called the Tag History Splitter. Like the Remote
History Provider, it doesn't store history on its own, it relies on having other providers already set
up. A Splitter provider simply logs Tag History into multiple existing History Providers.

Some users prefer to have data recorded by the Tag Historian sent to multiple databases: project
specifications require redundant logging, or users at another facility would like to have a copy of
the data in their local database. In cases like this, the Tag History Splitter Provider is ideal.

The that these Tags reside in must have multiple History Providers configured. Gateway Tag
Should one of the providers fault, the system will kick in to maintain the data on Store and Forward
the faulted connection. Since each connection has its own engine, database Store and Forward
the data is always forwarded to the correct .database

Tag History Splitter

Watch the Video

Tag History Splitter Provider Properties
Below are the properties available on the Historical Tag Provider.

Main

Provider
Name

Name of the connection.

Enabled Enables and disables the connection.

Description Description of the connection. The description appears on the Historical Tag Providers page of the Gateway.

Storage

First
Connection

Data is stored to both connections equally. However, all tag history queries (tag history bindings, system.tag.
queryTagHistory() calls, reporting tag historian queries, etc.) execute against the first connection, unless a limit is imposed
using the settings below, or the first connection is unavailable.

Second
Connection

The second connection to store Tag history.

Querying

Limit First
Connectio
n Query

If enabled, only queries that are within the time frame specified below will be executed against the first connection. Queries
that go further back will execute against the second connection.

Limit
Length
and Units

The unit and length of the time frame limitation mentioned above.

Set Up a Tag History Splitter
To create the additional Tag History provider, do the following steps:

Go to the section of the Gateway Webpage, and choose .Config Tags > History
Click .Create new Historical Tag Provider
Select and click . The New Historical Tag Provider page is displayed. Tag History Splitter Next

https://www.inductiveuniversity.com/videos/tag-history-splitter/8.0/8.0

3.

4. Enter a name for the . From the dropdown choose a database for the (for the primary data) and Provider Name First Connection
one for the (for secondary data).Second Connection

4.

5.

1.
2.
3.

Click .Create New Historical Tag Provider

Now the Tag History Splitter provider is created, and you can use it to log the Tag History data in the Designer.
To test this, open your project in the Designer.

In the Tag Browser, selecting a Tag and right-click to select the option. Edit Tag
On the Tag Editor window scroll down to the section and set to true. History History Enabled
In the dropdown list for Storage Provider, select the new provider.

3.

4. Click to save the change.OK

SQL Bridge (Transaction Groups)

Overview
The SQL Bridge Module enables the creation of Transaction Groups that synchronize data
between PLCs and databases. You can use Transaction Groups to easily log from PLCs to the
database, move data from the database back to PLCs, and even keep the two synchronized. Drag
and drop functionality makes setup of Transaction Groups quick and easy.

Originally conceived as an easy data storage method, Transaction Groups have become a core
feature of Ignition. In their simplest form, they regularly read values from OPC addresses and store
them into a SQL database. While data collection is still their primary use, they have grown in
functionality over time.

To set up and use Transaction Groups, SQL knowledge is not required. Ignition can automatically
create and manage the database table for each group. Prior experience writing SQL queries or
creating database tables are not required to log data.

On this page

...

Overview
Types of
Transaction Groups

Historical Data
Logging
Database and
OPC
Synchronization
Large Data Block
Storage
Stored
Procedures

Centralizing Data
Collection

Types of Transaction Groups
There are four types of Transaction Groups, and they each handle data a little differently:

Historical Groups - Quick and easy group that collects historical records
Standard - An improved version version of the historical group that can reverse the flow of data, writing database values Groups
directly to Tags.
Block - Records "blocks" of data, allowing you to record multiple values per execution in a tall format. Group
Stored - Invokes a stored procedure in the database, returning the results of any OUT or INOUT parameters to Procedure Group
Tags.

Learn more about each type of group on the page. Understanding Transaction Groups

All Transaction Groups can execute at a set rate or on a schedule. A can be used to determine when the group should record. You trigger
can use Ignition's in the trigger to allow complex logic to determine when logging occurs, making precision execution expression language
easy.

https://legacy-docs.inductiveautomation.com/display/DOC80/Expression+Overview+and+Syntax

Historical Data Logging

Historical Groups quickly and easily store data from the plant floor into any kind of SQL database. Items from any or all devices can be
included in the same group, just drag a few Tags over and start the group running. Ignition will log the data until you tell it to stop.

Database and OPC Synchronization

https://legacy-docs.inductiveautomation.com/display/DOC80/Types+of+Groups#TypesofGroups-HistoricalGroup

Standard Groups are the most flexible group. They are capable of not only storing OPC values in the database, but can also write database
values to OPC addresses or synchronize data changes between both the database and PLC. With this group you can create true realtime
value tables in the database, and allow anything that can talk to the database to push values to a PLC. This is often used to create syRecipe
stems where the recipe values are stored in the database, and a user can select a recipe to write all your settings directly to Tags. Changing
recipes is as easy as changing a Tag value or selecting a name.

Large Data Block Storage

Transfer large amounts of data very efficiently with the This groups allows you to send whole arrays of data to and from the Block Group.
database. It works just like the Standard group, but on a much larger scale.

Stored Procedures

The Stored Procedure Group allows you to use PLC data as inputs and outputs for your existing . With the Stored Stored Procedures
Procedure Group, your IT department can have control over how data is entered and returned from the database.

https://legacy-docs.inductiveautomation.com/display/DOC80/Types+of+Groups#TypesofGroups-StandardGroup
https://legacy-docs.inductiveautomation.com/display/DOC80/Types+of+Groups#TypesofGroups-BlockGroup
https://legacy-docs.inductiveautomation.com/display/DOC80/Types+of+Groups#TypesofGroups-StoredProcedureGroup

Centralizing Data Collection
In Distributed systems, PLCs can be spread out over great distances to remote sites. Collecting and centralizing data from each can be
difficult and time consuming. To combat this problem, Transaction Groups are used as the cornerstone of our architecture. Hub and Spoke
Historical Groups can be applied locally to each PLC for a minimal cost, and forward all data into a single, central, database.

In This Section ...

https://legacy-docs.inductiveautomation.com/display/DOC80/System+Architectures#SystemArchitectures-HubandSpokeArchitecture

Understanding Transaction Groups

Transaction Groups are the heart of the SQL Bridge module. They are units of execution that
perform actions such as storing data historically, synchronizing database values to OPC, or
loading recipe values. A variety of group types, items types, and options means that Transaction
Groups can be configured to accomplish almost any task.

Transaction Groups are configured in the Ignition Designer. Each Transaction Group is associated
with a table in a database Ignition is connected to, and is made up of one or more Items. The
group will then execute at a specific interval of time, or on a user-defined schedule. Generally each
execution will create a new row in the database table with a separate column for each Item in the
group. However, it is possible for some types of Transaction Groups to take values from the
database and write to specific Tags.

Additionally, the Transaction Group can be configured to conditionally synchronize values by using
a trigger. The trigger is evaluated every execution, and if the trigger condition is met, then
synchronization will occur. If the trigger condition has not been met, then the group will wait until
the next execution to re-evaluate the trigger.

There are four : Standard, Block, Historical, and Stored Procedure. types of Transaction Groups
Each offers different functionality. For example, the Historical Group allows you to quickly
configure a group that reads OPC data and push it to the database. While the additional flexibility
of a Standard Group allows you take values from the database and write them to a PLC.

Transaction Groups enable you to perform tasks such as database to OPC synchronization, recipe
management, and historical data logging.

Transaction Group Workspace
Transaction Groups are edited through the Ignition Designer. When a group is selected, you are
presented with the transaction group workspace. The workspace is broken into several parts:

Title bar - Shows the name of the currently selected group, as well as options to set it
as Enabled or Disabled, and to Pause, if it's currently executing.
Item - Shows all of the items configured in the selected group. Many configuration
settings can be modified directly through the display, the rest by double-clicking the item
or selecting in the context menu.Edit
Action / Trigger / Options tabs - Defines how and when a group executes. Holds most
of the options that apply to the group in general, such as the update rate, and which data
connection it uses.
Status / Events tabs - Provides information about the executing group, including the
most recent messages that have been generated.

On this page

...

Transaction Group
Workspace

Items
Enabling Group
Execution
Editing Group
Settings

Action Settings
Group Update Rate

Timer
Schedule
Execution Cycle

Trigger and
Handshake Settings
Advanced Settings
Creating a
Transaction Group

About Transaction
Groups

Watch the Video

https://inductiveuniversity.com/video/about-transaction-groups/8.0

Items

Each Item (Tag) in the Transaction Group consists of several properties, but the key properties are the Source/Latched Values and Target
Name.

Source and Latched Value

The Source Value will be the value of the items source. This can be something like a Tag or a direct OPC Item if writing to the database, but
can also be the value pulled from the database if in DB to OPC mode. This value can change in between executions, depending on the
source type. When the source is a Tag, it will update as the Tag updates, depending on how the Tag Group for the Tag is set. However, if
the source is an OPC Item, it will update only when the group executes, unless the OPC subscription rate is overridden in the group.

The Latched value will be the value that was written at execution. This can be the value that gets written to the database on execution in
OPC to DB mode, or it can be the value that gets written to the Tag in DB to OPC mode. The value will only change on execution of the
group.

Target Name

In most cases, the Target Name is a column on the database table the Transaction Group is associated with. However, it is possible to have
the Target Name 'Read-only'. When set to 'Read-only' the value of the item will not be tied to any columns in the database, but is still visible
from the Transaction Group and can be used as a trigger.

Enabling Group Execution

In order for groups to be evaluated, they must first be enabled. This is done by selecting in the group title bar, and then saving the Enabled
project. The group executing can be stopped by reversing the procedure and selecting before saving. If you want to quickly and Disabled
temporarily stop the group's evaluation, toggle the button. This will prevent execution until the group is enabled again, or until the Pause
system is restarted.

Editing Group Settings

Group settings may be modified at any time, regardless of whether or not the group is executing. Modifications will be applied when the
project is saved, and the group will be started or stopped as required. Some changes such as modifying items may cause features like live
values to appear to be incorrect. It is therefore important to note the modified icon that appears next to the group, and to save often. If you
would prefer to stop the group before making edits you can simply pause the group. Execution will begin again after the project is saved.

Action Settings
The action settings of a Transaction group define how often the group will be evaluated, as well as
important settings that apply to the group as a whole. They are found on the Action tab, the first of
the tabs on the right side of the Transaction Group workspace.

The Action settings vary for the different types of Transaction Groups, but a few settings are
common to most of them:

Setting Description

Executi
on
schedu
ling

How often the group is evaluated. For a number of reasons, the group may not
execute during the evaluation. The most common reason is the trigger, but see Executi

 below for more possible reasons why evaluation will exit.on Cycle

Timer - specifies the OPC Tag subscription rate for the OPC Tags. It can run at
millisecond, second, minute, hour, or day rates.
Schedule - is a specified start time on the update . Set a list of time (or time Rate
ranges) that the group should run at. If the pattern specified includes a time
range, at rate must be provided, and the group will execute as in timer mode
during that period.

Update
mode

For groups that support it, sets the default for how items are compared to their targets.
Options are:

OPC to DB - Only read from the and write to the . OPC server database
DB to - Only read from the and write to the . OPC database OPC Server
Bi-directional wins - Read and Write to both the and . OPC database OPC Server
On group start, write values to the . OPC database
Bi-directional DB wins - Read and Write to both the and . database OPC Server
On group start, write values to items. database OPC

Data
source

The database connection name the group should use. Can be , which will use Default
the default connection for the project.

Table
name

Name of the table in the database that the group should interact with (reading or
writing, depending on the and individual item settings). The Update mode Mode
tables listed in this dropdown are determined by the property. Data source

This setting allows you to type arbitrary names into it. If you type the name of a
database table that doesn't exist, and the setting is Automatically create table
enabled, then the group will attempt to create the database table on start.

Autom
atically
create
table

If enabled, the transaction group will attempt to create a database table once the
group starts running, assuming one doesn't already exist as determined by the Table

 setting. If the table already exists, then nothing happens. name

Use
custom
index

If left disabled, the group will attempt to add an index column to the database table
when the group starts executing. If enabled, the group will use the column selected in
the adjacent dropdown, or create a new column if you type in a column name that
doesn't exist on the table (requires the setting to be Automatically create table
enabled).

Transaction Groups exist in a project, but they execute in the global Gateway space. This means that once your groups are
enabled, they will run even without a client open.

Store
timesta
mp

If enabled, will attempt to store a timestamp value to the column specified in the
adjacent dropdown. If you type in a column name that doesn't exist on the table, the
group will attempt to create the column on start, assuming the Automatically create

 setting.table

Store
quality
code

Stores an aggregate quality for the group along with the regular data. The aggregate
quality is a bit-wise AND of the qualities of the items in the group.

Delete
record
s older
than

If enabled, and the group is running, this setting will make the group delete older rows
in the table. Options are minute(s), day(s), month(s), and year(s)

Table
Action

Defines which row will be targeted by the group.

insert new row
update/select - allows you to target specific rows in the database table. Options
are:

first row - the group always executes against the first row.
last row - the group always executes against the last row
custom - allows you to write a custom where clause to determine which row
should be targeted. Uses the text area. The custom clause can use Where
references to values of items in the group.

key/value pairs - Provides dropdowns for both a column and a item in the
group, allowing the group to target a single row in a table based on the
item's value. In the image below, a value of 5 will be used in conjunction with
the "group_table_ndx" column in the database table. Additional conditions
can be added or removed with the Add or Delete buttons, below the table.

Meaning, when the group executes, it will target the row where
group_table_ndx has a value of 5.

Group Update Rate
Groups generally work on a timer. They are set to run at a certain rate. As they are running at that
certain rate, they then check the rest of the settings. If the trigger conditions pass, the group is
executed fully.

The Execution Schedule controls the rate at which the transaction group executes. On the Action
tab of a group you selected, under Execution Scheduling, there are two options: and Timer Sched

. Timer, executes the group at a certain rate. Schedule, executes the group at specific times. ule
When the Schedule option spans across a period of time, you must specify the rate at which the
group executes during that time.

Timer

Group Update Rate

Watch the Video

https://inductiveuniversity.com/video/group-update-rate/8.0

1.
2.
3.

4.

5.
6.
7.
8.
9.

10.
11.
12.

The Timer acts as the heartbeat of the transaction group and is evaluated at the provided rate. It
can run at millisecond, second, minute, hour, or day rates. The Timer specifies the OPC Tag
subscription rate for the OPC Tags. When a Timer is running the transaction group it first analyzes
the Tags inside the section of the transaction group. Then it looks at the Basic OPC/Group Items
trigger configuration and evaluates for Tag changes. Then it evaluates the specific trigger
conditions and decides to execute on a trigger. Depending on the trigger settings, full execution
may not occur, but the trigger will at least be evaluated at this rate. If the triggered condition is
true, the transaction group proceeds to the section of the transaction Triggered Expression Items
group. Only after this flow is complete, will the transaction group interact with the database, and for
example, insert the Tag values into the database.

Schedule

An important difference between the Timer and the Schedule options is that the schedule option
will automatically align to the specified start time on the update rate. With Schedule mode, you are
providing a list of time (or time ranges) that the group should run at. If the pattern specified
includes a time range, a rate must be provided, and the group will execute as in timer mode during
that period.

The schedule is specified as a comma separated list of times or time ranges. You may use
the following formats:

24-hour times. Ie. "8:00, 15:00, 21:00", for execution at 8am, 3pm, and 9pm.
12-hour with am/pm (if not specified, "12" is considered noon): "8am, 3pm, 9pm"
Ranges, "8am-11am, 3pm-5pm"
Ranges that span over midnight, such as "9pm - 8am"

When using ranges, the execution times will be aligned to the start time. For example, if
you specify a schedule of "9am - 5pm" with a rate of "30 minutes", the group will execute at 9, 9:
30, 10, etc., regardless of when it was started. This is a useful difference compared to the
Timer mode, which runs based on when the group was started. For example, if you want a group
that runs every hour, on the hour, you could specify a 1 hour rate with a range of "0-24."

Execution Cycle

All of the Transaction Groups follow a similar execution cycle. The core evaluation may differ, but
the general cycle is the same.

Timer executes, group enters execution
Is the group paused? Break execution.
Is the Gateway part of a redundant pair? If so, is it active? If not active, break execution.
Groups only execute on the active node.
Evaluate run-always items: OPC items, Tag references, and Expression items set
to ignore the trigger (or items placed in the run always section of the Configuration
window).
Is trigger set/active? If there is a trigger defined, but it is not active, break execution.
Evaluate "triggered" expression items.
If applicable, read values from the database.
Execute a comparison between items and their targets.
Execute any writes to other Tags or the database that results from execution.
Report alerts.
Acknowledge the trigger, if applicable.
Write handshake value, if applicable.

If an error occurs at any stage besides the last stage, execution will break and the failure
handshake will be written if configured. The group will attempt execution again after the next
update rate period.

Trigger and Handshake Settings

If the group errors due to a bad database connection, it will need to be manually
restarted once the database connection is brought back.

The trigger settings determine when a group will actually execute. They are examined each time
the group evaluates (according to the update rate of the group). If they pass, the group will run and
perform its action against the database.

The trigger settings are the same for all group types and are found on the second tab (labeled Trig
), on the right side of the Transaction Group workspace.ger

The outcome of an execution is handled in the handshake section of the trigger section of the
transaction group. When a group executes, it either completes successfully or an error prevents its
execution.

The table below is a list of Trigger and Handshake settings.

Setting Description

Only
evaluat
e when
values
have
changed

The group will execute every time the value or values change. If the values have not
changed, it will exit the evaluation. Note, it is possible to monitor all Run-Always items
in the group, or only specific ones.

 - Executes on all Tags or one or more Tags in order Tags to watch for change
to monitor for value changes. Select 'all Tags' or 'Custom,' and select the Tag(s)
from the dropdown.

Execute
this
group
on a
trigger

Enables a trigger on a specific item in the group. The trigger item can be any Run-
Always item, such as an OPC item, Tag reference, or an Expression item set to "Run-
Always" mode.

Trigger on item - select the item time you want to use as the trigger.

Only
execute
once
while
trigger
is active

The group will only execute once when the trigger goes into an active state, and will
not execute again until the trigger goes inactive first. If unselected, the group will
execute each time the trigger conditions evaluate to true.

Reset
trigger
after
execution

If using the ">0" or "=0" trigger modes, the trigger can be set to write an opposite
value after the group has executed successfully. This is useful for relaying
the execution back to the PLC.

Prevent
trigger
caused
by
group
start

If selected, the group will not execute if the trigger is active on the first evaluation of
the group. In the course of designing a group, it is common to stop and start it many
times, and sometimes it is not desirable to have the group execute as a result of this.
Selecting this option will prevent these executions, as well as executions caused
by system restarts.

Trigger
conditio
ns

Set any of the following trigger conditions:

is !=0 (or true)
is =0 (or false)
is active or non-active, which causes the group to exectue if the trigger value
matches the condition. is active
Active on value change, which will cause the group to execute if the trigger
changes value at all.

Write
handsh
ake on
success

Set the item and the value you want to see when the group executes successfully.

Write
handsh
ake on
failure

Set the item and the value you want to see when an error prevents the group
execution.

To learn more about configuring Transaction Groups with the different trigger options, refer to the T
 page. rigger Options

https://legacy-docs.inductiveautomation.com/display/DOC80/Item+Types#ItemTypes-RunAlwaysvs.TriggerItems

Advanced Settings
Transaction Groups offer several advanced settings that affect how execution occurs. These
settings can be found under the tab for a group. The table below describes the Advanced Options
settings.

Setting Description

OPC
Data
Mode

Modifies how the group receives data from OPC.

Option Description

Subsc
ribe

- Data points are registered with the OPC server, and data is received by the group on-
. This is the default setting and generally offers the best performance, as it change

reduces unnecessary data flow and allows the OPC server to optimize reads.

Note: Data is received by the group asynchronously, meaning that it can arrive at any
time. When the group executes, it "snapshots" the last values received and uses those
during evaluation. If some values arrive after execution begins, they will not be used until
the following execution cycle.

Read Each time the group executes it will first read the values of OPC items from the server. This
operation takes more time and involves more overhead than subscribed evaluation,
but ensures that all values are updated together with the latest values. It is therefore
commonly used with batching situations, where all of the data depends on each other and
must be updated together. It's worth noting that when using an OPC item as the trigger, the
item will be subscribed, and the rest of the values read when the trigger condition occurs.

Bypass
Store
and
Forwar
d
System

This setting is only applicable to groups that insert rows into the database. Causes groups to target the
database directly instead of going through the store-and-forward system. If the connection
becomes unavailable, the group will report errors instead of logging data to the cache.

Overrid
e OPC
subscri
ption
rate

Specifies the rate at which OPC items in the group will be subscribed. These items are
normally subscribed at the rate of the group, but by modifying this setting it is possible to request
updates at a faster or slower rate.

Always
store
NULL
for
bad
quality
items

With this option set to True, it will force the group to store a NULL value when the item has a bad quality,
instead of writing the bad quality value.

Set
NULL
Tag
values
to
default

If a NULL is read from the Tag, it will instead use a default value to write to the database, depending on
the type. This can prevent errors for database columns that do not accept NULL values. The default
values are the same as the table above.

1.

2.

3.

Set
NULL
DB
values
to
default

If a NULL is read from the database, it will instead use a default value to write to the Tag, depending on
the type. This can prevent errors for OPC Tags that do not accept NULL values. Not available in a
Historical Group.

The following feature is new in Ignition version 8.0.11
 to check out the other new featuresClick here

As of 8.0.11, enabling the Set DB Values to Default setting on Block Groups will clear the latched value,
setting the item to a default if the corresponding database value is Null.

Type Default Value

Byte 0

Short 0

Integer 0

Long 0

Float 0.0

Double 0.0

Boolean FALSE

String '' (Empty Sting)

Date/Time Current Date/Time

Dataset [0x0] (Empty Dataset)

Array [] (Empty Array)

Creating a Transaction Group
This example demonstrates how to configure a transaction group, specifically a Historical Group.
However, the process of creating any transaction group type is very similar, especially so in the
case of a standard group. The section contains more examples. Transaction Group Examples

Click on the in the Project Browser to switch the Designer's Transaction Groups
workspace to the Transaction Group workspace.
In the Project Browser, right click on to Transaction Groups > New Transaction Group
make a New Historical Group. Name the group 'Group.'

Browse your OPC device and drag some OPC Tags to the sectiBasic OPC/Group Items
on.
Note that the group starts out 'Disabled' by default.

Basic Historical
Group

Watch the Video

Realtime Group

Watch the Video

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.11
https://inductiveuniversity.com/video/basic-historical-group/8.0
https://inductiveuniversity.com/video/realtime-group/8.0

3.

4.
5.

6.

7.

8.

Save your project.
Click the button above the item tables to enable logging.Enabled

Go to the tab and change the . For the example, we gave it the name Action Table Name
"New_Test_Table."
Note that right now your group only exists in the Designer.

Save your project to start the group. Your group is now running and logging data to your
database connection.
To see the data, you can use the Ignition Designer's built-in . Database Query Browser

The easiest way to do this is to click on the icon next to your group's Table Database
Name field. The Query Browser is a convenient way to directly query your database
connection without leaving the Ignition Designer. Of course, you can also use any query
browser tools that came with your database.

https://legacy-docs.inductiveautomation.com/display/DOC80/Database+Query+Browser

Related Topics ...

Database Connections
Transaction Group Examples
Database Query Browser
Trigger Options

In This Section ...

https://legacy-docs.inductiveautomation.com/display/DOC79/Database+Connections
https://legacy-docs.inductiveautomation.com/display/DOC80/Database+Query+Browser

Types of Groups

The SQL Bridge Module provides four different types of Transaction Groups that you can use in
your projects. Each of these different types of groups vary in their operation and use for data
logging and database to PLC synchronization.

Historical Group
The historical group makes it easy to quickly log data historically to a SQL database.

General Description

The historical group inserts records of data into a SQL database, mapping items to columns.
Full support for triggering, expression items, hour & event meters and more means that you can
also set up complex historical transactions. Unlike the standard group, the historical group
cannot update rows, only insert. It also cannot write back to items (besides trigger resets
and handshakes).

Group Settings

The settings of the historical group are identical to the settings in the Standard Group, but limited
to inserting rows.

Typical Uses

Basic historical logging - Recording data to a SQL database gives you incredible storage
and querying capabilities, and makes your process data available to any application that has
DB access.

Shift tracking - Use an expression item to track the current shift based on time, and then
trigger off of it to record summary values from the PLC. Use a handshake to tell the PLC to reset
the values.

Standard Group
The Standard Group is called such because it's a flexible, general use group that can be adapted
to a variety of situations. The data model is row based, with items mapping to columns and the
data corresponding to a specific row of a table.

General Description

The Standard Group contains items, which may be mapped to the database, or used internally
for features such as triggering or handshakes. Items that are mapped to the database target a
specific column of a single specific row, chosen according to the group settings. Items can be
mapped in a one-way fashion, or bi-directionally, in which the value of the database and the item
will be synchronized.

The group may also insert new rows instead of updating a specific row. In this manner, data can
be inserted for historical purposes based on a timer, with an optional trigger.

Group Settings

The Standard Group uses a timer-based execution model shared by all groups, and the
normal trigger settings. Additionally, there are several settings specific to the group type:

Automatically create table - If the target table does not exist, or does not have all of the required
columns, it will be created/modified on group startup. If not selected and the table doesn't match,
an error will be generated on startup.

On this page

...

Historical Group
General
Description
Group Settings
Typical Uses

Standard Group
General
Description
Group Settings

Table action
Typical Uses

Block Group
General
Description
Typical Uses
Table Format
Row ID and
Block ID
Group Settings
Table action

Stored Procedure
Group

Group Settings
Typical Uses
Known Issues
Parameters in
the Stored
Procedure Group

Types of Groups

Watch the Video

https://inductiveuniversity.com/video/types-of-groups/8.0

Use custom index column - If selected, you may enter any column name to hold the index. If
unselected, the table index will be named <table name>_ndx.

Store timestamp to - Specifies whether or not to store a timestamp with the record, and the
target column. The timestamp will be generated by the group during execution. For groups that
update a row, the timestamp will only be written if any of the values in the group are also written.

Store quality code to - If selected, stores an aggregate quality for the group to the
specified column. The aggregate quality is the combined quality of all of the items that write to the
table. For more information about quality values, see .Data Quality

Delete records older than - If selected, records in the target table will be deleted after they reach
the specified age. This setting is useful for preventing tables from growing in an
unbounded manner, which can cause disk space and performance problems over time.

Table action
This section details how the group interacts with the table on each execution, and is available for the type. This means not Historical Group
when the Timer or Schedule is active, and the Trigger condition are met. The group can insert a new row, or update the first, last or a custom
record.

Insert New Row - This option will make the group insert a new record into the database every time the group executes. This is the forced
behavior of the Historical group.

Update / Select - This option will either update or select from matching rows based on the option selected below it. The Update Mode
property above determines whether an update (OPC to DB), select (DB to OPC), or both (Bi-directional) are used when the group executes.

First - Use the first row in the table. It is not recommended to use this option unless the order of the data in the table is guaranteed.

Last - Use the last row in the table. This is commonly used when another group (or another program) is inserting new rows for us, and we
always want to update the most recent record.

Custom - A custom update clause is essentially the WHERE clause of the SQL query that will be generated to read and write the group
data. This usually contains a reference to a Tag in the group. IE: column_name = {[~]item_name}

Key/Value Pairs - Used to inject dynamic values in order to create a WHERE clause for you. The table below this option will allow you to
enter column names and link them to values (usually Tags in the group). This option also has the ability to Insert a new row with the current
key/value pair if it was not found.

Typical Uses

Standard groups can be used any time you want to work with a single row of data. This can include:

Historical logging - set the group to insert new records, and log data historically either on a timer, or as the result of a trigger. Flexible
trigger settings and handshakes make it possible to create robust transactions.

Maintain status tables - Keep a row in the database updated with the current status values. Once in the database, your process data is now
available for use by any application that can access a database, dramatically opening up possibilities.

Manage recipes - Store recipe settings in the database, where you have a virtually unlimited amount of memory. Then, load them into the
PLC by mapping DB-to-OPC using a custom where clause with an item binding in order to dynamically select the desired recipe.

Sync PLCs - Items in the group can be set to target other items, both for one-way and bidirectional syncing. By adding items from multiple
PLCs to the group, you can set the items of one PLC to sync with the others. By creating expression items that map from one PLC item
to the other, you can manipulate the value before passing it on.

Block Group
Block Groups instead allow you to store your data in a tall format. They allow you to create a
unique type of item, called a , which represents an ordered list of values to store within Block Item
a column for each execution.

General Description
Block Group

https://legacy-docs.inductiveautomation.com/display/DOC79/Tag+Quality+and+Overlays

A Block Group contains one or more block items. Each block item maps to a column in the
group's table, and then defines any number of values (OPC or SQLTag items) that will be written
vertically as rows under that column. The values may be defined in the block item in two modes.
The first, List mode, lets a list of value-defining items to be entered. These value items may either
be OPC items, Tag items, or static values. The second mode, Pattern mode, can be useful when
OPC item paths or Tag paths contain an incrementing number. You may provide a pattern for
the item's path, using the wildcard marker {?} to indicate where the number should be inserted.

Block groups are very efficient, and can be used to store massive amounts of data to the
database (for example, 100 columns each with 100 row -10,000 data points- will often take only a
few hundred milliseconds to write, depending on the database). They are also particularly useful
for mirroring array values in the database, as each element will appear under a single column,
and share the same data type.

Like the Standard Group, the Block Group can insert a new block, or update the first, last or
a custom block. Additionally, the group can be set to only insert rows that have changed in the
block.

In addition to block items, the group can have other OPC items, Tag references, and Expression
items. These items can be used for triggers, handshakes, etc. They may also target a column to
be written, and will write their single value to all rows in the block.

The block group is so named because it writes "blocks" of data to a database table, consisting
of multiple rows and columns.

Watch the Video

Typical Uses

Block Groups are useful in a number of situations where you need to deal with a lot of data efficiently. Mirroring/Synchronizing array values
to DB - Arrays are often best stored vertically, which makes them perfect for Block Groups. Pattern mode makes configuration a breeze by
allowing to you specify the array as a pattern, and set the bounds

Recipe management - Like Standard Groups, but used when set points are better stored vertically than horizontally.

Vertical history tables - Group data points by data type (int, float, string), create a copy of the item that stores item path, and then use the
insert changed rows option to create your own vertically storing historical tables. Create additional copies of the block item that refer to
quality and timestamp in order to get further information about the data point.

Table Format

Due to their nature, Block Groups store records in a different format than the other groups. Consider how other Transaction Groups work. A
single execution of a standard or historical group would store a row that looked like the following:

table_ndx tag1 tag2 tag3

1 10 20 30

We could take the Tags from the above example, and place them in under a single block item like so:

Note that each Tag is nested under the block item, and the block item is targeting the "Tags" column under Target name. A single execution
of this group stores the records in our table as so:

https://inductiveuniversity.com/videos/block-group/8.0

table_ndx Tags

1 10

2 20

3 30

Each additional block item would store records as a separate column.

table_ndx Tags More_Tags

1 10 11

2 20 22

3 30 33

Row ID and Block ID

Using the same Tag example from above, if we kept inserting new rows at every execution, our table would start to looks like the following:

table_ndx Tags

1 10

2 20

3 30

4 15

5 25

6 35

This isn't ideal, since the table doesn't have a great way to show which value came from which Tag. To help with this, Block Groups have
optional row_id and block_id columns that can be enabled (see the "Store row id" and "Store block id" settings under Group Settings). If we
enable both the Block ID and Row ID, our table would look like the following:

table_ndx Tags row_id block_id

1 10 0 1

2 20 1 1

3 30 2 1

4 15 0 2

5 25 1 2

6 35 2 2

Block ID represents the a single execution of the group, meaning rows with the same block_id value were inserted together. We see block_id
values of 1 (colored green) are part of the same execution, and rows with a block_id value of 2 (colored blue) are a separate execution.

Row ID in an index representing which item in the block item the row corresponds to. In our example, Tag1 is the first or top item in the block
item (row index 0), Tag2 is next (row index 1), and Tag3 is last (row index 2). Now we know that any value on that table with a row_id of 0
came from Tag1.

Group Settings

Beyond the differences in the data, namely that the Block Group works with multiple rows instead of just 1, this group type shares many
similarities with the Standard Group.

The unique settings are:

Automatically create table - If the target table does not exist, or does not have all of the required columns, it will be created/modified on
group startup. If not selected and the table doesn't match, an error will be generated on startup.

Automatically create rows - If the target rows do not exist, they will be created on group execution. If not selected and the rows don't
match, no records will be updated.

Use custom index column - If selected, you may enter any column name to hold the index. If unselected, the table index will be named
<table name>_ndx.

Store timestamp to - Specifies whether or not to store a timestamp with the record, and the target column. The timestamp will be generated
by the group during execution. For groups that update a row(s), the timestamp will only be written if any of the values in the group are also
written.

Store quality code to - If selected, stores an aggregate quality for the row to the specified column. The aggregate quality is the combined
quality of all of the items that write to that row. For more information about quality values, see .Data Quality

Store row id - Each row will be assigned a numeric id, starting at 0. If selected, this id will also be stored with the data.

Store block id - If selected, an incremental block id will be stored along with the data. This number will be 1 greater than the previous block
id in the table.

Delete records older than - If selected, records in the target table will be deleted after they reach the specified age. This setting is useful for
preventing tables from growing in an unbounded manner, which can cause disk space and performance problems over time.

Table action

This section details how the group interacts with the table on each execution, and is available for the type. This means not Historical Group
when the Timer or Schedule is active, and the Trigger condition are met. The group can insert a new row, or update the first, last or a custom
record.

Insert New Block - If selected, each row of the block will be inserted when the group executes, even if the data has not changed.

Insert changed rows - This option will only insert the rows that have new data when the group executes. This is particularly useful for
recording history for many data points on an "on change" basis, provided there is a unique id column defined. The "store row id" feature is
useful for this, as well as the ability to reference the item path in an item's value property.

Update / Select - This option will either update or select from matching rows based on the option selected below it. The properUpdate Mode
ty above determines whether an update (OPC to DB), select (DB to OPC), or both (Bi-directional) are used when the group executes.

First - Use the first row in the table. It is not recommended to use this option unless the order of the data in the table is guaranteed.

Last - Use the last row in the table. This is commonly used when another group (or another program) is inserting new rows for us, and we
always want to update the most recent record.

Custom - Like Standard Groups, this setting allows you to target a specific section of the table, using SQL where clause syntax, with the
ability to bind to dynamic item values. Unlike standard groups, however, the WHERE clause specified should result in enough rows to cover
the block. Excess rows will not be written to, but fewer rows will result in a group warning indicating that some data could not be written.

Stored Procedure Group
The stored procedure group lets you quickly map values bi-directionally to the parameters of a
stored procedure. It is similar to the other groups in terms of execution, triggering, and
item configuration. The primary difference is that unlike the other group types, the target is not
a database table, but instead a stored procedure.

Items in the group can be mapped to input (or inout) parameters of the procedure. They also can
be bound to output parameters, in which case the value returned from the procedure will be
written to the item. Items can be bound to both an input and output at the same time.

Parameters may be specified using either or . That is, in parameter names numerical index
any location where you can specify a parameter, you can either use the name defined in the
database, or a 0-indexed value specifying the parameter's place in the function call.

 If using parameter names, the names should not include any particular identifying character
(for example, "?" or "@", which are used by some databases to specify a parameter).

Stored Procedure
Group

Watch the Video

You cannot mix names and indices. That is, you must consistently use one or the other.

https://legacy-docs.inductiveautomation.com/display/DOC80/Tag+Quality+and+Overlays
https://inductiveuniversity.com/videos/stored-procedure-group//8.0

Group Settings

The Stored Procedure group's settings look and act the same as those of the Historical Group. The primary difference, of course, is that
instead of specifying a table name and column names, you'll specify a Stored Procedure and its parameters.

Store timestamp to - Specifies whether or not to store a timestamp with the record, and the target column. The timestamp will be generated
by the group during execution. For groups that update a row, the timestamp will only be written if any of the values in the group are also
written.

Store quality code to - If selected, stores an aggregate quality for the group to the specified column. The aggregate quality is the combined
quality of all of the items that write to the table. For more information about quality values, see see .Data Quality

Procedure Name - The name of the Stored Procedure (SP) that you will be using. You must look into the SP definition to see what inputs
and outputs are available.

Typical Uses

Call stored procedures - The stored procedure group is the obvious choice when you want to bind values to a stored procedure. It can also
be used to call procedures that take no parameters (though this can also be accomplished from Expression Items/SQLTags.

Replace RSSQL - The stored procedure group is very popular among users switching from RSSQL, given that application's heavy use of
stored procedures.

Known Issues

When using an Oracle database, you must use indexed parameters.

Parameters in the Stored Procedure Group

When using a Stored Procedure Group, parameters may be configured to each item based on the type of the parameter:

The column is used for writing, so specifying an IN or INOUT parameters under this column will have the item try to Target Name
write its value to the parameter
The column is used to move the value of an OUT or INOUT parameter into an item in the group. If an item in a group is Output
configured to reference an OUT parameters, its value should be set to Target Name Read-Only.

Related Topics ...

https://legacy-docs.inductiveautomation.com/display/DOC79/Tag+Quality+and+Overlays

Group Update Rate

https://legacy-docs.inductiveautomation.com/display/DOC80/Understanding+Transaction+Groups#UnderstandingTransactionGroups-GroupUpdateRate

Item Types

Items are the backbone of a Transaction Group. They represent a link
between a source value (derived from either an OPC value or an
expression) and a cell in a database table. Items generally aren't executed
in a reliable order, with the exception of items. Expression
Expression items can be ordered using the up and down arrows located to
the right of the list where the items are displayed. This can be crucial for
performing complex operations that require a specific sequence. Below is
a listing of each type of item.

Item
Type

Description

OPC
Item

Directly subscribed to an OPC server at the rate of the group. These items effectively
ignore the gateway's Tag system, bypassing Tag groups and Tag providers
altogether.

Express
ion
Item

Much like an expression Tag, expression items are flexible in that their value can
come from a number of different sources: specifically an expression or a database
query.

Expression items have two sub types:

Run-Always expression items are evaluated every time the group executes.
Meaning, they'll run their associated expression or query every time the group
executes.
Triggered expression items only evaluate when the group trigger is active.

Tag
Referen
ce Item

A reference to a Tag in a Tag provider. Allows a Tag to be used in a group like any
other item type, except that the Tag is evaluated by its scan class instead of by the
group. For more information, see the section on this Tag References vs. OPC Items
page.

Tag Reference Items can reference the value on any Tag in a Tag provider, such as
query Tags and memory Tags.

On this page

...

Tag References
and OPC Items
Expression Items

Scope
Execution Order
Expression Type

Run Always vs.
Triggered Items

Changing the
Evaluation State

SQL Queries and
Expressions
Creating a New Item
Item Type Property
Table

OPC Item
Options
Tag Reference
Item Options
Expression Item
Options

Item Types

Watch the Video

Tag References and OPC Items
It is easy to confuse the definition and purpose of Tag reference items and direct OPC items in
Transaction Groups.

Tags may be referenced inside of Transaction Groups through a Tag Reference Item. Since the
source of the Tag reference item exists outside of the Transaction Group, they have their own
rules and configurations that determine when their value changes. Thus Tag reference items can
have their value update according to their own execution (commonly, a Tag Group). Adding a Tag
into a group is like creating a shortcut to that Tag. However, once in the group, the item can be
used like any other item. Tag references are useful when it is necessary to have a single value in
multiple groups, for example, as a trigger in order to coordinate execution.

OPC Items in groups (as well as expression items in groups), however, are completely executed
by the group. They do not exist outside of the group in which they are defined. They are
subscribed and evaluated according to the rate of the group.

Tag References vs.
OPC Items

Watch the Video

https://inductiveuniversity.com/video/item-types/8.0
https://inductiveuniversity.com/video/tag-references-vs-opc-items/8.0

Refer to the Properties Table at the bottom of this page to see the properties for both Tag and
.OPC Items

Expression Items
Expression Items are items not driven by a PLC. Instead they allow you to configure a static value,
or use some other means to automatically set a value, such as a query. They are useful for
executing comparisons, simple math, and looking up values from other database tables.

Much like OPC Items, Expression Items can have alarms configured, as well as apnumeric scaling
plied directly to the item.

Scope

It is important to understand that an Expression Item only exists within its group, and can not be
referenced by items in other Transaction Groups, Tags, and any components on a window. The
only exception is to use an Expression Item to store/retrieve a value with storeVariable() and
getVariable() functions. These functions store values in a space that is accessible by all
Transaction Groups.

Execution Order

All Expression items will evaluate in order from top to bottom. This means referencing an
Expression Item above will pull the new value, but referencing an Expression Item below will give
you the value from the last group execution.

Expression Type

How an Expression Item determines its value depends heavily on its type.

Expression
Type

Definition

None Behaves similar to a Memory Tag in that the value does not automatically
change.

Expression Uses Ignition's to determine the value on the Item. The Expression Language
expression can reference other items in the group, as well as Tags.

SQL Query Utilizes a SQL query to determine the item's value. Thus, a query can execute on
the item and the results can be referenced by other items in the same group.

Named
Query

Selecting this option will cause the value on the item to be determined by a
Named Query in the same project as the Transaction Group.

Refer to the Property Table at the bottom of this page to see the .Expression Item properties

Expression Items

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC80/Tag+Scaling+Properties
https://legacy-docs.inductiveautomation.com/display/DOC80/Expression+Overview+and+Syntax
https://inductiveuniversity.com/video/expression-items/8.0

Run Always vs. Triggered Items
Expression Item can be configured in two different evaluation states:

Triggered: The Expression Item executes only when the Transaction Group is triggered.
However if the group is configured to execute on a trigger, then the item will evaluate not
every time the group executes (similar to how the state works). This is the Run-Always
default evaluation state new Expression Items use.
Run-Always: The Expression Items will run before the group trigger is checked, so it
always executes at the group's rate. This allows your expression to always evaluate
regardless of the trigger in the group. Additionally, this state allows you to use the
Expression Item as the trigger for the group. We advise that you never have a Target for a
Run-Always Expression item because it always runs.

Changing the Evaluation State

Toggling between the two modes can be accomplished by dragging and dropping the Expression
Item to either the table or the table. Run-Always Expression Items Triggered Expression Items
Alternatively, the evaluation state can be changed by editing the Expression Item and toggling the

 checkboxRun-always (ignore trigger)

Run Always vs.
Triggered Items

Watch the Video

SQL Queries and Expressions

https://inductiveuniversity.com/video/run-always-vs-triggered-items/8.0

1.

2.

3.

Expression items can use and to automatically SQL statements Ignition's Expression language
determine the value of an Expression Item. This is useful in scenarios where you want to use a
value from the database as the trigger for the Transaction Group, or aggregate several other items
in the group into a single value.

Expressions and queries on an Expression Item can reference the value of other items in the

group or Tags in the system by clicking on the icon.Tag

There are several Expression functions available that exist only for Transaction Groups. You can
find them in the and sections of the function list.Store and Forward Variables f(x)

SQL Query
Expression Items

Watch the Video

Creating a New Item
Below is an example of creating a new item. The steps can be applied to any item type.

In the Designer, go to Project Browser, and click on .Transaction Groups
The workspace now changes to the Transaction Group workspace.

Right-click on to create a New Transaction Group, or click on a group you have previously created.Transaction Group
You will now see the workspace changes to look like:

Right-click in the white area, and choose . The options in the popups represent the different item types. New Item > New OPC Item
Refer to the on this page for more information on the various item types and their properties. property table

https://legacy-docs.inductiveautomation.com/display/DOC80/Writing+SQL+Queries
https://legacy-docs.inductiveautomation.com/display/DOC80/Expression+Overview+and+Syntax
https://inductiveuniversity.com/video/sql-query-expression-items/8.0

3.

4. Once you configured the item, click . Different items have different properties. A description of for each type can OK item properties
be found on this page.

Item Type Property Table
The following tables describes the OPC, Tag and Expression Item properties.

OPC Item Options

Property Description

General

Name The name of the OPC item in the group. There cannot be duplicate names within a group.

Data
Type

The datatype used to read values from the PLC.

OPC Properties

OPC
Server

The Selected OPC Server. This is a drop-down list showing all the OPC Servers added in the Ignition Gateway.

OPC
Item
Path

The OPC address assigned by the server. Dragging and dropping from the OPC Browser will automatically populate this field.

Source
Data
Type

Data type for the OPC item.

Value Mode

Property Which property of the OPC item you want to use.

Value - Item value
Quality - Quality code from OPC Server (192 = GOOD_DATA)
Timestamp - The last time the item value changed
Name - The SQLBridge Item Name property of this Item

Mode Options for displaying values based on the Item value.

Direct Value - Item value
Hour Meter - Record the amount of time the Item value is non-zero. This accumulation will reset to zero when the item
value goes to zero. The datatype should be set to integer or float when using an Hour Meter regardless of the OPC Item
type.

On Zero - Use a zero value to accumulate time instead of a non-zero value
Retentive - Retain the Hour Meter value when it is not accumulating.
Units - The time units to display.

Event Meter - Record the number or times the Item value is non-zero. The datatype should be set to integer when using
an Event Meter regardless of the OPC Item type.

On Zero - Use a zero value to accumulate events instead of a non-zero value

Write Target

Mode Changes the items directional read/write option.

Use group's mode - Inherit the Update Mode from the Item's Group.
OPC to DB - Only read from the OPC server and write to the database.
DB to OPC - Only read from the database and write to the OPC Server.
Bi-directional OPC wins - Read and Write to both the database and OPC Server. On group start, write OPC Server values
to the database.
Bi-directional DB wins - Read and Write to both the database and OPC Server. On group start, write database values to
the OPC Server.

Target
Type

This is the selection for what the Item will write to when the group executes.

None, read-only item - Do not write this value to the database.
Database field - Write the Item value to the specified column in the database table. This list will populate with all the
column names from the Group's target table after the first time the group is run.

Target
Name

The name of the column in the database that this Item will write to when the group executes. The Target Name list will
populate with all the column names from the Group's target table if the Target Type is Database field.

Alarming The Alarming settings for the OPC items. See for a full explanation.Alarming Properties

Tag Reference Item Options

General

Name The name of the OPC item in the group. There cannot be duplicate names within a group.

Tag
Path

The path to the tag being referenced. This value is not editable except by clicking the Insert Tag button. There cannot be duplicate
names within a group.

Data
Type

The datatype to write to into the database if this item is not read-only.

Value Mode

Prop
erty

Which property of the Tag you want to use.

Value - Item value
Quality - Quality code of the Tag (192 = GOOD_DATA)
Timestamp - The last time the item value changed
Name - The SQLBridge Item Name property of this Item.

https://legacy-docs.inductiveautomation.com/display/DOC80/Tag+Alarm+Properties

Mode Options for displaying values based on the Item value.

Direct Value - Item value
Hour Meter - Record the amount of time the Item value is non-zero. This accumulation will reset to zero when the item value
goes to zero. The datatype should be set to integer or float when using an Hour Meter regardless of the OPC Item type.
On Zero - Use a zero value to accumulate time instead of a non-zero value
Retentive - Retain the Hour Meter value when it is not accumulating.
Units - The time units to display.
Event Meter - Record the number or times the Item value is non-zero. The datatype should be set to integer when using an
Event Meter regardless of the OPC Item type.
On Zero - Use a zero value to accumulate events instead of a non-zero value

Write Target

Mode Changes the items directional read/write option. This is only editable when the target Type is set to Database field.

Use group's mode - Inherit the Update Mode from the Item's Group.
OPC to DB - Only read from the OPC server and write to the database.
DB to OPC - Only read from the database and write to the OPC Server.
Bi-directional OPC wins - Read and Write to both the database and OPC Server. On group start, write OPC Server values to
the database.
Bi-directional DB wins - Read and Write to both the database and OPC Server. On group start, write database values to the
database.

Targ
et
Type

This is the selection for what the Item will write to when the group executes.

None, read-only item - Do not write this value to the database.
Database field - Write the Item value to the specified column in the database table.

Targ
et
Name

The name of the column in the database that this Item will write to when the group executes. The Target Name list will populate
with all the column names from the Group's target table if the Target Type is Database field.

Expression Item Options

General

Name The name of the OPC item in the group. There cannot be duplicate names within a group.

Value The static value of this Expression item. This will be overwritten by an Expression/SQL binding.

Datat
ype

The datatype values are stored as.

Value Mode

Prope
rty

Which property of the OPC item you want to use.

Value - Item value
Quality - Quality code of the expression/SQL Query (192 = GOOD_DATA)
Timestamp - The last time the item value changed.
Name - The SQLBridge Item Name property of this Item.

Mode Options for displaying values based on the Item value.

Direct Value - Item value

Hour Meter - Record the amount of time the Item value is non-zero. This accumulation will reset to zero when the item value
goes to zero. The datatype should be set to integer or float when using an Hour Meter regardless of the OPC Item type.
On Zero - Use a zero value to accumulate time instead of a non-zero value
Retentive - Retain the Hour Meter value when it is not accumulating.
Units - The time units to display.

Event Meter - Record the number or times the Item value is non-zero. The datatype should be set to integer when using an
Event Meter regardless of the OPC Item type.
On Zero - Use a zero value to accumulate events instead of a non-zero value

Evalu
ation
Mode

Run-always (ignore Trigger) - When selected, this causes the group to evaluate at each group interval, before the trigger state is
evaluated.

Write
Target

Target Type - This is the selection for what the Item will write to when the group executes.

None, read-only item - Do not write this value to the database.
Database field - Write the Item value to the specified column in the database table.
Other Tag - Write the Expression Item's value back to an OPC item or Tag Reference.

Targe
t
Name

The name of the column in the database that this Item will write to when the group executes. The Target Name list will populate
with all the OPC Item and Tag Reference names from this Group, or the column names from the Group's target table depending
on the Target Type selected.

Nume
ric

These are the Numeric properties for Expression Items. For a full description, see .Tag Scaling Properties

Alarmi
ng

These are the Alarming settings for the OPC items. See for a full explanation.Alarming Properties

Expre
ssion

These are the Expression/SQL Query options for Expression Items. See for a full explanation.Expression/SQL Properties

https://legacy-docs.inductiveautomation.com/display/DOC80/Tag+Scaling+Properties
https://legacy-docs.inductiveautomation.com/display/DOC80/Tag+Alarm+Properties
https://legacy-docs.inductiveautomation.com/display/DOC80/Scripting+Vs.+SQL+Vs.+Expressions

1.

2.

3.

Hour and Event Meters
Hour meter and refer to the option settings on Tags in Transaction Event meter Value Mode
Groups. The Value mode drives values that are used to create values that determine how long a
value was true. While the selected Value Mode for most transactions is , however, the Direct Hour

 mode accumulates value for the duration of a condition, and the accumulates meter Event meter
count in response to the condition.

Hour Meter
It is common to write to a Tag during the time when a Tag's value is true. An hour meter simplifies
this effort. Hour meters can be meters that accumulate the millisecond, second, minute, hour, or
day.

Hour and Event
Meters

Watch the Video

Count the Duration of a Tag Being True

From OPC Browser or Tag Browser, drag a boolean Tag into the area of a Transaction Group.Basic OPC/Groups Items Standard

From OPC Browser or Tag Browser, drag a memory tag or OPC tag (must be a numeric data type) into the Basic OPC/Groups
 portion of the Transaction Group.Items Standard

Right-click on the boolean tag in the Transaction Group and select to edit it.Edit
The window is displayed.Edit group tag

https://inductiveuniversity.com/video/hour-and-event-meters/8.0

3.

4.
5.

6.

a.

In the window, for , select .Edit group tag Value Mode Hour meter
In the window, for select from the dropdown menu, and in enter the name of Edit group tag Target Type Other tag Target Name
the memory tag as the target, and click .OK

In the area where the tags are located, go to the column, left-click on each tag to get the Basic OPC/Groups Items Target Name
dropdown menu, and set the following:

6.

a.

b.

7.
8.

1.
2.

For the boolean tag, select the memory tag from the dropdown which is set previously as the target tag to write the hour
meter to.

For the memory Tag, select Read-only from the dropdown.

Click at the top of the page, and do a to start the group. Enabled File > Save
Make the boolean Tag true to the start the Hour meter.

Event Meter
Another common scenario is to count the number of times an event occurred. For example, where there is boolean Tag and you want to
count the number of cycles the boolean Tag has experienced.

Count in Response to a Tag being True

From OPC Browser or Tag Browser, drag a boolean Tag into the area of a Transaction Group.Basic OPC/Groups Items Standard
From OPC Browser or Tag Browser, drag a memory Tag or OPC Tag (must be a numeric data type) into the Basic OPC/Groups

 portion of the Transaction Group.Items Standard

2.

3.
4.

5.

6.

Right-click on the boolean Tag in the Transaction Group and select to edit it.Edit
In the window, set the following: Edit group tag

Value Mode: Event meter
Target Type: Other Tag
Target Name: (or name of the Tag you are using)_Sim_New_Programmable_/Events

Click .OK

6.

a.

b.

7.
8.

1.

2.
3.

4.

In the area where the Tags are located, go to the column. Left-click on each Tag to get the Basic OPC/Groups Items Target Name
dropdown menu, and set the following:

For the boolean Tag, select the memory Tag from the dropdown which is set previously as the target Tag to write the hour
meter to.
For the memory Tag, select Read-only from the dropdown.

Click at the top of the page, and do a to start the group. Enabled File > Save All
Make the boolean Tag true to start the Event meter. You'll see the Event Tag update.

Reset an Hour or Event Meter Based on a
Condition
You can set the hour or event meter based on a condition.

In the Basic OPC/Group Items section, right-click and Edit a Tag that is serving as the
Hour or Event meter.
The Edit group tag window is displayed.
In the area, select the check box.Value Mode Reset on condition
Click the icon to display the window, and select a Group Tag from the Tag Choose Tag
popup window.
Click OK.

Resetting Hour and
Event Meters

Watch the Video

https://inductiveuniversity.com/video/resetting-hour-and-event-meters/8.0

4.

5.

6.

Next to the Tag icon, choose the operator sign (for example), and enter a number. In >
the example we entered . 9

Click . The target Tag will now reset in response to the condition (after 9 occurrences OK
in our example).

Next...
Trigger Options

Transaction Group Examples

Transaction Groups
There are four basic types of Transaction Groups that can be used in Ignition:

: The heart of bi-directional data storage and managementStandard
: Simple historical trendingHistorical

: Efficient large scale data storageBlock
: Interact with existing protected data systemsStored Procedure

This Section has examples for each type of group and shows the different ways that you can use
them. For a more complete understanding of how the parts of each group works, see Understandin

.g Transaction Groups

On this page

...

Transaction Groups
Standard Group
Historical Group
Block Group
OPC to OPC
Interaction

Standard Group
The Standard Group is the most flexible group. It is commonly used as a bi-directional sync between your PLCs and databases. In addition
to this, it can also be used to push data in either direction. This means the Standard Group can be used to store historical data, add to

, and create ./update existing tables recipe management tools

Historical Group
The Historical Group is the most straightforward and simplest to use. It will take OPC data and store it as history in a database.

1.

Block Group
The Block Group is used to efficiently store large amounts of data in blocks or chunks of similar data in the database. This is very useful if
you have many devices with the same Tags in them.

OPC to OPC Interaction
It is possible to configure your Standard Transaction Group to be able to get information from one OPC data point to another. This is useful in
the event that you have Tags coming from one PLC and you need the Tag information to be sent to another PLC on your plant floor.

1.

2.
3.

Create a and from your Tag Browser, drag two Tags into your Transaction Group's Basic OPC/Group Standard Transaction Group
Items section. For this example, the Tags will be called 'tag1' and 'tag2' and they will be coming from two different PLC's.
Set the Mode on 'tag1' to and set its Target Name to be 'tag2.''Bi-directional OPC Wins'
Set the Mode on 'tag2' to be and set its Target Name to 'Read-only.' The Mode on 'tag2' is not as 'Bi-directional OPC Wins'
important here as it is a Read-only item, but we set it to anyway. Your configuration should match what is 'Bi-directional OPC Wins'
shown below:

What this will do is make sure that every 1 second, the value from 'tag1' will be written to 'tag2' as below:

Related Topics ...

Understanding Transaction Groups

In This Section ...

https://legacy-docs.inductiveautomation.com/display/DOC80/Types+of+Groups#TypesofGroups-StandardGroup
https://legacy-docs.inductiveautomation.com/display/DOC80/Understanding+Transaction+Groups#UnderstandingTransactionGroups-CreatingaTransactionGroup

1.

2.
3.

Block Group

The Block group is a type of Transaction Group that stores data vertically. Whereas, a Standard
group stores the information horizontally in a single row. Block groups share many of the same
features as the Standard group. They can be bidirectional, insert into a database, or simply update
the database. All the rows in a Block group are associated with a single database transaction
therefore the process of writing to the database is very efficient.

On this page

...

Create a Block
Group

DB to OPC Mode
with Custom
Where Clause

Next...

Block Group

Watch the Video

Create a Block Group
In the Project Browser, right-click on Transaction Groups and select . New Transaction Group > New Block Group

Give the group a name and click Create Group.
Drag a Tag folder into the section of the new Transaction Group.Block Items

https://inductiveuniversity.com/video/block-group/8.0

3.

4.

5.

Select the item in the Block group, right-click and select Edit.

Change the , enter the to anything appropriate. Click . Name Target Name OK

5.

6. Configure the remainder of the group settings under the Action tab.

6.

7.
8.

Select the group, and click Enabled.
Save the project to start the group.

DB to OPC Mode with Custom Where Clause

Like the Standard Group, block groups can be configured to retrieve records from the database, writing back to an OPC address or Tag.
When using a custom WHERE clause, you can write the WHERE statement in such a way that multiple rows are returned, which would then
update multiple items, which in turn write back to to OPC addresses. We could then add a dynamic OPC value as a "lookup" that would
determine which set of rows to return.

This is a great way to retrieve multiple datapoints that are stored in a tall format on a database table, ideally when you're looking to retrieve
multiple sequential rows. For example a table with the following content, a single block item targeting the "itemValue" column, and a "lookup"
Tag or OPC item that the group will use in the WHERE clause.

Table structure

table_ndx itemValue

1 1

2 20

3 300

4 4,000

5 50,000

6 600,000

7 7,000,000

Our block item

Our Tags, including "lookup"

1.
2.
3.
4.

5.

6.

Set the for the group to "Update mode" "DB to OPC."
Set the Table action (under the "Action" tab) to "update/select."
Select the radio button."custom"
Under the text area, click the Tag icon, and select the Tag, which adds a reference to the Tag like this: {[default]"Where:" "lookup"
Block Group/lookup}
Write the rest of the our condition. In this case, we'll say we want results from our table starting a value greater than our lookup
value. Using the table specified above, we could write the following condition:

null_table_test_ndx > {[default]Block Group/lookup}

Enable the group, and the project.save

When the group is running, with an initial lookup value of 0, the group automatically grab table_ndx of 1, and write a value of 1 (from the first
row) to itemValue1, a value of 20 (from the second row) to itemValue2, and so on.

If we set the value on lookup to 3, that means the first row in the result set will be row 4, setting itemValue1 to 4000, itemValue2 to 50,000,
and so on.

If you set the value of lookup to 6, then that will set the value on itemValue1 to row 7's value (7,000,000), but you'll notice the other Tags are
retaining a value, which is notable since those items don't have a corresponding value to retrieve.

Values on our Tags

Items in the group

This is expected. By default, when a Block Group is configured like this, and some items can't receive updated values as a result of the
dynamic WHERE clause not returning enough rows, the items will retain their previous latched value: that is to say, the group will not
automatically clear or reset the values on the other items. Refer to .Set NULL DB Values to Default

Next...
Recipe Group

https://legacy-docs.inductiveautomation.com/display/DOC80/Understanding+Transaction+Groups#UnderstandingTransactionGroups-AdvancedSettings

1.

2.

3.

1.
2.

Recipe Group

You can use Transaction Groups to create a recipe management system which will pull recipe
information from the database and push it to the PLC when requested. With this system, the
Transaction Group is what queries the database rather than writing scripts to handle it all.

Before the Transaction Group
Before we make the Transaction Group, we first need to make sure we have a table set up in our
database that holds recipes. If you already have this, then you can skip to the next step on making
the Transaction Group.

We will make a table in our database that will hold our recipes. Our recipes will be simple,
containing a name, unique id, and two setpoints, so we will need a column for each of those
values.

Verify the Designer's is set to Read/Write, and open up the Comm Mode Database
.Query Browser

Execute the query below in the Database Query Browser to create the table we'll use in
this example:

CREATE TABLE recipes(
 id INT PRIMARY KEY,
 recipe_name VARCHAR(50),
 setpoint1 FLOAT,
 setpoint2 FLOAT)

Note that this query was designed for an MSSQL database. If you are connected to a
different database, the syntax on the CREATE statement may differ. Check your
database's documentation for more details.

Next we need to put some data into the table by using an statement. Execute the insert
below query to insert a new record into our recipes table:

INSERT INTO recipes (id, recipe_name, setpoint1, setpoint2)
 VALUES (1, 'Recipe 1', 10, 0)

You can rerun this query as many times as you want, incrementing the id to give you a
new unique id, changing the name, and providing different setpoints. Your table might look
something like the one below.

id recipe_name setpoint1 setpoint2

1 The First Recipe 34.7 54.1

2 The Wrong Recipe 12.8 42.3

3 The Best Recipe 65.7 95.1

4 The Other Recipe 49.8 112.2

Recipe Group

Watch the Video

Create the Transaction Group
Now that we have a recipe table in the database that is populated with some records, we can create the that will load a Transaction Group
recipe from the table into our Tags. We will be using the recipes table that we put together previously, but if you already had a table, you can
use that here instead.

Create a new .Standard Transaction Group
We have four columns in our database table, so we will need four Tags to use in the Transaction Group: an integer, string, and two
floats for the id, name, and setpoints respectively. Add the four Tags to the Transaction Group.

https://legacy-docs.inductiveautomation.com/display/DOC80/General+Designer+Interface#GeneralDesignerInterface-ToSetorChangeCommunicationMode
https://legacy-docs.inductiveautomation.com/display/DOC80/Database+Query+Browser
https://legacy-docs.inductiveautomation.com/display/DOC80/Database+Query+Browser
https://inductiveuniversity.com/video/recipe-group/8.0

2.

3.
4.

5.
6.

Set the Table Name to ' , the table that we created earlier.recipes'
We then need to ensure that our Tags will be receiving the proper values from the database. Set the Target Names for each of the
Tags: the string to ' , the floats to and , and the integer to . We don't need to set the recipe_name' 'setpoint1' 'setpoint2' 'Read Only'
integer to the id column, because we will not pull the the id from the database, but rather use the id as a trigger and in the where
clause.

Now we can finish setting up the rest of the Transaction Group. Set the Update mode to to .DB OPC
Set the to using with the set to , and the set to the you Table Action Update/Select Key/Value Pairs Column id Value Integer Tag
are using.

6.

7.

8.

Set the Update Rate to 1 second. We want to query the values out of the database as soon as we ask for them, so we need the
group to update quickly. However, we don't want the group to actually query the database every second, so we will need to set up
the trigger.
Go to the tab, and select . Trigger on the item the int Tag that is being used for the id. Trigger Execute this group on a trigger
Specify the Trigger condition as .Active on value change

8.

9.

10.

Finally, the Transaction Group and the project to get it started. The Transaction Group will now pull the recipe out of Enable save
the database where the id matches the value of the int Tag. The trigger also prevents it from running all the time, instead running
only when the int Tag value changes.
To test it out, simply change the value of id Tag to an id of one of the recipes in the recipes table.

1.

2.
3.

Update or Insert Group

You can update a row or insert a new row into the database when a key pair combination does not
exist. This eliminates the need to have a database that has every possible option considered in its
original design. Because of the setting, the group will insert a new insert row when not present
record whenever the designated ID doesn't exist. Afterwards, it will update the rows in the table
that are associated with the key/value references as shown in this example.

Update or Insert
Group

Watch the Video

Update or Insert a New Row into the Database
In the Project Browser, right-click on Transaction Groups and select .New Standard Group

Give the group a name and click .Create Group
Drag a group of Tags into the groups section.Basic OPC/Group Items

https://inductiveuniversity.com/video/update-or-insert-group/8.0

3.

4.

5.

Change one of the Tags to be read-only by selecting from the Tag's column.Read Only Target Name

In the group's Action tab, in the Table action area, select the update/select radio button and the key/value pairs radio button.

5.

6.
a.
b.
c.

7.
8.

Click the icon.Add
For the Column select the database table ID column.
For the Value column, select the read-only Tag.
Select Insert row when not present check box at the bottom of the Table action area.

Select the group, and click Enabled.
Save the project to start the group.

Next...

1.

2.

3.

4.
5.

Trigger Options

It is often useful to execute a group only when a certain condition is met or as a bit turns on or off.
Triggers allow Transaction Groups to run based on values changing in various ways.

Execute on Value Change
A group can execute when the group's Tags have changed, or when a particular Tag within the
group has changed. In either case, the Transaction Group will execute every time the value or
values change.

In the tab, select at the very top the Trigger Only evaluate when values have changed
checkbox.
Now the group will execute if any of the Tags change.
To execute when only one Tag changes, from the dropdown, sTags to watch for change
elect Custom, click on Select Tags, select the Tag from the pop-up window, and click .OK
 You can select more than one Tag at a time in order to monitor more than one Tag for
value changes.
From the dropdown, select the appropriate Tag to execute the Tag on a Trigger on item
trigger.
Select the radio button.Active on value change

 the Project to start the Transaction Group.Save

On this page

...

Execute on Value
Change
Execute while
Condition Is True
Execute on a Rising
Edge
Reset Trigger
Handshakes
Next...

Trigger – On Value
Change

Watch the Video

Execute while Condition Is True

https://inductiveuniversity.com/video/trigger-on-value-change/8.0

1.
2.
3.
4.
5.

1.

2.
3.

4.

Groups can execute while a condition is true resulting in the Transaction Group continuing to execute for the duration of this condition.

Create a Transaction Group, and drag a numeric or boolean Tag into the section. Basic OPC/Group Items
From the column dropdown, select .Target Name Read Only
Go to the tab, and select the checkbox.Trigger Execute this group on a trigger
In the area, set the trigger conditions which will determine under what condition the group executes.Trigger conditions

 the Project to start the Transaction Group.Save

Execute on a Rising Edge
Groups can execute when the trigger becomes True. This is known as a and it will only execute once and will not rising edge trigger
execute again until the trigger repeats the same cycle.

Create a standard Transaction Group with any number of Tags as long as one of them is a boolean Tag that will serve at the trigger
for the group.
 Set the for the boolean Tag to by selecting read-only from its drop down in the Target Name column.Write Target Read-only
Go to the tab and select the check box to . Select the boolean Tag from the drop down Trigger Execute this group on a trigger
menu and select to have the group only .execute once while the trigger is active

 the Project to start the Transaction Group.Save

Reset Trigger

1.
2.
3.
4.

1.
2.
3.
4.
5.

6.

7.

Resetting a trigger after execution of a triggered Transaction Group will result in the Transaction Group writing once to the targets followed
by writing back to the trigger to reset it.

To reset the trigger after execution:

Create a Transaction Group with a boolean Tag. The write target for this Tag should be read only.
Select the tab and select the check box.Trigger Execute this group on a trigger
Select the check box.Reset trigger after execution
Save the Project to start the Transaction Group.

Handshakes
When a group executes, it either completes successfully or an error prevents its execution. The outcome of an execution can be handled in
the handshake section of the trigger section of the Transaction Group. When a group executes successfully or fails to execute, the
handshake can write a value back to a Tag to alert the user that the group executed successfully or unsuccessfully.

To set handshake values for alerting the user:

Create a Transaction Group with a boolean Tag and a numeric Tag.
Set the boolean and the numeric Tag to read only.
Go to the tab and choose to .Trigger Execute this group on a trigger
Select the boolean Tag as the trigger In the drop down, and select the appropriate execution conditions.Trigger on item
In the bottom section, select , select the numeric Tag to write to, and choose a number that signifies Write handshake on success
success.
Likewise, in the bottom section, select , select the numeric Tag to write to, and choose a number that Write handshake on failure
signifies failure.

7. the Project to start the Transaction Group.Save

Next...
Understanding Transaction Groups
Transaction Group Examples

1.

2.

Transaction Group Update Modes

Transaction Groups are generally used to store OPC data into a database. Transaction Group
Update Modes give users additional flexibility as to whether data should flow from an OPC server
to a database or from a database to an OPC server. Additionally, it is possible to configure data to
be synchronized between a database and an OPC server via Bi-directional Update Modes.

All update modes do not work for all Transaction Group types. For example, Historical Transaction
Groups can only insert data to a database table and not update it. In addition, Historical
Transaction Groups also cannot write back to OPC items so Bi-directional Update Mode will not be
an option for users using the Historical Transaction Group type.

The different Update Modes:

OPC to DB - Only read from the and write to the . OPC server database
DB to - Only read from the and write to the . OPC database OPC Server
Bi-directional wins - Read and Write to both the and . On OPC database OPC Server
group start, write values to the . OPC database
Bi-directional DB wins - Read and Write to both the and . On group database OPC Server
start, write values to items. database OPC

On this page

...

OPC to DB
DB to OPC
Bi-directional OPC
Wins
Bi-directional DB
Wins

OPC to DB
The Update Mode allows a Transaction Group to store OPC data to a Database Ignition that it has a connection to as shown in OPC to DB
the following example.

Create a and from your Tag Browser, drag a single tag into your Transaction Group's Basic OPCStandard Transaction Group
/Group Items section. For this example, the tag is called 'tag1.'
Set the Update Mode on 'tag1' to and set its to be 'tag1.' The Target Name will correlate to the name of OPC to DB Target Name
the column in your database table where 'tag1' will be stored.

Your Transaction Group will look like the screenshot below:

This configuration will allow for tag1's value to be stored into a database table called every 1 second to a column 'group_table'

https://legacy-docs.inductiveautomation.com/display/DOC80/Types+of+Groups#TypesofGroups-StandardGroup

2.

1.

2.
3.

called 'tag1.' We can see this working through the as shown below: Database Query Browser

DB to OPC
DB to OPC Update Mode allows you to write data from your Database to an OPC tag. This can be done by configuring the following:

Create a and from your Tag Browser, drag a single tag into your Transaction Group's Basic OPCStandard Transaction Group
/Group Items section. For this example, the tag will be called 'tag1.'
Set the mode of the Transaction Group to and set the Mode for tag1 to . DB to OPC DB to OPC
Set the Transaction Groups Table Action to and check the option. What this will do is ensure that we do not 'update/select' 'last'
have a new value inserted to the database. What we will have instead is a single row of data in the table group_table where the
value of the 'tag1' column will control tag1's OPC value.

From the screenshots below, we can see that when the value in the for column 'tag1' is 22, the value for Database Query Browser
'tag1' is also 22. When we change the value on column 'tag1' to 29, we see tag1's value change to 29 as well.

https://legacy-docs.inductiveautomation.com/display/DOC80/Database+Query+Browser
https://legacy-docs.inductiveautomation.com/display/DOC80/Types+of+Groups#TypesofGroups-StandardGroup
https://legacy-docs.inductiveautomation.com/display/DOC80/Database+Query+Browser

3.

1.

2.
3.

Bi-directional OPC Wins

Bi-directional OPC means that Ignition will Read and Write to both thewins database and OPC Server. However, on
initial group start, if the OPC and database values are different, the OPC value will win and the Transaction Group
will write OPC values to the database.

Create a and from your Tag Browser, drag a single tag into your Transaction Group's Basic OPCStandard Transaction Group
/Group Items section. For this example, the tag will be called 'tag1.'
Set the mode of the Transaction Group to and set the Mode for tag1 to 'Bi-directional OPC wins' 'Bi-directional OPC wins.'
Set the Transaction Groups Table Action to and check the option. What this will do is ensure that we do not 'update/select' 'last'
have a new value inserted to the database. What we will have instead is a single row of data in the table group_table where the
value of the 'tag1' column will control tag1's OPC value and similarly, 'tag1's OPC value will control the value of the 'tag1' column
database side.

What you will have at this point is a bi-directionally controlled Transaction Group where any change to tag1's value will be reflected
on the database and any change database side for the 'tag1' column value will be reflected on your 'tag1' tag.

In the event that the OPC and database values do not match on Transaction Group start, the OPC value will win and it will be written

https://legacy-docs.inductiveautomation.com/display/DOC80/Types+of+Groups#TypesofGroups-StandardGroup

3.

1.

2.
3.

to the database. This can be observed below:

Notice how the Transaction Group is disabled, 'tag1' value is 20, and the 'tag1' column value is 880. When the group is enabled,
since the OPC and database values are different, the Update Mode being means the 'tag1' column value 'Bi-directional OPC wins'
will be set to 20 when the Transaction Group starts.

Bi-directional DB Wins
Bi-directional DB wins means that Ignition will Read and Write to both the database and OPC Server. However, on initial group start, if the
OPC and database values are different, the database value will win and the Transaction Group will write database data to your OPC data
points.

Create a and from your Tag Browser, drag a single tag into your Transaction Group's Basic OPCStandard Transaction Group
/Group Items section. For this example, the tag will be called 'tag1.'
Set the mode of the Transaction Group to and set the Mode for 'tag1' to 'Bi-directional DB wins' 'Bi-directional DB wins.'
Set the Transaction Groups Table Action to and check the option. What this will do is ensure that we do not 'update/select' 'last'
have a new value inserted to the database. What we will have instead is a single row of data in the table group_table where the
value of the 'tag1' column will control tag1's OPC value and similarly, tag1's OPC value will control the value of the 'tag1' column
database side.

What you will have at this point is a bi-directionally controlled Transaction Group where any change to tag1's value will be reflected

https://legacy-docs.inductiveautomation.com/display/DOC80/Types+of+Groups#TypesofGroups-StandardGroup

3.

on the database and any change database side for the 'tag1' column value will be reflected on your 'tag1' tag.

In the event that the OPC and database values do not match on Transaction Group start, the database value will win and it will be
written to the OPC data point. This can be observed below:

Notice how the Transaction Group is disabled, 'tag1' value is 10, and the 'tag1' column value is 20. When I enable the group, since
the OPC and database values are different, the Update Mode being means the tag1 tag value will be set to 'Bi-directional DB wins'
20 when the Transaction Group starts.

Related Topics ...

Understanding Transaction Groups
Types of Groups

https://docs.inductiveautomation.com/display/DOC80/Understanding+Transaction+Groups

1.

2.
3.

OPC to OPC Transaction Group

Configuring Transaction Group for OPC to OPC Interaction
Transaction groups are generally used to channel OPC data to a database or vise-versa. It is also possible to configure your Standard
Transaction Group to be able to get information from one OPC data point to another. This is useful in the event that you have tags coming
from one PLC and you need the tag information to be sent to another PLC on your plant floor.

Create a and from your Tag Browser, drag two tags into your Transaction Group's Basic OPC/Group Standard Transaction Group
Items section. For this example, the tags will be called 'tag1' and 'tag2' and they will be coming from two different PLC's.
Set the Mode on 'tag1' to and set its to be 'tag2.''Bi-directional OPC Wins' Target Name
Set the Mode on 'tag2' to be and set its to 'Read-only.' The Mode on 'tag2' is not as 'Bi-directional OPC Wins' Target Name
important here as it is a Read-only item, but we set it to anyway. Your configuration should match what is 'Bi-directional OPC Wins'

shown below: What this will
do is make sure that every 1 second, the value from 'tag1' will be written to 'tag2' as below:

https://legacy-docs.inductiveautomation.com/display/DOC80/Types+of+Groups#TypesofGroups-StandardGroup

	Tag Historian
	Tag History Gateway Settings
	Configuring Tag History
	Data Partitioning and Pruning
	Custom Tag History Aggregates
	Tag History Splitter

	SQL Bridge (Transaction Groups)
	Understanding Transaction Groups
	Types of Groups
	Item Types
	Hour and Event Meters

	Transaction Group Examples
	Block Group
	Recipe Group
	Update or Insert Group
	Trigger Options
	Transaction Group Update Modes
	OPC to OPC Transaction Group

