L Tag HiStOraN . o 2

1.1 Tag History Gateway SettiNgSo vttt e e e e e e e 5
1.2 Configuring Tag HiStory oo 12
1.3 Data Partitioning and Pruningt 18
1.4 Custom Tag History AQQregatesottt et e e e e e e e 21
1.5 Tag History Spltter . ..o 24
2. SQL Bridge (TranSaction GrOUPS) . .« vt vttt e ettt e et e et e e e e e e e e et e e e e et e 28
2.1 Understanding TranSaction GrOUPSttt vttt it et e e e e e e e e e e e e e e e e e e 32
2.0 L TYPES Of GrOUPS . o ottt ittt e e e e e e e e e e 42
2. L 2 M TY PSS . oottt e e 49
2. 1.3 Hourand EVENt Meters 57
2.2 Transaction GroUp EXamplest e 63
2.2, BIOCK GrOUD . ettt e e e e e e e 66
2.2.2 RECIPE GIOUP .ottt ittt et et e e e e e e e e e e e 73
2.2.3Update Or INSErt GrOUP . . . ottt ettt e e e e et e e e e e 77
2.2, 4 TrgEr OPtONS . .o ittt e et e e e e e 80
2.2.5 Transaction Group Update MOGESttt e e e e 84

2.2.6 OPC t0 OPC TranSaction GrOUP v vttt ettt e 89

Tag Historian

Overview _
On this page
Ignition has two main approaches to recording historical data:
® Tag Historian Module: Individual or groups of tags can be configured to record history
based on scan class execution.
®* Transaction Groups: Groups of OPC items that are recorded on an execution cycle. e Overview
More informa_tion on Transaction Groups can be found in the SQL Bridge (Transaction e Historian Tables
Groups) section. e Tag Historian
S L Querying
The Tag Historian Module provides power and flexibility for storing and accessing historical data. e Vision Historian
When history is enabled on an Ignition Tag, data is stored automatically in your SQL database in Charts
an efficient format. This data is then available for querying through scripting, historical bindings, .

Store and Forward
® Other Methods of
Storing Historical
Data

® Data storage

and reporting. Options for partitioning and deleting old data help to ensure the system stays
maintained with minimal extra work. Also, you can drag-and-drop Tags directly onto an Easy Chart
component to create trends or onto a table to display historical values. Tag Historian's robust
guerying features provide you great flexibility in how you retrieve the stored data.

Historian Tables

With the Vision Table component or the Perspective - Table component you can quickly make custom tables that display historical data. You
can customize your table to bring back the most recent history, a specific date range, fixed sample size, and interval sample size, In Vision,
you can drag and drop history-enabled tags onto a table component to display historical values.

t_stamp Tag1 Tag?
Jul 11, 2016 11:57 AM 10 25~
Jul 11, 2016 11:58 AM 10 25
Jul 11, 2016 11:58 AM 10 28
Jul 11, 2016 11:58 AM 10 25
Jul 11, 2016 11:58 AM 10 25
Jul 11, 2016 11:58 AM 10 25
Jul 11, 2016 11:58 A 10 25
Jul 11, 2016 11:59 A 10 25
Jul 11, 2016 11:59 AM 10 25
Jul 11, 2016 11:59 A 10 25
Jul 11, 2016 11:59 A 10 28
Jul 11, 2016 11:59 AM 10 25
Jul 11, 2016 11:59 A 10 25
Jul 11, 2016 12:00 PM 10 25
Jul 11, 2016 12:00 PM 10 25
Jul 11, 2016 12:00 PM 10 25E|

Tag Historian Querying

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Table
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Table

While the data is stored openly in the database, it does not lend itself well to direct querying. Ignition offers a range of built-in querying
options that are very powerful and flexible. In addition to simple on-change querying, the system can perform advanced functions such as
guerying many Tags from multiple providers, calculating their quality, interpolating their values, and coordinating their timestamps to provide
fixed resolution returns. Tag History Bindings allow you to pull Tag History data that is stored in the database into a component through a
binding. The binding type, which is only available for Dataset type properties, runs a query against the Tag Historian.

For more information, see Tag History Bindings in Perspective or Tag History Bindings in Vision.

Querying can be performed on tables and charts through the Historical binding, Nested Queries, and through scripting. You can also query
Tags from the Reporting Module.

Vision Historian Charts

In the Vision module, you can use the Easy Chart component to make powerful timeseries charts from Tag Historian data. Drag and drop
history-enabled Tags onto a chart to create chart pens and data trends. Your charts and graphs can include subplots, axes, digital offsets,
and moving averages. You can quickly and easily turn your historical and realtime data into dynamic charts and graphs for your users. These
charts can be configured in the runtime to give users quick access to data in the time range they need.

To see all the chart options and features for the Vision module's Easy Chart, refer to the section on Using the Vision Easy Chart.

Ramps 175 | E"S 50
BE@r 3 & a8 HOA B2 @
B8R X3 =] W £ Realistico 3%

Sines = B [Realistics 3 PRV
W Esinet 32 3 5
W Ed sine2 3%

Value

Hand

State
E

off

25 Auto
WS729AM 10STSIAM 10:SE29AM 10:SBSIAM 105929 AM 10:59:59
[Jun14,2019]

Off: - . .
11:15 AM 11:16 AM 11217 AM 1118 AM
[Jun14,2019]

LR 6/14/19 10:57 AM - 6/14/19 10:59 AM & (p 4 & 6/14/1911:15 AM - 6/14/19 11:18 AM |,

b

=
IR IR S
9:25 AM '9:55 AM 10:25 AM

Store and Forward

The Store and Forward system provides a reliable way for Ignition to store historical data to the database. The Store and Forward system is
not exclusively part of Tag History, but systems such as the Tag Historian and Transaction Groups use it to prevent data loss and store data
efficiently using a record cache.

Other Methods of Storing Historical Data

The SQL Bridge (Transaction Groups) Module performs a variety of tasks to store data historically. In their simplest form, Transaction Groups
read values from the OPC addresses and store them into a SQL database. There are four types of Transaction Groups; Standard, Block,
Historical, and Stored Procedures.

® Standard Group is the most flexible, and can also write database values to OPC addresses or synchronize data changes between
both the database and PLC. This allows you to create true realtime values tables in a database, and push values to a PLC.

® Historical Group can quickly store data from the plant floor into any kind of SQL database.

® Block Group transfers large amounts of data very efficiently.

® Stored Procedures uses PLC data as inputs and outputs from your existing stored procedures.

Data storage

Historical Tag values pass through the Store and Forward system before they are stored in the database connection associated with the
historian provider. The data is stored according to its datatype directly to a table in the SQL database, with its quality and a millisecond
resolution timestamp. The data is only stored on-change, according to the value mode and deadband settings on each Tag, thereby avoiding
duplicate and unnecessary data storage. The storage of scan class execution statistics ensures the integrity of the data. While advanced
users may change the table according to their database to be more efficient (for example, using a compression engine), Ignition does not
perform binary compression or encrypt the data.

https://legacy-docs.inductiveautomation.com/display/DOC80/Tag+History+Bindings+in+Perspective
https://legacy-docs.inductiveautomation.com/display/DOC80/Tag+History+Bindings+in+Vision
https://legacy-docs.inductiveautomation.com/display/DOC80/Reporting
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Easy+Chart
https://legacy-docs.inductiveautomation.com/display/DOC80/Using+the+Vision+Easy+Chart
https://legacy-docs.inductiveautomation.com/display/DOC80/Store+and+Forward
https://legacy-docs.inductiveautomation.com/display/DOC80/Store+and+Forward

In This Section ...

Tag History Gateway Settings

Configuring Tag History Settings

Tag History storage is easy to set up quickly, but there are also some settings that can be adjusted
to allow for differences in database storage space and performance needs.

Table Partitioning

Ignition has the ability to automatically break up data into different tables of fixed duration. This
can help make data maintenance easier by preventing tables from becoming too large. Tables can

On this page

Configuring Tag
History Settings

® Table Partitioning
* Data

easily be deleted in order to prune old data, and the database is able to better optimize access to . Compression
frequently retrieved rows. The built-in partitioning feature can be used with any database. Datasource History

Providers
It is important to note the difference between this feature and any partitioning options that the * Editing
database might provide. Most modern databases offer their own faculties for defining "partitions", Datasource
offering similar and greater benefits. While Ignition cannot use these features directly, advanced History Providers
. ® OPC-HDA
users may choose to apply these features on top of what Ignition currently offers. Provid
rovider
® Internal History
. Provider
Data Compression « Remote History
Provider
Ignition does not perform any binary compression on the data. That is, values are stored directly in ® Tag History Splitter

standard database tables. However, to reduce the number of values stored, Ignition offers two
different algorithms for pre-compressing the data (trimming unnecessary values). The two modes
correspond to the value mode property of the Tag. The value mode (Discrete or Analog) dictates
the type of value that the Tag represents, affects how the deadband is applied to values, and how
interpolation is performed when querying.

® Discrete
The value uses a simple deadband and is only stored when a new value is + /- the
deadband value away from the previously stored value.

®* Analog
The deadband is used to form a corridor along the trajectory of the value. A new value is
only stored when it falls outside the previous corridor. When this occurs, the trajectory is
recalculated and a new corridor is formed.

Typically, Discrete is used for boolean or integers that represent state, and Analog is used for
floats or integers that change more often (which is why you want to perform compression).While
advanced users can change the table according to their database to be more efficient (for
example, using a compressed engine), Ignition does not perform binary compression or encrypt
the data in any way. See Deadband Style, in Tag Properties Table for more information about the
difference between Discrete and Analog values.

Datasource History Providers

Datasource History Providers can not be created or deleted, but are instead tied to a database connection. They are automatically added
when connecting to a new database and removed after the database connection is removed. It comes pre-configured to partition every
month, but the provider can be edited to change its behavior.

There are two other major options to configure on the provider: pre-processed partitions and data pruning. With pre-processed partitions, the
data that is stored is summarized and then placed into another table in the database. While this takes up more space in the database, it can
improve query speed by reducing the amount of data points that must be loaded. Data pruning will automatically remove old data from your
system after it reaches an age that you set. It will only remove whole tables though. If each partitioned table represents a month and the
pruning system removes data that is three months old, it will wait until all the data in the oldest table is three months old before pruning it.

Editing Datasource History Providers

The following table lists the settings for the Datasource History Providers. To access these settings, go to the Config tab of the Gateway
Webpage and select Tags > History. Then click the Edit button for the provider you want to update.

https://legacy-docs.inductiveautomation.com/display/DOC80/Tag+Properties#TagProperties-TagPropertiesTable

Main

Provide = Name of the Tag History Provider. By default, this will match up with the name of the database connection.
r Name

Enabled ' If the check box is selected (enabled), the provider is turned on and accepts tag history data.

If disabled, the database is not shown in the list of history providers when configuring tag history from the Designer. Also, any
data logged to the provider, will error out and be quarantined by the store and forward engine, if possible.

Descrip = A description of the provider.
tion

Data Partitioning

Enable = To improve query performance, Tag Historian can partition the data based on time. Partitions will only be queried if the query

Partitio = time range includes their data, thereby avoiding partitions that aren't applicable and reducing database processing. On the other

ning hand, the system must execute a query per partition. It is therefore best to avoid both very large partitions, and partitions that
are too small and fragment the data too much. When choosing a partition size, it is also useful to examine the most common
time span of queries.

Partitio = The size of each partition, the default is one month. Many systems whose primary goal is to show only recent data might use
n smaller values, such as a week, or even a day.

Length

and

Units

Enable = Pre-processed partitions will use more space in the database, but can improve query speed by summarizing data, reducing the
d Pre- = amount that must be loaded.

proces

sed

Partitio

ns

Pre- When pre-processing is turned on, the data will be summarized into blocks of this size.
proces

sed

Windo

w Size

(secon

ds)

Data Pruning

Enable Partitions with data older than a specific age are deleted. The check box is not selected/enabled by default.
Data

Prunin
9 1 Data pruning works by deleting old partitions. Therefore, data will only be removed when a partition has no data

younger than the prune age.

Prune The maximum age of data. As mentioned, the data is deleted by the partition, and could therefore surpass this threshold by

Age quite a bit before all of the data in the partition is old enough to be dropped.

and

Units

Advanced

Enable ' If enabled, tracks scan class executions to determine the difference between unchanging values, and values that are flat due to
Stale the system not running.

Data

Detecti

on

Stale The multiplier for scan class rate used to determine when values are stale. If scan class execution is not recorded within this
Detecti = amount of time, values will be considered bad on query.

on

Multipli

er

OPC-HDA Provider

Establishes a connection to an OPC-HDA Server to read history data that may be stored there from a third party. Ignition can not write to this
type of history provider.

1 This requires the OPC COM to be installed.

The following feature is new in Ignition version 8.0.4
Click here to check out the other new features

Internal History Provider

As of version 8.0.4, the Edge Historian, an internal history provider, is available on standard Ignition Gateways.
To set up an Edge history provider, do the steps the follow:
1. Go to the Config section of the Gateway Webpage and select Tags > History.

2. Click Create New Historical Tag Provider.
3. Select the Internal Historian radio button and click Next.

Help @ Get Designer

Ignition
) SYSTEM & Config > Tegs > History
fome Overview
i Backup/Restore
Status iti cl

R *' Internal Historian
n Licensing

A built-in local historian with limited storage.

Config Modules

Projects .
OPC-HDA Provider

Redundancy

~ R A historical tag provider that uses OPC-HDA to retrieve values from a 3rd party
SISy TS histarian.

NETWORKING i)
Remote History Provider

Web Server
Sends tag history through the Gateway Network for storage in a remote history
Gateway Network provider.

Email Settings

Tag History Splitter

SECURITY R . R
Stores tag history concurrently to two other connections in the gateway.

Auditing

4. Fill in the properties in the table.

Main

Provider Name of the Edge History Provider.

Name

Enabled If the check box is selected (enabled), the provider is turned on and accepts tag history data. Default is true.

Description = A description of the provider.
Limits (Requires Tag Historian Module License)

Time Whether or not time limit is enabled. Default is true.
Limited
Enabled?

https://legacy-docs.inductiveautomation.com/display/DOC80/OPC+COM#OPCCOM-CreatinganOPC-HDAConnection
https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.4
https://legacy-docs.inductiveautomation.com/display/DOC80/OPC+COM

Time Limit
Size

Time Limit
Units?

Point Limit
Enabled?

Point Limit
Size

Size of the time limit. Unit (seconds, weeks, etc) is set in the Time Limit UnitsDefault is 1.

Options are milliseconds, seconds, minutes, hours, days, weeks, months, or years. Default is WEEK.

Whether or not point limit is enabled. Default is true.

Maximum number of data points the historian will store. Default is 10,000,000.

Sync Settings (Requires EAM Module Licensing)

Remote
Sync
Enabled

Remote
Gateway
Name

Remote
Provider
Name

Sync
Frequency

Sync
Frequency
Units

Max Batch
Size

Enable
Schedule

Schedule
Pattern

Allows you to turn Tag History Synchronization on or off. Default is false.

The Gateway to target for remote synchronization. Must have the Tag Historian module installed, and allow remote
storage. The Ignition Gateway's security settings will also need to be configured to allow remote storage.

The remote history provider to sync data to.

The frequency with which data will be sent to the remote gateway. This setting will be used in conjunction with the
sync schedule, if enabled. Default is 10.

The unit of time that will be used with the Sync Frequency. Options are milliseconds, seconds, minutes, hours,
days, weeks, months, or years. Default is SEC.
The maximum number of data points that will be sent per batch to the remote Gateway. (Default is 10,000.)

If enabled, the data will only be synchronized during the times specified by the pattern provided. Default is false.

A comma separated list of time ranges. Examples:

® 9:00-15:00
® 9pm-5am
® 20.30-04.30

5. After filling in the properties in the table as desired, click Create New Historical Tag Provider.

Once an Edge History Provider is set up, you can select it as the storage provider for your tags. For example, in the following image, and
Edge History Provider named "Internal Historian Test" is selected for storing history on a memory tag.

https://legacy-docs.inductiveautomation.com/display/DEP/Edge+Plugins#EdgePlugins-TagHistorySynchronizationProperties
https://legacy-docs.inductiveautomation.com/display/DOC80/Config#Config-Security

Fj Tag Editor

Mem Tag 1

default

Properties
BE |4 = | = Rl O+
=~ Meta Data Properties
Tooltip
Documentation
=~ Security
Access Rights Read/Write v
= Scripting
Tag Event Scripts 0 event scripts &
- Alarms
Alarms Mo alarms &
Alarm Eval Enabled true v
= History
History Enabled true hd

orage Provide Internal Historian Test]
Deadband Style =Mone=
Deadband Mode
Historical Deadband vm_db
Sample Mode MySQL
Min Time Between Samples T|w

Remote History Provider

A Remote History Provider is a link to a historical provider on another gateway. Since it is grabbing
historical tag data from another provider, its only configuration is to ensure it is pointed at the
correct tag provider. You can't change any of the settings like partition length and prune age, but
would instead have to change those settings on the original history provider on the remote
gateway. By default, the remote history provider will fall under the Default Security Zone and be
read only.

To set up a Remote History Provider, do the steps that follow:

1. Go to the Config section of the Gateway Webpage and select Tags > History.

https://legacy-docs.inductiveautomation.com/display/DOC80/Security+Zones

2. Select the Remote History Provider radio button.

Ignlhon Help @ Get Designer
ﬁ SYSTEM 0 Config » Tags > History

feme Overview

i Backup/Restore

Status iti cl

CHECTEEELE Internal Historian
n Licensing
A built-in local historian with limited storage.

Config Modules

Projects R
OPC-HDA Provider

Redundancy

A historical tag provider that uses OPC-HDA to retrieve values from a 3rd party

Gateway Settings historian

NETWORKING R R
* Remote History Provider

Web Server B . ’
Sends tag history through the Gateway Network for storage in a remote history

Gateway Network provider.

Email Settings
Tag History Splitter

SECURITY
Stores tag history concurrently to two other connections in the gateway.

Auditing

3. Alist of known Gateways appears. If the Gateway is not currently available or displayed here, you can specify its name manually.

Ignition Help @

O Config > Tags > History

ﬁ SYSTEM

Home -
Overview

Qi Backup/Restore
W Known gateways appear here. If you do not see a gateway that you expect, please

Status Ignition Exchange
Licensing check the Gateway Network connection settings to verify that connections are valid.
Modules
Projects @® Ignition-ubuntu

Redundancy Connection: null, State: Defined_NeverConnected
Gateway Settings

O specify Gateway Name Manually

NETWORKING

If the gateway is not currently available or displayed here, you can specify its
Web Server name manually.

Gateway Network
Email Settings E

SECURITY

4. Select a Gateway and click Next.
5. Fillin the properties in the table.

Main

Provider Name of the Tag History Provider.

Name

Enabled If the check box is selected (enabled), the provider is turned on and accepts tag history data. Default is true.

If disabled, the database is not shown in the list of history providers when configuring tag history from the Designer.
Also, any data logged to the provider, will error out and be quarantined by the store and forward engine, if possible.

Description = A description of the provider.
Remote Gateway

Remote The name of the remote Gateway.
Gateway
Name

Remote The name of the provider on the remote Gateway. This does not have to match the provider name on the local

History Gateway.

Provider

Storage

Allow If false, the provider will only be used for querying historical data. If true, the provider will create a store and forward
Storage pipeline for sending data to a remote gateway. Default is true.

Max The maximum number of data points that can be sent per request. This value is used in conjunction with the store
Bundle and forward settings to dictate how much data is sent at once. O=unlimited

Size

6. After filling in the properties in the table, click Create New Historical Tag Provider.

Tag History Splitter
This provider combines two separate providers into a single new provider. When setting up a Tag to store history, selecting this provider will

write the same data to both providers that it has selected. The Tag History Splitter is useful for automatically creating a backup of your data,
or for reading history from two separate providers. Learn more about setting up the Tag History Splitter here.

Related Topics ...

® Configuring Tag History

Configuring Tag History

Logging data is easy with Tag Historian. Once you have a database connection, all you do is set
the Tags to store history and Ignition takes care of the work. Ignition creates the tables, logs the

data, and maintains the database. On this page

The historical Tag values pass through the store-and-forward engine before ultimately being
stored in the database connection associated with the historian provider. The data is stored
according to its datatype directly to a table in the SQL database, along with its quality and a
millisecond resolution time stamp. The data is only stored on-change, according to the value mode
and deadband settings on each Tag, thereby avoiding duplicate and unnecessary data storage.
The storage of scan class execution statistics ensures the integrity of the data.

® Tag Configuration
® Sample Mode

® Max and Min
Time Between

) . Samples
Tag Configuration * Deadband and
Analog

_) o)] o Compression
The first step to storing historical data is to configure Tags to record values. This is done from the H e Seeded Values
istory section of the Tag Editor in the Designer. Select the History Enabled property to turn on ® Raw Data
history. The properties include an Historical Tag group that will be used to check for new values. Queries
Once values surpass the specified deadband, they are reported to the history system, which then * |og Tag History
places them in the proper store and forward engine. Complete information on the History Data
properties (and all properties in the Tag Editor), can be found on the Tag Properties Table. * Setting a UDT to

Log History Data

Tag Editor x

Sine5)

default

Properties Details
=4 = = w 4 Documentation | Diagnostics
S INDUCTIVI

Name sines

o UNIVERSIT

b Value

» Numeric Properties
» Meta Data Properties
> security

> Scripting

> Alarms

- _History

istory rabied roe g Co nfi g urin g Tag
MSSQL v

Deadband Style Auto M I -

: History

Historical Deadband 0.01

sample Mode On Change -]

Min Time Between Samples 1

Min Time Units. Seconds v

Max Time Between Samples 0 H

: Watch the Video

Apply Cancel

Sample Mode

The Sample Mode setting determines how often a historical record should be collected.

® On Change - Collects a record whenever the value on the Tag changes.
® Periodic - Collects a record based on the Sample Rate and Sample Rate Units properties.
® Tag Group - Collects a record based on the Tag Group specified under the Historical Tag Group property.

Historical Tag Group

Historical Tag Group setting shows up with Sample Mode is set to Tag Group. Historical Tag Group setting determines how often to record
the value on the Tag. It uses the same Tag Groups that dictate how often your Tags should execute. Typically, the Historical Tag Group
should execute at the same rate as the Tag's Tag Group or slower: if a Tag's Tag Group is set to update at a 1,000ms rate, but the
Historical Tag Group is set to a Tag Group that runs at 500ms rate, then the Tag History system will be checking the Tag's value twice
between normal value changes, which is unnecessary.

Max and Min Time Between Samples

Normally Tag Historian only stores records when values change. By default, an "unlimited" amount of time can pass between records — if the
value doesn't change, a new row is never inserted in the database. By modifying these settings, it is possible to specify the maximum
number of scan class execution cycles that can occur before a value is recorded. Setting the value to 1, for example, would cause the Tag
value to be inserted each execution, even if it has not changed. Given the amount of extra data in the database that this would lead to, it's
important to only change this property when necessary.

https://legacy-docs.inductiveautomation.com/display/DOC80/Tag+Properties
https://legacy-docs.inductiveautomation.com/display/DOC80/Tag+Properties
https://legacy-docs.inductiveautomation.com/display/DOC80/Understanding+Transaction+Groups#UnderstandingTransactionGroups-CreatingaTransactionGroup
https://legacy-docs.inductiveautomation.com/display/DOC80/Tag+Properties#TagProperties-TagPropertiesTable
https://www.inductiveuniversity.com/videos/configuring-tag-history/8.0/8.0
https://legacy-docs.inductiveautomation.com/display/DOC80/Tag+Groups

Deadband and Analog Compression

The deadband value is used differently depending on whether the Tag is configured as a Discrete Tag or as an Analog Tag. Its use with
discrete values is straightforward, registering a change any time the value moves +/- the specified amount from the last stored value. With
Analog Tags, however, the deadband value is used more as a compression threshold, in an algorithm similar to that employed in other
Historian packages. It is a modified version of the 'Sliding Window' algorithm. Its behavior may not be immediately clear, so the

following images show the process in action, comparing a raw value trend to a "compressed" trend.

The Deadband Style property sets the: Auto, Analog, or Discrete.
Discrete

¢ Storage - The deadband will be applied directly to the value. That is, a new value (V,) will only be stored when: |V;-V,| >=

Deadband.
® Interpolation - The value will not be interpolated. The value returned will be the previous known value, up until the point at which
the next value was recorded.

Analog
® Storage - The deadband is used to form a corridor along the trajectory of the value. A new value is only stored when it falls outside

the previous corridor. When this occurs, the trajectory is recalculated, and a new corridor formed. See below for an example.
® Interpolation - The value will be interpolated linearly between the last value and the next value. For example, if the value at Time, w

as 1, and the value at Time, is 3, selecting Time, will return 2.

Auto

® The setting will automatically pick either Analog or Discrete, based on the data type of the Tag.
O If the data type of the Tag is set to a float or double, then Auto will use the Analog Style.
© If the data type of the Tag is any other type, then the Discrete style will be used.

186025

1500.0

1487 5

1485.0

Yalue

14025

1480.0

1487 5

1485.0

4:28:25 PM 4:28:30 PM 4:28:35 PM 4:28:40 PM #4:28:45 PM 4:28:50 PM 4:28:55 PM 4:20:00 PM

In this image, an analog value has been stored. The graph has been zoomed in to show detail; the value changes often and ranges over time
+/- 10 points from around 1490.0. The compressed value was stored using a deadband value of 1.0, which is only about .06% of the raw
value, or about 5% of the effective range. The raw value was stored using the Analog Tag mode, but with a deadband of 0.0. While not
exactly pertinent to the explanation of the algorithm, it is worth noting that the data size of the compressed value, in this instance, was 54%
less than that of the raw value.

By looking at one specific sequence, we can see how the algorithm works:

15025

1500.0

14687 .5

1465.0

Value

14025

1420.0

1487 5 .

~‘~., L1

4:28:25 PM 4:28:30 PM 4:28:35 PM 4:28:40 PM 4:28:45 PM 4:28:50 PM 4:28:55 PM 4:20:00 PM

1485.0

The sequence starts with the second stored compressed value on the chart.

1. Avalue is stored. No further action is taken.

2. The next value arrives. A line is made through the value, with the size of the specified deadband value. A line is projected from the
last stored value to the upper (line U1), and lower (line L1), bounds of this new value line. This establishes the initial corridor.

3. A new value arrives. The same procedure is taken, and new lines are created. However, only lines that are more restrictive than the
previous are used. In this case, that means only line U2, the new upper line.

4. Another value arrives, causing a new lower line (L3) to be used.

5. Finally, a value arrives that falls outside of our corridor. The last received value (value 4) is stored, and a the process is started again
from that point.

Seeded Values

Tag history queries sometimes use seeded values (occasionally called "Boundary Values"). When retrieving tag history data, the system will
also retrieve values just outside of the query range (before the start time, after the end time), and include them in the returned result set.
They're generally used for interpolation purposes. If the tag is storing history with an Analog Value Mode, or "Prevent Interpolation"” is
enabled on the calling query, then these seeded values will not be included.

Pre-Query Seed Value

These are a single value taken from just before the start of the query range. The value and timestamp for this value is typically the first row in
the resulting query. Pre-query seed values are always included when not using a raw data query.

An exception to this rule is can be found with the system.tag.queryTagHistory function. Setting i ncl udi ngBoundi ngVal ues argument to
True and r et ur nSi ze to -1 will return a raw data query with a pre-query seed value.

Post-Query Seed Value

These extra values are added to the end of the result set, representing the next data point after the query range. Post-query seed values are
only included when interpolation is requested/enabled for the query. Thus, values stored with a Discrete deadband style will not include post-
guery seed values in the query results.

If the system knows the query is retrieving records for a tag on the local system, this value will be determined by the current tag's value
instead of retrieving the last recorded value in the database. The current tag's value is also used in cases where the time range extends to
the present time.

Raw Data Queries

In most cases queries returned by tag history will apply some form of aggregation. However it is possible to get a "raw data query", which is a
result set that contains only values that were recorded: meaning no aggregation or interpolation is applied to the results. A raw data query
can be obtained by using one of the following options:

® Set the Sample Size on Vision Tag History bindings to On Change

® Setting the returnSize parameter on system.tag.queryTagHistory or system.tag.queryTagCalculations to -1
® Settting the Query Mode on Perspective Tag History bindings to AsStored

Log Tag History Data

Note: Dataset type tags are not supported by the Tag History system.

Do the following steps to log history data for your Tags:

1. Inthe Tag Browser, select one or more Tags. For example, we selected several Sine Tags in the Sine folder.
]

2. Right-click on the selected Tags, and then select Edit Tag K4 .
The Tag Editor window is displayed. Here, you can edit the Tag and change the name, data type, scaling options, metadata,
permissions, history, and alarming.

https://legacy-docs.inductiveautomation.com/display/DOC81/system.tag.queryTagHistory
https://legacy-docs.inductiveautomation.com/display/DOC80/system.tag.queryTagHistory
https://legacy-docs.inductiveautomation.com/display/DOC80/system.tag.queryTagCalculations

Tag Browser o - X

Q C V-8 6 006 B

~ @ _Sim_New_Programmable_ ~

* B _Controls_

* W Ramp

» I Random # EditTag

» Bl ReadOnly ,

* B Realistic ’

~ @ Sine 7]

m Delete Delete

Cut Ctri+X
Copy Crl+C
Copy |SON
Paste Ctri+V

3. Scroll down to the History section of the Tag Editor. Select the History Enabled check box.
4. Choose a database (for example, MySQL) from the Storage Provider dropdown.

5. Set the Sample Mode to Tag Group.

6. Set the Historical Tag Group to Default Historical.

Tag Editor X

0

Multiple Tags
default

Properties Details
=14 | = E‘E 3 T Documentation — Diagnostics

Engineering Limit Mode MNo_Clamp |~
Format String ##F0FE
~ Meta Data Properties
Tooltip
Documentation
~ Security
Access Rights Read/Write |
~ Scripting
Tag Event Scripts 0 event scripts &
= Alarms
Alarms No alarms &
Alarm Eval Enabled true |
History 1
History Enabled
Storage Provider
Deadband Style Auto
Deadband Mode Absolute
Historical Deadband 0.
sample Mode £ Tag Group
Max Time Between Samples
Max Time Units Hours
Historical Tag Group | Default Historical

1

true

MS5QL

=}

ldloldd=4 a]la 4

7. Click OK. Now look in the Tag Browser. To the right of each Sine Tag that is storing history, a History 3 icon appears letting you
know it is set up.

Tag Browser

Q o V- A

* B Realistic
=~ [Sine
b % Sinel
» W Sinet
b % Sine2
b % Sine3

b % Sines

* B ReadOnly

b % Sined O

e = = e = R = T = |

& D06 B

-04.78
9.3
0.92
3812
-20.42
-94.78

Double
Double
Double
Double
Double
Double

a - X

[CRGHCHEGNG

If you were to look in your database, you can see all the tables and data Ignition has created for you.

Setting a UDT to Log History Data

You can set a UDT to log history data, then all the instances of that UDT will log data without
having to edit the individual instances.

1. Inthe Tag browser, right-click on the UDT (for example, a Motor UDT) and select Edit
"

Tag ;, .

The Tag Editor is displayed.
2. In Tag Editor, click a Tag (for example, the AMPS Tag). Scroll down to the History section.

3. Set the following properties in the Tag Editor:

History Enabled: true

Storage Provider: MSSQL

Sample Mode: Tag Group
Historical Tag Group: Default Historical

1 Tag Editor

AMPS
default

Type Structure
~ % Motor

® Amp_HighSP O &

S Amp_LowsP D &

"

EIR 2R

® HoA
S MotorType

Properties

E

‘

‘

$ | = | =R+
Engineering Limit Mode
Format String

Meta Data Properties
Tooltip

Documentation
Security
Access Rights
Scripting
Tag Event Scripts
Alarms
Alarms
Alarm Eval Enabled
History
History Enabled
Storage Provider
Deadband Style
Deadband Mode
Historical Deadband
sample Mode
Max Time Between Samples
Max Time Units
Historical Tag Group

W structure | @ Details | S

No_Clamp. ~en

Read/Write ves

0 event scripts .~

1 configured alarm(s) +*
true ~ <o)

true ©

Auto ves
Absolute ves|

‘-
2le
218

Tag Group

Hours =

Default Historical_~ 2

[| o

<
@
&

Click Apply.
Next, select the HOA Tag.

o ak

History Enabled: true
Storage Provider: MSSQL
Sample Mode: Tag Group

Historical Tag Group: Default Historical

7. Click OK to save the changes to the UDT. Now every motor instance automatically starts

logging data.

Set the following properties in the Tag Editor:

@ INDUCTIV]I
UNIVERSI]

Add History to
Tags in UDT

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC80/UDT+Definitions
https://www.inductiveuniversity.com/videos/add-history-to-tags-in-udt/8.0/8.0

Tog Eator x

HOA ® structure | © petails || 5|
default
Type Structure properties
~ % Motor H om el 4§
¥ Amp HighSP © & ¥ Engineering Limit Mode No_Clamp. v
S Amplow s © & N Format String ##r0AECD
~ Meta Data Properties
W AMPS & .
@ Tooltip =)

» HoA * Documentation <2

® MotorType - security
Access Rights Read/Write i
~ Seripting
Tag Event Scripts 0 event scripts +*
- Alarms
Alarms Noalarms .
Alarm Eval Enabled true ~eo
~ [History |
History Enabled true =
Storage Provider MssQL_ves
Deadband Style Auto =)
Deadband Mode Absolute =
Historical Deadband 001
sample Mode Tag Group =
MaxTime Between Samples e,
MaxTime Units Hours ~e

Historical Tag Group Default Historical_vc3l.,

Data Partitioning and Pruning

Tag Historian will partition data into separate tables according to the time setting so that one table
doesn't grow indefinitely, and then will delete old data to ensure the system is maintained for query
performance. By default, partitioning is enabled to improve query performance. Tag Historian
partitions and breaks up the data into separate tables based on time. Partitions will only be queried
if the query time range includes their data, thereby avoiding partitions that aren't applicable and
reducing database processing. On the other hand, the system must execute a query per partition.
It is therefore best to avoid both very large partitions, and partitions that are too small and
fragment the data too much. When choosing a partition size, it is also useful to examine the most
common time span of queries.The data prune feature will delete partitions with data older than a
specific age/time.

Partition and Prune Data

1. Go to the Config tab of the Gateway.
2. Select Tags > History from the menu on the left.

On this page

® Partition and Prune
Data

® History Table
Timestamps

@ INDUCTIVI
UNIVERSI]

Data Partitioning
and Pruning

Watch the Video

The Historical Tag Providers page is displayed. You can see the Databases that have Enabled tag history on and their Status

shows as Running.

O Config » Tags » History

- Create new Historical Tag Provider...

Note: For details about a provider's status, see the Tag
Providers Status page.

Provider Name Enabled Type Description Status
MySQL true Datasource History Provider Running
New History Provider true Tag History Splitter Running delete

3. Click on edit at the far right of the provider you want to update.
4. Once you've made changes, click Save Changes at the bottom of the screen.

The following table describes all the settings available for Tag History:

https://www.inductiveuniversity.com/videos/data-partitioning-and-pruning/8.0/8.0

Main

Provider Name Name of the Tag History Provider, for example, MySQL.
Enabled By default, the check box is selected (enabled) meaning the provider is turned on and accepts tag history data.
Description Description of the Tag History Provider (optional).

Data Partitioning

Enable Partitioning = The built-in partitioning system breaks up data into separate tables of a specified time frame. This can improve
performance and make certain maintenance tasks easier. Default is true.

Partition Length The size of each partition, the default is one table per month. Many systems whose primary goal is to show only
recent data might use smaller values, such as a week, or even a day. Default is 1.

Partition Units Unit of time for the partition length. Options are: Milliseconds, Seconds, Minutes, Hours, Days, Weeks, Months, and
Years. Default is Months.

Enable Pre- Pre-processed partitions will use more space in the database, but can improve query speed by summarizing data,

processed Partitions = reducing the amount that must be loaded. Default is false.

Pre-processed When pre-processing is turned on, the data will be summarized into blocks of this size. Default is 60.

Window Size

(seconds)

Data Pruning

Enable Data Partitions with data older than a specific age are deleted and if the data is not archived, the data is then lost.
Pruning Default is false.

1 Data pruning works by deleting old partitions. Therefore, data will only be removed when a partition has
no data younger than the prune age.

Prune Age The maximum age of data. As mentioned, the data is deleted by the partition, and could therefore surpass this
threshold by quite a bit before all of the data in the partition is old enough to be dropped. Default is 1.

Prune Age Units Unit of time for the prune age. Options are: Milliseconds, Seconds, Minutes, Hours, Days, Weeks, Months, and
Years. Default is Years.

Show Advanced Select this option to display the Advanced properties below:

Properties

Advanced

Enable Stale Data If enabled, tracks tag group executions to determine the difference between unchanging values, and values that are

Detection flat due to the system not running. Default is true.

Stale Detection The multiplier for tag group rate used to determine when values are stale. If tag group execution is not recorded

Multiplier within this amount of time, values will be considered bad on query. Default is 2.

History Table Timestamps

If you've looked behind the scenes of SQLTags Historian, you've probably noticed the timestamps are not stored as standard SQL
timestamps. They are stored in a variant of Unix time, or the number of milliseconds since January 1, 1970 00:00:00. The time may come
when you need to convert that timestamp to a more human-readable format. The following describes how to do it in MySQL and MSSQL.

Both examples below assume the partition table is named 'sqlt_data_1 2016 _08'".

MySQL

It's pretty easy to deal with Unix timestamp in MySQL because they have a built-in function for doing so. The FROM_UNIXTIME() function
will take in a Unix timestamp and return the current timestamp.

Usage:

SELECT FROM UNI XTI ME(t_st anp/ 1000) FROM sqlt_data_1 _2016_08

MSSQL
In Microsoft SQL Server, it's a little more verbose. We use the DATEADD() function to figure out the timestamp.
Usage:

SELECT DATEADD(s, t_st anp/ 1000, ' 1970-01- 01 00: 00: 00') FROM sqlt_data_1_2016_08

Custom Tag History Aggregates

Python Aggregation Functions _
On this page
The Tag History system has many built-in aggregate function, such as Average, Sum, and Count.
However a custom aggregate may be defined via Python scripting. These functions are used for
calculations across timeframes, and process multiple values in a “window” into a single result
value.

® Python Aggregation
Functions
® Description
® Parameters
® Return Value
® Usage
® Examples
® Using a Shared
Script
1 When calling a custom tag history aggregate, the returnSize argument must be set to nat ¢ Creating an
ural (returnSi ze = 0). If the returnSize is set to -1, or left with its default value, the Aggregate

the custom aggregate will be ignored. EIUnCtion on the
y

For example, if a query defines a single row result, but covers an hour of time (either by requesting
a single row, or using the Tag Calculations feature), the system must decide how to combine the
values. There are many built in functions, such as Average, Sum, Count, etc. Using a custom
Python aggregate, however, allows you to extend these functions and perform any type of
calculation.

Description

As values come in, they will be delivered to this function. The interpolator will create and deliver values.

For each window (or “data block”, the terms are used synonymously), the function will get a fresh copy of blockContext. The block context is
a dictionary that can be used to as a memory space. The function should not use global variables. If values must be persisted across blocks,
they can be stored in the queryContext, which is also a dictionary.

The function can choose what data to include, such as allowing interpolation or not, and allowing bad quality or not.
The window will receive the following values, many of which are generally interpolated (unless a raw value happens to fall exactly at the time):

1. The start of the window

2. 1 ms before each raw value (due to the difference between discrete and analog interpolation. A value equal to the previous raw
value indicates discrete interpolation)

3. The raw value

4. The end of the window.

At the end of the window, the function will be called with “finished=true”. The function should return the calculated value(s). The resulting
value will have a timestamp that corresponds to the beginning of the block timeframe.

Parameters

® gval - The incoming QualifiedValue. This has:
© value : Object
© quality : Quality (which has ‘name’, ‘isGood()’)
© timestamp : Date
® interpolated - Boolean indicating if the value is interpolated (true) or raw (false)
® finished - Boolean indicating that the window is finished. If true, the return of this particular call is what will be used for the results. If
false, the return will be ignored.
® blockContext - A dictionary created fresh for this particular window. The function may use this as temporary storage for calculations.
This object also has:
© blockld - Integer roughly indicating the row id (doesn’t take into account aggregates that return multiple rows)
blockStart - Long UTC time of the start of the window
blockEnd - Long UTC time of the end of the window
previousRawValue - QualifiedValue, the previous non-interpolated value received before this window
previousBlockResults - QualifiedValue[], the results of the previous window.

O 0O O O

© insideBlock(long) - Returns boolean indicating if the time is covered by this window.
o get(key, default) - A helper function that conforms to python’s dictionary “get with default return”.
® queryContext - A dictionary that is shared by all windows in a query. It also has:
© queryld - String, an id that can be used to identify this query in logging
blockSize - Long, time in ms covered by each window
gueryStart - Long, the start time of the query
gueryEnd - Long, the end time of the query
logTrace(), logDebug(), loginfo() - all take (formatString, Object... args).

O 0 O O

Return Value

Object - Turned into Good Quality qualified value
List - Used to return up to 2 values per window
Tuple - (value, quality_int)

List of quality tuples

Usage

Custom Python aggregates can be used in two ways:

1. Defined as a shared script, where the full path to the function is passed to the query.
2. Defined as a string, prefaced with “python:”, and passed to the query.

Currently both options are only available through the system.tag.queryTagHistory/queryTagCalculations functions.

Both of these options are used with the “aggregationMode” and “aggregationModes” parameters to system.tag.queryTagHistory, and the
“calculations” parameter of system.tag.queryTagCalculations. If the value is not an Enum value from the defined AggregationModes, it will
be assumed to be a custom aggregate. The system will first see if it's the path to a shared script, and if not, will then try to compile it as a full
function.

For performance reasons, it is generally recommended to use the shared script whenever possible.

Examples

Using a Shared Script
This example assumes a Shared Scripts named "aggregates” contained the function listed below.

Example

this is a sinple count function, called for each value in a time w ndow :
def nyCount(qval, interpolated, finished, blockContext, queryContext):
cnt = bl ockCont ext.get OrDefaul t (' cnt', 0) :

if qval.quality.isGood():

bl ockContext['cnt']=int(cnt)+1 i

if finished:
return bl ockContext.getOrDefault('cnt', 0)

Example

#Return tag history using a custom aggregate function you wote.

system tag. queryTagHi story(paths=[' MyTag'], rangeHours=1, aggregati onMbdes=["'shared. aggregates.
nmyCount'], returnSize = 0)

Creating an Aggregate Function on the Fly

Example

#Create a function on the fly to pass in as a custom aggregate.

wrapper = """\
pyt hon: def wrapper(qval, interpolated, finished, blockContext, queryContext):
return shared. aggr egat es. cust onfFuncti on(qval , interpol ated, finished, blockContext, queryContext)

system tag. queryTagHi story(paths=[' WTag'], rangeHours=1, aggregati onModes=[wr apper], returnSize = 0)

Tag History Splitter

The Tag History Module has a provider type called the Tag History Splitter. Like the Remote
History Provider, it doesn't store history on its own, it relies on having other providers already set
up. A Splitter provider simply logs Tag History into multiple existing History Providers.

Some users prefer to have data recorded by the Tag Historian sent to multiple databases: project
specifications require redundant logging, or users at another facility would like to have a copy of
the data in their local database. In cases like this, the Tag History Splitter Provider is ideal.

The Gateway that these Tags reside in must have multiple Tag History Providers configured.
Should one of the providers fault, the Store and Forward system will kick in to maintain the data on

the faulted connection. Since each database connection has its own Store and Forward engine,
the data is always forwarded to the correct database.

Tag History Splitter Provider Properties

Below are the properties available on the Historical Tag Provider.

Main

Provider Name of the connection.

Name

Enabled Enables and disables the connection.

@ INDUCTIV]I
UNIVERSI]

Tag History Splitter

Watch the Video

Description = Description of the connection. The description appears on the Historical Tag Providers page of the Gateway.

Storage

First Data is stored to both connections equally. However, all tag history queries (tag history bindings, system.tag.
Connection queryTagHistory() calls, reporting tag historian queries, etc.) execute against the first connection, unless a limit is imposed

using the settings below, or the first connection is unavailable.

Second The second connection to store Tag history.
Connection

Querying

Limit First If enabled, only queries that are within the time frame specified below will be executed against the first connection. Queries

Connectio | that go further back will execute against the second connection.
n Query

Limit The unit and length of the time frame limitation mentioned above.

Length
and Units

Set Up a Tag History Splitter

To create the additional Tag History provider, do the following steps:

1. Go to the Config section of the Gateway Webpage, and choose Tags > History.
2. Click Create new Historical Tag Provider.

3. Select Tag History Splitter and click Next. The New Historical Tag Provider page is displayed.

https://www.inductiveuniversity.com/videos/tag-history-splitter/8.0/8.0

Q@ Config » Tags » History

Internal Historian

A built-in local historian with limited storage.

OPC-HDA Provider

A historical tag provider that uses OPC-HDA to retrieve values from a 3rd party historian.

Remote History Provider

Sends tag history through the Gateway Network for storage in a remote history provider.

®' Tag History Splitter

Stores tag history concurrently to two other connections in the gateway.

4. Enter a name for the Provider Name. From the dropdown choose a database for the First Connection (for the primary data) and
one for the Second Connection (for secondary data).

© Config > Tags > History

Provider Name | New History Provider I

¥/ Enable this tag history provider
(default: true)

Enabled

Description

| k

Storage
MySQL v
First Connection Choose One . However, all queries execute against the
Musing the settings below, or the first
Second
. Choose One
Connection E

Querying

|lIf enabled, only gueries that are within the time frame specified below will be

I&g::::is;n executed against the first connection. Queries that go further back will execute
against the second connection.

Query .
(default: false)

o - 1

Limit Length
(default: 1)

Limit Units Months N

(default: MONTH)

Create New Historical Tag Provider

5. Click Create New Historical Tag Provider.

Now the Tag History Splitter provider is created, and you can use it to log the Tag History data in the Designer.
To test this, open your project in the Designer.

)
1. In the Tag Browser, selecting a Tag and right-click to select the Edit Tag K4 option.
2. On the Tag Editor window scroll down to the History section and set History Enabled to true.
3. In the dropdown list for Storage Provider, select the new provider.

Tag Editor

Tank 1
default

Properties Details
8 = ol o4 Documentation — Diagnostics

~ Basic Properties

Name Tank 1
Tag Group Default =
Enabled true |

b Value

» Numeric Properties
b Meta Data Properties
N

»

Security
Seripting
» Alarms
= History

History Enabled I true | hd

NewFistory Promder]
Deadband Style | <None>
Deadband Mode] SQLServer
Historical Deadband]
Sample Mode | DB
Min Time Between Samples MS5QL
Min Time Units Seconds i
Max Time Between Samples 0
Max Time Units Hours hd

[&)

Cancel

4. Click OK to save the change.

SQL Bridge (Transaction Groups)

Overview

The SQL Bridge Module enables the creation of Transaction Groups that synchronize data
between PLCs and databases. You can use Transaction Groups to easily log from PLCs to the
database, move data from the database back to PLCs, and even keep the two synchronized. Drag
and drop functionality makes setup of Transaction Groups quick and easy.

Originally conceived as an easy data storage method, Transaction Groups have become a core
feature of Ignition. In their simplest form, they regularly read values from OPC addresses and store
them into a SQL database. While data collection is still their primary use, they have grown in
functionality over time.

To set up and use Transaction Groups, SQL knowledge is not required. Ignition can automatically
create and manage the database table for each group. Prior experience writing SQL queries or
creating database tables are not required to log data.

On this page

® Overview
® Types of
Transaction Groups
® Historical Data
Logging
¢ Database and
OPC
Synchronization
® Large Data Block
Storage
® Stored
Procedures
® Centralizing Data
Collection

Tank Levels
Running

B Enabled B> Disabled B8 Pause

Execution Scheduling:

Timer Schedule

1 e
second(s

<% Action ¢ Trigger Lf Options
>

riggered Expression Items (0) AV

Item Name Sourc... Latch... Target Name Data Type Properties

Item Name Sourc... Latch.. = Target Name Data Type Properties
@ B3:0 0 0 3830 Ine2 A| | Datasource:
% B3 1 1 3 B3.1 Int2 <Default> .
% B3z 2 2 3832 Int2
G B33 3 3 1B33 Int2 v Table name:

Run-Always Expression Items (ignore trigger) (0) AV | group. table| -
Item Name Sourc... Latch... Target Name Data Type Properties

Automatically create table

Use custom index column:
Store timestamp to: t_stamp

Store quality code to:

Delete records older than:

Types of Transaction Groups

There are four types of Transaction Groups, and they each handle data a little differently:

® Historical Groups - Quick and easy group that collects historical records

® Standard Groups - An improved version version of the historical group that can reverse the flow of data, writing database values

directly to Tags.

® Block Group - Records "blocks" of data, allowing you to record multiple values per execution in a tall format.

® Stored Procedure Group - Invokes a stored procedure in the database, returning the results of any OUT or INOUT parameters to

Tags.

Learn more about each type of group on the Understanding Transaction Groups page.

All Transaction Groups can execute at a set rate or on a schedule. A trigger can be used to determine when the group should record. You
can use Ignition's expression language in the trigger to allow complex logic to determine when logging occurs, making precision execution

easy.

https://legacy-docs.inductiveautomation.com/display/DOC80/Expression+Overview+and+Syntax

Project Browser

Q-

b (%) Alarm Notification Pipelines
b o% Sequential Function Charts
b [& scripting
b @ Perspective
[El BiDirectiol gg New Folder
%;::.Ikbl_li:?! E] New Transaction Group
=l new histori [f] Rename
=] new stand:
new stored +
b G Vision B
» B Named Queril I8
b Reports
& Web Dev @
@ Import
.§ Export

» | [E] MNewsStandard Group
£2 =] New Block Group
=] MNew Historical Group
Mew Stored Procedure Group
|
|

Historical Data Logging

Historical Groups quickly and easily store data from the plant floor into any kind of SQL database. Items from any or all devices can be
included in the same group, just drag a few Tags over and start the group running. Ignition will log the data until you tell it to stop.

new historical

< @Action 1 Trigger LS Options

; B> Enabled | [Disabled B Pause Execution Scheduling: B
Running -
© Timer Schedule
Basic OPC/Group Items (6)
- 1 second(s) -
Item Name Source Va.. Latched .. Target Name Data Type = Properti...
5 Sim_Generic/Ramp/Ramp0 344,427 344,427 3 Ramp0 Floats Data source:
[Sim_Generic/Ramp/Ramp1 58.320 58.320 @ Ramp1 Float8 MySqQL =
® Sim_Generic/Ramp/Ramp2 | | FRamp2 | Floas8 | |
[Sim_Generic/Ramp/Ramp3 247.480 247.480 3 Ramp3 Floatg Table name:
5 sim_Generic/Ramp/Ramp5 465.267 465.267 @ Ramp5 Float8 h |
% Sim_Generic/Ramp/Rampd 158,320 158,320 3 Rampd Floats ramp_historical M

4 Automatically create table

Database Query Browser g - X
SELECT * FROM ramp_historical ~ 6‘7(
. . Execute
2 Limit SELECT to: | 1000 | rows
Ei-? Resultset 1 ¢| <Default> LK+
ramp_historical_.. | Ramp0 Ramp1 Ramp2 Ramp3 Ramp5 Ramp4 t_stamp li Schema W
D e wee e R MR e ot
3 82152 16.14 348 3421 13.45 1614 20190618102 | Aeana s INChXUES
4 834,867 26.15 9.867 49.225 21.792 26.15 2019-06-18 10:2
5 8482 36.15 232 64.225 30.125 36.15 2019-06-18 10:2
4] 861.547 46,16 36.547 79.24 38.467 46.16 2019-06-18 10:2
7 874.88 56.16 49,88 094,24 46.8 56.16 2019-06-18 10:2
8 888.227 66.17 63.227 109,255 55,142 66.17 2019-06-18 10:2
9 901.56 76.17 76.56 124255 63.475 76.17 2019-06-18 10:2
10 91492 86.19 89.92 139.285 71.825 86.19 2019-06-18 10:2~
< >
268 rows fetched in 0.013s ® Auto Refresh 7 Edit + Apply 3¢ Discard < >

Database and OPC Synchronization

https://legacy-docs.inductiveautomation.com/display/DOC80/Types+of+Groups#TypesofGroups-HistoricalGroup

Standard Groups are the most flexible group. They are capable of not only storing OPC values in the database, but can also write database
values to OPC addresses or synchronize data changes between both the database and PLC. With this group you can create true realtime
value tables in the database, and allow anything that can talk to the database to push values to a PLC. This is often used to create Recipe sy
stems where the recipe values are stored in the database, and a user can select a recipe to write all your settings directly to Tags. Changing
recipes is as easy as changing a Tag value or selecting a name.

Line 1 Recipe

_ B Enabled B> Disabled B Pause
Running
Item Name Source Va.. Latched V.. = Mode Target Name Data Type Properties
% CaseCount 96.716 05.882 3 CaseCount Floats
% CurrentOrder [] [] A 3 CurrentOrder Int2
% CurrentRun ‘A 3 CurrentRun Int2

% RunControl ___ F_RunControl [ne4 ||

Large Data Block Storage

Transfer large amounts of data very efficiently with the Block Group. This groups allows you to send whole arrays of data to and from the
database. It works just like the Standard group, but on a much larger scale.

T4 ACC

Execution Disabled

B> Enabled [Disabled]

Itern View Block View

Block Items (0)

Item Name Source .. | Latche.. Mode Target Name Data Type Prope Size
% Itern_T4_0 3 T4_0_ACC String 2
|:ns=1;s=[SLC]_Meta:T4IT4:Dﬂ'4:D.ACC 0

ns=1;s=[SLC]_Meta: T4/ T4.0T4:0.DN false
% Itern_T4_1 3 T4_3_ACC String 2
W tem_T4_2 3 T4_2_ACC String 2
% Item_T4_3 3 T4_1_ACC String 2

Stored Procedures

The Stored Procedure Group allows you to use PLC data as inputs and outputs for your existing Stored Procedures. With the Stored
Procedure Group, your IT department can have control over how data is entered and returned from the database.

https://legacy-docs.inductiveautomation.com/display/DOC80/Types+of+Groups#TypesofGroups-StandardGroup
https://legacy-docs.inductiveautomation.com/display/DOC80/Types+of+Groups#TypesofGroups-BlockGroup
https://legacy-docs.inductiveautomation.com/display/DOC80/Types+of+Groups#TypesofGroups-StoredProcedureGroup

SP All Params B Enabled | [Disabled B8 rause
Errored

Basic OPC/Group Items (2)
Item Mame SourceV.. | Latched.. | Target Name Output Data Type Properties

| | F mynParam | 4 None [Intd | |
%) Out_Tag 20 20 3 myCounts £ None Int4

Run-Always Expression Items (ignore trigger) (0)
Item Mame Source Value | Latched Val.. Target Name Data Type Properties

Centralizing Data Collection

In Distributed systems, PLCs can be spread out over great distances to remote sites. Collecting and centralizing data from each can be
difficult and time consuming. To combat this problem, Transaction Groups are used as the cornerstone of our Hub and Spoke architecture.
Historical Groups can be applied locally to each PLC for a minimal cost, and forward all data into a single, central, database.

Remote Site with Central Hub
Remote Logging

Sig— Hub

Vision Report
PLC e,
Database Client
Remote !
Ignition *a

Site A R e
T History Data _,+"" i . <§/

Client = Tay, A , > LA
el S IR . A e o (I'e”ts_. * Ignition "5
'.'. 8] e, ettt Server b
'*v-.._" J})re =" OPC-UA Off-Site Clients
5QL OPC-UA !'7@(Connected through
Bridge ot secure VPN
i K
W .
ot ﬁ ;I o
+ 5
. -
= =

Client|
Ignition
a5,

Remote qﬁi@/ Q
SiteB .
N h_.r' ~
ap P
saL opc-uA
Bridge

In This Section ...

https://legacy-docs.inductiveautomation.com/display/DOC80/System+Architectures#SystemArchitectures-HubandSpokeArchitecture

Understanding Transaction Groups

Transaction Groups are the heart of the SQL Bridge module. They are units of execution that
perform actions such as storing data historically, synchronizing database values to OPC, or
loading recipe values. A variety of group types, items types, and options means that Transaction
Groups can be configured to accomplish almost any task.

Transaction Groups are configured in the Ignition Designer. Each Transaction Group is associated
with a table in a database Ignition is connected to, and is made up of one or more Items. The
group will then execute at a specific interval of time, or on a user-defined schedule. Generally each
execution will create a new row in the database table with a separate column for each Item in the
group. However, it is possible for some types of Transaction Groups to take values from the
database and write to specific Tags.

Additionally, the Transaction Group can be configured to conditionally synchronize values by using
a trigger. The trigger is evaluated every execution, and if the trigger condition is met, then
synchronization will occur. If the trigger condition has not been met, then the group will wait until
the next execution to re-evaluate the trigger.

There are four types of Transaction Groups: Standard, Block, Historical, and Stored Procedure.
Each offers different functionality. For example, the Historical Group allows you to quickly
configure a group that reads OPC data and push it to the database. While the additional flexibility
of a Standard Group allows you take values from the database and write them to a PLC.

Transaction Groups enable you to perform tasks such as database to OPC synchronization, recipe
management, and historical data logging.

Transaction Group Workspace

On this page

Transaction Group

Workspace

® Items

® Enabling Group
Execution

® Editing Group
Settings

Action Settings

Group Update Rate

® Timer

® Schedule

® Execution Cycle

Trigger and

Handshake Settings

Advanced Settings

Creating a

Transaction Group

Transaction Groups are edited through the Ignition Designer. When a group is selected, you are @ IN DUCTIV]

presented with the transaction group workspace. The workspace is broken into several parts:
UNIVERSI]

® Title bar - Shows the name of the currently selected group, as well as options to set it
as Enabled or Disabled, and to Pause, if it's currently executing.

® |tem configuration - Shows all of the items configured in the selected group. Many
settings can be modified directly through the display, the rest by double-clicking the item
or selecting Edit in the context menu.

® Action / Trigger / Options tabs - Defines how and when a group executes. Holds most
of the options that apply to the group in general, such as the update rate, and which data
connection it uses.

® Status / Events tabs - Provides information about the executing group, including the
most recent messages that have been generated.

About Transaction
Groups

Watch the Video

https://inductiveuniversity.com/video/about-transaction-groups/8.0

File Edit View Project Tools Help
B« 4% & 6% E -2
Project B =1 ET—
IO BT - X ¢ # Action P Trigger £ Options
4 4 D ecton] P Enabled © Disabled) Execution Scheduling: -
2 Al i | = Execution Disabled Save project to apply changes 3
b &%) Alarm Notification Pipelines O Timer Schedule
3 _!. Sequential Function Charts Basic OPC/Group Items (8)
b E TR 1 second(s) -
2ALELY Item Name Sourc.. | Latche.. Mode TargetName DataT.. = Proper..
3 5 2
L é‘, fierpecine '—}-/ accumulatorLevel N/A @ accumulator... Int4 Update mode:
- Tr’asat\o Grou; % ambientHum /A @ ambientHum Floata OPCtoDB
I. (] Bi Directional = @ ambientTemp /A @ ambientTemp Floatd
(%] new block @ dischargePressure N/A @ dischargePre.. Floatd Data source:
=] new historical % dischargeTemp MAA @ dischargeTe... Int4 <Default>
=] new standard "7"/ receiverLevel N/A @ receiverLevel Int4
[E] new stored procedure :n/ valveDischarge N/A @ valveDischar.. Int4 Table name:
© % valveKing /A @ valveKing Int4
: é} \’:I\swond 4 group_table
amed Queries = c = r
Run-Ahw. E: It b [} AV
4 Reports v = 2 Exmermn I iese (e rooct) (OF J Automatically create table
Item Name SourceV.. Latched.. TargetName Data Type Properties
OPC Browser 8 _ X Use custom index column:
F. 8
- L Store timestamp to: t_stamp
~ &) [Sim_Dairy] =
b (] Overview Triggered Expression Items (0) Store quality code to:
=) Refrigeration Item Name Source V.. Latched .. | Target Name Data Type Properties. Delate records older than:
» 3 compressor1
» (& Compressor2 - .
< ?

b [Towert
b () Towerz
‘D—‘ accumulatorievel
‘D—‘ ambientHum
‘,,‘ ambientTemp
‘F‘ dischargePressure
»-% dischargeTemp
P-% receiverievel
‘b—‘ valveDischarge
P valveking
» 2] [Sim_Generic]
» (3] [Sim SLC] li
% Tags "B orC

@ Status | Lf Events

Execution Disabled

Last execution: Total executions: N/A

N/A

Last trigger: N/A Failed executions: N/A

Next execution: N/A OPC/Tag writes:

N/A

Last duration: N/A DB writes:

Avg duration: N/A OPC/Tag write failures: N/A

28 Projectsaved. (75 ms) 268 /1024 mb| [

[tems

Each Item (Tag) in the Transaction Group consists of several properties, but the key properties are the Source/Latched Values and Target
Name.

Source and Latched Value

The Source Value will be the value of the items source. This can be something like a Tag or a direct OPC Item if writing to the database, but
can also be the value pulled from the database if in DB to OPC mode. This value can change in between executions, depending on the
source type. When the source is a Tag, it will update as the Tag updates, depending on how the Tag Group for the Tag is set. However, if
the source is an OPC Item, it will update only when the group executes, unless the OPC subscription rate is overridden in the group.

The Latched value will be the value that was written at execution. This can be the value that gets written to the database on execution in
OPC to DB mode, or it can be the value that gets written to the Tag in DB to OPC mode. The value will only change on execution of the

group.

Target Name

In most cases, the Target Name is a column on the database table the Transaction Group is associated with. However, it is possible to have
the Target Name 'Read-only'. When set to 'Read-only' the value of the item will not be tied to any columns in the database, but is still visible
from the Transaction Group and can be used as a trigger.

Enabling Group Execution

In order for groups to be evaluated, they must first be enabled. This is done by selecting Enabled in the group title bar, and then saving the
project. The group executing can be stopped by reversing the procedure and selecting Disabled before saving. If you want to quickly and
temporarily stop the group's evaluation, toggle the Pause button. This will prevent execution until the group is enabled again, or until the
system is restarted.

p Enabled & Disabled

(D Transaction Groups exist in a project, but they execute in the global Gateway space. This means that once your groups are
enabled, they will run even without a client open.

Editing Group Settings

Group settings may be modified at any time, regardless of whether or not the group is executing. Modifications will be applied when the
project is saved, and the group will be started or stopped as required. Some changes such as modifying items may cause features like live
values to appear to be incorrect. It is therefore important to note the modified icon that appears next to the group, and to save often. If you
would prefer to stop the group before making edits you can simply pause the group. Execution will begin again after the project is saved.

Action Settings

The action settings of a Transaction group define how often the group will be evaluated, as well as
important settings that apply to the group as a whole. They are found on the Action tab, the first of
the tabs on the right side of the Transaction Group workspace.

The Action settings vary for the different types of Transaction Groups, but a few settings are
common to most of them:

Setting

Executi
on
schedu
ling

Update
mode

Data
source

Table
name

Autom

atically
create

table

Use
custom
index

Description

How often the group is evaluated. For a number of reasons, the group may not
execute during the evaluation. The most common reason is the trigger, but see Executi
on Cycle below for more possible reasons why evaluation will exit.

® Timer - specifies the OPC Tag subscription rate for the OPC Tags. It can run at
millisecond, second, minute, hour, or day rates.

® Schedule - is a specified start time on the update Rate. Set a list of time (or time
ranges) that the group should run at. If the pattern specified includes a time
range, at rate must be provided, and the group will execute as in timer mode
during that period.

For groups that support it, sets the default for how items are compared to their targets.
Options are:

® OPC to DB - Only read from the OPC server and write to the database.

* DB to OPC - Only read from the database and write to the OPC Server.

® Bi-directional OPC wins - Read and Write to both the database and OPC Server.
On group start, write OPC values to the database.

® Bi-directional DB wins - Read and Write to both the database and OPC Server.
On group start, write database values to OPC items.

The database connection name the group should use. Can be Default, which will use
the default connection for the project.

Name of the table in the database that the group should interact with (reading or
writing, depending on the Update mode and individual item Mode settings). The
tables listed in this dropdown are determined by the Data source property.

This setting allows you to type arbitrary names into it. If you type the name of a
database table that doesn't exist, and the Automatically create table setting is
enabled, then the group will attempt to create the database table on start.

If enabled, the transaction group will attempt to create a database table once the
group starts running, assuming one doesn't already exist as determined by the Table
name setting. If the table already exists, then nothing happens.

If left disabled, the group will attempt to add an index column to the database table
when the group starts executing. If enabled, the group will use the column selected in
the adjacent dropdown, or create a new column if you type in a column name that
doesn't exist on the table (requires the Automatically create table setting to be
enabled).

‘ P Trigger £k Options
>

Execution Scheduling:

Timer Schedule

1 second(s) -
Update mode:
Bi-directional OPC wins -
Data source:
<Default= v 2
Table name:
sample | @

Automatically create table

Use customn index column:
Store timestamp to: tstamp -
Store quality code to:

Delete records older than:

insert new row

update/select

Where:

Store
timesta
mp

Store

quality
code

Delete
record
s older
than

Table
Action

If enabled, will attempt to store a timestamp value to the column specified in the
adjacent dropdown. If you type in a column name that doesn't exist on the table, the
group will attempt to create the column on start, assuming the Automatically create
table setting.

Stores an aggregate quality for the group along with the regular data. The aggregate
quality is a bit-wise AND of the qualities of the items in the group.

If enabled, and the group is running, this setting will make the group delete older rows
in the table. Options are minute(s), day(s), month(s), and year(s)

Defines which row will be targeted by the group.

® insert new row
® update/select - allows you to target specific rows in the database table. Options
are:
o first row - the group always executes against the first row.
© last row - the group always executes against the last row
© custom - allows you to write a custom where clause to determine which row
should be targeted. Uses the Where text area. The custom clause can use
references to values of items in the group.

insert new row
update/select
first last custom keyfvalue pairs
Where:

[Triggered Expression Items (1)

Item Name Source Value

group_table_ndx = {[~]someTag}

O keyl/value pairs - Provides dropdowns for both a column and a item in the
group, allowing the group to target a single row in a table based on the
item's value. In the image below, a value of 5 will be used in conjunction with
the "group_table_ndx" column in the database table. Additional conditions
can be added or removed with the Add or Delete buttons, below the table.

Meaning, when the group executes, it will target the row where
group_table_ndx has a value of 5.

insert new row
update/select
first last custom keyhvalue pairs

Triggered Expression Items (1)

Item Name Source Value .. 3 Column Value
group_table_ndx % someTag

+ | @ Insert row when not present

Group Update Rate

Groups generally work on a timer. They are set to run at a certain rate. As they are running at that
certain rate, they then check the rest of the settings. If the trigger conditions pass, the group is
executed fully.

The Execution Schedule controls the rate at which the transaction group executes. On the Action
tab of a group you selected, under Execution Scheduling, there are two options: Timer and Sched
ule. Timer, executes the group at a certain rate. Schedule, executes the group at specific times.
When the Schedule option spans across a period of time, you must specify the rate at which the
group executes during that time.

Timer

@ INDUCTIVI
UNIVERSI]

Group Update Rate

Watch the Video

https://inductiveuniversity.com/video/group-update-rate/8.0

The Timer acts as the heartbeat of the transaction group and is evaluated at the provided rate. It
can run at millisecond, second, minute, hour, or day rates. The Timer specifies the OPC Tag
subscription rate for the OPC Tags. When a Timer is running the transaction group it first analyzes
the Tags inside the Basic OPC/Group Items section of the transaction group. Then it looks at the
trigger configuration and evaluates for Tag changes. Then it evaluates the specific trigger
conditions and decides to execute on a trigger. Depending on the trigger settings, full execution
may not occur, but the trigger will at least be evaluated at this rate. If the triggered condition is
true, the transaction group proceeds to the Triggered Expression Items section of the transaction
group. Only after this flow is complete, will the transaction group interact with the database, and for
example, insert the Tag values into the database.

Schedule

An important difference between the Timer and the Schedule options is that the schedule option
will automatically align to the specified start time on the update rate. With Schedule mode, you are
providing a list of time (or time ranges) that the group should run at. If the pattern specified
includes a time range, a rate must be provided, and the group will execute as in timer mode during
that period.

The schedule is specified as a comma separated list of times or time ranges. You may use
the following formats:

® 24-hour times. le. "8:00, 15:00, 21:00", for execution at 8am, 3pm, and 9pm.

® 12-hour with am/pm (if not specified, "12" is considered noon): "8am, 3pm, 9pm"

® Ranges, "8am-11am, 3pm-5pm"

® Ranges that span over midnight, such as "9pm - 8am"

When using ranges, the execution times will be aligned to the start time. For example, if

you specify a schedule of "9am - 5pm" with a rate of "30 minutes", the group will execute at 9, 9:
30, 10, etc., regardless of when it was started. This is a useful difference compared to the

Timer mode, which runs based on when the group was started. For example, if you want a group
that runs every hour, on the hour, you could specify a 1 hour rate with a range of "0-24."

Execution Cycle

All of the Transaction Groups follow a similar execution cycle. The core evaluation may differ, but
the general cycle is the same.

1. Timer executes, group enters execution

2. Is the group paused? Break execution.

3. Is the Gateway part of a redundant pair? If so, is it active? If not active, break execution.
Groups only execute on the active node.

4. Evaluate run-always items: OPC items, Tag references, and Expression items set
to ignore the trigger (or items placed in the run always section of the Configuration
window).

5. Is trigger set/active? If there is a trigger defined, but it is not active, break execution.

6. Evaluate "triggered" expression items.

7. If applicable, read values from the database.

8. Execute a comparison between items and their targets.

9. Execute any writes to other Tags or the database that results from execution.

10. Report alerts.
11. Acknowledge the trigger, if applicable.
12. Write handshake value, if applicable.

If an error occurs at any stage besides the last stage, execution will break and the failure
handshake will be written if configured. The group will attempt execution again after the next
update rate period.

If the group errors due to a bad database connection, it will need to be manually
restarted once the database connection is brought back.

Trigger and Handshake Settings

The trigger settings determine when a group will actually execute. They are examined each time

the group evaluates (according to the update rate of the group). If they pass, the group will run and

perform its action against the database.

The trigger settings are the same for all group types and are found on the second tab (labeled Trig

ger), on the right side of the Transaction Group workspace.

The outcome of an execution is handled in the handshake section of the trigger section of the

transaction group. When a group executes, it either completes successfully or an error prevents its

execution.

The table below is a list of Trigger and Handshake settings.

Setting

Only
evaluat
e when
values
have
changed

Execute
this
group
ona
trigger

Only
execute
once
while
trigger
is active

Reset
trigger
after
execution

Prevent
trigger
caused
by
group
start

Trigger
conditio
ns

Write
handsh
ake on
success

Write
handsh
ake on
failure

To learn more about configuring Transaction Groups with the different trigger options, refer to the T

Description

The group will execute every time the value or values change. If the values have not
changed, it will exit the evaluation. Note, it is possible to monitor all Run-Always items
in the group, or only specific ones.

® Tags to watch for change - Executes on all Tags or one or more Tags in order
to monitor for value changes. Select 'all Tags' or 'Custom,’ and select the Tag(s)
from the dropdown.

Enables a trigger on a specific item in the group. The trigger item can be any Run-
Always item, such as an OPC item, Tag reference, or an Expression item set to "Run-
Always" mode.

® Trigger on item - select the item time you want to use as the trigger.

The group will only execute once when the trigger goes into an active state, and will
not execute again until the trigger goes inactive first. If unselected, the group will
execute each time the trigger conditions evaluate to true.

If using the ">0" or "=0" trigger modes, the trigger can be set to write an opposite
value after the group has executed successfully. This is useful for relaying
the execution back to the PLC.

If selected, the group will not execute if the trigger is active on the first evaluation of
the group. In the course of designing a group, it is common to stop and start it many
times, and sometimes it is not desirable to have the group execute as a result of this.
Selecting this option will prevent these executions, as well as executions caused

by system restarts.

Set any of the following trigger conditions:

® s 1=0 (or true)

® is =0 (or false)

® s active or non-active, which causes the group to exectue if the trigger value
matches the is active condition.

® Active on value change, which will cause the group to execute if the trigger
changes value at all.

Set the item and the value you want to see when the group executes successfully.

Set the item and the value you want to see when an error prevents the group
execution.

rigger Options page.

¢ 4 Action | W Trigger | & Options

»

Only evaluate when values have changed.
Tags to watch for change:
All tags -

Execute this group on a trigger

Write handshake on success
Set:
To value:

Write handshake on failure
Set:

Tovalue:

https://legacy-docs.inductiveautomation.com/display/DOC80/Item+Types#ItemTypes-RunAlwaysvs.TriggerItems

Advanced Settings % Acion " Trigger | & opros |

>

Transaction Groups offer several advanced settings that affect how execution occurs. These OPC data mode: | Subscribe =

settings can be found under the Options tab for a group. The table below describes the Advanced

settings.

Setting Description

OPC
Data
Mode

Bypass
Store
and
Forwar
d
System

Overrid
e OPC
subscri
ption
rate

Always
store
NULL
for

bad
quality
items

Set
NULL
Tag
values
to
default

Modifies how the group receives data from OPC.

Option

Subsc
ribe

Read

Bypass Store and Forward system

Override OPC subscription rate

Always store NULL for bad quality items
Set NULL Tag values to default
Set NULL DB values to default

Description

- Data points are registered with the OPC server, and data is received by the group on-
change. This is the default setting and generally offers the best performance, as it
reduces unnecessary data flow and allows the OPC server to optimize reads.

Note: Data is received by the group asynchronously, meaning that it can arrive at any
time. When the group executes, it "snapshots" the last values received and uses those
during evaluation. If some values arrive after execution begins, they will not be used until
the following execution cycle.

Each time the group executes it will first read the values of OPC items from the server. This
operation takes more time and involves more overhead than subscribed evaluation,

but ensures that all values are updated together with the latest values. It is therefore
commonly used with batching situations, where all of the data depends on each other and
must be updated together. It's worth noting that when using an OPC item as the trigger, the
item will be subscribed, and the rest of the values read when the trigger condition occurs.

This setting is only applicable to groups that insert rows into the database. Causes groups to target the
database directly instead of going through the store-and-forward system. If the connection
becomes unavailable, the group will report errors instead of logging data to the cache.

Specifies the rate at which OPC items in the group will be subscribed. These items are
normally subscribed at the rate of the group, but by modifying this setting it is possible to request
updates at a faster or slower rate.

With this option set to True, it will force the group to store a NULL value when the item has a bad quality,
instead of writing the bad quality value.

If a NULL is read from the Tag, it will instead use a default value to write to the database, depending on
the type. This can prevent errors for database columns that do not accept NULL values. The default
values are the same as the table above.

Set If a NULL is read from the database, it will instead use a default value to write to the Tag, depending on
NULL the type. This can prevent errors for OPC Tags that do not accept NULL values. Not available in a

DB Historical Group.

values

to The following feature is new in Ignition version 8.0.11
default Click here to check out the other new features

As of 8.0.11, enabling the Set DB Values to Default setting on Block Groups will clear the latched value,
setting the item to a default if the corresponding database value is Null.

Type
Byte
Short
Integer
Long
Float
Double
Boolean
String
Date/Time
Dataset

Array

Default Value

0

0

0

0

0.0

0.0

FALSE

" (Empty Sting)
Current Date/Time
[0x0] (Empty Dataset)

[1 (Empty Array)

Creating a Transaction Group

This example demonstrates how to configure a transaction group, specifically a Historical Group.
However, the process of creating any transaction group type is very similar, especially so in the
case of a standard group. The Transaction Group Examples section contains more examples.

1. Click on the Transaction Groups in the Project Browser to switch the Designer's
workspace to the Transaction Group workspace.

2. In the Project Browser, right click on Transaction Groups > New Transaction Group to
make a New Historical Group. Name the group 'Group.'

|4 New Group >
Name
“Group |\-_,

3. Browse your OPC device and drag some OPC Tags to the Basic OPC/Group Items secti

on.

Note that the group starts out 'Disabled' by default.

@ INDUCTIVI
UNIVERSI]

Basic Historical
Group

Watch the Video

@ INDUCTIV]I
UNIVERSI]

Realtime Group

Watch the Video

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.11
https://inductiveuniversity.com/video/basic-historical-group/8.0
https://inductiveuniversity.com/video/realtime-group/8.0

Fle Edt Vew Pt ook Rep
BU[er|[vss|nfooo o
Projctroneer x

Group b Enabled | © Disabled

4. Save your project.
5. Click the Enabled button above the item tables to enable logging.

p Enabled & Disabled

6. Go to the Action tab and change the Table Name. For the example, we gave it the name
"New_Test_Table."
Note that right now your group only exists in the Designer.

“ 4 Action P Trigger £F Options
>
Execution Scheduling:

Timer Schedule

1 second(s) -
Data source:
=Default=

Table name:

I New Te 5t_Tab|e| I

Automatically create table

Use custom index column:
Store timestamp to: t_stamp

Store quality code tor

Delete records older than:

7. Save your project to start the group. Your group is now running and logging data to your
database connection.
8. To see the data, you can use the Ignition Designer's built-in Database Query Browser.
o

The easiest way to do this is to click on the Database™ icon next to your group's Table
Name field. The Query Browser is a convenient way to directly query your database
connection without leaving the Ignition Designer. Of course, you can also use any query
browser tools that came with your database.

https://legacy-docs.inductiveautomation.com/display/DOC80/Database+Query+Browser

Database Query Browser B X

SELECT * FROM group_table_new WHERE Ramp@=@ - ’

i ; Execute

3 Limit SELECT to: | 1,000 | rows

P

esultse =
4 Resultset 1 <[MysqL .
> ——

group_table_new_ndx Ramp0 Ramp1 Ramp2 Schema__ History

1 4,649 69.896 193 |~

2 4,649 60.896 1.93 » H group_table3 ~

3 4.649 §0.806 103 + H group_table_new

!) . ! :

4 5.651 75.037 1.13 EH hfston_,r |

5 5.651 75.037 113 || |» B history sine tags
: > + EA hitachi_errors
7 rows fetched in 0.042s £ Auto Refresh # Edit + Apply | [Discard b FA hitachi moscanos

Related Topics ...

® Database Connections

® Transaction Group Examples
® Database Query Browser

® Trigger Options

In This Section ...

https://legacy-docs.inductiveautomation.com/display/DOC79/Database+Connections
https://legacy-docs.inductiveautomation.com/display/DOC80/Database+Query+Browser

Types of Groups

The SQL Bridge Module provides four different types of Transaction Groups that you can use in
your projects. Each of these different types of groups vary in their operation and use for data
logging and database to PLC synchronization.

Historical Group

The historical group makes it easy to quickly log data historically to a SQL database.

General Description

The historical group inserts records of data into a SQL database, mapping items to columns.
Full support for triggering, expression items, hour & event meters and more means that you can
also set up complex historical transactions. Unlike the standard group, the historical group
cannot update rows, only insert. It also cannot write back to items (besides trigger resets

and handshakes).

Group Settings

The settings of the historical group are identical to the settings in the Standard Group, but limited
to inserting rows.

Typical Uses

Basic historical logging - Recording data to a SQL database gives you incredible storage
and querying capabilities, and makes your process data available to any application that has
DB access.

Shift tracking - Use an expression item to track the current shift based on time, and then
trigger off of it to record summary values from the PLC. Use a handshake to tell the PLC to reset
the values.

Standard Group

The Standard Group is called such because it's a flexible, general use group that can be adapted
to a variety of situations. The data model is row based, with items mapping to columns and the
data corresponding to a specific row of a table.

General Description

The Standard Group contains items, which may be mapped to the database, or used internally
for features such as triggering or handshakes. Items that are mapped to the database target a
specific column of a single specific row, chosen according to the group settings. Items can be
mapped in a one-way fashion, or bi-directionally, in which the value of the database and the item
will be synchronized.

The group may also insert new rows instead of updating a specific row. In this manner, data can
be inserted for historical purposes based on a timer, with an optional trigger.

Group Settings

The Standard Group uses a timer-based execution model shared by all groups, and the
normal trigger settings. Additionally, there are several settings specific to the group type:

Automatically create table - If the target table does not exist, or does not have all of the required

columns, it will be created/modified on group startup. If not selected and the table doesn't match,
an error will be generated on startup.

On this page

® Historical Group
® General
Description
® Group Settings
® Typical Uses
® Standard Group
® General
Description
® Group Settings
® Table action
® Typical Uses
® Block Group
® General
Description
® Typical Uses
® Table Format
® Row ID and
Block ID
® Group Settings
® Table action
® Stored Procedure
Group
® Group Settings
® Typical Uses
® Known Issues
® Parameters in
the Stored
Procedure Group

@ INDUCTIV]I
UNIVERSI]

Types of Groups

Watch the Video

https://inductiveuniversity.com/video/types-of-groups/8.0

Use custom index column - If selected, you may enter any column name to hold the index. If
unselected, the table index will be named <table name>_ndx.

Store timestamp to - Specifies whether or not to store a timestamp with the record, and the
target column. The timestamp will be generated by the group during execution. For groups that
update a row, the timestamp will only be written if any of the values in the group are also written.
Store quality code to - If selected, stores an aggregate quality for the group to the

specified column. The aggregate quality is the combined quality of all of the items that write to the
table. For more information about quality values, see Data Quality.

Delete records older than - If selected, records in the target table will be deleted after they reach

the specified age. This setting is useful for preventing tables from growing in an
unbounded manner, which can cause disk space and performance problems over time.

Table action

This section details how the group interacts with the table on each execution, and is not available for the Historical Group type. This means
when the Timer or Schedule is active, and the Trigger condition are met. The group can insert a new row, or update the first, last or a custom
record.

Insert New Row - This option will make the group insert a new record into the database every time the group executes. This is the forced
behavior of the Historical group.

Update / Select - This option will either update or select from matching rows based on the option selected below it. The Update Mode
property above determines whether an update (OPC to DB), select (DB to OPC), or both (Bi-directional) are used when the group executes.

First - Use the first row in the table. It is not recommended to use this option unless the order of the data in the table is guaranteed.

Last - Use the last row in the table. This is commonly used when another group (or another program) is inserting new rows for us, and we
always want to update the most recent record.

Custom - A custom update clause is essentially the WHERE clause of the SQL query that will be generated to read and write the group
data. This usually contains a reference to a Tag in the group. IE: column_name = {[~]item_name}

Key/Value Pairs - Used to inject dynamic values in order to create a WHERE clause for you. The table below this option will allow you to

enter column names and link them to values (usually Tags in the group). This option also has the ability to Insert a new row with the current
key/value pair if it was not found.

Typical Uses

Standard groups can be used any time you want to work with a single row of data. This can include:

Historical logging - set the group to insert new records, and log data historically either on a timer, or as the result of a trigger. Flexible
trigger settings and handshakes make it possible to create robust transactions.

Maintain status tables - Keep a row in the database updated with the current status values. Once in the database, your process data is now
available for use by any application that can access a database, dramatically opening up possibilities.

Manage recipes - Store recipe settings in the database, where you have a virtually unlimited amount of memory. Then, load them into the
PLC by mapping DB-to-OPC using a custom where clause with an item binding in order to dynamically select the desired recipe.

Sync PLCs - Items in the group can be set to target other items, both for one-way and bidirectional syncing. By adding items from multiple

PLCs to the group, you can set the items of one PLC to sync with the others. By creating expression items that map from one PLC item
to the other, you can manipulate the value before passing it on.

Block Group

Block Groups instead allow you to store your data in a tall format. They allow you to create a

unique type of item, called a Block Item, which represents an ordered list of values to store within @ IN DUCTIV]
a column for each execution. U NIVERSI']

General Description
Block Group

https://legacy-docs.inductiveautomation.com/display/DOC79/Tag+Quality+and+Overlays

A Block Group contains one or more block items. Each block item maps to a column in the .
group's table, and then defines any number of values (OPC or SQLTag items) that will be written Watch the Video
vertically as rows under that column. The values may be defined in the block item in two modes.

The first, List mode, lets a list of value-defining items to be entered. These value items may either

be OPC items, Tag items, or static values. The second mode, Pattern mode, can be useful when

OPC item paths or Tag paths contain an incrementing number. You may provide a pattern for

the item's path, using the wildcard marker {?} to indicate where the number should be inserted.

Block groups are very efficient, and can be used to store massive amounts of data to the
database (for example, 100 columns each with 100 row -10,000 data points- will often take only a
few hundred milliseconds to write, depending on the database). They are also particularly useful
for mirroring array values in the database, as each element will appear under a single column,
and share the same data type.

Like the Standard Group, the Block Group can insert a new block, or update the first, last or

a custom block. Additionally, the group can be set to only insert rows that have changed in the
block.

In addition to block items, the group can have other OPC items, Tag references, and Expression
items. These items can be used for triggers, handshakes, etc. They may also target a column to
be written, and will write their single value to all rows in the block.

The block group is so named because it writes "blocks" of data to a database table, consisting
of multiple rows and columns.

Typical Uses

Block Groups are useful in a number of situations where you need to deal with a lot of data efficiently. Mirroring/Synchronizing array values
to DB - Arrays are often best stored vertically, which makes them perfect for Block Groups. Pattern mode makes configuration a breeze by
allowing to you specify the array as a pattern, and set the bounds

Recipe management - Like Standard Groups, but used when set points are better stored vertically than horizontally.

Vertical history tables - Group data points by data type (int, float, string), create a copy of the item that stores item path, and then use the

insert changed rows option to create your own vertically storing historical tables. Create additional copies of the block item that refer to
guality and timestamp in order to get further information about the data point.

Table Format

Due to their nature, Block Groups store records in a different format than the other groups. Consider how other Transaction Groups work. A
single execution of a standard or historical group would store a row that looked like the following:

table_ndx tagl tag2 tag3
1 10 20 30

We could take the Tags from the above example, and place them in under a single block item like so:

Blocky P Enabled @ Disabled
Running

Item Vie; Block View

Block Items (1)

Item Name Source Value Latched Value = Mode | Target Name DataType @ Properties Size
= % Block Item 3 Tags String 3
[default]Tagl 10 10
[default]Tag2 20 20
[default]Tag3 30 30

Note that each Tag is nested under the block item, and the block item is targeting the "Tags" column under Target name. A single execution
of this group stores the records in our table as so:

https://inductiveuniversity.com/videos/block-group/8.0

table_ndx Tags

1 10
2 20
3 30

Each additional block item would store records as a separate column.

table_ndx Tags More_Tags

1 10 11
2 20 22
3 30 33

Row ID and Block ID

Using the same Tag example from above, if we kept inserting new rows at every execution, our table would start to looks like the following:

table_ndx Tags

1 10
2 20
3 30
4 15
5 25
6 35

This isn't ideal, since the table doesn't have a great way to show which value came from which Tag. To help with this, Block Groups have
optional row_id and block_id columns that can be enabled (see the "Store row id" and "Store block id" settings under Group Settings). If we
enable both the Block ID and Row ID, our table would look like the following:

table_ndx Tags row_id block_id

1 10 0 1
2 20 1 1
3 30 2 1
4 15 0 2
5 25 1 2
6 35 2 2

Block ID represents the a single execution of the group, meaning rows with the same block_id value were inserted together. We see block_id
values of 1 (colored green) are part of the same execution, and rows with a block_id value of 2 (colored blue) are a separate execution.

Row ID in an index representing which item in the block item the row corresponds to. In our example, Tagl is the first or top item in the block

item (row index 0), Tag2 is next (row index 1), and Tag3 is last (row index 2). Now we know that any value on that table with a row_id of 0
came from Tagl.

Group Settings

Beyond the differences in the data, namely that the Block Group works with multiple rows instead of just 1, this group type shares many
similarities with the Standard Group.

The unique settings are:

Automatically create table - If the target table does not exist, or does not have all of the required columns, it will be created/modified on
group startup. If not selected and the table doesn't match, an error will be generated on startup.

Automatically create rows - If the target rows do not exist, they will be created on group execution. If not selected and the rows don't
match, no records will be updated.

Use custom index column - If selected, you may enter any column name to hold the index. If unselected, the table index will be named
<table name>_ndx.

Store timestamp to - Specifies whether or not to store a timestamp with the record, and the target column. The timestamp will be generated
by the group during execution. For groups that update a row(s), the timestamp will only be written if any of the values in the group are also
written.

Store quality code to - If selected, stores an aggregate quality for the row to the specified column. The aggregate quality is the combined
quality of all of the items that write to that row. For more information about quality values, see Data Quality.

Store row id - Each row will be assigned a numeric id, starting at O. If selected, this id will also be stored with the data.

Store block id - If selected, an incremental block id will be stored along with the data. This number will be 1 greater than the previous block
id in the table.

Delete records older than - If selected, records in the target table will be deleted after they reach the specified age. This setting is useful for
preventing tables from growing in an unbounded manner, which can cause disk space and performance problems over time.

Table action

This section details how the group interacts with the table on each execution, and is not available for the Historical Group type. This means
when the Timer or Schedule is active, and the Trigger condition are met. The group can insert a new row, or update the first, last or a custom
record.

Insert New Block - If selected, each row of the block will be inserted when the group executes, even if the data has not changed.

Insert changed rows - This option will only insert the rows that have new data when the group executes. This is particularly useful for
recording history for many data points on an "on change" basis, provided there is a unique id column defined. The "store row id" feature is
useful for this, as well as the ability to reference the item path in an item's value property.

Update / Select - This option will either update or select from matching rows based on the option selected below it. The Update Mode proper
ty above determines whether an update (OPC to DB), select (DB to OPC), or both (Bi-directional) are used when the group executes.

First - Use the first row in the table. It is not recommended to use this option unless the order of the data in the table is guaranteed.

Last - Use the last row in the table. This is commonly used when another group (or another program) is inserting new rows for us, and we
always want to update the most recent record.

Custom - Like Standard Groups, this setting allows you to target a specific section of the table, using SQL where clause syntax, with the
ability to bind to dynamic item values. Unlike standard groups, however, the WHERE clause specified should result in enough rows to cover
the block. Excess rows will not be written to, but fewer rows will result in a group warning indicating that some data could not be written.

Stored Procedure Group

The stored procedure group lets you quickly map values bi-directionally to the parameters of a

stored procedure. It is similar to the other groups in terms of execution, triggering, and IN DUCTIV]
item configuration. The primary difference is that unlike the other group types, the target is not U NIVE RS I']
a database table, but instead a stored procedure.

Items in the group can be mapped to input (or inout) parameters of the procedure. They also can

be bound to output parameters, in which case the value returned from the procedure will be

written to the item. Items can be bound to both an input and output at the same time. Stored Procedure
I . o Group

Parameters may be specified using either parameter names or numerical index. That is, in

any location where you can specify a parameter, you can either use the name defined in the

database, or a 0-indexed value specifying the parameter's place in the function call. Watch the Video

(D You cannot mix names and indices. That is, you must consistently use one or the other.

If using parameter names, the names should not include any particular identifying character
(for example, "?" or "@", which are used by some databases to specify a parameter).

https://legacy-docs.inductiveautomation.com/display/DOC80/Tag+Quality+and+Overlays
https://inductiveuniversity.com/videos/stored-procedure-group//8.0

SP All Params » Enabled ® Disabled
Errored

Basic OPC/Group Items (2)

Item Name SourceV.. | Latched .. | Target Name Output Data Type Properties
Sintag [| | F mnParam | ANone | 0nt4 | |
% Out_Tag 20 20 3 myCounts £ None Int4

Run-Always Expression Items (ignore trigger) (0) AV

Item Mame Source Value | Latched Val.. Target Name Data Type Properties

Group Settings

The Stored Procedure group's settings look and act the same as those of the Historical Group. The primary difference, of course, is that
instead of specifying a table name and column names, you'll specify a Stored Procedure and its parameters.

Store timestamp to - Specifies whether or not to store a timestamp with the record, and the target column. The timestamp will be generated
by the group during execution. For groups that update a row, the timestamp will only be written if any of the values in the group are also
written.

Store quality code to - If selected, stores an aggregate quality for the group to the specified column. The aggregate quality is the combined
quality of all of the items that write to the table. For more information about quality values, see see Data Quality.

Procedure Name - The name of the Stored Procedure (SP) that you will be using. You must look into the SP definition to see what inputs
and outputs are available.

Typical Uses

Call stored procedures - The stored procedure group is the obvious choice when you want to bind values to a stored procedure. It can also
be used to call procedures that take no parameters (though this can also be accomplished from Expression Iltems/SQLTags.

Replace RSSQL - The stored procedure group is very popular among users switching from RSSQL, given that application's heavy use of
stored procedures.

Known Issues

When using an Oracle database, you must use indexed parameters.

Parameters in the Stored Procedure Group

When using a Stored Procedure Group, parameters may be configured to each item based on the type of the parameter:

® The Target Name column is used for writing, so specifying an IN or INOUT parameters under this column will have the item try to
write its value to the parameter

® The Output column is used to move the value of an OUT or INOUT parameter into an item in the group. If an item in a group is
configured to reference an OUT parameters, its Target Name value should be set to Read-Only.

Related Topics ...

https://legacy-docs.inductiveautomation.com/display/DOC79/Tag+Quality+and+Overlays

® Group Update Rate

https://legacy-docs.inductiveautomation.com/display/DOC80/Understanding+Transaction+Groups#UnderstandingTransactionGroups-GroupUpdateRate

ltem Types

Items are the backbone of a Transaction Group. They represent a link
between a source value (derived from either an OPC value or an
expression) and a cell in a database table. Iltems generally aren't executed
in a reliable order, with the exception of Expression items.

Expression items can be ordered using the up and down arrows located to
the right of the list where the items are displayed. This can be crucial for
performing complex operations that require a specific sequence. Below is
a listing of each type of item.

Item Description

Type
OPC Directly subscribed to an OPC server at the rate of the group. These items effectively
Item ignore the gateway's Tag system, bypassing Tag groups and Tag providers

altogether.

Express = Much like an expression Tag, expression items are flexible in that their value can
ion come from a number of different sources: specifically an expression or a database
Item query.

Expression items have two sub types:

®* Run-Always expression items are evaluated every time the group executes.
Meaning, they'll run their associated expression or query every time the group
executes.

® Triggered expression items only evaluate when the group trigger is active.

Tag A reference to a Tag in a Tag provider. Allows a Tag to be used in a group like any

Referen = other item type, except that the Tag is evaluated by its scan class instead of by the

ce ltem | group. For more information, see the Tag References vs. OPC Items section on this
page.

Tag Reference Items can reference the value on any Tag in a Tag provider, such as
query Tags and memory Tags.

Tag References and OPC Items

It is easy to confuse the definition and purpose of Tag reference items and direct OPC items in
Transaction Groups.

Tags may be referenced inside of Transaction Groups through a Tag Reference Item. Since the
source of the Tag reference item exists outside of the Transaction Group, they have their own
rules and configurations that determine when their value changes. Thus Tag reference items can
have their value update according to their own execution (commonly, a Tag Group). Adding a Tag
into a group is like creating a shortcut to that Tag. However, once in the group, the item can be
used like any other item. Tag references are useful when it is necessary to have a single value in
multiple groups, for example, as a trigger in order to coordinate execution.

OPC Items in groups (as well as expression items in groups), however, are completely executed
by the group. They do not exist outside of the group in which they are defined. They are
subscribed and evaluated according to the rate of the group.

On this page

® Tag References
and OPC Items
® Expression ltems
® Scope
® Execution Order
® Expression Type
® Run Always vs.
Triggered ltems
® Changing the
Evaluation State
® SQL Queries and
Expressions
® Creating a New ltem
® Item Type Property
Table
®* OPC Item
Options
® Tag Reference
Item Options
® Expression Iltem
Options

@ INDUCTIV]I
UNIVERSIT
ltem Types

Watch the Video

@ INDUCTIV]I
UNIVERSI]

Tag References vs.
OPC Items

Watch the Video

https://inductiveuniversity.com/video/item-types/8.0
https://inductiveuniversity.com/video/tag-references-vs-opc-items/8.0

Refer to the Properties Table at the bottom of this page to see the properties for both Tag and
OPC Items.

Expression Items

Expression Items are items not driven by a PLC. Instead they allow you to configure a static value,
or use some other means to automatically set a value, such as a query. They are useful for
executing comparisons, simple math, and looking up values from other database tables.

Much like OPC Items, Expression Items can have alarms configured, as well as numeric scaling ap
plied directly to the item.

Scope

It is important to understand that an Expression Item only exists within its group, and can not be
referenced by items in other Transaction Groups, Tags, and any components on a window. The
only exception is to use an Expression Item to store/retrieve a value with storeVariable() and
getVariable() functions. These functions store values in a space that is accessible by all
Transaction Groups.

Execution Order

All Expression items will evaluate in order from top to bottom. This means referencing an
Expression Item above will pull the new value, but referencing an Expression Item below will give
you the value from the last group execution.

Expression Type

How an Expression Item determines its value depends heavily on its type.

< Edit group tag — [m] had

£+ General Expression/SQL

B Numeric

A Alarming Expression Type

[t e :
None (Memory Tag)
Expression

Named Query

0K Apply Cancel

Expression = Definition
Type

None Behaves similar to a Memory Tag in that the value does not automatically
change.

Expression Uses Ignition's Expression Language to determine the value on the Item. The
expression can reference other items in the group, as well as Tags.

SQL Query | Utilizes a SQL query to determine the item's value. Thus, a query can execute on
the item and the results can be referenced by other items in the same group.

Named Selecting this option will cause the value on the item to be determined by a
Query Named Query in the same project as the Transaction Group.

Refer to the Property Table at the bottom of this page to see the Expression Item properties.

@ INDUCTIVI
UNIVERSI]

Expression Items

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC80/Tag+Scaling+Properties
https://legacy-docs.inductiveautomation.com/display/DOC80/Expression+Overview+and+Syntax
https://inductiveuniversity.com/video/expression-items/8.0

Run Always vs. Triggered Ite

ms

Expression Item can be configured in two different evaluation states:

® Triggered: The Expression Item executes only when the Transaction Group is triggered.
However if the group is not configured to execute on a trigger, then the item will evaluate
every time the group executes (similar to how the Run-Always state works). This is the

default evaluation state new Expression Items use

Run-Always: The Expression Items will run before the group trigger is checked, so it
always executes at the group's rate. This allows your expression to always evaluate
regardless of the trigger in the group. Additionally, this state allows you to use the
Expression Item as the trigger for the group. We advise that you never have a Target for a

Run-Always Expression item because it always runs.

B Digecuonal P Enabled | © Disabled
Unable to Start
Item Name Latch.. Mode Target Name Data.. | Prop..
% accumulatorLevel N/A 3 accumul... Intd A
% ambientHum N/A 3 ambient.. Float4
% ambientTemp N/A 3 ambient.. Float4
"% dischargePressure N/A 3 discharg.. Floatd
% dischargeTemp N/A 3 discharg.. Intd
% receiverLevel A N/A 3 receiver.. Intd ~
Run-Always Expression Ttems (ignore trigger) (1) AV
Item Name Source.. Latche.. Target Name DataTy.. | Propert..
"% My Run_Always Item N/A N/A £ Read-only Int4
Triggered Expression Items (1) AV
Item Name Source.. Latche.. Target Name Data Type Properties
S My Triggered ltem N/A N/A £3 Read-only Inta

Changing the Evaluation State

Toggling between the two modes can be accomplished by dragging and dropping the Expression
Item to either the Run-Always Expression Items table or the Triggered Expression Items table.
Alternatively, the evaluation state can be changed by editing the Expression ltem and toggling the

Run-always (ignore trigger) checkbox

L Edit group tag - O ®
[Numeric
A Alarming General Properties
= Expression/SQL Name
item 2
Value
0
Data Type
Integer -
Value Mode
Property
Value -
Mode
Directvalue

Hour meter Event meter

L

Evaluation Options

Run-always (ignore trigger)

Write target

Target Type Target Name

None, read-only item -

< >
0K Apply Cancel

SQL Queries and Expressions

INDUCTIV]
UNIVERSIT

Run Always vs.
Triggered Items

Watch the Video

https://inductiveuniversity.com/video/run-always-vs-triggered-items/8.0

Expression items can use SQL statements and Ignition's Expression language to automatically
determine the value of an Expression Item. This is useful in scenarios where you want to use a
value from the database as the trigger for the Transaction Group, or aggregate several other items
in the group into a single value.

Expressions and queries on an Expression Item can reference the value of other items in the

INDUCTIV]
UNIVERSIT

group or Tags in the system by clicking on the Tag ® icon. SQL QU ery

There are several Expression functions available that exist only for Transaction Groups. You can
find them in the Store and Forward and Variables sections of the f(x) function list.

L Edit group tag — o *
2 General Expression/SQL
B Numeric
& Alarming Expression Type *
= Expression/sQL SQL Query -
SELECT T
COUNT (target_number)
FROM
workorders
WHERE

id = {[~]currentwoId}|

< >

Datasource Query Type

<Defalt> = | Auto Detect v

0K Apply Cancel

Creating a New Item

Below is an example of creating a new item. The steps can be applied to any item type.

1. In the Designer, go to Project Browser, and click on Transaction Groups.
The workspace now changes to the Transaction Group workspace.

Expression Items

Watch the Video

2. Right-click on Transaction Group to create a New Transaction Group, or click on a group you have previously created.

You will now see the workspace changes to look like:

Project B = —
L = = € 4 Action P Trigger £ Options
A Group > =
e . = o P fnabled | ® Disabled Execution Scheduling:
~ P Transaction Groups Execution Disabled >2'® Projectio start nedul
[Block-Group-ex group Timer | Schedule
=) Event_Meter =
|. =] Group Item N... 1 So.. .. | Mode Target Na... DataT.. Proper... Update mode:
=) Historical-ex % Ramp4 NIA N/A Usegroup'.. Rampd Floats ~ T
[E] New Group T Ramp3 N/A N Use group'... Ramp3 Floatg i
) Realtime . & Ramp2 N/A NA Usegroup'.. RampZ Floats Data source:
G Ramnt N} N/A lise aronn' Bamn1 Elnatf i
OPC Browser (= S . in- A lways Expression Items (ignore trigger) (0) - <Default>
-2 Item Name Sourc.. | Latch.. Target Name Data Type Properties Table name:
» i [OMRON NI A
b il [sim] New_Test_Table
~ '@ [Sim_Dairy 7-2020]
} & [Controls] Triggered Expression Items (0) ~ v Automaticaly create table
b i Overview Item Name Sourc.. | Latch.. | Target Name Data Type Properties Use custom index column:
x z Store timestamp to: tstal
Tag Browser [=LI 4 3 > :
Q o ¥-a a B —
- M Status & Events
Tag Value Data.. Traits
Execution Disabled
» i System Last execution: Total executions: 0
» i All Providers
Last trigger: Failed executions: 0
Next execution: OPC/Tagwrites: 0
Last duration: 0.0 second(s) DB writes: 0
Avg duration: 0.0 second(s) OPC/Tagwrite failures: 0

3. Right-click in the white area, and choose New Item > New OPC Item. The options in the popups represent the different item types.

Refer to the property table on this page for more information on the various item types and their properties.

https://legacy-docs.inductiveautomation.com/display/DOC80/Writing+SQL+Queries
https://legacy-docs.inductiveautomation.com/display/DOC80/Expression+Overview+and+Syntax
https://inductiveuniversity.com/video/sql-query-expression-items/8.0

+ Newltem T New OPC Item
LN Mew Expression Item

T NewTag Reference

4. Once you configured the item, click OK. Different items have different properties. A description of item properties for each type can
be found on this page.

Item Type Property Table

The following tables describes the OPC, Tag and Expression Item properties.

OPC Item Options

Property Description

General

Name The name of the OPC item in the group. There cannot be duplicate names within a group.
Data The datatype used to read values from the PLC.

Type

OPC Properties

OPC The Selected OPC Server. This is a drop-down list showing all the OPC Servers added in the Ignition Gateway.
Server

OPC The OPC address assigned by the server. Dragging and dropping from the OPC Browser will automatically populate this field.
Item
Path

Source Data type for the OPC item.
Data

Type
Value Mode

Property | Which property of the OPC item you want to use.

Value - Item value

Quality - Quality code from OPC Server (192 = GOOD_DATA)
Timestamp - The last time the item value changed

Name - The SQLBridge Item Name property of this Item

Mode

Options for displaying values based on the Item value.

® Direct Value - Item value
® Hour Meter - Record the amount of time the Item value is non-zero. This accumulation will reset to zero when the item
value goes to zero. The datatype should be set to integer or float when using an Hour Meter regardless of the OPC Item
type.
© On Zero - Use a zero value to accumulate time instead of a non-zero value
© Retentive - Retain the Hour Meter value when it is not accumulating.
© Units - The time units to display.
® Event Meter - Record the number or times the Item value is non-zero. The datatype should be set to integer when using
an Event Meter regardless of the OPC Item type.
© On Zero - Use a zero value to accumulate events instead of a non-zero value

Write Target

Mode

Target
Type

Target
Name

Changes the items directional read/write option.

Use group's mode - Inherit the Update Mode from the ltem's Group.

OPC to DB - Only read from the OPC server and write to the database.

DB to OPC - Only read from the database and write to the OPC Server.

Bi-directional OPC wins - Read and Write to both the database and OPC Server. On group start, write OPC Server values
to the database.

® Bi-directional DB wins - Read and Write to both the database and OPC Server. On group start, write database values to
the OPC Server.

This is the selection for what the Item will write to when the group executes.

® None, read-only item - Do not write this value to the database.
® Database field - Write the Item value to the specified column in the database table. This list will populate with all the
column names from the Group's target table after the first time the group is run.

The name of the column in the database that this Item will write to when the group executes. The Target Name list will
populate with all the column names from the Group's target table if the Target Type is Database field.

Alarming = The Alarming settings for the OPC items. See Alarming Properties for a full explanation.

Tag Reference Item Options

General

Name The name of the OPC item in the group. There cannot be duplicate names within a group.

Tag The path to the tag being referenced. This value is not editable except by clicking the Insert Tag button. There cannot be duplicate
Path | names within a group.

Data | The datatype to write to into the database if this item is not read-only.

Type

Value Mode

Prop = Which property of the Tag you want to use.

erty

Value - Item value

Quiality - Quality code of the Tag (192 = GOOD_DATA)
Timestamp - The last time the item value changed
Name - The SQLBridge Item Name property of this Item.

https://legacy-docs.inductiveautomation.com/display/DOC80/Tag+Alarm+Properties

Mode @ Options for displaying values based on the Item value.

® Direct Value - Item value

® Hour Meter - Record the amount of time the Item value is non-zero. This accumulation will reset to zero when the item value
goes to zero. The datatype should be set to integer or float when using an Hour Meter regardless of the OPC Item type.
On Zero - Use a zero value to accumulate time instead of a non-zero value
Retentive - Retain the Hour Meter value when it is not accumulating.
Units - The time units to display.

® Event Meter - Record the number or times the Item value is non-zero. The datatype should be set to integer when using an
Event Meter regardless of the OPC Item type.
On Zero - Use a zero value to accumulate events instead of a non-zero value

Write Target

Mode ' Changes the items directional read/write option. This is only editable when the target Type is set to Database field.

Use group's mode - Inherit the Update Mode from the Item's Group.

OPC to DB - Only read from the OPC server and write to the database.

DB to OPC - Only read from the database and write to the OPC Server.

Bi-directional OPC wins - Read and Write to both the database and OPC Server. On group start, write OPC Server values to
the database.

® Bi-directional DB wins - Read and Write to both the database and OPC Server. On group start, write database values to the
database.

Targ This is the selection for what the Item will write to when the group executes.
et
Type * None, read-only item - Do not write this value to the database.
® Database field - Write the Item value to the specified column in the database table.

Targ = The name of the column in the database that this Item will write to when the group executes. The Target Name list will populate
et with all the column names from the Group's target table if the Target Type is Database field.
Name

Expression Item Options

General

Name | The name of the OPC item in the group. There cannot be duplicate names within a group.
Value = The static value of this Expression item. This will be overwritten by an Expression/SQL binding.

Datat = The datatype values are stored as.
ype

Value Mode

Prope | Which property of the OPC item you want to use.
rty
® Value - Item value
® Quality - Quality code of the expression/SQL Query (192 = GOOD_DATA)
® Timestamp - The last time the item value changed.
® Name - The SQLBridge Item Name property of this Item.

Mode

Evalu
ation
Mode

Write
Target

Targe
t
Name

Nume
ric

Alarmi
ng

Expre
ssion

Options for displaying values based on the Item value.
® Direct Value - Item value

® Hour Meter - Record the amount of time the Item value is non-zero. This accumulation will reset to zero when the item value
goes to zero. The datatype should be set to integer or float when using an Hour Meter regardless of the OPC Item type.
On Zero - Use a zero value to accumulate time instead of a non-zero value
Retentive - Retain the Hour Meter value when it is not accumulating.
Units - The time units to display.

® Event Meter - Record the number or times the Item value is non-zero. The datatype should be set to integer when using an

Event Meter regardless of the OPC ltem type.
On Zero - Use a zero value to accumulate events instead of a non-zero value

Run-always (ignore Trigger) - When selected, this causes the group to evaluate at each group interval, before the trigger state is
evaluated.
Target Type - This is the selection for what the Item will write to when the group executes.

® None, read-only item - Do not write this value to the database.

® Database field - Write the Item value to the specified column in the database table.
® Other Tag - Write the Expression ltem's value back to an OPC item or Tag Reference.

The name of the column in the database that this Item will write to when the group executes. The Target Name list will populate
with all the OPC Item and Tag Reference names from this Group, or the column names from the Group's target table depending
on the Target Type selected.

These are the Numeric properties for Expression Items. For a full description, see Tag Scaling Properties.

These are the Alarming settings for the OPC items. See Alarming Properties for a full explanation.

These are the Expression/SQL Query options for Expression ltems. See Expression/SQL Properties for a full explanation.

https://legacy-docs.inductiveautomation.com/display/DOC80/Tag+Scaling+Properties
https://legacy-docs.inductiveautomation.com/display/DOC80/Tag+Alarm+Properties
https://legacy-docs.inductiveautomation.com/display/DOC80/Scripting+Vs.+SQL+Vs.+Expressions

Hour and Event Meters

Hour meter and Event meter refer to the Value Mode option settings on Tags in Transaction

Groups. The Value mode drives values that are used to create values that determine how long a

value was true. While the selected Value Mode for most transactions is Direct, however, the Hour

meter mode accumulates value for the duration of a condition, and the Event meter accumulates INDUCTIV]

count in response to the condition. UNIVERSIT

Hour Meter
Hour and Event
It is common to write to a Tag during the time when a Tag's value is true. An hour meter simplifies Meters
this effort. Hour meters can be meters that accumulate the millisecond, second, minute, hour, or
day.

Watch the Video

Count the Duration of a Tag Being True

1. From OPC Browser or Tag Browser, drag a boolean Tag into the Basic OPC/Groups Items area of a Standard Transaction Group.

File Edit View Project Tools Help
B+« 4% 58 § (% 15 -%- -85
Project Browser a - X
Project Properties /A New Group_Internal P Enabled ®© Disabled
Unable to Start Save project to apply changes
¥ &) Alarm Notification Pipelines
o2 Sequential Function Charts

Basic OPC/Group Items (1)
Item Name Source V... Latched .. = Mode TargetNa.. 1| DataType Properties
ey a - X % _Sim_/Boclean Examp... N/A N/A 3 BooleanE.. Boolean

Qo |¥-80b 906 B
Tag Value DataTy...
~ @ Tags

» & DataTypes
» i _Sim-Dairy_
b W _Sim-SLC_
~ W _Sim_
» i Ramp
» i Random
+ i ReadOnly
» i Realistic
i Sine
» W Writeable
Bool.. Item Name SourceVal_. | LatchedVa_. = TargetName Data Type Properties
» i Compressorl
» % HighTemp Memo 78 Inte...
» % MemTag1 Memo 2 Inte...
» il System
» i All Providers

Run-Always Expression Items (ignore trigger) (0)

Item Name SourceVal.. = Latched va.. TargetName Data Type Properties

Triggered Expression Items (0) AV

2. From OPC Browser or Tag Browser, drag a memory tag or OPC tag (must be a numeric data type) into the Basic OPC/Groups
Items portion of the Standard Transaction Group.

3. Right-click on the boolean tag in the Transaction Group and select Edit to edit it.
The Edit group tag window is displayed.

https://inductiveuniversity.com/video/hour-and-event-meters/8.0

New Group_Internal
Unable to Start Save project to apply changes

Basic OPC/Group Items (2)

Item Name Source V... Latched .. Mode TargetNa.. ~ ' DataType Properties
£ sim _/Ramp/Ramp0 [Ramp0 Float8

®_Sim_/Boolean Examp... __-— F BooleanE.. | Boolean | |

<+ Newltem »

p Enabled ® Disabled

Edit

Item Name So e Cut ‘a.. | Target Name Data Type Properties
A Copy
o Delete

riggered Expression Items (0)
Item Name Source Val.. | Latched Va.. = Target Name Data Type Properties

4. In the Edit group tag window, for Value Mode, select Hour meter.
5. In the Edit group tag window, for Target Type select Other tag from the dropdown menu, and in Target Name enter the name of
the memory tag as the target, and click OK.

L g Edit group tag - O X

General
Name
Sim/Boolean Example Tag
Tag Path Data Type

% || Boolean -

Value Mode
Property
Value -

Mode

Direct value

| our meter Event meter

OnZero Retentive Units | second(s) -

Reset on condition: %

Write target
Mode

Use group's mode -

Target Type Target Name

Other tag » || _Sim_/Ramp/Ramp0 -
I | |

6. Inthe Basic OPC/Groups Items area where the tags are located, go to the Target Name column, left-click on each tag to get the
dropdown menu, and set the following:

a. For the boolean tag, select the memory tag from the dropdown which is set previously as the target tag to write the hour
meter to.

New Group_Internal
Unable to Start Save project to apply changes

Item Name Source V... Latched ... Mode TargetNa.. ' DataType Properties
% _Sim_/Ramp/RampD MN/A A 3 Ramp0 Float8

¥ sim/Booleanbxamp... | | | — [WEERg Boolean |6

p Enabled ® Disabled

4 Read Only
3 DB Columns
T Tags

Run-Always Expression Items (ignore trigger) (0)

Item Name Source Val.. | Latched Va.. Target Name Data Type Properties

b. For the memory Tag, select Read-only from the dropdown.

New Group_Internal

p Enabled ® Disabled
Unable to Start Save project to apply changes

Basic OPC/Group Items (2)

Item Name Source V... Latched ... Mode TargetNa.. *' DataType Properties

i Ramp0

% Read Only Boolean @

3 DE Columns

% Tags
_Sim_fBoolean &

Run-Always Expression Items (ignore trigger) (0)

Item Name Source Val.. | Latched Va.. Target Name Data Type Properties

7. Click Enabled at the top of the page, and do a File > Save to start the group.
8. Make the boolean Tag true to the start the Hour meter.

Event Meter

Another common scenario is to count the number of times an event occurred. For example, where there is boolean Tag and you want to
count the number of cycles the boolean Tag has experienced.

Count in Response to a Tag being True

1. From OPC Browser or Tag Browser, drag a boolean Tag into the Basic OPC/Groups Items area of a Standard Transaction Group.

2. From OPC Browser or Tag Browser, drag a memory Tag or OPC Tag (must be a numeric data type) into the Basic OPC/Groups
Iltems portion of the Standard Transaction Group.

EvenF—MgterQ p Enabled ® Disabled
Execution Disabled

Basic OPC/Group Items (2)
“1

Itemn Name Source.. Latched.. M.. Target.. Data Type Properties
" _Sim_New_Programmable_/Boolea... MN/A N/A 4 Booleant Boolean
5 _sim_New_Programmable_/Events /A N/A 3 Events Int4

Run-Always Expression Items (ignore trigger) (0)
Itemn Name Source Value | Latched Va.. | Target Name Data Type Properties

Triggered Expression Items (0)

Itemn Name Source Value | Latched Va.. | Target Name Data Type Properties

3. Right-click on the boolean Tag in the Transaction Group and select Edit to edit it.
4. In the Edit group tag window, set the following:

Value Mode: Event meter

Target Type: Other Tag
Target Name: _Sim_New_Programmable_/Events (or name of the Tag you are using)

5. Click OK.

General
Name
_Sim_New_Programmable_/Boolean1

Tag Path Data Type

% | Boolean v

Value Mode
Property
Value v

Mode
Direct value

OnZero

Reset on condition:

Write target
Mode
Use group's mode
Target Type Target Name
I Other tag - II_S\m_New_Programmable_ﬁE\rents - I

6. Inthe Basic OPC/Groups Items area where the Tags are located, go to the Target Name column. Left-click on each Tag to get the
dropdown menu, and set the following:

a. For the boolean Tag, select the memory Tag from the dropdown which is set previously as the target Tag to write the hour
meter to.
b. For the memory Tag, select Read-only from the dropdown.

Event-Meter-2
Execution Disabled Save project to apply changes

p Enabled ® Disabled

Basic OPC/Group Items (2)

Item Name Source.. Latched .. M...

5 _Sim_New_Programmable_/Boolea... M/ “ _Sim_N... Boolean

R _Sim_New_Programmable /Events __ Events ~ [T I

Data Type Properties

DE Columns
Run-Always Expression I i i 0 © Tags
un ays Expression Items (ignore trigger) (0) _Sim_New_Pr_
Item Name Source Value | Latched Va.. = Target Name [“Data Type Properties
Triggered Expression Items (0) a4
Item Name Source Value | Latched Va.. = Target Name Data Type Properties

7. Click Enabled at the top of the page, and do a File > Save All to start the group.
8. Make the boolean Tag true to start the Event meter. You'll see the Event Tag update.

Tag Browser q - X
Q o Q"' a5 90 B-

* mm Ramp =

* @ Random

b @ ReadOnly

b i Realistic

b I Sine

» B Writeable

b % Boolean1 OPC Boolean

r W Events Memory 1 Integer

¥ % Machine On Memary Boolean

Reset an Hour or Event Meter Based on a
Condition @ INDUCTIV]

You can set the hour or event meter based on a condition. U NIVE RS I']

1. In the Basic OPC/Group Items section, right-click and Edit a Tag that is serving as the
Hour or Event meter.
The Edit group tag window is displayed.

2. In the Value Mode area, select the Reset on condition check box. Resetting Hour and
3. Click the Tag icon to display the Choose Tag window, and select a Group Tag from the Event Meters

popup window.
4, Click OK.

Watch the Video

https://inductiveuniversity.com/video/resetting-hour-and-event-meters/8.0

& Edit group tag

- o x
General
Name
_Sim_New_Programmable /Events
Tag Path Data Type
% | Int4 -
Value Mode | L Choose Tag S %
bty GroupTags ~ Tags
Value v ® _Sim_New_Programmable_/Events.
Mode %0 _Sim_New_Programmable_/Booleant
Directvalue

Hour meter © Event meter

OnZero

i o

Write target = |
Mode

Target Type Target Nam,

None, read-only item -

o [

oK Apply Ccancel

5. Next to the Tag icon, choose the operator sign (for example >), and enter a number. In
the example we entered 9.

L Edit group tag

General
Name
_Sim_New_Programmable_/Events
Tag Path Data Type
% | int4 -
Value Mode
Property
Value v
Mode
Directvalue
Hourme[g' O Eventmeter

onzero

|DRese(onmr\dmon yrammable_/Events || % | > v |9

Write target
Mode

Target Type Target Name

None, read-only item -

6. Click OK. The target Tag will now reset in response to the condition (after 9 occurrences
in our example).

Next...

© Trigger Options

Transaction Group Examples

Transaction Groups

There are four basic types of Transaction Groups that can be used in Ignition: On th|S page

® Standard: The heart of bi-directional data storage and management

® Historical: Simple historical trending
[]

[]

Block: Efficient large scale data storage

Stored Procedure: Interact with existing protected data systems Transaction Groups

Standard Group
Historical Group
Block Group
OPC to OPC
Interaction

This Section has examples for each type of group and shows the different ways that you can use
them. For a more complete understanding of how the parts of each group works, see Understandin
g Transaction Groups.

Standard Group

The Standard Group is the most flexible group. It is commonly used as a bi-directional sync between your PLCs and databases. In addition
to this, it can also be used to push data in either direction. This means the Standard Group can be used to store historical data, add to
/update existing tables, and create recipe management tools.

¢ 4 Action | Trigger £t Options

Bi Directional > N
o S e p Enabled | ® Disabled Execution Scheduling:
Execution Disabled .
changes Timer Schedule
1 [y
Item Name Sou.. Lat. Mode Target Na... DataT.. Proper... Update mode:
% accumul... d Use group'... accumulato.. Float8 ~ L ;
%% ambient... d Use group'... ambientHum Float8 | Eidifechional 0RGwans
% amb|ent... d Use group'... amblentTe... Float8 Data source:
% dischar... N Use group'... dischargePr.. Float8
% dischar... N Use group'... dischargeT... Floats <Default> v
% receiver... d Use group'... receiverLevel Float8
% valveDis... d Use group'... valveDischa.. Floatd ~ Table name:

Run-Always Expression Items (ignore trigger) (0)

group_table -

Item Name Source.. Latche.. Target Name Data Type Properties .
Automatically create table

Use custom index column:

Store timestamp to: t_stamp

Store quality code to:

Delete records older than:

Triggered Expression Items (0)

Item Name Source.. Latche.. Target Name Data Type Properties

insert new row

update/select

Historical Group

The Historical Group is the most straightforward and simplest to use. It will take OPC data and store it as history in a database.

¢ 4 Action P Trigger £ Options

New Historical Group >
)) Save project to apply p» Enabled ® Disabled Execution Scheduling:
Execution Disabled .
changes Timer Schedule
o secon
Item Name Source .. Latche.. Target Name Data Type Properties Data source:
% RealisticO RealisticO Floats ~ Default>
B Realistic1 Realistic1 Floats “Uetau
- o o
Fh Real!st!c‘z Real!st!c‘z Floats Table name:
& Realistic3 Realistic3 Float8 v
Run-Always Expression Items (ignore trigger) (0) group_table
Item Name Source .. | Latche.. | Target Name Data Type Properties Automatically create table

Use custom index column:

Store timestamp to: t_stamp

Store quality code to:

Triggered Expression Items (0)

Item Name Source .. | Latche.. Target Name Data Type Properties Delete records older than:

-

Block Group

The Block Group is used to efficiently store large amounts of data in blocks or chunks of similar data in the database. This is very useful if
you have many devices with the same Tags in them.

¢ 4 Action - Trigger £} Options

New Block Group > N
)) Save project to apply p Enabled | ® Disabled Execution Scheduling:
Execution Disabled .
changes Timer Schedule

Item View Block View 1 second(s) M
Block Items (3) Update mode:

Item Name So.. | Lat.. Mode Targe.. Data.. | Pr.. | Size OPC to DB

+ % Item_RampO Use g... Ramp0 Float8 10 .

% Item_RealisticD Useg.. Realis.. Floats 10 Data source:

= ; ; :
+ % Item_Sine0 Use g... Sinel 5tring 10 <Default> -
Table name:
Item Name Source.. | Latche.. = Target Name Data Type Properties group_table h

Automatically create table
Automatically create rows

Use custom index column:

Run-Always Expression Items (ignore trigger) (0) Store timestamp to: t_stamp

Item Name Source.. | Latche.. = Target Name Data Type Properties

Store quality code to:
Store row id to:

Store block id to:

Triggered Expression Items (0) Delete records older than:

Item Name Source.. | Latche.. = Target Name Data Type Properties v

insert new block

OPC to OPC Interaction

It is possible to configure your Standard Transaction Group to be able to get information from one OPC data point to another. This is useful in
the event that you have Tags coming from one PLC and you need the Tag information to be sent to another PLC on your plant floor.

Create a Standard Transaction Group and from your Tag Browser, drag two Tags into your Transaction Group's Basic OPC/Group
Iltems section. For this example, the Tags will be called 'tagl' and 'tag2' and they will be coming from two different PLC's.

2. Set the Mode on 'tagl' to 'Bi-directional OPC Wins' and set its Target Name to be 'tag2.'

3. Set the Mode on 'tag2' to be 'Bi-directional OPC Wins' and set its Target Name to 'Read-only.' The Mode on 'tag2' is not as

important here as it is a Read-only item, but we set it to 'Bi-directional OPC Wins' anyway. Your configuration should match what is
shown below:

Fle Edit View Projct Tools Help

CHEIRS 5 w5 -%-a
Projct Browser & x <% Action | B Trigger % Options
a 8 opctodb

» Enabled | O Disabled 1 Pause Execution Schedling

Running

&) Alarm Notifcation Pipelines
&% Sequential Function Charts
» B scripting

Timer (Schedule

1 secondls)
Source Value Latched Value Mode Target Name Data Type Properties
§® Perpecie S oo T 5 TR S W P "%
~ 24 Transaction Groups orcto0s =
[| L& opcoodb ©
» @ vision Data source:
B Named queries = =
B Reporss =
‘Table name:
group table v e
] table
[Run-Atways Expression Items (ignore trigger) 0)
Use custom index column: -
Item Name Source Value Latched Value Target Name DataType Properties.
3 store timestamp to tstamp -
Store quality code to: S
‘Tag Browser 8- X Delete records older than:
ac|v-ao - o
Tag Value DataT.. Traits
~ @ Tags
& Data Types. © insert new row
» Sragi o 16| It update/select
" mSen
» i All Providers Item Name Source Value Latched Value Target Name DataType Properties. here

¥ Staws | & Events

Running

Last execution: Wed May 13 09:05:08 PDT 2020 Total executions: 66
Lasttrigger: Wed May 1309:05:08PDT 2020 Failed executions: 0

Next execution: Wed May 13 09:05:09 PDT 2020 OPC/Tag writes: 0
Last duration: 0.0 second(s) DB writes: 132
‘Avg duration: 0.0 second(s) OPC/Tag write failures: 0

What this will do is make sure that every 1 second, the value from 'tagl' will be written to 'tag2' as below:

Fle Edt View Project Tools Help

CHCRIRN Y s B |IE - - B R
jectBromser 5 -
REEIE CISES <% Acion | B Trigger % Options
1 Project Properties 3 | OPC 0 OPC . N .
ject Prop 8 Rupnnmg P P Enabled | © Disabled 1 Pause Execution scheduling:
3) Alarm Notification Pipelines Timer Schedule
&% Sequential Function Charts sic OPC/Group Items
B 1 seconds) v
cripting SourceVa.. LatchedV.. Mode Target Name DataType | Properties
~ 2 Transaction Groups L | idrectonaloPCwans L Readony Lina | |[ERE IR -
[[T8 opctoopc O
» © vision Data source:
B Named queries 08 P
B Reports [RurAbways Expression Items (ignore triggen) ()
" Table name:
Item Name SourceValue | Latched Value | TargetName Data Type Properties
group.table - g
Tog Browser &% £ Automatically create table
Qo w-mo xa@ Use custom index column:
T [e omatpe s soeumenp oms |-
it Types Ttem Name SourceValue | Latched Value | TargetName DataType Properties Store quality code to
> 9 gt | e e | Delete records older than:
1 Integer
> system
» i AllProviders

A Status | & Events

Running

Last execution: Tue May 12 13:5453 PDT 2020 Total executions: 117
Lasttrigger: Tue May 12135453PDT 2020 Failed executions: 0

Next execution: Tue May 12 13:54:54 PDT 2020 OPC/Tagwrites: 2
Last duration: 0.0 second(s) DB writes: 117
‘Avg duration: 0.0 second(s) OPCrTag write failures: 0

Related Topics ...

® Understanding Transaction Groups

In This Section ...

https://legacy-docs.inductiveautomation.com/display/DOC80/Types+of+Groups#TypesofGroups-StandardGroup
https://legacy-docs.inductiveautomation.com/display/DOC80/Understanding+Transaction+Groups#UnderstandingTransactionGroups-CreatingaTransactionGroup

Block Group

The Block group is a type of Transaction Group that stores data vertically. Whereas, a Standard
group stores the information horizontally in a single row. Block groups share many of the same
features as the Standard group. They can be bidirectional, insert into a database, or simply update
the database. All the rows in a Block group are associated with a single database transaction
therefore the process of writing to the database is very efficient.

Create a Block Group

On this page

Create a Block

Group

® DB to OPC Mode
with Custom
Where Clause

Next...

L]
-

N
N,

@ INDUCTIV]

22~ UNIVERSI]

Block Group

Watch the Video

1. In the Project Browser, right-click on Transaction Groups and select New Transaction Group > New Block Group.

Q.

b [#) Alarm Notification Pipelines
b X Sequential Function Charts
¥ [l scripting

b @) Perspective

-3 Transaction Grigss

[=2] Block-Group
=] Event-Meter
[Z] Event_Meter
=] Group

=] Historical-ex
[Z] New Group
=] New Historict

Al Rename

Project Browser a - X

A

[Z] Bi Directiona, g New Folder

[E] MNew Transaction Group

New Standard Group

E) i

New Block Group

o
Il

New Historical Group

New Stored Procedure Group

2. Give the group a name and click Create Group.

3. Drag a Tag folder into the Block Items section of the new Transaction Group.

https://inductiveuniversity.com/video/block-group/8.0

Project Browser a - X
New Block Grou, .

« 8 i > Enabled | @ Disabled

_ e) Execution Disabled save project to apply changes
b &) Alarm Notification Pipelines proj PPl g

4 B — -
& Sec!ugnt\a\ Function Charts Item View | Block View
+ & scripting
+ 02 Transaction Groups Item Name So... Latc.. Mode Target.. DataT.. Pro.. Size

[Z] Bi Directional B % [Item Sined Usegr.. Sined String 10

[52] Block-Group-ex

[E] Event-Meter-2
=1 _Cunnt hlntar ~
Tag Browser A _ X
az|w-molaals

Item Name Source ... Latched.. = Target Name Data Type Properties

@ _Sim_New_Programmable_ ~
i _Controls_

W Overview

im Ramp

W Random

L ReadO.nly Run-Always Expression Items (ignore trigger) (0)
i Realistic
m Refrigeration

Item Name Source ... Latched.. Target Name Data Type Properties

Triggered Expression Items (0)

Item Name Source ... Latched.. = Target Name Data Type Properties

b i Writeable

4. Select the item in the Block group, right-click and select Edit.

New Block Group

Execution Disabled save project to apply changes

P Enabled & Disabled

Item View Block View

Block Items (1)

Item Name So... Latc.. Mode Target.. DataT.. Pro. Size
" ltemsined | | | Usegr. | Sne0 | Sting | | 10
4+ Newltem 2
Edit
Item Name 5¢ & Copy Target Name Data Type Properties
T Delete
Split Item
B
Item Name St Target Name Data Type Properties

5. Change the Name, enter the Target Name to anything appropriate. Click OK.

r':ﬂf Edit group tag

£+ Block Item

2a Items
B MNumeric

& Alarming

Block Item

- General

MName Data Type

Block Group Sine Floats

~Value Mode

Property

| Value -

Mode
) Directvalue

Hour meter Event meter

- Write target

Target Type Target Name

Database field w || Sine0

OK Apply

Cancel

6. Configure the remainder of the group settings under the Action tab.

4 Actionl B Trigger £F Options

Execution Scheduling:

Timer Schedule
1 second(s) -
Update mode:
OPCto DB
Data source:
=Default=
Table name:
group_table

Automatically create table

Automatically create rows

Use custom index column;
Store timestamp to:

Store quality code to:
Store row id to:

Store block id to:

Delete records older than:

insert new block
insert changed rows

update/select

Where:

Q

u

7. Select the group, and click Enabled.
8. Save the project to start the group.

DB to OPC Mode with Custom Where Clause

Like the Standard Group, block groups can be configured to retrieve records from the database, writing back to an OPC address or Tag.
When using a custom WHERE clause, you can write the WHERE statement in such a way that multiple rows are returned, which would then
update multiple items, which in turn write back to to OPC addresses. We could then add a dynamic OPC value as a "lookup" that would

de

This is a great way to retrieve multiple datapoints that are stored in a tall format on a database table, ideally when you're looking to retrieve
multiple sequential rows. For example a table with the following content, a single block item targeting the "itemValue" column, and a "lookup"

termine which set of rows to return.

Tag or OPC item that the group will use in the WHERE clause.

Table structure

table_ndx itemValue

1

2

1

20

300
4,000
50,000
600,000

7,000,000

Our block item

Block

Execution Disabled

Item View Block View

Item Name

- % itemValue

[default]Block Group/itemvaluel
[default]Block Group/itemValueZ
[default]Block Group/itemValue3

Source...

p Enabled

Latche..

& Disabled

Block Items (1)

M...

Target Name
3 itemvalue

Our Tags, including "lookup"

Tag Browser o - X
Q | ¥-8 06 90C B
Tag Value Data Type Traits
~ = Tags
* B Data Types

¢ B _Generic_Simulator_
I Alarms

~ '@ Block Group

» % itemValuel Memory 0 Integer
» % itemValue2 Memory 0 Integer
b W itemValue3 r-finr--:r;,- 0 Integer
* % lookup Memory 0 Integer

1. Setthe "Update mode" for the group to "DB to OPC."

2. Set the Table action (under the "Action" tab) to "update/select."

3. Select the "custom" radio button.

4. Under the "Where:" text area, click the Tag icon, and select the "lookup" Tag, which adds a reference to the Tag like this: {[default]
Block Group/lookup}

5. Write the rest of the our condition. In this case, we'll say we want results from our table starting a value greater than our lookup
value. Using the table specified above, we could write the following condition:

..

..

6. Enable the group, and save the project.

When the group is running, with an initial lookup value of 0, the group automatically grab table_ndx of 1, and write a value of 1 (from the first
row) to itemValuel, a value of 20 (from the second row) to itemValue2, and so on.

~ '@ Block Group
» % itemValuel Memory 1 Integer
v B itemvalue2 Memory 2[] Integer
v B itemvalue3 Memory Integer

% lookup Memory ‘-m

If we set the value on lookup to 3, that means the first row in the result set will be row 4, setting itemValuel to 4000, itemValue2 to 50,000,
and so on.

~ @ Block Group

» W itemValue1 Memory 4,000 Integer
r % itemvValue2 '--“I‘-':r:; 50,000 Integer
v % itemValue3 Memory | 600,000 Integer

» ® lookup Memoy | 3 | Integer

If you set the value of lookup to 6, then that will set the value on itemValuel to row 7's value (7,000,000), but you'll notice the other Tags are
retaining a value, which is notable since those items don't have a corresponding value to retrieve.

Values on our Tags

~ @ Block Group

v W itemValue1 Memory | 7,000,000 Integer
v B itemValue2 Memory 50,000 Integer
v W itemValue3 Memery | 600,000 Integer

» S lookupMemoy J 6 | Integer | |

Items in the group

Item View Block View

Block Items (1)

Item Name Source Val.. | LatchedV.. Mo.. Target Name D | ok
= % itemvalue 3 itemvalue Intd 3
[defaulf]Block Groupitemvaluel 7000000 7000000
[default]Block Group/itemValue2 50000 50000
[default]Block Group/itemValue3 600000 600000

This is expected. By default, when a Block Group is configured like this, and some items can't receive updated values as a result of the
dynamic WHERE clause not returning enough rows, the items will retain their previous latched value: that is to say, the group will not
automatically clear or reset the values on the other items. Refer to Set NULL DB Values to Default.

Next...

® Recipe Group

https://legacy-docs.inductiveautomation.com/display/DOC80/Understanding+Transaction+Groups#UnderstandingTransactionGroups-AdvancedSettings

Recipe Group

You can use Transaction Groups to create a recipe management system which will pull recipe
information from the database and push it to the PLC when requested. With this system, the
Transaction Group is what queries the database rather than writing scripts to handle it all.

@ mouctiv)
Before the Transaction Group UNIVERSI]

Before we make the Transaction Group, we first need to make sure we have a table set up in our
database that holds recipes. If you already have this, then you can skip to the next step on making Reci pe Grou p
the Transaction Group.

We will make a table in our database that will hold our recipes. Our recipes will be simple, Watch the Video
containing a name, unigue id, and two setpoints, so we will need a column for each of those
values.

1. Verify the Designer's Comm Mode is set to Read/Write, and open up the Database
Query Browser.

2. Execute the query below in the Database Query Browser to create the table we'll use in
this example:

CREATE TABLE reci pes(H
id INT PRI MARY KEY, 1
reci pe_name VARCHAR(50),
set poi nt 1 FLOAT, i
set poi nt 2 FLOAT)

Note that this query was designed for an MSSQL database. If you are connected to a
different database, the syntax on the CREATE statement may differ. Check your
database's documentation for more details.

3. Next we need to put some data into the table by using an i nsert statement. Execute the
below query to insert a new record into our recipes table:

i INSERT INTO recipes (id, recipe_name, setpointl, setpoint2) H
: VALUES (1, 'Recipe 1', 10, 0) i

You can rerun this query as many times as you want, incrementing the id to give you a
new unique id, changing the name, and providing different setpoints. Your table might look
something like the one below.

id recipe_name setpointl setpoint2
1 The First Recipe 34.7 54.1

2 The Wrong Recipe @ 12.8 42.3

3 | The Best Recipe 65.7 95.1

4 The Other Recipe | 49.8 112.2

Create the Transaction Group

Now that we have a recipe table in the database that is populated with some records, we can create the Transaction Group that will load a
recipe from the table into our Tags. We will be using the recipes table that we put together previously, but if you already had a table, you can
use that here instead.

1. Create a new Standard Transaction Group.
2. We have four columns in our database table, so we will need four Tags to use in the Transaction Group: an integer, string, and two
floats for the id, name, and setpoints respectively. Add the four Tags to the Transaction Group.

https://legacy-docs.inductiveautomation.com/display/DOC80/General+Designer+Interface#GeneralDesignerInterface-ToSetorChangeCommunicationMode
https://legacy-docs.inductiveautomation.com/display/DOC80/Database+Query+Browser
https://legacy-docs.inductiveautomation.com/display/DOC80/Database+Query+Browser
https://inductiveuniversity.com/video/recipe-group/8.0

Tag Browser

Q

)

o ¥- A

Tag
- Tags
v & Data Types
» i@ _Generic_Pn
» i _Sim_New_P
v i Sim_Dairy 7
» i Tanks_OPC
@ Test_Provide
% BooleanTag
% FloatTag1
% FloatTag 2

W Integer Tag
W Siring Tag

¥ TagA Memo
@ TagA1 Me

a — X

B

&
Data Type

Recipe Group

Execution Disabled

Item Name

5 Float Tag 1
T Float Tag 2
[Integer Tag
T string Tag

re
1) Sou..

Save project to apply
changes

Basic OPC/Group Items (4)

La..

p Enabled | ® Disabled

Mode Target.. Data..
Use g... Float_T... Float4
Use g... Float T... Floatd
Use g... Integer... Int4
Use g... String_T.. Int4

Prop...

Integer
Integer
Integer
Integer

Run-Always Expression Items (ignore trigger) (0)

Item Name

Latch...

Sour...

Target Name

Data Type

Properti...

3. Set the Table Name to 'recipes’, the table that we created earlier.

4. We then need to ensure that our Tags will be receiving the proper values from the database. Set the Target Names for each of the

Tags: the string to 'recipe_name', the floats to 'setpointl' and 'setpoint2’, and the integer to '‘Read Only'. We don't need to set the
integer to the id column, because we will not pull the the id from the database, but rather use the id as a trigger and in the where

clause.

Basic OPC/Group Items (4)

Item Name

% String Tag
% FloatTag 1
% FloatTag 2

® Integer Tag

Source ...
MN/A
MNAA
NAA

N/A

Latche...

Mode

Target Name
£6 Read-only

3 recipe_name
3 setpoint]

3 setpoint2

Data Type

Int4

5tring
Float4
Floatd

Properties

5. Now we can finish setting up the rest of the Transaction Group. Set the Update mode to DB to OPC.

6. Setthe Table Action to Update/Select using Key/Value Pairs with the Column set to id, and the Value set to the Integer Tag you

are using.

4 Action P Trigger £ Options

Execution Scheduling:

Timer Schedule

1 second(s) -
Update mode:
DB to OPC -
Data source:
<Default= v o
Table name:
recipes | @

Automatically create table

Use custom index column:
Store timestamp to: t_stamp -

Store quality code to:

Delete records older than:

INSert new row

update/select

first last custom keyivalue pairs
Column Value
id %5 Integer Tag

7. Set the Update Rate to 1 second. We want to query the values out of the database as soon as we ask for them, so we need the
group to update quickly. However, we don't want the group to actually query the database every second, so we will need to set up
the trigger.

8. Go to the Trigger tab, and select Execute this group on atrigger. Trigger on the item the int Tag that is being used for the id.
Specify the Trigger condition as Active on value change.

4 Action e Trigger £ Options

Only evaluate when values have changed.

3 Execute this group on a trigger

Trigger on item:
Integer Tag
Only execute once while trigger is active
Feset trigger after execution
Frevent trigger caused by group start
Trigger conditions:
is =0 {or true)
is =0 (or false)
is active: |= w ||0
non-active: | ==« || 1

Active on value change

9. Finally, Enable the Transaction Group and save the project to get it started. The Transaction Group will now pull the recipe out of
the database where the id matches the value of the int Tag. The trigger also prevents it from running all the time, instead running

only when the int Tag value changes.
10. To test it out, simply change the value of id Tag to an id of one of the recipes in the recipes table.

Update or Insert Group

You can update a row or insert a new row into the database when a key pair combination does not

exist. This eliminates the need to have a database that has every possible option considered in its

original design. Because of the insert row when not present setting, the group will insert a new

record whenever the designated ID doesn't exist. Afterwards, it will update the rows in the table @

INDUCTIV]
UNIVERSIT

that are associated with the key/value references as shown in this example.

Update or Insert
Group

Watch the Video

Update or Insert a New Row into the Database

1. In the Project Browser, right-click on Transaction Groups and select New Standard Group.

Project Browser o - X
A

4+ Alarm Motification Pipelines
o5 Sequential Function Charts
b &l scripting
b @ Perspective
03 Tra)
b G Visio B New Folder
% Mam [E] New Transaction Group L
Repc
b €3 Web Al Rename

New Standard Group
New Block Group
MNew Historical Group

MNew Stored Procedure Group

BN ED

& Import >
& Export b

2. Give the group a name and click Create Group.
3. Drag a group of Tags into the groups Basic OPC/Group Items section.

https://inductiveuniversity.com/video/update-or-insert-group/8.0

Praject Browser a - X
Q- A

[Z] Realtime A
[&] Stored-Procedure-ex

(] Test
N ——

[Z] Update Group 2
b @ Vision
. .
Tag Browser
Q o
& _Sim_New_Programmable_ @
Controls
Overview
Ramp
Random
ReadCnly
Realistic
i Refrigeration
T Sine
» % Sined OPC
» % Sinel OPC
r % Sine2 OPC
3
»

a3
¥-8 0 2

IRERRER

% Sine3 OPC
¥ Sined OPC

Update Group

» Enabled ® Disabled

Execution Disabled save project to apply changes

Basic OPC/Group Items (5)

Item Name Sourc... Mode TargetNa.. DataT.. Proper..
[_Sim_New_Programmable_/Sine/Sine0 N/A Use gro... Sined Floatd
5 _Sim_Mew_Programmable_/Sine/Sine1 N/A Use gro... Sine1 Float4
5 _Sim_Mew_Programmable_/Sine/Sine2 N/A Use gro.. Sine2 Floats

T _Sim_New_Programmable_/Sine/Sine3 N/A Use gro.. Sine3 Floats

N/A ..
New Frogrammable_/sefsined ||~ lsegro | Sines | Foas ||

Kun-Always Expression Items (ignore trigger) (0)

Latched V...

Item Name Source Val... Target Name Data Type Properties

Triggered Expression Items (0)

Item Name Source Val.. | Latched V.. | Target Name Data Type Properties

M Status & Events

4. Change one of the Tags to be read-only by selecting Read Only from the Tag's Target Name column.

5.

Update Group

Basic OPC/Group Items (5)

Item Name

=

® _Sim_New_Programmable_/Sine/Sine0
> _Sim_New_Programmable_/Sine/Sine1

p Enabled ® Disabled

Execution Disabled Save project to apply changes

Sourc... Latch.. = Mode

IN/A MN/A

Target Na... DataTy.. Propert..

Float4

@ Read On

T _Sim_New_Programmable_/Sine/Sine2 /A /A Use gro. — | Floats
T _Sim_New_Programmable_/Sine/Sine3 N/A MN/A Use gro. = DBColumns goorg
T _Sim_New_Programmable_/Sine/Sined /A /A Use gro.. W Tags Floats
_Sim_New_P
Run-Always Expression Items (ignore trigger) (0) _Sim_New_P_
Itemn Name Source Value = Latched Va.. = Target Name _Sim_New_P Properties

© _Sim_New_ P

Triggered Expression Items (0)

Item Name

Source Value

Latched Va.. = Target Name Data Type Properties

In the group's Action tab, in the Table action area, select the update/select radio button and the key/value pairs radio button.

4 Al:til}nl B Trigger £F Options

Execution Scheduling:

Timer Schedule
1 second(s) -
Update mode:
OPCto DB -

Data source:

<Default= v |

Table name:

group_table ~ | i
Automatically create table
Use custom index colummn: v
Store timestamp to: t_stamp v
Store gquality code to: v

Delete records older than:

INSert new row

update/select

first last custom keyivalue pairs
Column Value
null
g @ Insert row when not present

6. Click the Add * icon.
a. For the Column select the database table ID column.
b. For the Value column, select the read-only Tag.
c. Select Insert row when not present check box at the bottom of the Table action area.

7. Select the group, and click Enabled.
8. Save the project to start the group.

Next...

Trigger Options

It is often useful to execute a group only when a certain condition is met or as a bit turns on or off.

Triggers allow Transaction Groups to run based on values changing in various ways.

Execute on Value Change

A group can execute when the group's Tags have changed, or when a particular Tag within the
group has changed. In either case, the Transaction Group will execute every time the value or

values change.

Change
1. Inthe Trigger tab, select at the very top the Only evaluate when values have changed * Executewhile
checkbox. Condition Is True

Now the group will execute if any of the Tags change.

2. To execute when only one Tag changes, from the Tags to watch for change dropdown, s
elect Custom, click on Select Tags, select the Tag from the pop-up window, and click OK.
You can select more than one Tag at a time in order to monitor more than one Tag for

value changes.

3. From the Trigger on item dropdown, select the appropriate Tag to execute the Tag on a

trigger.
4. Select the Active on value change

radio button.

5. Save the Project to start the Transaction Group.

On this page

® Executeon Vaue

® ExecuteonaRising
Edge

® Reset Trigger

® Handshakes

® Next..

v,

INDUCTIV]
UNIVERSIT

Trigger — On Value

Change

Watch the Video

Test GroupB

Running Save project to apply changes

Basic OPC/Group Items (2)

Item Name
% High Temp

Source .. | Latche..

P Enabled

Target Name

L JHighTemp [In4 [|

<

® Disabled Il Pause

Data Type Properties

4 Action W Trigger & Options

% Speed 102 102 Speed

Run-Always Expression Items (ignore trigger) (0)

Item Name

Source .. Latche.. TargetN

Triggered Expression Items (0)

Item Name Source .. | Latche.. TargetN|

[Choose Tags *

Select tags to monitor for change. Hold
CTRL to select multiple tags.

Speed

Only evaluate when values have changed.

Tags to watch for change:

Custom... - Select tags
Execute this group on a trigger

Trigger on item:

High Temp A4

Only execute once while trigger is active

Reset trigger after execution

Prevent trigger caused by group start
Trigger conditions:

is =0 (or true)

is =0 (or false)

is active: |= w0

non-active: | <= || 1

I Active on value change I

Cancel

Execute while Condition Is True

https://inductiveuniversity.com/video/trigger-on-value-change/8.0

Groups can execute while a condition is true resulting in the Transaction Group continuing to execute for the duration of this condition.

ORWNE

From the Target Name column dropdown, select Read Only.
. Go to the Trigger tab, and select the Execute this group on a trigger checkbox.

. Save the Project to start the Transaction Group.

. Create a Transaction Group, and drag a numeric or boolean Tag into the Basic OPC/Group Items section.

In the Trigger conditions area, set the trigger conditions which will determine under what condition the group executes.

< 4 Action

P Trigger

£+ Options

Test GroupA

1l Pause

P Enabled @ Disabled

Running

Basic OPC/Group Items (2)

Item Name Source Value Latched Value | TargetName ~'| DataT.. | Proper..

Boolean

%> Booleant false

= DB Columns
group_table_nd

Run-Always Expression Items (ignore trigger) (0) Sinel
Item Name Source.. Latche.. Target| Sinez pe Properties
| Sined I
Sined
Sine5 -

Triggered Expression [tems (0)

Item Name Source .. Latche.. | Target Name Data Type Properties

>

Only evaluate when values have changed.

I Execute this group on a tr\ggeri

Trigger on item:
High Temp -
Only execute once while trigger is active
Reset trigger after execution
Prevent trigger caused by group start
Trigger conditions:
Is = 0{or true)

is =0 (or false)

Is active: | > v | 100

non-active: | <= w | 08

Active on value change

Execute on a Rising Edge

Groups can execute when the trigger becomes True. This is known as a rising edge trigger and it will only execute once and will not

execute again until the trigger repeats the same cycle.

1. Create a standard Transaction Group with any number of Tags as long as one of them is a boolean Tag that will serve at the trigger

for the group.

2. Setthe Write Target for the boolean Tag to Read-only by selecting read-only from its drop down in the Target Name column.
3. Goto the Trigger tab and select the check box to Execute this group on a trigger. Select the boolean Tag from the drop down
menu and select to have the group only execute once while the trigger is active.

4. Save the Project to start the Transaction Group.

Group S

Running

P Enabled ® Disabled 1l Pause

Basic OPC/Group Items (4)

Item Name

T Sine/Sine0
T sinessine

% sine/Sine2
% BooleanTag

Source V...
9.635
270.516
-90.875

Latched val...
47427
312.387
-12.054

Mode

Use group's mode
Use group's mode
Use group's mode

Target Na...
Sined

Sinet
Sine2

[~ Usegouwsmode Readony ||

4 Action P Trigger % Options

Only evaluate when values have changed.
Tags to watch for change:

Custom...

- select tags
Execute this group on a trigger

Trigger on item:

-

| BooleanTag2

Item Name

Source ...

Run-Always Expression [tems (ignore trigger) (0)

Latche...

Target Name

Data Type

Properties

Item Name

Source ...

Latche...

[Triggered Expression Items (0) < o

Target Name

Data Type

Properties

Only execute once while trigger is active
Reset trigger after execution
Prevent trigger caused by group start
Trigger conditions:
is =0 (or true)
is =0 (or false)
v |0

IS achive; | >

non-active: | <=

* |1

Active on value change

Reset Trigger

Resetting a trigger after execution of a triggered Transaction Group will result in the Transaction Group writing once to the targets followed
by writing back to the trigger to reset it.

To reset the trigger after execution:

1. Create a Transaction Group with a boolean Tag. The write target for this Tag should be read only.
2. Select the Trigger tab and select the Execute this group on a trigger check box.
3. Select the Reset trigger after execution check box.
4. Save the Project to start the Transaction Group.
</ 4 Action P Trigger £ Options
LSk (S P Enabled @® Disabled 1l Pause ’ ~
Running Only evaluate when values have changed.
Basic OPC/Group Items (2)
Item Name Source Value | Latche.. TargetNa.. Data Type | Properti..
> BooleanTag true true BooleanTag Boolean
T e IS NS =TT T2 T M| | |5 execute this group on a trigger |
Trigger on item:
Run-Always Expression Items (ignore trigger) (0) BooleanTag2 -
Item Name Source.. | Latche.. | Target Name Data Type Properties A A
Only execute once while trigger is active
I Reset trigger after execution I
Prevent trigger caused by group start
Item Name Source.. | Latche.. | Target Name Data Type Properties is 1= 0 (or true)
is =0 (or false)
is active: > w0
non-active; | <= w |1
Active on value change v
< »

When a group executes, it either completes successfully or an error prevents its execution. The outcome of an execution can be handled in
the handshake section of the trigger section of the Transaction Group. When a group executes successfully or fails to execute, the
handshake can write a value back to a Tag to alert the user that the group executed successfully or unsuccessfully.

To set handshake values for alerting the user:

. Create a Transaction Group with a boolean Tag and a numeric Tag.

. Set the boolean and the numeric Tag to read only.

. Go to the Trigger tab and choose to Execute this group on a trigger.

. Select the boolean Tag as the trigger In the Trigger on item drop down, and select the appropriate execution conditions.

. In the bottom section, select Write handshake on success, select the numeric Tag to write to, and choose a number that signifies
success.

. Likewise, in the bottom section, select Write handshake on failure, select the numeric Tag to write to, and choose a number that
signifies failure.

A WNPRE

»

7. Save the Project to start the Transaction Group.

Group Z

Running

Item Name
% BooleanTag

Basic OPC/Group Items (2)

Source.. Latched .. | Target Name DataT.. Prope.

true true

¥ WriteableInteger5

P Enabled @ Disabled 1l Pause

Read-only Boolean

| Readonly |4 | |

< # Action P Trigger £ Options

¥ p—
I [Execute this group on a trigger I

Trigger onitem:

BooleanTag v

Only execute once while trigger is active
Reset trigger after execution
Prevent trigger caused by group start

Trigger conditions:

Run-Always Expre:

Item Name

on Items (ignore trigger) (0)

Source.. | Latche..

Target Name Data Type Properties

) is =0 {or true)
is = 0 (or false)
is active; |> w |0
non-active: | <= = || 1

Active on value change

Item Name

n Items (0)

Source.. | Latche..

Target Name Data Type Properties

[Write handshake on success

Set: | WriteableIntegers -
Tovalue: | 1

[Write handshake on failure

Set: | WriteableIntegers -

Tovalue: | 2

Next...

® Understanding Transaction Groups
® Transaction Group Examples

Transaction Group Update Modes

Transaction Groups are generally used to store OPC data into a database. Transaction Group
Update Modes give users additional flexibility as to whether data should flow from an OPC server
to a database or from a database to an OPC server. Additionally, it is possible to configure data to
be synchronized between a database and an OPC server via Bi-directional Update Modes.

All update modes do not work for all Transaction Group types. For example, Historical Transaction
Groups can only insert data to a database table and not update it. In addition, Historical
Transaction Groups also cannot write back to OPC items so Bi-directional Update Mode will not be
an option for users using the Historical Transaction Group type.

The different Update Modes:

® OPC to DB - Only read from the OPC server and write to the database.

® DB to OPC - Only read from the database and write to the OPC Server.

® Bi-directional OPC wins - Read and Write to both the database and OPC Server. On
group start, write OPC values to the database.

® Bi-directional DB wins - Read and Write to both the database and OPC Server. On group
start, write database values to OPC items.

OPC to DB

The OPC to DB Update Mode allows a Transaction Group to store OPC data to a Database Ignition that it has a connection to as shown in

the following example.

On this page

® OPCtoDB

® DBto OPC

® Bi-directional OPC
Wins

® Bi-directional DB
Wins

1. Create a Standard Transaction Group and from your Tag Browser, drag a single tag into your Transaction Group's Basic OPC

/Group Items section. For this example, the tag is called 'tagl.'

2. Set the Update Mode on 'tagl' to OPC to DB and set its Target Name to be ‘tagl.' The Target Name will correlate to the name of

the column in your database table where 'tagl' will be stored.

Your Transaction Group will look like the screenshot below:

Fle Edt View Project Tools Help

B |« Y & ® i E-%-2
e e B <% Action | B Trigger % Options
E opc to db >
8 Ru‘:m“q » Enabled | © Disabled 1 pause Execution Scheduling:
£&) Alarm Notfication Ppelines Timer Schedule
&, Sequential Function Charts Basic 0PC/Group Items (1
+ B s 1 seconds)
ping Item Name SourceValue Latched Value Mode TargetName DataType Properties
» @ erspective Update mode:
~ 9 Transaction Groups
opCto0B
["8 opciocb ©
» © Vision Data source:
& Named queris .
B Reporss

Table name:

group.table

table

Use custom index column:

Ttem Name Latched Value | Target Name DataType Properties

Store timestampto: tstamp
store quality code to
TegBrowser & _ X Delete records older than:
Qclv-ao i

Tag Value DataT... Traits
- mTags

& Data Types
% g I

\ @ system Triggered Expression Items (0)
» @ Al Providers Item Name Source Value Latched Value | Target Name Data Type Properties

insert new row

update/select

Where:

N Staws | & Events

Last execution: Wed May 13 09:05:08 PDT 2020 Total executions: 66
Last rigger: WedMay 1309.0508PDT 2020 Failed executions: 0

Next execution: Wed May 13 09:05:09 PDT 2020 OPC/Tag wites: 0
Last duration: 0.0 second(s) DB writes: 132
‘Avg duration: 0.0 second(s) OPC/Tag write failures: 0

This configuration will allow for tagl's value to be stored into a database table called 'group_table' every 1 second to a column

w

https://legacy-docs.inductiveautomation.com/display/DOC80/Types+of+Groups#TypesofGroups-StandardGroup

called 'tagl.' We can see this working through the Database Query Browser as shown below:

Database Query Browser X
SELECT * FROM group_table order by t_Stamp desc A >

Execute

Limit SELECT to: | 1000 | rows

4 Resultset1 ¢ DB v o
group_tabl... tag1 t_stamp ’ “Schema History
24 16 2020-05-13 09:04:26
H group_table
23 16 2020-05-13 09:04:25
22 16 2020-05-13 09:04:24
21 16 2020-05-13 09:04:23
20 16 2020-05-13 09:04:22
19 16 2020-05-13 09:04:21
18 16 2020-05-13 09:04:20
17 16 2020-05-13 09:04:19
16 16 2020-05-13 09:04:18
15 16 2020-05-13 09:04:17
14 16 2020-05-13 09:04:16
13 16 2020-05-13 09:04:15 L]
24 rows fetched in 0.001s ‘S Auto Refresh

DB to OPC

DB to OPC Update Mode allows you to write data from your Database to an OPC tag. This can be done by configuring the following:

1. Create a Standard Transaction Group and from your Tag Browser, drag a single tag into your Transaction Group's Basic OPC
/Group Items section. For this example, the tag will be called 'tagl.'

2. Set the mode of the Transaction Group to DB to OPC and set the Mode for tagl to DB to OPC.

3. Set the Transaction Groups Table Action to ‘'update/select' and check the 'last' option. What this will do is ensure that we do not
have a new value inserted to the database. What we will have instead is a single row of data in the table group_table where the
value of the 'tagl' column will control tagl's OPC value.

From the screenshots below, we can see that when the value in the Database Query Browser for column ‘tagl' is 22, the value for
'tagl' is also 22. When we change the value on column 'tagl' to 29, we see tagl's value change to 29 as well.

https://legacy-docs.inductiveautomation.com/display/DOC80/Database+Query+Browser
https://legacy-docs.inductiveautomation.com/display/DOC80/Types+of+Groups#TypesofGroups-StandardGroup
https://legacy-docs.inductiveautomation.com/display/DOC80/Database+Query+Browser

Fle Edt View Project Tools Help
B |« Y W BB
Project erowser = <% Acton P Trigger % Options
Q 3 dbtoopc N
R, » Enabled | © Disabled 1 pause Execution Scheduing:
) Alarm Notification Pipelines Timer) Schedule
&% Sequential Function Charts [Basic OPC/Group Items (1)
+ B senpin 1 seconds) v
cripting Item Name SourceValue | Latched Value Mode Target Name Data Type Properties
> @ perspeatie e Update mode:
~ 9 Transaction Groups e .
|| T& dbroopc
» © vision Data source
5 Named Queries o e
B Reports
Table name:
group_table -
Automatically create table
[Rur- Aways Expression Items (ignore trigger) (0)
Use custom index col -
Item Name Source Value Latched Value Target Name Data Type Properties °¢ custom ndex column:
Store timestamp to tstamp -
Store quality code to -
Tog Browser &% Delete records older than:
Qo -a 06 B
Tag Value DataT... Traits
- ® Tags
@ Data Types insert new row
> tagl 2 m update/select
. [rriggerea Expression Items)
& system first O last (custom) keynalue pairs
» @ Al Providers Item Name Source Value Latched Value Target Name Data Type Properties where
Databse Query Browser ox
SELECT * FROM group_table order by t_Stanp desc A »
¥ Stats | & Events —
Running ~
Last execution: Wed May 13 09:19:42 PDT 2020 Total executions: 199 Lt SELECT 1o 1000 | rowes
Lasttrigger: Wed May 1309:19:42PDT 2020 Failed executions: 0 .
Next execution: Wed May 13 09:1:43 PDT 2020 OPCTagwites: 19 “7 Resultset 1 <08 <l
Last duration: 0.0 second(s) DB writes: 0 > rm—
o) group_ bl | g1 cstamp e iy
Avg duration: 0.00060 second(s) OPCITag write failures: 0 »
» B group.table
1 rowfetched n 0.004s | & Auto Refresh /Gt

Fle Edit View Project Tools Help
B B« Y o§ ™o HEE - -8 R
roject Eronser f) —_
Fr=t EI=pX <% Action | P Trigger % Options
8| dbtoopc D Enabled | © pisabled M Pause | precutionscheduin
Running s
&) Alarm Notification Pipelines Timer) Schedule
&% Sequential Function Charts Basic OPC/Group Items (1)
+ B senpin 1 seconds) v
pting Item Name SourcevValue Latched Value Mode Target Name Data Type Properties
» ® Perspective Update mode:
o,
~ O Transaction Groups .
[| L5 doroope © D8 t0 OPC
» © Vision Data source:
B Named Queries) P
B Reports =
Table name:
group_table B
Automatically create table
Run-Aways Expression Items (ignore trigger) (0)
Item Name Source Value Latched Value | Target Name Data Type Properties Use custom index colum =
Store timestamp to tstamp -
store quality code to =
Tag romser a_x Delete records older than:
ac|v-ao 88
Tag Value DataT... Traits
- mTags
& Data Types insertnew row
» Stagi ¢ | 20 | It update/select
» @ system first O last () custom) keyalue pairs
» @ Al Providers Ttem Name Source Value Latched Value | Target Name Data Type Properties e
ere:
Database Query Browser x
SELECT * FRON group_table order by t_Stanp desc A »
K Statws | & Events Execute
Running .
Last execution: Wed May 13 09:20:10 PDT 2020 Total executions: 227 LmSELECT @ [1000 | rows
Lasttrigger: WedMay 130920:10PDT 2020 Failed executions: 0 .
Next execution: Wed May 13 09:20:11 PDT 2020 OPCITag writes: 20 7 Resuisett <[o8 e
Last duration: 00010 second(s) DB writes: 0 group_tabl... | tagt tstamp P
Avg duration: 0,016 secondls) OPCITagwrite failures: 0 i % ma
» B group.table
1 row fetched in0.003s | & Auto Refresh [EdIE

Bi-directional OPC Wins

Bi-dir ectional OPC wins means that Ignition will Read and Write to both the database and OPC Server. However, on
initial group start, if the OPC and database values are different, the OPC value will win and the Transaction Group
will write opc values to the database.

1. Create a Standard Transaction Group and from your Tag Browser, drag a single tag into your Transaction Group's Basic OPC
/Group ltems section. For this example, the tag will be called 'tagl.'

Set the mode of the Transaction Group to 'Bi-directional OPC wins' and set the Mode for tagl to 'Bi-directional OPC wins."
Set the Transaction Groups Table Action to 'update/select' and check the 'last’ option. What this will do is ensure that we do not
have a new value inserted to the database. What we will have instead is a single row of data in the table group_table where the
value of the 'tagl' column will control tagl's OPC value and similarly, ‘tagl's OPC value will control the value of the ‘tagl' column
database side.

2.
3.

What you will have at this point is a bi-directionally controlled Transaction Group where any change to tagl's value will be reflected
on the database and any change database side for the 'tagl' column value will be reflected on your 'tagl' tag.

In the event that the OPC and database values do not match on Transaction Group start, the OPC value will win and it will be written

https://legacy-docs.inductiveautomation.com/display/DOC80/Types+of+Groups#TypesofGroups-StandardGroup

to the database. This can be observed below:

Fle Edt View Projct Tools Help
CHCIES LR ERESE
o 5 JR—
Project B = <% Action P Trigger % Options
Q| choEs » Enabled | © Disabled &
Erecution Drsabled Execution Schedling
£8) Alarm Notfication Ppelines Timer Schedule
% Sequential Function Charts Basic 0PC/Group Items (1
» B script 1 second(s) v
cripting Item Name SourceValue Latched Value | Mode TargetName DataType Properties
) @ rerspective Update mode:
E;
~ O Transaction Groups
] i S
h st Bidirectional OPC wins
» © Vision Data source:
E} Named Queries 5 =P
B reports
Table name:
group_table Bk
Automaticalycreate table
Item Name SourceValue Latched Value | TargetName Data Type Properties Use custom index column:
Store timestamp to: tstamp -
Store quality code to: -
Tag Bromser 5
5| G o 2 Delete records older than:
Q o -2 0 B
Tag Value DataType Traits
- Tags
& Data Types insertnew row
~ :ys‘f"" B e red cpeon hams 1 updaterselect
.
» i Al Providers Item Name SourceValue Latched Value | TargetName Data Type Properties first © last (custom _ keyalue pairs
Where
Databese Query Browser ax
SELECT * FROM group_table order by t_Stamp desc TS
¥ sats | @ Evenss e
Execution Disabled V
Last executon: Totalexecutions: 0 PP P F
Last tigger: Failed execuions: 0 .
Next executon: OPCTagurites: 0 “F Resuiett <[o8 Yz
Last duration: 0.0 second(s) 0B writes: 0 roup_tai = » [r—
group_tabl.. | tagl tstamp Schema_History
Avg duration: 0.0 second(s) OPC/Tag writefailures: 0 i T | D
» 8 grovp_table
1 row fetched n 0.0025 | G Auto Refresh IEdIE

Notice how the Transaction Group is disabled, 'tagl' value is 20, and the 'tagl' column value is 880. When the group is enabled,
since the OPC and database values are different, the Update Mode being 'Bi-directional OPC wins' means the 'tagl' column value
will be set to 20 when the Transaction Group starts.

Fle Edt View Projct Tools Help
. . G 5 |
BB« R R | woaiE-%-a

roject romser & —_—

Bty & o 2 <% Acton P Trigger % Options

a 8 dbtoopc > |

8 P P Enabled | © Disabled " Execution Scheduiing
Running
&) Alarm Notification Pipelines Timer O Schedule
% Sequential Function Charts Basic 0PC/Group Items (1)

+ B serpo 1 seconds) v

cripting Item Name SourcevValue | Latched Value Mode TargetName | DataType | Properties

» S‘ Perspective Update mode;

~ O Transaction Groups = =

e oo © Bidirectional OPC wins

» © vision Data source
E Named Queries o5 e
B Reports

Table name:
group_table - g ‘
Automatically create table
[Run-Always Expression Items (ignore trigger) (0)
Item Name SourceValue | Latched Value | TargetName Data Type Properties Use custom index column: |
Store timestamp to tstamp S
Store quality code to

2g Browser 5

L & o Delete records older thar:

ac|v-ao -

Tag Value DataType Traits ’

- wTags

& Data Types insertnew row
pSue s ST eerm——m update/select [
» i system
» @ Al Providers Ttem Name SourceValue Latched Value | TargetName Data Type Properties first O last custom keyalue pairs
Where:
Database Query Browser ax| |
SELECT * FRO group_table order by t_Stanp desc A »
¥ stats | & Events e
Running ~
Last execution: Wed May 13 10:09:18 PDT 2020 Total executions: 13 Tseecre [1000 | rows
Lasttrigger: WedMay 13 10:09:18PDT 2020 Failed executions: 0 .
Next execution: Wed May 13 10:09:19 PDT 2020 OPC/Tag writes: 0 “7 Resultset 1 <o)
Last duration: 0.0 second(s) DB writes: 2 group_tabl... | tag ¢ stamp e
‘Avg duration: 0.00030 secondis) OPCITag write failures: 0 7 20 20200513 100506
» B group._table
1 row fetched in0.0025 | & Auto Refresh | " Edit

Bi-directional DB Wins

Bi-directional DB wins means that Ignition will Read and Write to both the database and OPC Server. However, on initial group start, if the
OPC and database values are different, the database value will win and the Transaction Group will write database data to your OPC data

points.

1.

2.
3.

Create a Standard Transaction Group and from your Tag Browser, drag a single tag into your Transaction Group's Basic OPC
/Group ltems section. For this example, the tag will be called ‘tagl.’'

Set the mode of the Transaction Group to 'Bi-directional DB wins' and set the Mode for 'tagl' to 'Bi-directional DB wins.'

Set the Transaction Groups Table Action to 'update/select’ and check the 'last’ option. What this will do is ensure that we do not
have a new value inserted to the database. What we will have instead is a single row of data in the table group_table where the
value of the 'tag1' column will control tagl's OPC value and similarly, tagl's OPC value will control the value of the ‘tagl' column
database side.

What you will have at this point is a bi-directionally controlled Transaction Group where any change to tagl's value will be reflected

https://legacy-docs.inductiveautomation.com/display/DOC80/Types+of+Groups#TypesofGroups-StandardGroup

on the database and any change database side for the 'tagl' column value will be reflected on your 'tagl’ tag.

In the event that the OPC and database values do not match on Transaction Group start, the database value will win and it will be
written to the OPC data point. This can be observed below:

Fle Edt View Project Tools Help
FREIES 5 W B %A
— 5 ——
et B <% Acton P Trigger % Options
a 8 dbtoopc > >
Enabled | © Disabled
Ereniron Execution Scheduling:
&) Alarm Notifcation Pipelines O Timer Schedule
%, Sequental Function Charts Basic 0PC/Group Items (1) . =
secondis) ~
» B scripiing Latched V:
} © Perspective Update mode:
c
~ 23 Transaction Gr
RS Bidirectional DB wins S
» @ vision Data source
5 Named Queries o8 e
B Reports
Table name:
group_table - ®
2 Automatically create table
[Run-Aways Expression Items (ignore trigger) (0)
Item Name SourceValue | Latched Value | Target Name DataType Properties Use custom index column: -
{2 store timestamp to: tstamp -
Store qualiy code to: B
weer &
g Eones Qo2 Delete records older than:
az|v-a06 B -
Tag Value DataType Traits
- Tags
& Data Types insert new row
» g o EETEETETENEE or— O updaterselect
» i System p
» i Al Providers Item Name SourceValue Latched Value | TargetName Data Type Properties first O last custom keynalue pairs
Where:
Database Query Browser ax
SELECT * FRON group_table order by t_Stamp desc A »
 Staws | 8 Events Execute
Execution Disabled . M
Last execuion Total executons: 0 e e [
Lastrigger Failed executions: 0
Next execution: OPC/Tagwrites: 0 7 ResuietT <[o8 <o
Last duration: 0.0 second(s) DB writes: 0 aroup.tabl_._ | tagt stams * (e ey
‘Avg duration: 0.0 second(s) OPC/Tag write falures: 0 7 20 2020053102624
» 8 group_table
1 row fetched in0.001s | & Auto Refresh | ' Edit

Notice how the Transaction Group is disabled, 'tagl' value is 10, and the 'tagl' column value is 20. When | enable the group, since
the OPC and database values are different, the Update Mode being 'Bi-directional DB wins' means the tagl tag value will be set to
20 when the Transaction Group starts.

File Edit View Project Tools Help
[_INCRE Y h R | ¥ (| E-%-8C
S : [
[= <% Acton P Trigger % Options
o A8 dbtoopc P Enabled | © Disabled 1 Pau * | Execution scheduling
&) Alarm Notification Pipelines O Timer O Schedule
o2 Sequential Function Charts [Basic OPC/Group Items (1)
+ B scriptin 1 seconds) v
ipting Ttem Name ‘Source Value Latched Value Mode Target Name DataType Properties
» S‘ Perspective Update mode:
o oo © [Bigirectional 0B wins
» © Vision Data source:
& Named Queries B e
B Reports =
group_table - &
12 Automatically create table
Item Name Source Value Latched Value Target Name Data Type Properties Use custom index column: -
123 o SR Delete records older than:
Qz|v-mo [:88 .
Tag Value DataType Traits
- Tags
» i All Providers Item Name Source Value Latched Value Target Name Data Type Properties first ©last custom (keyNvalue pairs
Where:
e ==
SELECT * FROM group_table order by t_Stamp desc | S
W saws | & Events Exearte
Running . -
Lastexecution: Wed May 13 10:28:41 PDT 2020 Total executions: 4 3 Limit SELECT to: [1000 | romss
Nextexecution: Wed May 13 10:28:42 PDT 2020 OPC/Tagwrites: 1 “7 Resultset1 < pg Yle
Last duration: 0.0010 second(s) DB writes: 0 group_tabl.. | tag1 tstamp > [Schema History
Avg duration: 0.0 second(s) OPC/Tag write failures: 0 20 20200513 102624
» 8 group_table
1 row fetched in 0.001s | & Auto Refresh # Edit

Related Topics ...

® Understanding Transaction Groups
® Types of Groups

https://docs.inductiveautomation.com/display/DOC80/Understanding+Transaction+Groups

OPC to OPC Transaction Group

Configuring Transaction Group for OPC to OPC Interaction

Transaction groups are generally used to channel OPC data to a database or vise-versa. It is also possible to configure your Standard
Transaction Group to be able to get information from one OPC data point to another. This is useful in the event that you have tags coming
from one PLC and you need the tag information to be sent to another PLC on your plant floor.

1.

2.

Create a Standard Transaction Group and from your Tag Browser, drag two tags into your Transaction Group's Basic OPC/Group
Items section. For this example, the tags will be called 'tagl' and 'tag2' and they will be coming from two different PLC's.

Set the Mode on 'tagl' to 'Bi-directional OPC Wins' and set its Target Name to be 'tag2.'
Set the Mode on 'tag2' to be 'Bi-directional OPC Wins' and set its Target Name to '‘Read-only.' The Mode on 'tag2' is not as
important here as it is a Read-only item, but we set it to 'Bi-directional OPC Wins' anyway. Your configuration should match what is

shown below:

file Edt View Project Tools Help
CHCRIRN * 0B

Project Browser

¥ 3 ®

Project Properties 8

&) Alarm Notification Pipelines
% SequentialFunction Charts
» & scripting
» © Perspective
~ O Transaction Groups
| LB opctoonc ©
» @ vision
E Named Queries
B Reports

Qo ¥-8 06 2 2B
Tag Value
~ e Tags
& Data Types

DataType Traits

Integer

Ry »
| S e [0 e |

System
» @ AllProviders

g
a_x

opc to opc
Running

Basic opC/Group 1tems 2)

Item Name SourceVa... | Latched V.. Mode
12 12 Bi-directional OPC wins
[| Bidirectional OPCwins

P Enabled

Target Name
tag2

<% Acton | b Trigger % Options

© pisabled 1 Paus

Data Type
Inté

Properties

[Run-Aways Expression items (ignore trigger) ()

Item Name Source Value

Latched Value

Target Name

Data Type

Properties

Source Value

Latched Value

Target Name

Data Type

Properties

T staws | @ Events
Running
Last execution: Tue May 12 13:52:50 PDT 2020
Last rigger: Tue May 12 13:52:59 PDT 2020
Next execution: Tue May 12 13:5300 PDT 2020
Last duration: 0.0 second(s)
Avg duration: 0.0 secondis)

Total executions: 4
Failed executions: 0
oPCTagurites: 0

DB writes: 4

OPCTag write faiures: 0

do is make sure that every 1 second, the value from 'tagl’ will be written to ‘tag2' as below:

Fle Edt View Project Tools Help

B #| -«

Project Bromser

Y 5

&) Alarm Notification Pipelnes.
&% Sequential Function Charts
» [scriping
» @ erspectve

~ 9 Transaction Groups

IR

» @ vision
5 Named Queries
B Reports

TogBrowser

Qo|¥-806 a2
Tag Value
- Tags
& DataTypes
> % tagt
» i sysem
» i AllProviders

T
16

LA ERR S

&%
opc to opc
Running

Project Properties

Basic 0PC/Group Items (2)

P Enabled

© pisabled

Item Name SourceVa.. | Latched V.. Mode Target Name DataType | Properties
 tagt i is Bidirectional OPC wins __tag2 nta
e Read

Latched Value

Target Name.

DataType

Properties

a.x
B
DataType Traits rriggered Expression ltems 01
Item Name
T
Integer

Source Value

Latched Value | Target Name

DataType

Properties

¥ staws | & Events

Last execution: Tue May 12 13:54:53 PDT 2020
Lasttrigger: Tue May 12 13:54:53 PDT 2020
Next execution: Tue May 12 13:54:54 PDT 2020

Last duration: 0.0 second(s)
‘Avg duration: 0.0 second(s)

Total executions: 117
Failed executions: 0
oPCTaguirites: 2

0B writes: 117
OPCag it failures: 0

<7# Action | P Trigger % Options

Execution Scheduling:

Timer () Schedule
1 secondls) v
Update mode:

OPCtoDB

Data source:

08

Table name:

group._table
Automatically create table
Use custom index colum:
Store timestamp to tstamp
Store qualiy code to:

Delete records older tha:

Execution Scheduling:

Timer) Schedule
1 second(s)
Update mode:
oPCtoDB
Data source:
o8
Table name
group_table
Automatically create table
Use custom index column:
Store timestampto;
Store quality code to:
Delete records older than:

tstamp

What this will

https://legacy-docs.inductiveautomation.com/display/DOC80/Types+of+Groups#TypesofGroups-StandardGroup

	Tag Historian
	Tag History Gateway Settings
	Configuring Tag History
	Data Partitioning and Pruning
	Custom Tag History Aggregates
	Tag History Splitter

	SQL Bridge (Transaction Groups)
	Understanding Transaction Groups
	Types of Groups
	Item Types
	Hour and Event Meters

	Transaction Group Examples
	Block Group
	Recipe Group
	Update or Insert Group
	Trigger Options
	Transaction Group Update Modes
	OPC to OPC Transaction Group

