L. SYMDOI FaCtOrY ..o
2. WD DY . .
2 L PP OST . o

Symbol Factory

Overview

The Symbol Factory Module is included with the Vision Module or the Perspective Module. Symbol On th|S page
Factory provides nearly 4,000 industrial high quality Scalable Vector Graphics (SVG) and symbols
for your projects. Vector based graphics can be resized with no pixelation or distortion. You can
add these images to your project with a simple drag and drop. In Vision, the images can also be
edited or even animated.

. ® Overview
Symbol Factory images are also great for mobile responsive design, or any implementation where e Using the Symbol
users view your HMI and SCADA on screens of various sizes. Factory

I, symbol Factory - o X
1 large
j’ @ = g B —
\ T m B e =
Simple motor 4
D ushbutons Etc z heimen === J—
ot b B2 & o —_—
hemical
Ducts [
= = \
. . =
= 23 = 0T 0
Basic O Enhanced

Using the Symbol Factory

1. Launch the Designer and open your project.
2. Choose Symbol Factory under the Tools menu or the project navigation tree. If you can't find these, the Symbol Factory
module probably isn't installed. The Symbol Factory browser opens as a pop-up window that stays on top of the Designer.

Tools REEEE]

% Conscle

& Image Management

E Script Console |
E‘ Database Query Browser

& Translation Manager
-

Symbol Factory

Launch Perspective... »

3. In the Vision module, there is also an icon (valve icon in the upper left) for quick access to the Symbol Factory images at the top of
the Component Palette.

https://legacy-docs.inductiveautomation.com/display/DOC80/Component+Animation

oy
1
X

Component Palette
| = Bl Q-
[=] Input
0 Text Field

= Mumeric Text Field

[Spinner

>
%&-@E}@E|ﬂ

4. Browse the different categories to explore what symbols are available, or search to find a specific symbol.

1 When searching Symbol Factory, it is recommended to select the Enhanced radio button in the Symbols List. The
enhanced symbols are more detailed, and they have groupings that enable you to more easily animate them.

5. Find a symbol that you'd like to use and drag it onto an open Vision window or Perspective view.

EI] Symbel Factory — O =
<
(D . { large Q-
]
LI A
I &
. U
Air scrubber
a e 3
Enhanced Symbols - L
3-D Pushbuttons Etc ;
Blowers Etc
Conveyors, Misc 1A n ﬁ
Ducts ?—'rj'-
Finishing
Flexible Tubing .
Basic IO Enhancedl |-f '1' — _I W ~

6. In Perspective, you can resize the image and change the style settings. See Images, SVGs, and Icons in Perspective.
7. In Vision, the symbol will become a group of shapes. See Images and SVGs in Vision.

Related Topics ...

® Images, SVGs, and Icons in Perspective.
® |Images and SVGs in Vision.

https://legacy-docs.inductiveautomation.com/display/DOC80/Images%2C+SVGs%2C+and+Icons+in+Perspective
https://legacy-docs.inductiveautomation.com/display/DOC80/Images+and+SVGs+in+Vision
https://legacy-docs.inductiveautomation.com/display/DOC80/Images%2C+SVGs%2C+and+Icons+in+Perspective
https://legacy-docs.inductiveautomation.com/display/DOC80/Images+and+SVGs+in+Vision
https://legacy-docs.inductiveautomation.com/display/DOC80/Component+Animation

Web Dev

The WebDev module enables you to directly program against the web server inside the Ignition
Gateway and systems running Vision Clients. Webpages can be built by hand using a combination
of Python programming and static web resources such as images, CSS files, JavaScript files, and
HTML files. Likewise, this module allows you to build RESTful web service APIs that allow external
systems to interact with the Ignition server. This module follows the normal installation process.

G} Disclaimer

The WebDev module requires specialized web-programming knowledge. The Inductive
Automation support team is unable to provide detailed advice about creating a particular
site. Furthermore, they are unable to provide troubleshooting beyond the basic
functionality of the module.

Resources

Each type of resource may specify its content type. It is important to specify the correct content
type for the contents of the resource. When the WebDev module is installed, a new kind of project
resource heading will appear in the Designer's project browser called "Web Dev". Right-clicking on
this heading will allow the creation of several new types of project resources:

Project Browser o - X

Q A

L* Alarm Notification Pipelines
o% Sequential Function Charts
[E scripting

® Perspective
u]

4
4
b
4
b Tg Transaction Groups
4
4
4

G Vision
Q Named Queries

postist) Import Text Resource...
New Python Resource...
New File Resource...

£,

E

<> New Text Resource...
£ NewMounted Folder...
-

MNew Folder

Tag Browser

Qa o S

=
Tag Value DataTy.. Traits

» I Tags

» il System

+ i All Providers

The following feature is new in Ignition version 8.0.7
Click here to check out the other new features

As of 8.0.7 WebDev resources are stored as readable .json and .py files on the Gateway's file system.

On this page

Resources

Mounted Folder

® Project
Resources
Folders

Python Resources

® Parameters

® Return Value

URL

Right Click Menu

Security Settings

® Enabled

® Require HTTPS

® Require
Authentication

https://docs.inductiveautomation.com/display/DOC80/WebDev+Module
https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.7

® Python Resource - Python resources are dynamic web resources. Each time a user browses to the URL associated with a
Python resource, the script will run and generate a response in the form of a Python dictionary. See Return Value for more details on
formatting this response.

® File Resource - A file resource is a static resource, usually a binary resource such as an image. Note that you will need to re-import
a file resource if it has been changed since adding it to WebDev.

® Text Resource - A text resource is a static resource much like a file resource, except that its contents may be directly edited from
within the Ignition Designer. These are useful for static HTML, CSS, and JavaScript files.

Mounted Folder

Mounted Folders are a way to expose a folder from the Gateway's hard drive as a resource endpoint. For example, if the Ignition server had
some directories that look liked the following:

[opt/public/a.jpg
i /opt/public/info.htn :

: Pseudocode - URL to Mounted Folder
i http://host:port/systenf webdev/ proj ect nane/ asset s/ a. j pg

URL Encoding
Be mindful of the filenames in the mounted folder, as URL encoding will need to be used to access the file. For example, if a file named "My
file.pdf" was placed in the mounted folder above, the space in the file name would likely be encoded to %20

Project Resources Folders

If a Mounted Folder is placed in a Project Browser folder, then the endpoint must also include the folder name. For example, if the Mounted
Folder named "products” is located in the "images" folder:

Project Browser a - X

Q, Fa

o4 Alarm Notification Pipelines
o5 Sequential Function Charts
& scripting

® Perspective

0% Transaction Groups

& Vision

£ named Queries

Reports

(3 Web Dev

B images
L g products

The files would be accessible via:

d w v v v v v v wr

Pseudocode - URL for Mounted Folder with Project Resource Folder

i http://host:port/system webdev/ proj ect nane/ i mages/ product s/ a. j pg

Python Resources

Python resources are the heart of the functionality of the WebDev module. These resources are completely dynamic, and can handle all
parts of the HTTP protocol, formulating any type of response.

Each time an incoming HTTP request arrives at a URL where a Python resource is mounted, the corresponding Python script will be run.
Each Python resource can have a script for each HTTP method. In practice, most Python resources will probably only implement one or two
of these, usually doGet or doPost at a minimum. The available methods are as follows:

doGet
doPost
doPut
doDelete
doHead
doOptions
doTrace

The following feature is new in Ignition version 8.0.7
Click here to check out the other new features

As of 8.0.7 the HTTP method doPatch has been added.

File Edit View Project Tools Help

H M|+ it Ak |1k
Project Browser a - X)

HTTP Methed | doGet - Enabled Require HTTPS
A
1 def doG doGet ssion) :

b (41 Alarm Notification Pipelines »v | doPost

4 .1. Sequential Function Charts Res|| doPut oming HTTP request. Formulate you
» E_Scrip’cing usil Jopelete following keys:

b Perspective

. doHead .

b 93 Transaction Groups ht i e as a string.

b & Vision doOptions

v B Named Queries 'js{ doTrace ictionary which will be encoded a
+ E) Reports doPatch

_ h[}ev fi re=rrr==peen 10 send as the response.

=posf;qson 'bytes' A byte[] to send back. Mime type will be '
python-test if not specified.

Parameters

Each do* method receives the same two parameters (also called arguments): 'request' and 'session'.

Req uest Parameter
The request parameter is a dictionary with information about the incoming web request.

Key | Type Description

CO | object A reference to the Gateway's context object. This provides direct access to the Ignition GatewayContext. More information

nt about this object may be found in the Ignition SDK Programmer's Guide and associated JavaDocs.
ext

da plain | The data on the request. If the content type is application/json, it will be a Python structure (list or dictionary). If not, it will
ta | text either be plain text or a raw byte array.

or

raw As of 8.0.7 if the incoming request body was not text, it will be available as a byte array.

byte

array

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.7
https://legacy-docs.inductiveautomation.com/display/SE/Ignition+SDK+Programmers+Guide

po
st

he
ad
ers

pa
ra

re

in
in
gP
ath

sc
he

se
rv
le
tR
eq
ue
st

se
rv
le
tR
es
po
nse

string

dictio
nary

dictio
nary

string

string

string

string

object

object

This parameter is only present for the doPost method, and its value is different based upon the value of the incoming HTTP
request's Content-Type header. If the content type is 'application/json’, then the request['postData’] will be a

Python dictionary structure which is the result of parsing the JSON document that was posted. If the content type starts with
'text/', then the value of request['postData’] will be the text which was posted, as a string.

A dictionary of header : value pairs. If multiple values were returned for the same header, values will be in a tuple. The
HTTP request headers will be in a dictionary under request[‘headers']. For example, you could read the User-Agent string
with request['headers'|['User-Agent’].

This will be contained in a dictionary accessible via request['params'].
Any URL parameters such as the following:

Pseudocode - Request Parameter
/ syst emf webdev/ proj ect/ f oo?par antl=val ue&par an2=ot her _val ue

For the given example, request['params’] = {'{param1"'value’, 'param2':'other_value'}.

request['remainingPath'] will be "/bar". Remaining path will be "None" if nothing is found after the resource name. This
provides the remaining text after a file resource. If you have a resource called 'foo’, and a request is made to:

Pseudocode - Remaining Path
/ syst emf webdev/ proj ect/ f oo/ bar

Returns the IP address of the client. Gives the remote IP address of the entity that made the web request. Note that this is
from the perspective of the web server, and so may not be what you expect due to the effects of things like NAT-ing routers.

Returns the fully qualified name of the client. Gives the remote host of the entity that made the web request. Note that this is
from the perspective of the web server, and so may not be what you expect due to the effects of things like NAT-ing routers.

The scheme is available via request['scheme']. The value will be 'http' or 'https'.

The underlying Java HttpServletRequest object. This parameter and the following servletResponse parameter give you
direct access to the underlying Java servlet request and response objects. This provides direct access to the

Ignition GatewayContext. More information about this object may be found in the Ignition SDK developer guide and
associated JavaDocs.

The underlying Java HttpServiletResponse object.

Session Parameter

The session parameter is a Python dictionary which may be used to hold information which persists across multiple different calls to your
Web Dev Python Resource, or across multiple Python Resources. Session management is handled automatically, and this dictionary is
created for each new client session. (The client must have cookies enabled for sessions to work). You may place any key-value pairs in the
session dictionary you'd like, just make sure that the values are things that can be serialized. All normal Python types (scalar, dictionary, lists,
and tuples) are serializable.

If authentication is required, will have a 'user' attribute containing information about the authenticated user, and a 'retryAttempts' attribute with
the number of attempts made.

http://en.wikipedia.org/wiki/List_of_HTTP_header_fields
http://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletRequest.html
http://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletResponse.html
https://legacy-docs.inductiveautomation.com/display/SE

Return Value

Return values for each do* functions can generate a response, which should always be a dictionary. In the dictionary, the keys in the table
below are recognized. The keys are listed here in the order they are evaluated. For example, if you have both file and bytes, only file will take
effect. The exception is the contentType key, which may be included with any of the other keys to override the default content type.

HTTP Description
Response
ht m HTML source as a string. The value should be a string, which should be the source of an HTML document. Content type is

assumed to be text/html.

j son The value is assumed to either be a string (which should be valid json) or to be a Python object, which will then be encoded
into a json string. Content type will be application/json.

file The value should be a string, which should be the path to a file on the server's filesystem. If no contentType is specified, then
the system will attempt to probe the content type from the operating system using java.nio.Files.probeContentType. If the
file key is present, but the value points to a file that doesn't exist, an HTTP 404 will be returned.

byt es The value should be a byte array. The default content type is application/octet-stream, but you probably want to specify your
own.

response If none of the other keys are present, the system will look for the key response which will be stringified and then returned with
the content type text/plain.

cont ent The mime type of the response. Needed only if ambiguous.
Type

If your implementation of the do* function returns a dictionary with none of the above keys, an HTTP 500 error will be returned. However, if
you return None, no HTTP 500 error will be returned. In this case, it is assumed that you used the request['servletResponse'] parameter to
directly formulate your HTTP response.

URL

Each resource will be directly accessible over HTTP and mounted beneath the /system/webdev path.

For example, if you created a Text Resource directly beneath the "Web Dev", it would be mounted at:

Pseudocode - Project Resource

i http://host:port/system webdev/ proj ect/resource_nane

Notice that the project name and resource name are part of the path. If your resource is nested inside a folder, it will be part of the path too.
For example:

Pseudocode - Folder Resource

i http://host:port/system webdev/ proj ect/fol der _nane/resour ce_nane

Web Dev resources may have periods in their name. This means that if you upload an image file, you may include its extension directly in its
name so that its path is more natural. For example, you might name an image resource "my_image.png" so that its URL is:

Pseudocode - Image Resource

i http://host: port/systenl webdev/ project/ny_i nage. png

Requests to the root of your project will attempt to load a resource nhamed "index.html". If no such resource exists, a 404 response code will
be returned instead.

Right Click Menu

The Right Click menu is similar to other applications edit menus in that it provides basic copy/paste functionality. Options are described in the
following table.

Project Browser o - X
Q !

b 44 Alarm Motification Pipelines
b o% Sequential Function Charts
» Bl scripting

» @ Perspective

» P& Transaction Groups

b & Vision

» B Named Queries

b 5 Reports

« (3 Web Dev

B e B

Al Rename

Tag Browser H.'l.; Cut

Q o 1 A Copy

Tag ¥ CopyPath
» W Tags
¥ I System
» i All Provig m Delete
B Protect
¥ Copy Mounted Path

Option Description

Rena To rename a resource, select this option then enter a new name.
me

Cut Cuts the selected resource onto the clipboard.
Copy Copies the selected resource onto the clipboard. It can then be pasted within the Web Dev make a duplicate.

Copy Copies the path of the selected resource onto the clipboard. For example, "newfile.html".
Path

Paste | Pastes the the selected resource from the clipboard into the selected context.
Delete = Deletes the current selection. This can also be done using the delete key.

Protect = Locks the individual project resource from inside the Designer.

Copy

Mount The following feature is new in Ignition version 8.0.7
ed Click here to check out the other new features

Path

This copies the partial mounted path for the resource into your clipboard. This allows you to easily paste the path into your
browser for testing. For example,"/system/webdev/MyProject/newfile.html". You need to add the path to your gateway to the
beginning of this string. A full url would look like: "http://10.10.10.150:8088/system/webdev/MyProject/newfile.html*

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.7
http://10.10.10.150:8088/system/webdev/MyProject/newfile.html

Security Settings

There are several security settings for Python Resources.

Enabled

If Enabled is checked, then the HTTP Method is enabled. This Enabled checkbox is new for version 8.0.7.

Require HTTPS

If this is checked, then the resource will only be accessible via an SSL connection. If a non-secure HTTP transport is used, the browser will
be sent a redirect to the the Gateway's SSL port. The Gateway must have SSL enabled, of course.

Require Authentication

If this is checked, the resource will require authentication before it executes. This uses HTTP BASIC auth, and so should really be combined
with the Require HTTPS option so that the credentials are encrypted. The username/password combination sent through the HTTP BASIC
authentication headers will then be passed through the chosen User Source. If roles are specified, the user must have at least one of the
roles. Specify multiple acceptable roles using a comma separated list. If the credentials are missing, an HTTP 401 will be returned with

the WWW-Authenticate header. If the credentials are present but incorrect, an HTTP 403 will be returned.

If the credentials succeed, the Python resource will execute. In addition, the authenticated user object returned by the User Source will be
accessible inside the session object as session['user’]. Since the user is stored in session, if the client has cookies enabled, then further
requests against the same session will use the stored user object and will not require additional authentication.

Related Topics ...

Web Services, SUDS, and REST
HTTP Methods

Installing or Upgrading a Module
Managing Users and Roles

In This Section ...

https://legacy-docs.inductiveautomation.com/display/DOC80/Web+Services%2C+SUDS%2C+and+REST
https://legacy-docs.inductiveautomation.com/display/DOC80/HTTP+Methods
https://legacy-docs.inductiveautomation.com/display/DOC80/Installing+or+Upgrading+a+Module
https://legacy-docs.inductiveautomation.com/display/DOC80/Managing+Users+and+Roles

httpPost

httpPost Example _
On this page
This example demonstrates how to allow Ignition to receive data from an external source. It uses a
button to send JSON data through an httpPost command and a Python Resource in the Web Dev
module to receive the post and do something with the data. This button example is for testing

purposes only, the common use-case for posting data is to use another program to post data.

(]
1. Open the Designer and right-click on the Web Dev object in the Project Browser. Select hitpPost Example

New Python Resource.

Project Browser o - X
Q- A

4#) Alarm Notification Pipelines
o5 Sequential Function Charts
[5l scripting

® Perspective

B¢ Transaction Groups
& Vision

B Named Queries
Reports

& Import Text Resource...

v T ¥ W W OW W W

£, New Python Resource...

B tewFile Resource...
<> MNew Text Resource...
E New Mounted Folder...
—

Mew Folder

2. Name the Python resource postjson.
3. Select the doPost HTTP method from the dropdown in the upper left.

Fle Edit View Project Tools Help
B o | oo
Projecterowser EI -
HITP Method [Enabled Require HTTPS Require Authentication
a-
1def dogg o0t lssion):
¥ o7 Sequential Function Charts Resf doPut oming HTTP request. Formulate your response as a diction:
4 E,Smpw\g USIE Gopelete following keys:
» © perspective 5
" joHead .
» 8 Transaction Groups hta e o5 3 string
» © Vision dooptions
+ B Named Queries " js¢ doTrace ictionary which will be encoded as ‘application/json’ da
») Report doPatch
{8 PO S
'bytes’ A byte[] to send back. Mime type will be 'application/octet-streal

4. Select the Enabled option.
5. Copy this code into the doPost function.

https://legacy-docs.inductiveautomation.com/display/DOC80/WebDev+Module
https://legacy-docs.inductiveautomation.com/display/DOC80/WebDev+Module

"postjson" Python Resource (Web Dev Section)

take in some JSON data and print it
expecting 'nanes' and 'values' that are of the sane length

get the incom ng paraneters

data = request[' postData']

nanmes = data[' names']

val ues = data['val ues']

this will print to the wapper.log file
print nanes, val ues

formattedString = "<htm ><body>"
| oop through and add names and val ues
for i in range(len(nanes)):
formattedString += "%: %, % names[i], values[i])
renove the last ', ' and add closing htm
formattedString = formattedString[:-2]+"</body></htm >"
this will print to the wapper.log file
print formattedString

return the value string

format the string into HTM.
return {"htm': formattedString}

6. Create a button on a window to test the above code. Copy the code below into your
button. Make sure to change the ProjectName variable to the name of your project. If you
used any name other than "postjson” for step 1, change the doPostName variable as well.

Call Web Service (Button component on a window)

post data to the web service in a json format
this allows you to use the 'postData’ object in the Python
Resour ce

create url to post to

proj ect Nane = "M/Project"

doPost Nanme = "postjson”

url = "http://1 ocal host: 8088/ mai n/ syst eml webdev/ %/ %" %
(proj ect Name, doPost Nane)

create the dictionary of paraneters to pass in
parans = {}

parans['names'] = ['String','Integer']
parans['values'] = ["Hello World', 42]

encode dictionary to JSON

jsonParanms = systemutil.jsonEncode(parans)

post to lgnition

postReturn = system net. httpPost(url,"'application/json',
j sonPar ans)

print return val ue

print postReturn

7. Now test your button. Make sure to open the console to see the print out, or the wrapper.
log file to see any errors caused by the doPost function.

Related Topics ...

® Diagnostics

https://legacy-docs.inductiveautomation.com/display/DOC79/Diagnostics

	Symbol Factory
	Web Dev
	httpPost

