
1. Expression Functions . 3
1.1 Advanced . 4

1.1.1 columnRearrange . 5
1.1.2 columnRename . 6
1.1.3 forceQuality . 7
1.1.4 property . 8
1.1.5 qualifiedValue . 9
1.1.6 runScript . 10
1.1.7 sortDataset . 12
1.1.8 tag . 14

1.2 Aggregates . 15
1.2.1 groupConcat . 16
1.2.2 max . 17
1.2.3 maxDate . 19
1.2.4 mean . 20
1.2.5 median . 21
1.2.6 min . 23
1.2.7 minDate . 25
1.2.8 stdDev . 26
1.2.9 sum . 27

1.3 Alarming Expressions . 28
1.3.1 isAlarmActive . 29
1.3.2 isAlarmActiveFiltered . 30

1.4 Colors . 31
1.4.1 brighter . 32
1.4.2 color . 33
1.4.3 darker . 34
1.4.4 gradient . 35

1.5 Date and Time . 36
1.5.1 add* . 37
1.5.2 dateArithmetic . 38
1.5.3 dateDiff . 39
1.5.4 dateExtract . 40
1.5.5 dateFormat . 41
1.5.6 dateIsAfter . 44
1.5.7 dateIsBefore . 45
1.5.8 dateIsBetween . 46
1.5.9 dateIsDaylight . 47
1.5.10 *Between . 48
1.5.11 fromMillis . 49
1.5.12 get* . 50
1.5.13 getDate . 51
1.5.14 getTimezone . 52
1.5.15 getTimezoneOffset . 61
1.5.16 getTimezoneRawOffset . 62
1.5.17 midnight . 63
1.5.18 now . 64
1.5.19 setTime . 65
1.5.20 timeBetween . 66
1.5.21 toMillis . 67

1.6 Identity Provider . 68
1.6.1 containsAll . 69
1.6.2 containsAny . 70

1.7 JSON . 71
1.7.1 jsonFormat . 72
1.7.2 jsonGet . 73
1.7.3 jsonSet . 74

1.8 Logic . 75
1.8.1 binEnc . 76
1.8.2 binEnum . 77
1.8.3 case . 78
1.8.4 coalesce . 79
1.8.5 getBit . 80
1.8.6 hasChanged . 81
1.8.7 if . 82
1.8.8 isGood . 83
1.8.9 isNull . 84
1.8.10 lookup . 85
1.8.11 switch . 86
1.8.12 try . 87

1.9 Math . 88
1.9.1 abs . 89
1.9.2 acos . 90
1.9.3 asin . 91
1.9.4 atan . 92

1.9.5 ceil . 93
1.9.6 cos . 94
1.9.7 exp . 95
1.9.8 floor . 96
1.9.9 log . 97
1.9.10 log10 . 98
1.9.11 pow . 99
1.9.12 round . 100
1.9.13 sin . 101
1.9.14 sqrt . 102
1.9.15 tan . 103
1.9.16 todegrees . 104
1.9.17 toradians . 105

1.10 String . 106
1.10.1 concat . 107
1.10.2 escapeSQL . 108
1.10.3 escapeXML . 109
1.10.4 fromBinary . 110
1.10.5 fromHex . 111
1.10.6 fromOctal . 112
1.10.7 indexOf . 113
1.10.8 lastIndexOf . 114
1.10.9 left . 115
1.10.10 len . 116
1.10.11 lower . 117
1.10.12 numberFormat . 118
1.10.13 repeat . 120
1.10.14 replace . 121
1.10.15 right . 122
1.10.16 split . 123
1.10.17 substring . 124
1.10.18 toBinary . 125
1.10.19 toHex . 126
1.10.20 toOctal . 127
1.10.21 trim . 128
1.10.22 upper . 129
1.10.23 stringFormat . 130
1.10.24 urlEncode . 133

1.11 Translation . 136
1.11.1 translate . 137

1.12 Type Casting . 138
1.12.1 toBoolean . 139
1.12.2 toBorder . 140
1.12.3 toColor . 144
1.12.4 toDataSet . 149
1.12.5 toDate . 150
1.12.6 toDouble . 151
1.12.7 toFloat . 152
1.12.8 toFont . 153
1.12.9 toInt . 154
1.12.10 toInteger . 155
1.12.11 toLong . 156
1.12.12 toStr . 157
1.12.13 toString . 158

1.13 Users . 159
1.13.1 hasRole . 160
1.13.2 isAuthorized . 161

Expression Functions

The language is used to define dynamic values for component properties and tags. s often involve one or expression expression Expression
more other values that are used to calculate a final value. s don't do anything, other than return a value.Expression

For an overview and syntax of the expression language, see Expression Language Overview and Syntax.

In this section, we cover all of the built in expression functions available inside Ignition. Each page will have a banner at the top that looks like
this:

This function is used by language.Ignition's Expression

This lets you know that you are looking at a function for the expression language.

Advanced

Aggregates

Alarming

Colors

Date and Time

JSON

Logic

Math

String

Translation

Type Casting

Users

https://legacy-docs.inductiveautomation.com/display/DOC80/Expression+Overview+and+Syntax

Advanced

Advanced Functions
The following functions allow you to interact with Ignition in more advanced ways through expression bindings.

In This Section ...

columnRearrange
This function is used by language.Ignition's Expression

Description

 Returns a view of the given dataset with the given columns in the order specified. Columns may be omitted in order to filter out columns from the
original dataset.

Syntax

 columnRearrange(dataset[, col...])

Parameters

DataSet dataset - The starting dataset.

string col - Any number of column names, in the order that they should appear. The columns specified must Optional.
match columns in the original dataset.

Results

DataSet - A new dataset with columns in the order specified.

Examples

Code Snippet

columnRearrange(fiveColDataset, "secondCol", "thirdCol", "firstCol") // returns a 3 column
Dataset, where the columns are in the given order.

columnRename
This function is used by language.Ignition's Expression

Description

 Returns a view of the given dataset with the columns renamed. The number of new names must match exactly with the existing column count.

Syntax

 columnRename(dataset[, newName...])

Parameters

DataSet dataset - The starting dataset.

string newName - . Any number of new column names. The columns specified must match the number of Optional
columns in the original dataset.

Results

DataSet - A new dataset with new column names.

Examples

Code Snippet

columnRename(twoColDataset, "colOne", "colTwo") // returns a Dataset with columns ["colOne",
"colTwo"]

forceQuality
This function is used by language.Ignition's Expression

Description

Returns the given value, but overwrites the quality of that value. See the for a list of potential quality codes. If the quality codes
quality argument is omitted, the quality will be GOOD (192). This is a way to have expressions opt-out of the quality overlay
system. You can also force a specific quality code here by including the quality argument.

Syntax

forceQuality(value[, qualityCode])

Parameters

object value - The value to force a quality on.

int qualityCode - The qualityCode to force on the value.Optional.

Results

object - The value with a forced quality.

Examples

Code Snippet

forceQuality({Tanks/Tank15}) //returns the value of the Tank15 tag, but always with a good
quality code.

Code Snippet

forceQuality({Tanks/Tank15}, 410) //returns the value of the Tank15 tag, but always with a
TAG_DISABLED quality.

https://legacy-docs.inductiveautomation.com/display/DOC80/Tag+Quality+and+Overlays

property
The following feature is new in Ignition version 8.0.4

 to check out the other new featuresClick here

This function is used by language.Ignition's Expression

Description

Returns an object representing the value of the property at the path specified. It takes a single string as an argument and attempts
to lookup the property value at the specified path. What makes this function useful is that the path itself can be the result of an

Normally, you'd use the expression language's built-in bound-valueexpression, meaning it can be dynamic. syntax to use a
property value in an expression.

Syntax

 property(propertyPath)

Parameters

string propertyPath - The property path to the property.

Results

object - The value of the property.

Examples

Code Snippet

property("this.custom." + {view.params.ControlType})

Perspective only

The property() expression function is only accessible in Perspective.

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.4
https://legacy-docs.inductiveautomation.com/display/DOC80/Expression+Overview+and+Syntax

qualifiedValue
This function is used by language.Ignition's Expression

Description

Returns the given value, but overwrites the quality of that value. Provides more control over the value than the forceQuality()
expression.

Syntax

qualifiedValue(value, level[, subcode, diagnosticMessage])

Parameters

object value - The value to force a quality on.

object level - The level to force on the value. Possible levels are Good or 0, Uncertain or 1, Bad or 2, Error or 3.

object subcode - Optional. The subcode to include with the quality level. See for more Tag Quality and Overlays
information on possible subcodes.

object diagnosticMessage - Optional. The a diagnostic message to add to the quality.

Results

object - The value with a forced quality.

Examples

Code Snippet

qualifiedValue(1, 'bad', 515, 'New Quality') //returns the value 1 but with a quality of
Bad_Disabled("New Quality")

https://legacy-docs.inductiveautomation.com/display/DOC80/Tag+Quality+and+Overlays

runScript
This function is used by language.Ignition's Expression

Description

Runs a single line of Python code as an expression. If a poll rate is specified, the function will be run repeatedly at the poll rate.
This is a very powerful way for you to add extensions to the expression language. For example, one could write a project script
module function called shared.weather.getTempAt(zip) that queried a web service for the current temperature at a given zip code,
and then bind the value of a label to the return value of that function.

The is a entered as a and the is in . You can optionally add any function arguments scriptFunction string pollRate milliseconds
after the poll rate.

Syntax - Preferred

 runScript(scriptFunction, [pollRate], [arg1], [arg2], [arg...])

Parameters

string scriptFunction - A single line of python code. Typically the path to a script module.

int pollRate - The poll rate of the script in milliseconds.Optional.

object arg - Any number of argument objects that will be passed into the given script. This expression Optional.
function can't make use of keyword invocation, so the order of the arguments passed to runScript represents how the
parameters will be passed to the underlying Python function.

Results

object - The return value of the specified function.

Syntax - Legacy

 runScript(scriptFunction, [pollRate])

Parameters

string scriptFunction - A string representing a single line of code, including any arguments that will be passed to the
function.

int pollRate - The poll rate of the script in milliseconds.Optional.

Results

object - The return value of the specified function.

runScript Polling in Tags

The runScript function can be used in expression tags, but the poll rate doesn't work exactly the same as in an expression binding. All
Tags have a Scan Class that dictates the minimum amount of time between each evaluation. The runScript poll rate only polls up to
the rate of the scan class set on the tag.

For example, if an Expression Tag is configured with runScript to run at a poll rate of 60 seconds and is using the "default" (1 second)
scan class, the Tag's Expression will still execute every 1 second. So a scan class rate of 60 seconds will be necessary for a runScript
expression to poll at any rate between 0 and 60 seconds.

Examples

Here is our scripting function we are going to run that is located in a Project Library script called . The project the script textScript
was in was also set as the .Gateway Scripting Project

Code Snippet - Python Function

def myFunc(text="Hello World!", moreText="Good bye"):
 return text

General Usage

// This code block shows how to use runScript without additional parameters

// Preferred syntax
runScript("textScript.myFunc")

// Legacy syntax
runScript("textScript.myFunc()")

Passing Arguments

// Preferred syntax
runScript("textScript.myFunc", 0, "Hello Again", "See ya later")

// Legacy syntax
runScript("textScript.myFunc('Hello Again', 'See ya later')", 0)

Example - Legacy Usage

// Legacy syntax using string concatenation
runScript("textScript.myFunc('" +{_gensim_/Writeable/WriteableString1} + "')") // This would run
the function and pass in the value of the WriteableString1 tag.

https://legacy-docs.inductiveautomation.com/display/DOC80/Project+Library#ProjectLibrary-AccessingProjectScriptsfromtheGateway

sortDataset
This function is used by language.Ignition's Expression

Description

Takes a and returns a sorted version of dataset. The sort order is determined by a single column. This works on numeric, dataset
as well as alphanumeric columns. When sorting alphanumerically, contiguous numbers are treated as a single number: you may
recognize this as a "natural sort".

Sort Order

The table below represents an example of how alphanumeric values are sorted by the function (assuming a natural sort). Where Ra
 represents an initial set of values, and the Sorted columns show how the function sorts in and w Column Values Ascending Desc

 order. ending

Raw Column Values Sorted - Ascending Sorted - Descending

a1 a1 Z3

a22 A1 z3

Z3 a4 a77z99

z3 a7z9 a77z4

a4 a22 a22

a77z4 a77z4 a7z9

a77z99 a77z99 a4

a7z9 z3 a1

A1 Z3 A1

Some caveats to be aware of:

Null values for string columns are sorted first
Null values for numeric columns are sorted last
Casing is not used as a method of sorting. If the only difference between two cells is the casing, then the resulting order
depends largely on where the cells were in the raw column.

Syntax

 sortDataset(dataset, colIndex, [ascending], [naturalOrdering])

Parameters

Dataset dataset - The starting dataset.

int colIndex - The index of the column to sort on.

bool ascending - A flag indicating whether or not to sort ascending. Defaults to true. [Optional]

The following feature is new in Ignition version 8.0.16
 to check out the other new featuresClick here

naturalOrdering - A flag indicating the ordering method. True for natural, false for alphabetical. Defaults to bool
true. [Optional]

Results

Dataset - A sorted dataset

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.16

Syntax

 sortDataset(dataset, colName, [ascending], [naturalOrdering])

Parameters

Dataset dataset - The starting dataset.

string colName- The name of the column to sort on.

bool ascending - A flag indicating whether or not to sort ascending. Defaults to true. [Optional]

The following feature is new in Ignition version 8.0.16
 to check out the other new featuresClick here

naturalOrdering - A flag indicating the ordering method. True for natural, false for alphabetical. Defaults to bool
true. [Optional]

Results

Dataset - A sorted dataset

Examples

Code Snippet

sortDataset(dataset, 0, true) // returns a Dataset sorted ascending on column 0.

Code Snippet

sortDataset(dataset, "Column 1", false) // returns a Dataset sorted descending on the column
named "Column 1".

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.16

tag
This function is used by language.Ignition's Expression

Description

 Returns an object representing the value of the Tag at the path specified. Normally, you'd use the expression language's built-in
 bound-value syntax to use a tag value in an expression. What makes this function useful is that the path itself can be the result of

an expression, meaning it can be dynamic. The object returned by the function may need to be converted to a standard data type.
 Check out the Type Casting functions for more information.

Syntax

 tag(tagPath)

Parameters

string tagPath - The tag path to the tag.

Results

object - The value of the tag. The object returned by the function may need to be converted to a standard data type
using one of the various functions.Type Casting

Examples

Code Snippet

tag("Tanks/Tank5") //returns Tank5's value.

Code Snippet

tag("Tanks/Tank" + {Root Container.TankNum}) //returns the value for the tank represented by the
dynamic property TankNum on the Root Container.

When using the tag() function in a logic function, the tag value will remain subscribed to, even if the logic function
chooses a different outcome. This can affect tags that are on a leased scan class.

https://legacy-docs.inductiveautomation.com/display/DOC80/Expression+Overview+and+Syntax

Aggregates

Aggregate Functions
The following functions allow you to fetch aggregated values from datasets in expression bindings.

In This Section ...

groupConcat
This function is used by language.Ignition's Expression

Description

Concatenates all of the values in the given column of the given dataset into a string, with each value separated by the string separat
or. Any null values in the column are ignored.

Syntax

groupConcat(dataset, columnIndex, separator)

Parameters

 dataset - The starting dataset.DataSet

 columnIndex - The index of the column to concatenate.int

 separator - What will be used to separate each of the values.string

Returns

 - A string with every value in the specified column of the specified dataset separated by the separator value.string

Syntax

groupConcat(dataset, columnName, separator)

Parameters

 dataset - The starting dataset.DataSet

 columnname - The name of the column to concatenate.string

string separator - What will be used to separate each of the values.

Returns

string - A string with every value in the specified column of the specified dataset separated by the separator value.

Examples

Suppose you had a table with this dataset in it:

Product Code Quality Weight

BAN_002 380 3.243

BAN_010 120 9.928

APL_000 125 1.287

FWL_220 322 7.889

Code Snippet

groupConcat({Root Container.Table.data}, 1, " / ") //would return the string: "380 / 120 / 125
/ 322"

Code Snippet

groupConcat({Root Container.Table.data}, "ProductCode", ", ") //would return the string:
"BAN_002, BAN_010, APL_000, FWL_220"

max
This function is used by language.Ignition's Expression

Description

Finds and returns the maximum value in the given column of the given dataset, or the max value in a series of numbers specified
as arguments. When looking up the max in a dataset, the column may be specified as an index or as a column name.

This function expects the datatype of the column to be : other datatypes, such as strings, will throw an exception.numeric

Any null values in the column are ignored.

Syntax

max(dataset, columnIndex)

Parameters

DataSet dataset - The dataset to search through.

int columnIndex - The index of the column to search through. Must be a column index of the provided dataset.
Additionally, the datatype of the column must be numeric.

Returns

int - The maximum value in that column.

Syntax

max(dataset, columnName)

Parameters

DataSet dataset - The dataset to search through.

string columnName - The name of the column to search through. Must match a column name in the provided dataset.
Additionally, the datatype of the column must be numeric.

Returns

int - The maximum value in that column.

Syntax

max(value[, value...])

Parameters

int/float value - A number. Can be as many values as needed. Can be either a float or an integer.

Returns

int - The maximum value in the list of values.

Examples

For example, suppose you had a table with this dataset in it:

ProductCode Quantity Weight

BAN_002 380 3.243

BAN_010 120 9.928

APL_000 125 1.287

FWL_220 322 7.889

Code Snippet

max({Root Container.Table.data}, 1) //would return 380

Code Snippet

max(0, 10/2, 3.14) //would return 5. You can also use this function to find the maximum in fixed
series of numbers, specified as arguments

Code Snippet

max({SomeValue}, 0) //The following example is a great way to make sure a value never goes below
zero:

maxDate
This function is used by language.Ignition's Expression

Description

Finds and returns the maximum date in the given column of the given dataset, or the max value in a series of dates specified as
arguments. When looking up the max date in a dataset, the column may be specified as an index or as a column name. Any null
values in the column are ignored.

Syntax

maxDate(dataset, columnIndex)

Parameter

DataSet dataset - The starting dataset to search.

int columnIndex - The index of the column to search for the max date. Must be a column index of the provided dataset.

Returns

Date - The maximum date of the given date column in the given dataset.

Syntax

maxDate(dataset, columnName)

Parameter

DataSet dataset - The starting dataset to search.

string columnName - The name of the column to search for the max date. Must match a column name in the provided
dataset.

Returns

Date - The maximum date of the given date column in the given dataset.

Syntax

maxDate(date[, date])

Parameter

Date date - A date. Can be as many dates as needed.

Returns

Date - The maximum date of the given dates.

Examples

The following table applies to the code snippet below:

AlarmTime Path Severity

2010-01-08 7:28:04 Tanks/Tank5/TempHiAlarm 4

2010-01-08 10:13:22 Tanks/Tank38/LoLevel 2

2010-01-08 13:02:56 Valves/Valve2/ 2

Code Snippet

maxDate({Root Container.Table.data}, "AlarmTime") //You could use this expression to get the
date and time for the most recent alarm.

Code Snippet

maxDate(now(0), addMinutes(now(0), 5)) // This would return the Date that is 5 minutes from now.

mean
This function is used by language.Ignition's Expression

Description

Calculates the mean (a.k.a average) for the numbers in the given column of the given dataset or the mean of a series of numbers
specified as arguments. When looking up the mean in a dataset, the column may be specified as an index or as a column name.
Any null values in the column are ignored. If there are no rows in the dataset, null is returned.

Syntax

mean(dataset, columnIndex)

Parameters

DataSet dataset - The dataset to use.

int columnIndex - The index of the column to use. Must be a column index of the provided dataset.

Returns

int/float - The mean of the values in that column.

Syntax

mean(dataset, columnName)

Parameters

DataSet dataset - The dataset to use.

string columnName - The name of the column to search through. Must match a column name in the provided dataset.

Returns

int/float - The mean of the values in that column.

Syntax

mean(value[, value...])

Parameters

int/float value - A number. Can be as many values as needed. Can be either a float or an integer.

Returns

int/float - The mean of the values.

Examples

For example, suppose you had a table with this dataset in it:

ProductCode Quantity Weight

BAN_002 380 3.243

BAN_010 120 9.928

APL_000 125 1.287

FWL_220 322 7.889

Code Snippet

mean({Root Container.Table.data}, "Weight") //... would return 5.58675

Code Snippet

mean(1,2,3) //... would return 2

median
This function is used by language.Ignition's Expression

Description

Calculates the median for the numbers in the given column of the given dataset or the median of a series of numbers specified as
arguments. When looking up the median in a dataset, the column may be specified as an index or as a column name. Any null
values in the column are ignored.

Syntax

median(dataset, columnIndex)

Parameters

DataSet dataset - The dataset to search through.

int columnIndex - The index of the column to search through. Must be a column index of the provided dataset.

Returns

int/float - The median value in that column.

Syntax

median(dataset, columnName)

Parameters

DataSet dataset - The dataset to search through.

string columnName - The name of the column to search through. Must match a column name in the provided dataset.

Returns

int/float - The median value in that column.

Syntax

median(value[, value...])

Parameters

int/float value - A number. Can be as many values as needed. Can be either a float or an integer.

Returns

int/float - The median value in the list of values.

Syntax

median(dataset, column OR number, number...)

Examples

For example, suppose you had a table with this dataset in it:

ProductCode Quantity Weight

BAN_002 380 3.243

BAN_010 120 9.928

APL_000 125 1.287

FWL_220 322 7.889

Code Snippet

median({Root Container.Table.data}, "Weight") //... would return 5.566

median(1,2,3,3,10) //... would return 3

min
This function is used by language.Ignition's Expression

Description

Finds and returns the minimum value in the given column of the given dataset, or the min value in a series of numbers specified as
arguments. When looking up the min in a dataset, the column may be specified as an index or as a column name. Any null values
in the column are ignored.

Syntax

min(dataset, columnIndex)

Parameters

DataSet dataset - The dataset to search through.

int columnIndex - The index of the column to search through. Must be a column index of the provided dataset.

Returns

int - The minimum value in that column.

Syntax

min(dataset, columnName)

Parameters

DataSet dataset - The dataset to search through.

string columnName - The name of the column to search through. Must match a column name in the provided dataset.

Returns

int - The minimum value in that column.

Syntax

min(value[, value...])

Parameters

int/float value - A number. Can be as many values as needed. Can be either a float or an integer.

Returns

int - The minimum value in the list of values.

Examples

For example, suppose you had a table with this dataset in it:

ProductCode Quantity Weight

BAN_002 380 3.243

BAN_010 120 9.928

APL_000 125 1.287

FWL_220 322 7.889

Code Snippet

min({Root Container.Table.data}, 1) //... would return 120

Code Snippet

min(0, 10/2, 3.14) //... would return 0

Code Snippet

min({SomeValue}, 180) //This example is a great way to make sure a value never goes above 180

minDate
This function is used by language.Ignition's Expression

Description

Finds and returns the minimum date in the given column of the given dataset, or the min value in a series of dates specified as
arguments. When looking up the min date in a dataset, the column may be specified as an index or as a column name. Any null
values in the column are ignored.

Syntax

minDate(dataset, columnIndex)

Parameter

DataSet dataset - The starting dataset to search.

int columnIndex - The index of the column to search for the max date. Must be a column index of the provided dataset.

Returns

Date - The minimum date of the given date column in the given dataset.

Syntax

minDate(dataset, columnName)

Parameter

DataSet dataset - The starting dataset to search.

string columnName - The name of the column to search for the max date. Must match a column name in the provided
dataset.

Returns

Date - The minimum date of the given date column in the given dataset.

Syntax

minDate(date[, date])

Parameter

Date date - A date. Can be as many dates as needed.

Returns

Date - The minimum date of the given dates.

Examples

For example, suppose you had a Table with this dataset in it:

AlarmTime Path Severity

2010-01-08 7:28:04 Tanks/Tank5/TempHiAlarm 4

2010-01-08 10:13:22 Tanks/Tank38/LoLevel 2

2010-01-08 13:02:56 Valves/Valve2/ 2

minDate({Root Container.Table.data}, "AlarmTime") //You could use this expression to get the
date and time for the oldest alarm

stdDev
This function is used by language.Ignition's Expression

Description

Calculates the simple standard deviation of the values in the given column of the given dataset, or the standard deviation for a
series of numbers specified as arguments. When looking up the standard deviation in a dataset, the column may be specified as an
index or as a column name. Any null values in the column are ignored.

Syntax

stdDev(dataset, columnIndex)

Parameters

DataSet dataset - The dataset to search through.

int columnIndex - The index of the column to search through. Must be a column index of the provided dataset.

Returns

int/float - The standard deviation of the values in that column.

Syntax

(stdDev dataset, columnName)

Parameters

DataSet dataset - The dataset to search through.

string columnName - The name of the column to search through. Must match a column name in the provided dataset.

Returns

int/float - The standard deviation of the values in that column.

Syntax

(valuestdDev [, value...])

Parameters

int/float value - A number. Can be as many values as needed. Can be either a float or an integer.

Returns

int/float - The standard deviation of the values in the list of values.

Examples

For example, suppose you had a table with this dataset in it:

ProductCode Quantity Weight

BAN_002 380 3.243

BAN_010 120 9.928

APL_000 125 1.287

FWL_220 322 7.889

Code Snippet

stdDev({Root Container.Table.data}, "Weight") //... would return 3.4687

sum
This function is used by language.Ignition's Expression

Description

Calculates the sum of the values in the given column of the given dataset, or the sum for a series of numbers specified as
arguments. When looking up the sum in a dataset, the column may be specified as an index or as a column name. Any null values
in the column are ignored.

Syntax

sum(dataset, columnIndex)

Parameters

DataSet dataset - The dataset to use.

int columnIndex - The index of the column to use. Must be a column index of the provided dataset.

Returns

int/float - The sum of the values in that column.

Syntax

(sum dataset, columnName)

Parameters

DataSet dataset - The dataset to use.

string columnName - The name of the column to search through. Must match a column name in the provided dataset.

Returns

int/float - The sum of the values in that column.

Syntax

(valuesum [, value...])

Parameters

int/float value - A number. Can be as many values as needed. Can be either a float or an integer.

Returns

int/float - The sum of the values.

Examples

For example, suppose you had a table with this dataset in it.

ProductCode Quantity Weight

BAN_002 380 3.243

BAN_010 120 9.928

APL_000 125 1.287

FWL_220 322 7.889

Code Snippet

sum({Root Container.Table.data}, 1) //... would return 947

Code Snippet

sum(1,2,3) //... would return 6

Alarming Expressions

Alarming Functions
The following functions allow you to view alarm status in expression bindings.

In This Section ...

isAlarmActive
This function is used by language.Ignition's Expression

Description

Returns whether there are active alarms that match the provided criteria. The alarm name is optional, and both the tag path and
alarm name support wildcards ('*'). For example, if only the tag path was specified, this function would return whether any alarm on
the tag was active. The pollRate parameter is only applicable in the client scope.

Syntax

isAlarmActive(tagPath[, alarmName][, pollRate])

Parameters

string tagPath - The tagpath to search for active alarms. Supports the wildcard '*'.

string alarmName - The name of the alarm to search for. Supports the wildcard '*'.Optional.

int pollRate - The poll rate in milliseconds. Only applicable in Vision Clients.Optional.

Returns

Boolean - True if an alarm is active, False if no active alarms were found.

Examples

Code Snippet

isAlarmActive("[default]Tanks/Temp", "Tank_Temp_High") //when the Tank_Temp_High alarm is
active then this expression returns True.

When calling this from the Gateway scope, the must be included in the path.Tag Provider

isAlarmActiveFiltered
This function is used by language.Ignition's Expression

Description

Returns whether there are active alarms that match the provided criteria. It is more granular than isAlarmActive. The tag path,
alarm name, and display path all support wildcards ('*'). The min and max priority expect a number between 0 (diagnostic) and 4
(critical). The pollRate parameter is only applicable in the client scope and is optional.

Syntax

isAlarmActiveFiltered(tagPath, alarmName, displayPath, minPriority, maxPriority, allowCleared, allowAcked, allowShelved
[, pollRate])

Parameters

string tagPath - The tag path to search for active alarms. Accepts the wildcard '*'.

string alarmName - The alarm name to search for active alarms. Accepts the wildcard '*'.

string displayPath - The display path to search for active alarms. Accepts the wildcard '*'.

int minPriority - The minimum priority of alarms to accept. 0 is Diagnostic, 1 is Low, 2 is Medium, 3 is High, 4 is Critical.

int maxPriority - The maximum priority of alarms to accept. 0 is Diagnostic, 1 is Low, 2 is Medium, 3 is High, 4 is
Critical.

Bool allowCleared - A flag that indicates whether to accept cleared alarms.

Bool allowAcked - A flag that indicates whether to accept acknowledged alarms.

Bool allowShelved - A flag that indicates whether to accept shelved alarms.

int pollRate - The poll rate of the function in milliseconds. Only applicable in the Client scope.Optional.

Results

Bool - True if there are active alarms, False if there are not.

Examples

Code Snippet

isAlarmActiveFiltered("*", "*", "*", 4, 4, 0, 1, 0) //when any critical alarm is active, even
if acknowledged, then this expression returns True.

When calling this from the Gateway scope, the must be included in the path.Tag Provider

Colors

Color Functions
The following functions allow you to modify or set color values in expression bindings.

In This Section ...

brighter
This function is used by language.Ignition's Expression

Description

Returns a color that is one shade brighter than the color given as an argument. Note that if you pass in a fully saturated color, like
(255,0,0), it cannot be made brighter.

Syntax

brighter(color)

Parameter

 color - A color to make brighter. Can use the function to create a color value.Color color

Results

 - A color that is one shade brighter than the color passed in.Color

Examples

Code Snippet

brighter(color(100,150,250)) //returns the color (142,214,255)

color
This function is used by language.Ignition's Expression

Description

Creates a color using the given red, green, and blue amounts, which are integers between 0-255. The optional alpha channel to the
color controls transparency.

Note: This function was designed to return color objects to Vision bindings, and will not work with Perspective bindings. Instead, Perspective color
properties can simply use string hex codes to derive a color from a binding. Example: "#00FF00".

Syntax

color(red, green, blue[, alpha])

Parameter

int red - The intensity of Red, between 0 - 255.

int green - The intensity of Green ., between 0 - 255

int blue - The intensity of Blue ., between 0 - 255

int alpha - The amount of transparency .Optional. , between 0 - 255

Results

Color - Returns a color with the given RGB value.

Examples

There are no expression function examples associated with this expression function.

darker
This function is used by language.Ignition's Expression

Description

 Returns a color that is one shade darker than the color given as an argument.

Syntax

darker(color)

Parameter

 color - A color to make darker. Can use the function to create a color value.Color color

Results

 - A color that is one shade darker than the color passed in.Color

Examples

 darker(color(100,150,250)) //returns the color (70,105,175)

gradient
This function is used by language.Ignition's Expression

Description

 Calculates a percentage given the three numeric arguments number, low, and high. Uses this percentage to create a color that is a mix between
the two colors.

Syntax

gradient(value, low, high, lowColor, highColor)

Parameter

int value - The value used to determine the percentage between the low and high values.

int low - The low value to use to calculate the percentage.

int high - The high value to use to calculate the percentage.

Color lowColor - The color that will match 0%.

Color highColor - The color that will match 100%.

Results

 - A color that is a mix of the two given colors based on the percentage.Color

Examples

code

gradient(0, 0, 100, toColor("red"), toColor("blue")) //returns red.

Code Snippet

gradient(100, 0, 100, toColor("red"), toColor("blue")) //returns blue.

Code Snippet

gradient(60, 0, 100, toColor("red"), toColor("blue")) //returns a shade of purple.

Code Snippet

gradient({Root Container.Tank.value}, 0, 100, color(255,0,0), color(0,0,255)) //will return a
gradient from red to blue based on the level of a tank.

Date and Time

Date and Time Functions
The following functions allow you to check or modify time values in expression bindings.

In This Section ...

add*
This function is used by language.Ignition's Expression

Description

This function is a set of functions that include:

Function Description

addMillis Add or subtract an amount of milliseconds to a given date and time.

addSeco
nds

Add or subtract an amount of seconds to a given date and time.

addMinut
es

Add or subtract an amount of minutes to a given date and time.

addHours Add or subtract an amount of hours to a given date and time.

addDays Add or subtract an amount of days to a given date and time.

addWee
ks

Add or subtract an amount of weeks to a given date and time.

addMont
hs

Add or subtract an amount of months to a given date and time. This function is unique since each month can have a
variable number of days. For example, if the date passed in is March 31st, and we add one month, April does not
have a 31st day, so the returned date will be the proper number of months rounded down to the closest available
day, in this case April 30th.

addYears Add or subtract an amount of years to a given date and time.

Syntax

add*(date, value)

Parameters

 date - The starting date.Date

 value - The amount of units to change the date by, where the units is dependent on the function used.int

Results

 - A new date that has been changed by the amount specified.Date

Code Examples

Code Snippet

addWeeks(now(), 2) //Adds 2 weeks to the current time

Code Snippet

addDays(now(), -5) //Subtracts 5 days from the current time

Code Snippet

addHours({Root Container.Calendar.date}, 5) //This example would add 5 hours to the date passed
in from a calendar component

dateArithmetic
This function is used by language.Ignition's Expression

Description

Adds or subtracts some amount of time from a date, returning the resulting date. The field argument must be a string, and must be
one of these options:

ms
second
sec
minute
hour
hr
day
week
month
year

Syntax

dateArithmetic(date, value, field)

Parameter

 date - The starting date.Date

 value - The value to add or subtract from the given date.int

 field - The units of the value.string

Results

 - A new date, that has been altered by the amount of units specified.Date

Examples

Code Snippet

dateArithmetic(toDate("2010-01-04 8:00:00"), 5, "hour") //returns the date '2010-01-04 13:00:00'

Code Snippet

dateArithmetic({Root Container.DatePicker.date}, -8, "days") //returns a date eight days before
the date in a Popup Calendar component.

dateDiff
This function is used by language.Ignition's Expression

Description

Calculates the difference between the two dates, returning the result as a floating point value in the units specified by field, which
must be a string matching one of these values:

ms
second
sec
minute
min
hour
hr
day
week
month
year

The return value will be a floating point value, meaning that parts of units are considered. The exception to this rule is for the
months and years fields, which will always return an integral difference. If the second date argument is after the first, the return
value will be positive, otherwise it will be negative.

Syntax

dateDiff(date1, date2, field)

Parameter

 date1 - The first date.Date

 date2 - The second date.Date

 field - The units that the difference will be specified in.string

Results

 - The difference between two dates in the units specified.float

Examples

Code Snippet

dateDiff(toDate("2008-2-24 8:00:00"), toDate("2008-2-24 8:15:30"), "minute") //returns 15.5

Code Snippet

dateDiff(toDate("2008-2-24 8:00:00"), toDate("2008-3-12 9:28:00"), "month") //returns 1

Code Snippet

dateDiff(toDate("2008-2-24 8:00:00"), toDate("2008-3-12 9:28:00"), "day") //returns 17.02

dateExtract
This function is used by language.Ignition's Expression

Description

Returns an integer value that is the value of the specified date field within the given date. The field must be a string, and must
match one of these values:

ms
second
sec
minute
min
hour
hr
day
week
month
year
dayofweek
dayofyear

Note: months are returned zero-indexed. That is, January is month 0, February is month 1, and so on. To get a month index
starting at 1, simply add 1 to the function result.

Syntax

dateExtract(date, field)

Parameters

 date - The given date.Date

 field - The field to extract the value from.string

Results

 - The value of the specified field within the given date.int

Examples

Code Snippet

dateExtract(toDate("2003-9-14 8:00:00"), "year") //returns 2003

Code Snippet

dateExtract(toDate("2009-1-15 8:00:00"), "month") //returns 0

Code Snippet

dateExtract(toDate("2008-1-24 8:00:00"), "month") + 1 //returns 1

dateFormat
This function is used by language.Ignition's Expression

Description

Returns the given date as a string, formatted according to a pattern. The pattern is a format that is full of various placeholders that
will display different parts of the date. These are case-sensitive! These placeholders can be repeated for a different effect. For
example, M will give you 1-12, MM will give you 01-12, MMM will give you Jan-Dec, MMMM will give you January-December.

The placeholders are:

Symbol Description Presentation Examples Other Notes

G Era
designator

Text G=AD

y Year Year yyyy=1996; yy=96 Lowercase y is the most commonly used year symbol

Y Week year Year YYYY=2009; YY=09 Capital Y gives the year based on weeks (ie. changes to
the new year up to a week early)

M Month in
year

Month MMMM=July; MMM= ; Jul
MM=07

w Week in year Number 27 If Dec31 is mid-week, it will be in week 1 of the next year

W Week in
month

Number 2

D Day in year Number 189

d Day in month Number 10

F Day of week
in month

Number 2 2nd Sunday of the month

E Day name in
week

Text EEEE=Tuesday; E=Tue

u Day number
of week

Number 1 (1 = Monday, ..., 7 = Sunday)

a Am/Pm
marker

Text PM

H Hour in day
(0-23)

Number 0

h Hour in am
/pm (1-12)

Number 12

k Hour in day
(1-24)

Number 24

K Hour in am
/pm (0-11)

Number 0

m Minute in
hour

Number 30

s Second in
minute

Number 55

S Millisecond Number 978

z Time zone General time
zone

zzzz=Pacific
Standard Time; z=PST

Z Time zone RFC 822
time zone

Z=-0800

X Time zone ISO 8601
time zone

X=-08; XX= ; XXX=-0800
-08:00

Expert Tip: This function uses the Java class internally, and will accept any valid format java.text.SimpleDateFormat
string for that class.

https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#text
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#year
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#year
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#month
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#text
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#text
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#timezone
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#timezone
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#rfc822timezone
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#rfc822timezone
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#iso8601timezone
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#iso8601timezone
http://docs.oracle.com/javase/1.5.0/docs/api/java/text/SimpleDateFormat.html

Syntax

dateFormat(date, pattern)

Parameter

 date - The starting date.Date

 pattern - The pattern to format the given date to.string

Results

 - The given date formatted based on the given format pattern.string

Examples

Code Snippet

dateFormat(toDate("2003-9-14 8:00:00"), "yyyy-MM-dd HH:mm:ss") //returns the string "2003-09-14
08:00:00" This format is accepted in most databases

Code Snippet

dateFormat(toDate("2003-9-14 8:00:00"), "yyyy-MM-dd h a") //returns the string "2003-09-14 8 AM"

Code Snippet

dateFormat(toDate("2003-9-14 8:00:00"), "MMM d, yyyy") //returns the string "Sep 14, 2003"

Code Snippet

dateFormat(now(), 'yyyy-MM-dd 00:00:00') //returns the current date, but forces the time to 00:
00:00

dateIsAfter
This function is used by language.Ignition's Expression

Description

Compares two dates to see if date1 is after date2. Note: This is exclusive, meaning if the dates are identical the result is always
False.

Syntax

dateIsAfter(date1, date2)

Parameters

 date1 - The first date to compare.Date

 date2 - The second date to compareDate

Results

 - True if date1 is at or after date2, False if not.Bool

Code Examples

Code Snippet

dateIsAfter(now(), toDate("2016-04-12 00:00:00"))
// Will be true if the current time is after April 12th, 2016 at midnight

dateIsBefore
This function is used by language.Ignition's Expression

Description

Compares two dates to see if date1 is before date2. Note: This is exclusive, meaning if the dates are identical the result is always
False.

Syntax

dateIsBefore(date1, date2)

Parameter

 date1 - The first date to compare.Date

 date2 - The second date to compare.Date

Results

 - True if date1 is at or before date2, False if not.Bool

Code Examples

Code Snippet

dateIsBefore(now(), toDate("2016-04-12 00:00:00"))
// Will be true if the current time is before April 12th, 2016 at midnight

dateIsBetween
This function is used by language.Ignition's Expression

Description

Compares two dates to see if a target date is between two other dates. Note: This is inclusive, meaning if the targetDate is the
same as the start or end date the result is True.

Syntax

dateIsBetween(targetDate, startDate, endDate)

Parameters

Date targetDate - The date to compare.

Date startDate - The start of a date range.

Date endDate - The end of a date range. This date must be after the start date.

Results

Bool - True if the targetDate is at or between the startDate and endDate, False if not.

Code Examples

Code Snippet

dateIsBetween(now(), toDate("2016-06-12 00:00:00"), toDate("2016-06-19 00:00:00"))
// Will be true if the current time is between the 12th and 19th of June 2016

dateIsDaylight
This function is used by language.Ignition's Expression

Description

Checks to see if the current timezone is using daylight savings time during the date specified. Will use the current date if no date is
specified.

Syntax

dateIsDaylight([date])

Parameters

 date - . The date to use. Will use the current date if omitted.Date Optional

Results

 - True if the current timezone is using daylight savings time during the specified date.Bool

Code Examples

Code Snippet

dateIsDaylight(toDate("2007-06-28 00:00:00")) // Will return True in the US/Pacific Timezone,
due to that timezone's observation of Daylight Savings time on the specified date.

*Between
This function is used by language.Ignition's Expression

Description

This function is a set of functions that include:

Function Description

millisBetween Calculates the number of whole milliseconds between two dates.

secondsBetween Calculates the number of whole seconds between two dates.

minutesBetween Calculates the number of whole minutes between two dates.

hoursBetween Calculates the number of whole hours between two dates.

daysBetween Calculates the number of whole days between two dates. Daylight savings changes are taken into account.

weeksBetween Calculates the number of whole weeks between two dates.

monthsBetween Calculates the number of whole months between two dates. Daylight savings changes are taken into account.

yearsBetween Calculates the number of whole years between two dates. Daylight savings changes are taken into account.

Order does matter for the two dates passed in that we are calculating how much time has passed from date 1 to date 2. So, if date
2 is further in time than date 1, then a positive amount of time has passed. If date 2 is backwards in time from date 1, then a
negative amount of time has passed.

Syntax

*between(date1, date2)

Parameter

 date1 - The first date to compare.Date

 date2 - The second date to compare.Date

Results

int - The number of units between the two dates. The units is specified by the function used.

Code Examples

Code Snippet

daysBetween(toDate("2017-04-28 00:00:00"), toDate("2017-03-22 00:00:00")) //This will print -37

Code Snippet

weeksBetween({Root Container.Calendar1.date}, {Root Container.Calendar2.date}) //Will grab the
number of weeks between two dates of calendar components.

fromMillis
This function is used by language.Ignition's Expression

Description

Creates a date object given a time, in milliseconds, past Unix epoch (1 January 1970 at midnight UTC).

Syntax

fromMillis(millis)

Parameters

 millis - The number of milliseconds since epoch time.int

Results

 - The date representing the given number of milliseconds since epoch time.Date

Code Examples

Code Snippet

fromMillis(1503092125000)//This example will print out the date "Fri Aug 18 14:35:25 PDT 2017"

get*
This function is used by language.Ignition's Expression

Description

This function is a set of functions that include:

Function Description

getMillis Extracts the milliseconds from a date, ranging from 0-999.

getSecond Extracts the second from a date, ranging from 0-59.

getMinute Extracts the minutes from a date, ranging from 0-59.

getHour12 Extracts the hour from a date. Uses a 12 hour clock, so noon and midnight are returned as 0.

getHour24 Extracts the hour from a date. Uses a 24 hour clock, so midnight is zero.

getDayOfWeek Extracts the day of the week from a date. Sunday is day 1, Saturday is day 7.

getDayOfMonth Extracts the day of the month from a date. The first day of the month is day 1.

getDayOfYear Extracts the day of the year from a date. The first day of the year is day 1.

getMonth Extracts the month from a date, where January is month 0.

getQuarter Extracts the quarter from a date, ranging from 1-4.

getYear Extracts the year from a date.

getAMorPM Returns a 0 if the time is before noon, and a 1 if the time is equal to or after noon.

Syntax

get*(date)

Parameters

 date - The date to extract from.Date

Results

 - The value of the units of the date specified. The units are determined by the function used.int

Code Examples

Code Snippet

getMonth(now()) //This returns the current month.

Code Snippet

getQuarter(getDate(2017, 3, 15)) //The date, April 15th, is in the second quarter, so this
returns 2.

Code Snippet

getDayOfWeek({Root Container.Calendar.date}) //Will return the day of the week of the selected
date of the calendar component

getDate
This function is used by language.Ignition's Expression

Description

Creates a new Date object given a year, month and a day. The time will be set to midnight of that day. January is 0 and December
is 11. The first day of the month is 1.

Syntax

getDate(year, month, day)

Parameters

 year - The year that the date will be set to.int

 month - The month that the date will be set to.int

 day - The day that the date will be set to.int

Results

 - The date created from the specified integers.Date

Code Examples

Code Snippet

getDate(2016, 11, 1) //This example will create a new date object set to December 1st, 2016.

getTimezone
This function is used by language.Ignition's Expression

Description

Returns the ID of the current timezone depending on the scope in which it is called. If run in a Vision client or Perspective session
scope, the function will display the timezone of the client or session. If run in an expression in a global scope (e.g. on an expression
tag), it will return the timezone of the gateway.

*This list is subject to change depending on the exact version of java that is installed.

Africa/Abidjan
Africa/Accra
Africa/Addis_Ababa
Africa/Algiers
Africa/Asmara
Africa/Asmera
Africa/Bamako
Africa/Bangui
Africa/Banjul
Africa/Bissau
Africa/Blantyre
Africa/Brazzaville
Africa/Bujumbura
Africa/Cairo
Africa/Casablanca
Africa/Ceuta
Africa/Conakry
Africa/Dakar
Africa/Dar_es_Salaam
Africa/Djibouti
Africa/Douala
Africa/El_Aaiun
Africa/Freetown
Africa/Gaborone
Africa/Harare
Africa/Johannesburg
Africa/Juba
Africa/Kampala
Africa/Khartoum
Africa/Kigali
Africa/Kinshasa
Africa/Lagos
Africa/Libreville
Africa/Lome
Africa/Luanda
Africa/Lubumbashi
Africa/Lusaka
Africa/Malabo
Africa/Maputo
Africa/Maseru
Africa/Mbabane
Africa/Mogadishu
Africa/Monrovia
Africa/Nairobi
Africa/Ndjamena
Africa/Niamey
Africa/Nouakchott
Africa/Ouagadougou
Africa/Porto-Novo
Africa/Sao_Tome
Africa/Timbuktu
Africa/Tripoli
Africa/Tunis
Africa/Windhoek
America/Adak
America/Anchorage
America/Anguilla
America/Antigua
America/Araguaina
America/Argentina/Buenos_Aires
America/Argentina/Catamarca

America/Argentina/ComodRivadavia
America/Argentina/Cordoba
America/Argentina/Jujuy
America/Argentina/La_Rioja
America/Argentina/Mendoza
America/Argentina/Rio_Gallegos
America/Argentina/Salta
America/Argentina/San_Juan
America/Argentina/San_Luis
America/Argentina/Tucuman
America/Argentina/Ushuaia
America/Aruba
America/Asuncion
America/Atikokan
America/Atka
America/Bahia
America/Bahia_Banderas
America/Barbados
America/Belem
America/Belize
America/Blanc-Sablon
America/Boa_Vista
America/Bogota
America/Boise
America/Buenos_Aires
America/Cambridge_Bay
America/Campo_Grande
America/Cancun
America/Caracas
America/Catamarca
America/Cayenne
America/Cayman
America/Chicago
America/Chihuahua
America/Coral_Harbour
America/Cordoba
America/Costa_Rica
America/Creston
America/Cuiaba
America/Curacao
America/Danmarkshavn
America/Dawson
America/Dawson_Creek
America/Denver
America/Detroit
America/Dominica
America/Edmonton
America/Eirunepe
America/El_Salvador
America/Ensenada
America/Fort_Wayne
America/Fortaleza
America/Glace_Bay
America/Godthab
America/Goose_Bay
America/Grand_Turk
America/Grenada
America/Guadeloupe
America/Guatemala
America/Guayaquil
America/Guyana
America/Halifax
America/Havana
America/Hermosillo
America/Indiana/Indianapolis
America/Indiana/Knox
America/Indiana/Marengo
America/Indiana/Petersburg
America/Indiana/Tell_City
America/Indiana/Vevay
America/Indiana/Vincennes
America/Indiana/Winamac
America/Indianapolis
America/Inuvik
America/Iqaluit

America/Jamaica
America/Jujuy
America/Juneau
America/Kentucky/Louisville
America/Kentucky/Monticello
America/Knox_IN
America/Kralendijk
America/La_Paz
America/Lima
America/Los_Angeles
America/Louisville
America/Lower_Princes
America/Maceio
America/Managua
America/Manaus
America/Marigot
America/Martinique
America/Matamoros
America/Mazatlan
America/Mendoza
America/Menominee
America/Merida
America/Metlakatla
America/Mexico_City
America/Miquelon
America/Moncton
America/Monterrey
America/Montevideo
America/Montreal
America/Montserrat
America/Nassau
America/New_York
America/Nipigon
America/Nome
America/Noronha
America/North_Dakota/Beulah
America/North_Dakota/Center
America/North_Dakota/New_Salem
America/Ojinaga
America/Panama
America/Pangnirtung
America/Paramaribo
America/Phoenix
America/Port-au-Prince
America/Port_of_Spain
America/Porto_Acre
America/Porto_Velho
America/Puerto_Rico
America/Rainy_River
America/Rankin_Inlet
America/Recife
America/Regina
America/Resolute
America/Rio_Branco
America/Rosario
America/Santa_Isabel
America/Santarem
America/Santiago
America/Santo_Domingo
America/Sao_Paulo
America/Scoresbysund
America/Shiprock
America/Sitka
America/St_Barthelemy
America/St_Johns
America/St_Kitts
America/St_Lucia
America/St_Thomas
America/St_Vincent
America/Swift_Current
America/Tegucigalpa
America/Thule
America/Thunder_Bay
America/Tijuana
America/Toronto

America/Tortola
America/Vancouver
America/Virgin
America/Whitehorse
America/Winnipeg
America/Yakutat
America/Yellowknife
Antarctica/Casey
Antarctica/Davis
Antarctica/DumontDUrville
Antarctica/Macquarie
Antarctica/Mawson
Antarctica/McMurdo
Antarctica/Palmer
Antarctica/Rothera
Antarctica/South_Pole
Antarctica/Syowa
Antarctica/Troll
Antarctica/Vostok
Arctic/Longyearbyen
Asia/Aden
Asia/Almaty
Asia/Amman
Asia/Anadyr
Asia/Aqtau
Asia/Aqtobe
Asia/Ashgabat
Asia/Ashkhabad
Asia/Baghdad
Asia/Bahrain
Asia/Baku
Asia/Bangkok
Asia/Beirut
Asia/Bishkek
Asia/Brunei
Asia/Calcutta
Asia/Chita
Asia/Choibalsan
Asia/Chongqing
Asia/Chungking
Asia/Colombo
Asia/Dacca
Asia/Damascus
Asia/Dhaka
Asia/Dili
Asia/Dubai
Asia/Dushanbe
Asia/Gaza
Asia/Harbin
Asia/Hebron
Asia/Ho_Chi_Minh
Asia/Hong_Kong
Asia/Hovd
Asia/Irkutsk
Asia/Istanbul
Asia/Jakarta
Asia/Jayapura
Asia/Jerusalem
Asia/Kabul
Asia/Kamchatka
Asia/Karachi
Asia/Kashgar
Asia/Kathmandu
Asia/Katmandu
Asia/Khandyga
Asia/Kolkata
Asia/Krasnoyarsk
Asia/Kuala_Lumpur
Asia/Kuching
Asia/Kuwait
Asia/Macao
Asia/Macau
Asia/Magadan
Asia/Makassar
Asia/Manila

Asia/Muscat
Asia/Nicosia
Asia/Novokuznetsk
Asia/Novosibirsk
Asia/Omsk
Asia/Oral
Asia/Phnom_Penh
Asia/Pontianak
Asia/Pyongyang
Asia/Qatar
Asia/Qyzylorda
Asia/Rangoon
Asia/Riyadh
Asia/Saigon
Asia/Sakhalin
Asia/Samarkand
Asia/Seoul
Asia/Shanghai
Asia/Singapore
Asia/Srednekolymsk
Asia/Taipei
Asia/Tashkent
Asia/Tbilisi
Asia/Tehran
Asia/Tel_Aviv
Asia/Thimbu
Asia/Thimphu
Asia/Tokyo
Asia/Ujung_Pandang
Asia/Ulaanbaatar
Asia/Ulan_Bator
Asia/Urumqi
Asia/Ust-Nera
Asia/Vientiane
Asia/Vladivostok
Asia/Yakutsk
Asia/Yekaterinburg
Asia/Yerevan
Atlantic/Azores
Atlantic/Bermuda
Atlantic/Canary
Atlantic/Cape_Verde
Atlantic/Faeroe
Atlantic/Faroe
Atlantic/Jan_Mayen
Atlantic/Madeira
Atlantic/Reykjavik
Atlantic/South_Georgia
Atlantic/St_Helena
Atlantic/Stanley
Australia/ACT
Australia/Adelaide
Australia/Brisbane
Australia/Broken_Hill
Australia/Canberra
Australia/Currie
Australia/Darwin
Australia/Eucla
Australia/Hobart
Australia/LHI
Australia/Lindeman
Australia/Lord_Howe
Australia/Melbourne
Australia/NSW
Australia/North
Australia/Perth
Australia/Queensland
Australia/South
Australia/Sydney
Australia/Tasmania
Australia/Victoria
Australia/West
Australia/Yancowinna
Brazil/Acre
Brazil/DeNoronha

Brazil/East
Brazil/West
CET
CST6CDT
Canada/Atlantic
Canada/Central
Canada/East-Saskatchewan
Canada/Eastern
Canada/Mountain
Canada/Newfoundland
Canada/Pacific
Canada/Saskatchewan
Canada/Yukon
Chile/Continental
Chile/EasterIsland
Cuba
EET
EST5EDT
Egypt
Eire
Etc/GMT
Etc/GMT+0
Etc/GMT+1
Etc/GMT+10
Etc/GMT+11
Etc/GMT+12
Etc/GMT+2
Etc/GMT+3
Etc/GMT+4
Etc/GMT+5
Etc/GMT+6
Etc/GMT+7
Etc/GMT+8
Etc/GMT+9
Etc/GMT-0
Etc/GMT-1
Etc/GMT-10
Etc/GMT-11
Etc/GMT-12
Etc/GMT-13
Etc/GMT-14
Etc/GMT-2
Etc/GMT-3
Etc/GMT-4
Etc/GMT-5
Etc/GMT-6
Etc/GMT-7
Etc/GMT-8
Etc/GMT-9
Etc/GMT0
Etc/Greenwich
Etc/UCT
Etc/UTC
Etc/Universal
Etc/Zulu
Europe/Amsterdam
Europe/Andorra
Europe/Athens
Europe/Belfast
Europe/Belgrade
Europe/Berlin
Europe/Bratislava
Europe/Brussels
Europe/Bucharest
Europe/Budapest
Europe/Busingen
Europe/Chisinau
Europe/Copenhagen
Europe/Dublin
Europe/Gibraltar
Europe/Guernsey
Europe/Helsinki
Europe/Isle_of_Man
Europe/Istanbul
Europe/Jersey

Europe/Kaliningrad
Europe/Kiev
Europe/Lisbon
Europe/Ljubljana
Europe/London
Europe/Luxembourg
Europe/Madrid
Europe/Malta
Europe/Mariehamn
Europe/Minsk
Europe/Monaco
Europe/Moscow
Europe/Nicosia
Europe/Oslo
Europe/Paris
Europe/Podgorica
Europe/Prague
Europe/Riga
Europe/Rome
Europe/Samara
Europe/San_Marino
Europe/Sarajevo
Europe/Simferopol
Europe/Skopje
Europe/Sofia
Europe/Stockholm
Europe/Tallinn
Europe/Tirane
Europe/Tiraspol
Europe/Uzhgorod
Europe/Vaduz
Europe/Vatican
Europe/Vienna
Europe/Vilnius
Europe/Volgograd
Europe/Warsaw
Europe/Zagreb
Europe/Zaporozhye
Europe/Zurich
GB
GB-Eire
GMT
GMT0
Greenwich
Hongkong
Iceland
Indian/Antananarivo
Indian/Chagos
Indian/Christmas
Indian/Cocos
Indian/Comoro
Indian/Kerguelen
Indian/Mahe
Indian/Maldives
Indian/Mauritius
Indian/Mayotte
Indian/Reunion
Iran
Israel
Jamaica
Japan
Kwajalein
Libya
MET
MST7MDT
Mexico/BajaNorte
Mexico/BajaSur
Mexico/General
NZ
NZ-CHAT
Navajo
PRC
PST8PDT
Pacific/Apia
Pacific/Auckland

Pacific/Bougainville
Pacific/Chatham
Pacific/Chuuk
Pacific/Easter
Pacific/Efate
Pacific/Enderbury
Pacific/Fakaofo
Pacific/Fiji
Pacific/Funafuti
Pacific/Galapagos
Pacific/Gambier
Pacific/Guadalcanal
Pacific/Guam
Pacific/Honolulu
Pacific/Johnston
Pacific/Kiritimati
Pacific/Kosrae
Pacific/Kwajalein
Pacific/Majuro
Pacific/Marquesas
Pacific/Midway
Pacific/Nauru
Pacific/Niue
Pacific/Norfolk
Pacific/Noumea
Pacific/Pago_Pago
Pacific/Palau
Pacific/Pitcairn
Pacific/Pohnpei
Pacific/Ponape
Pacific/Port_Moresby
Pacific/Rarotonga
Pacific/Saipan
Pacific/Samoa
Pacific/Tahiti
Pacific/Tarawa
Pacific/Tongatapu
Pacific/Truk
Pacific/Wake
Pacific/Wallis
Pacific/Yap
Poland
Portugal
ROK
Singapore
SystemV/AST4
SystemV/AST4ADT
SystemV/CST6
SystemV/CST6CDT
SystemV/EST5
SystemV/EST5EDT
SystemV/HST10
SystemV/MST7
SystemV/MST7MDT
SystemV/PST8
SystemV/PST8PDT
SystemV/YST9
SystemV/YST9YDT
Turkey
UCT
US/Alaska
US/Aleutian
US/Arizona
US/Central
US/East-Indiana
US/Eastern
US/Hawaii
US/Indiana-Starke
US/Michigan
US/Mountain
US/Pacific
US/Pacific-New
US/Samoa
UTC
Universal

W-SU
WET
Zulu
EST
HST
MST
ACT
AET
AGT
ART
AST
BET
BST
CAT
CNT
CST
CTT
EAT
ECT
IET
IST
JST
MIT
NET
NST
PLT
PNT
PRT
PST
SST
VST

Syntax

 getTimezone()

Parameters

None

Results

 - The current timezone ID.string

Code Examples

There are no examples associated with this expression function.

getTimezoneOffset
This function is used by language.Ignition's Expression

Description

Returns the current timezone's offset versus UTC for a given instant, taking Daylight Savings Time into account.

Syntax

getTimezoneOffset([date])

Parameters

 date - A specified date to compare the current timezone to UTC. Will use the current time if left blank.Date Optional.

Results

 - The offset of the current time from UTC.float

Code Examples

Code Snippet

getTimezoneOffset(getDate(2017, 1, 22)) //returns -8.0, if you are in Pacific Time.

Code Snippet

getTimezoneOffset(getDate(2017, 6, 22)) //returns -7.0, if you are in Pacific Time, since
Daylight Savings Time would be in effect.

getTimezoneRawOffset
This function is used by language.Ignition's Expression

Description

Returns the current timezone's offset versus UTC, not taking daylight savings into account.

Syntax

getTimezoneRawOffset()

Parameters

None

Results

 - The offset of the current time from UTC.float

Code Examples

Code Snippet

getTimezoneRawOffset() //returns -8.0 if you are in the Pacific Timezone, regardless of time of
year

midnight
This function is used by language.Ignition's Expression

Description

Returns a copy of a date with the hour, minute, second, and millisecond fields set to zero.

Syntax

midnight(date)

Parameters

 date - The date to set to midnight.Date

Results

 - The new date set to midnight.Date

Code Examples

Code Snippet

midnight(now()) //This will take the current date and set the time to midnight

now
This function is used by language.Ignition's Expression

Description

Returns the current time. The host computer's system clock is used, meaning that if this expression is being evaluated in a running
client, the computer running the client's system clock is used. Note that this function is one of the few expression functions that will p
oll. If you do not specify a pollRate, it will to 1,000ms. If you do not want this function to poll, use a poll rate of zero.default

Syntax

now([pollRate])

Parameters

 pollRate - The poll rate in milliseconds to update the time at. Default is 1000 ms.int Optional.

Results

 - The current time.Date

Examples

Code Snippet

now() //returns the current time, updates every second.

Code Snippet

now(13000) //returns the current time, updates every 13 seconds.

Code Snippet

dateFormat(now(0), "MMM d, h:mm a") //returns a string representing the current time, formatted
like "Feb 12, 9:54 AM". Does not update.

setTime
This function is used by language.Ignition's Expression

Description

Takes in a date, and returns a copy of it with the time fields set as specified. Note that the millisecond field is not preserved.

Syntax

setTime(date, hour, minute, second)

Parameters

 date - A starting date.Date

 hour - The value to set the hour field to.int

 minute - int The value to set the minute field to.

 second - int The value to set the second field to.

Results

 - The new date with the time set as specified.Date

Code Examples

Code Snippet

setTime({Root Container.Calendar.date}, 1, 37, 44) //This example will set the date object to
the current date with the time set to 01:37:44.

timeBetween
This function is used by language.Ignition's Expression

Description

Checks to see if the given time is between the start and end times. The given times are expected as strings, and may include
dates. Note: dates will be parsed according to the default system culture.

Syntax

timeBetween(date,startDate,ednDate)

Parameters

 date - The date to compare. Can be either a date or a string.Date/string

 startDate - The start date to compare to. Date/string Can be either a date or a string.

 endDate - The end date to compare to. Date/string Can be either a date or a string.

Results

Bool - True if the date is between the start and end date, False if not.

Examples

Code Snippet

timeBetween(toDate("2003-9-14 12:00:00"), toDate("2003-9-14 8:00:00"),toDate("2003-9-14 18:00:
00")) //returns true

Code Snippet

timeBetween("2:00:00 pm", "9:00:00 am", "5:00:00 pm") //returns true

Code Snippet

timeBetween(toDate("2003-9-14 20:00:00"), toDate("2003-9-14 18:00:00"), toDate("2003-9-15 2:00:
00")) //returns true

toMillis
This function is used by language.Ignition's Expression

Description

Converts a Date object to its millisecond value elapsed since January 1, 1970, 00:00:00 UTC (GMT)

Syntax

toMillis(date)

Parameters

 date - The date to convert to epoch time.Date

Results

 - The number of milliseconds from epoch time of the give date.int

Code Examples

Code Snippet

// This will take the date Aug 22, 2017 at 14:35:25 PST and convert it to milliseconds from
epoch time which is 1,500,767,134,000
toMillis(setTime(getDate(2017, 6, 22), 16, 45, 34))

Identity Provider

Identity Provider Functions
The following functions allow you to test whether specified elements are present in an IdP collection object. They can be used only in the Sec

 sections of the Gateway webpage.urity Level Rules and User Attribute Mapping

In This Section ...

https://docs.inductiveautomation.com/display/DOC80/Security+Level+Rules#SecurityLevelRules-SpecialObjectReference
https://docs.inductiveautomation.com/display/DOC80/Security+Level+Rules#SecurityLevelRules-SpecialObjectReference
https://docs.inductiveautomation.com/display/DOC80/User+Attribute+Mapping

containsAll

This function is used by language.Ignition's Expression

Description

This function checks to see if all of the listed elements are present in the collection object. The function requires at least two
arguments, a collection and an element.

Syntax

containsAll(collection, element0[, elementN])

Parameters

 collection - A collection of values. Typically from the {security-zone} object or the {idp-attribute:X} object.object

string element - One or more comma separated elements to look for.

Results

Boolean - True if the collection object contained all of the listed elements. False if otherwise.

Examples

Code Snippet

// returns true for a login attempt against an Ignition IdP, if the user has both Administrator
and Operator roles
containsAll({attribute-source:idTokenClaims:roles}, 'Administrator', 'Operator')

Code Snippet

// returns true for a login attempt if the login location is in all three of the specified
security zones
containsAll({security-zones}, 'site 1', 'mill', 'offshore')

This function is only available for and .Security Level Rules User Attribute Mapping

https://legacy-docs.inductiveautomation.com/display/DOC80/Security+Level+Rules#SecurityLevelRules-SpecialObjectReference
https://legacy-docs.inductiveautomation.com/display/DOC80/User+Attribute+Mapping

containsAny

This function is used by language.Ignition's Expression

Description

This function checks to see if any of the listed elements are present in the collection object. The function requires at least two
arguments, a collection and an element.

Syntax

containsAny(collection, element0[, elementN])

Parameters

 collection - A collection of values. Typically from the {security-zone} object or the {idp-attribute:X} object.object

string element - One or more comma separated elements to look for.

Results

Boolean - True if the collection object contained any of the listed elements. False if otherwise.

Examples

Code Snippet

// returns true for a login attempt against an Ignition IdP, if the user has either the
Administrator or Operator roles
containsAny({attribute-source:idTokenClaims:roles}, 'Administrator', 'Operator')

Code Snippet

// returns true for a login attempt if the login location is in at least one of the specified
security zones
containsAny({security-zones}, 'site 1', 'mill', 'offshore')

This function is only available for and .Security Level Rules User Attribute Mapping

https://legacy-docs.inductiveautomation.com/display/DOC80/Security+Level+Rules#SecurityLevelRules-SpecialObjectReference
https://legacy-docs.inductiveautomation.com/display/DOC80/User+Attribute+Mapping

JSON

JSON Functions
The following functions allow you to manipulate JSON strings in expression bindings.

In This Section ...

jsonFormat

This function is used by language.Ignition's Expression

Description

Takes a string, and returns a prettyprints string: making the string easier to read by humans. Especially useful in cases where the
string is displayed on components that can demonstrate carriage returns.

The image below shows a Label component with a JSON-friendly string. Below that are two Text Area components that are bound
to the Label's text: one using the jsonFormat() function and the other without.

Syntax

 jsonFormat(string)

Parameters

String string - The string to format. The string must be in a JSON-friendly format.

Results

string - A prettyprints string of the specified string.

Examples

Code Snippet

// This example builds a JSON friendly string, and returns a prettyprint version of the string.
// Since the parameter passed is a string datatype, the whole parameter must be wrapped in
quotes.
jsonFormat("{item1:10,item2:20}")

Code Snippet

// Another valid JSON format - you may optionally wrap inner strings in quotation marks.
jsonFormat("[{'item1':'apples','item2':'bananas'},{'item1':'oranges','item2':'carrots'}]")

jsonGet
This function is used by language.Ignition's Expression

Description

Takes a JSON friendly string and a path string, and returns the value of that path.

Syntax

 jsonGet(json, path)

Parameters

string json - The JSON string. The string must be in a JSON-friendly format.

string path - The path to look for in the JSON string.

Results

object - The value at the path.

Examples

Code Snippet

// This example takes a JSON friendly string and finds the value located at the path item.
secondThing, which is 2.

jsonGet("{'item':{'firstThing':1, 'secondThing':2}}", "item.secondThing")

Code Snippet

// This example takes a JSON friendly string and finds the value located at the path item, which
is {"firstThing":1,"secondThing":2}.

jsonGet("{'item':{'firstThing':1, 'secondThing':2}}", "item")

jsonSet
This function is used by language.Ignition's Expression

Description

Takes a JSON friendly string, a path string, and value, and will return a new JSON friendly string with the provided path set to the
provided value. This is best used in conjunction with the writeback value.Derived Tags

Syntax

 jsonSet(json, path, value)

Parameters

string json - The JSON string. The string must be in a JSON friendly format.

string path - The path string.

object value - The replacement for the value at the path.

Results

string - A JSON friendly string with a new value set at the specified path.

Examples

Code Snippet

// This example takes a JSON friendly string and sets the provided path to the given value. This
would then return the string {'item':{'firstThing':1, 'secondThing':5}}

jsonSet("{'item':{'firstThing':1, 'secondThing':2}}", "item.secondThing", 5)

https://legacy-docs.inductiveautomation.com/display/DOC79/Types+of+Tags#TypesofTags-DerivedTags

Logic

Logic Functions
The following functions allow you to preform logic and evaluate values in expression bindings.

In This Section ...

binEnc
This function is used by language.Ignition's Expression

Description

This function, whose name stands for "binary encoder", takes a list of booleans, and treats them like the bits in a binary number. It returns an
integer representing the decimal value of the number. The digits go from least significant to most significant.

Syntax

binEnc(value[, value...])

Parameters

 value - A value that represents a bit. Can be either 0 or 1, and can enter in as many values as necessary.Bool

Results

 - The integer representation of the binary value entered.int

Examples

Code Snippet

binEnc(0,0,1,0) //returns 4 (the value of 0100)

Code Snippet

binEnc(true,0,1,1,0) //returns 13 (the value of 01101)

binEnum
This function is used by language.Ignition's Expression

Description

This function, whose name stands for "binary enumeration", takes a list of booleans, and returns the index (starting at 1) of the first parameter that
evaluates to true.

Syntax

binEnum(value[, value...])

Parameters

 value - Any number of values.int

Results

 - The index of the first true value.int

Examples

Code Snippet

binEnum(0, 1, 0) //returns 2

Code Snippet

binEnum(0, false, 15, 0, 23) //returns 3 (the index of the 15 - any non-zero number is "true")

case

This function is used by language.Ignition's Expression

Description

This function acts like the switch statement in C-like programming languages. It takes the value argument and compares it to each
of the case1 through caseN expressions. If value is equal to caseX, then case returns valueX. If value is not equal to any of the cas
e1..N, then returnDefault is returned.

Note that case() is similar in functionality to the . The difference between the two is the order in which switch() expression function
the parameters are passed.

Syntax

case(value, case, return[, case, return...], returnDefault)

Parameters

 value - A value of any type.object

 case - A case to match the value to.object

 return - The return if its pair case has been matched.object

 returnDefault - The default return if none of the case arguments were matched.object

Results

 - The return value for the matched case, or the returnDefault value if no case was matched.object

Examples

Code Snippet

//The following would return 46 because the value (15) matched case 3, so the third return (46)
was returned.
case(
15, // value
1, // case 1
44, // return 1
24, // case 2
45, // return 2
15, // case 3
46, // return 3
-1) // default

Code Snippet

//The following would return "Running".
case(
1, // value
0, // case 1
"Off", // return 1
1, // case 2
"Running", // return 2
2, // case 3
"Fault", // return 3
"BAD STATE!") // default

coalesce
This function is used by language.Ignition's Expression

Description

This function, which accepts any number of arguments, evaluates each in order, and returns the first non-null argument. Typically, you would call
this with two arguments - the first being something dynamic, the second being a static value to use as a guard in case the dynamic value is null.
The function itself detects its return type based on the type of the last argument.

Syntax

coalesce(value[, value...])

Parameters

 value - Any number of values.object

Returns

 - The first non null argument.object

Examples

Code Snippet

coalesce(null, "abc") //would return "abc"

Code Snippet

coalesce("xyz", "abc") //would return "xyz"

Code Snippet

coalesce({Root Container.MyDataSet}[0,"ColumnName"], 0) //would return the value in the dataset
if it isn't null, but 0 if it is null.

getBit
This function is used by language.Ignition's Expression

Description

This function returns the bit value (an integer, 0 or 1) in a at a given , according to its binary representation. The number position
least significant bit in a number is position 0.

Syntax

getBit(number, position)

Parameters

 number - The number value to start with.int

 position - The bit position to check.int

Results

 - A 0 or 1, depending on the bit at the position of the integer specified.int

Examples

Code Snippet

 getBit(0,0) //would return 0

Code Snippet

 getBit(1,0) //would return 1

Code Snippet

 getBit(8,2) //would return 0

hasChanged
This function is used by language.Ignition's Expression

Description

This function returns True if the given value has changed since the last time the Expression Item was run. Setting the optional
boolean argument "include quality" to true means a quality change will make this function return true.

Syntax

 hasChanged(value[, includeQuality][, pollRate])

Parameters

 value - The number value to check for changeobject

bool includeQuality - . A flag that indicates if a quality change will also trigger this tag.Optional

The following feature is new in Ignition version 8.0.4
 to check out the other new featuresClick here

int pollRate - Optional. The poll rate in milliseconds. Only applicable on Expression Tags when the Execution
Mode is set to Event Driven. All other Execution Modes will ignore this parameter.

Results

bool - True if the value has changed since the last time the expression was evaluated, False if not.

Examples

Code Snippet

hasChanged({[default]Station 1/Status},True) //would return true if the referenced tag has
changed in value or quality since the last group execution

This function is only available in and .Transaction Group Expression Items Expression Tags

The pollRate argument was not present in Ignition 7, but is required in Ignition 8.0.4 for Event Driven Expression Tags.
This means that any Expression Tags that are in the Event Driven Execution Mode will either need to have the Execution
Mode changed or the poll rate added in on upgrade to 8.0.4, or the function will run once when the value changes and
then will not work properly again.

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.4
https://legacy-docs.inductiveautomation.com/pages/createpage.action?spaceKey=DOC80&title=Expression+Items&linkCreation=true&fromPageId=24449704
https://legacy-docs.inductiveautomation.com/display/DOC80/Types+of+Tags

if
This function is used by language.Ignition's Expression

Description

This function evaluates the expression condition, and returns the value of trueReturn or falseReturn depending on the boolean value of condition.

Syntax

if(condition, trueReturn, falseReturn)

Parameters

 condition - The condition to evaluate.object

 trueReturn - The true return value.object

 falseReturn - The false return value.object

Results

 - Returns the trueReturn if the condition is true, falseReturn if it is False.object

Examples

Code Snippet

 if(1, "Yes", "No") //would return "Yes"

Code Snippet

 if(0, "Yes", "No") //would return "No"

Code Snippet

 if({Root Container.CheckBox.selected}, "Selected", "Not Selected") //would return with a
description of the state of the checkbox

Code Snippet

//nests if functions to check the value of 2 different Tags, and return a message based on which
ones are greater than 0.
if({tag1} > 0, if({tag2} > 0, "Both Tags are positive.", "Tag 1 is positive."), if({tag2} > 0,
"Tag 2 is positive.", "Neither Tag is positive."))

isGood
This function is used by language.Ignition's Expression

Description

Tests to see whether or not the given value is good quality.

Syntax

isGood(value)

Parameters

 value - A value to check if it is goodobject

Results

 - True if the value is good, False if it is not.Bool

Examples

Code Snippet

isGood({path/to/myTag}) //returns 1 if the value is good, 0 otherwise.

isNull
This function is used by language.Ignition's Expression

Description

Tests to see whether or not the argument value is null or not. Note that you can also check for null by simply comparing the value to the null
keyword. isNull(x) is the same as x = null.

Syntax

isNull(value)

Parameters

 value - A value to check if it is null.object

Results

 - True if the value is null, False if it is not.Bool

Examples

Code Snippet

//returns "Value is Null" if the property is null, and the value otherwise.
if(isNull({Root Container.MyProperty}), "Value is Null", {Root Container.MyProperty})

lookup
This function is used by language.Ignition's Expression

Description

This looks for lookupValue in the lookupColumn of dataset. If it finds a match, it will return the value from the resultColumn on the
same row as the match. If no match is found, noMatchValue is returned. Note: The type of the value returned will always be
coerced to be the same type as the noMatchValue.

Syntax

lookup(dataset, lookupValue, noMatchValue[, lookupColumn][, resultColumn])

Parameters

 dataset - A dataset to search through.DataSet

 lookupValue - The value to look for.object

 noMatchValue - The result value if no match.object

object lookupColumn - The column to lookup. Can either be the column index or the name of the column. Optional.
Defaults to 0.

object resultColumn - The column to pull the result value from. Optional. Can either be the column index or the name
of the column. Defaults to 1.

Results

object - The value in the result column of the same row that the lookupValue was found, or the noMatchValue if a
match was not found. The data type of this object will always be coerced to match the type of the noMatchValue
parameter.

Examples

The examples are based of a table that has the following data in it:

Product Price Category

"Apples" 1.99 "Fruit"

"Carrots 3.5 "Vegetable"

"Walnuts" 6.25 "Nut"

Code Snippet

lookup({Root Container.Table.data}, "Carrots", -1.0) //returns 3.50

Code Snippet

lookup({Root Container.Table.data}, "Grapefruit", -1) //returns -1, the noMatchValue

Code Snippet

lookup({Root Container.Table.data}, "Walnuts", "Unknown", 0, "Category") //returns "Nut"

Code Snippet

lookup({Root Container.Table.data}, "Pecans", "Unknown", 0, 2) //returns "Unknown", the
noMatchValue

switch
This function is used by language.Ignition's Expression

Description

This function acts like the switch statement in C-like programming languages. It takes the value argument and compares it to each
of the case1 through caseN expressions. If value is equal to caseX, then switch returns valueX. If value is not equal to any of the ca
se1..N, then returnDefault is returned.

Note that switch() is similar in functionality to the case() expression function. The difference between the two is the order in which
the parameters are passed.

Syntax

switch(value, case[, caseN...], return[, returnN...], returnDefault)

Parameter

object value - The value to check against the case values.

object case - A value to check against. Can be any number of case values.

object return - A value to return for the matching case. Must be the same number of return values as case values.

object returnDefault - The default return if no case is matched.

Results

 - The return value for the case that matched the value, or the returnDefault value if no matches were found.object

Examples

Code Snippet

//The following would return 46 because the value (15) matched case 3, so the third return (46)
was returned.
switch(
15, // value
1, // case 1
24, // case 2
15, // case 3
44, // return 1
45, // return 2
46, // return 3
-1) // default

Code Snippet

//The following would return "Running".
switch(
1, // value
0, 1, 2, // cases 1-3
"Off", // return 1
"Running", // return 2
"Fault", // return 3
"BAD STATE!") // default

try
This function is used by language.Ignition's Expression

Description

This expression is used to suppress errors caused by other expressions. The first expression will be executed, and if it executes successfully, its
value will be used. However, if there is an error evaluating it, the value of failover will be used. When the failover is used, the data quality will be set
by the failover value.

Syntax

try(expression, failover)

Parameters

 expression - An arbitrary expression.object

 failover - The value to use if there is an error in the expression parameter.object

Results

 - The result of the expression or the failover value if there is an error.object

Examples

Code Snippet

try(toInteger("boom"), -1) // returns -1 with a quality code of 192 (good)

Code Snippet

// fetch an integer value from the first row of a table. Return -1 if there are no rows
try({Root Container.Power Table.data}[0, 'Integer Column'], -1)

Math

Math Functions
The following functions allow you to preform math functions on values in expression bindings.

In This Section ...

abs
This function is used by language.Ignition's Expression

Description

Returns the absolute value of number.

Syntax

abs(number)

Parameters

 number - The number to get the absolute value of.int/float

Results

int/float - The absolute value of the number provided.

Examples

Code Snippet

abs(-4) //returns 4

acos
This function is used by language.Ignition's Expression

Description

Returns the arc cosine of number, which must be a number between -1 and 1. The results will be an angle expressed in radians in
the range of 0.0 through pi.

Syntax

acos(number)

Parameters

 number - The number to get the arc cosine of. Must be a value between -1 and 1.float

Results

float - The arc cosine of the value provided.

Examples

Code Snippet

acos(.38) //returns 1.181

asin
This function is used by language.Ignition's Expression

Description

Returns the arc sine of number, which must be a number between -1 and 1. The results will be an angle expressed in radians in
the range of -pi/2 through pi/2.

Syntax

asin(number)

Parameters

 number - The number to get the arc sine of. Must be between -1 and 1.float

Results

float - The arc sine of the number provided.

Examples

Code Snippet

asin(.38) //returns 0.3898

atan
This function is used by language.Ignition's Expression

Description

Returns the arc tangent of number, which must be a number. The results will be an angle expressed in radians in the range of -pi/2 t
hrough pi/2

Syntax

atan(number)

Parameters

 number - The number to get the arc tangent of.float

Results

float - The arc tangent of the number provided.

Examples

Code Snippet

atan(.38) //returns 0.3631

ceil
This function is used by language.Ignition's Expression

Description

Returns the smallest floating point value that is greater than or equal to the argument and is equal to a mathematical integer.

Syntax

ceil(number)

Parameters

 number - The number to get the ceiling of.float

Results

float - The ceiling of the value provided..

Examples

Code Snippet

ceil(2.38) //returns 3.0

cos
This function is used by language.Ignition's Expression

Description

Returns the trigonometric cosine of number, which is interpreted as an angle expressed in radians. The results will be a floating
point value.

Syntax

cos(number)

Parameters

 number - The number to get the cosine of.int/float

Results

float - The cosine of the number provided.

Examples

Code Snippet

cos(1.89) //returns -0.31381

exp
This function is used by language.Ignition's Expression

Description

Returns Euler's number e raised to the power of the argument number, or enumber

Syntax

exp(number)

Parameters

 number - The exponent value to raise e to the power of.int/float

Results

int/float - The value of e to the power of the value provided.

Examples

Code Snippet

exp(5) //returns 148.4

floor
This function is used by language.Ignition's Expression

Description

Returns the largest floating point value that is less than or equal to the argument and is equal to a mathematical integer.

Syntax

floor(number)

Parameters

 number - The number to get the floor of.float

Results

float - The floor of the number provided.

Examples

Code Snippet

floor(2.72) //returns 2.0

log
This function is used by language.Ignition's Expression

Description

Returns the natural logarithm (base e) of a number.

Syntax

log(number)

Parameters

 number - The number to get the log of.int/float

Results

float - The log of the number provided.

Examples

Code Snippet

log(28) //returns 3.332

log10
This function is used by language.Ignition's Expression

Description

Returns the logarithm (base 10) of a number.

Syntax

log10(number)

Parameters

 number - The number to get the log base 10 of.int/float

Results

float - The log base 10 of the number provided.

Examples

Code Snippet

log10(28) // returns 1.447

pow
This function is used by language.Ignition's Expression

Description

Returns a number raised to a power.

Syntax

pow(number, power)

Parameters

 number - The number to raise to the provided power.int/float

 power - The power value to raise the number value to.int/float

Results

int/float - The result of the number provided raised to the power provided.

Examples

Code Snippet

pow(2,3) //returns 8

round
This function is used by language.Ignition's Expression

Description

Rounds a floating point number. If the decimals argument is omitted, then the number is rounded to the nearest integer value, and the result will be
a long (64-bit integer). If a number of decimal places are specified, the result will be a double (64-bit floating point value), and the result will be
rounded to the given number of decimal places.

Syntax

round(number[, decimals])

Parameters

float number - The number to round.

int decimals - The number of decimal places to round to. Defaults to 0.Optional.

Results

int/float - The value provided rounded to the specified decimal places.

Examples

Code Snippet

round(3.829839, 2) //returns 3.83

sin
This function is used by language.Ignition's Expression

Description

Returns the trigonometric sine of number, which is interpreted as an angle expressed in radians. The results will be a floating point value.

Syntax

sin(number)

Parameters

 number - The number to get the sine of.int/float

Results

int/float - The sine of the number provided.

Examples

Code Snippet

sin(1.89) //returns 0.9495

sqrt
This function is used by language.Ignition's Expression

Description

Returns the square root of the argument number.

Syntax

sqrt(number)

Parameters

 number - The number to get the square root of.int/float

Results

float - The square root of the number provided.

Examples

Code Snippet

sqrt(64) //returns 8.0

tan
This function is used by language.Ignition's Expression

Description

Returns the trigonometric tangent of number, which is interpreted as an angle expressed in radians. The results will be a floating
point value.

Syntax

tan(number)

Parameters

 number - The number to get the tangent of.int/float

Results

float - The tangent of the number provided.

Examples

Code Snippet

 tan(1.89) //returns -3.026

todegrees
This function is used by language.Ignition's Expression

Description

Converts an angle measured in radians to an equivalent angle measured in degrees.

Syntax

todegrees(number)

Parameters

 number - The number radiansint/float

Results

int/float - The degree equivalent of the radians provided.

Examples

Code Snippet

todegrees(3.14) //returns 179.9088

toradians
This function is used by language.Ignition's Expression

Description

Converts an angle measured in degrees to an equivalent angle measured in radians.

Syntax

toradians(number)

Parameters

 number - The number of degrees.int/float

Results

int/float - The radian equivalent of the degrees provided.

Examples

Code Snippet

toradians(180) //returns 3.141592653589793

String

String Functions
The following functions allow you to search or modify string values in expression bindings.

In This Section ...

concat
This function is used by language.Ignition's Expression

Description

Concatenates all of the strings passed in as arguments together. A null string passed as an argument will be evaluated as the word
null. Rarely used, as the + operator does the same thing.

Syntax

concat(string[, string...])

Parameters

string string - Any number of string values to concatenate together.

Results

 - A string that is all of the strings provided concatenated together.string

Examples

Code Snippet

concat("The answer is: ", "42") //returns "The answer is: 42"

escapeSQL
This function is used by language.Ignition's Expression

Description

Returns the given string with special SQL characters escaped. This is a fairly simplistic function - it just replaces single quotes with
two single quotes, and backslashes with two backslashes. See system.db.runPrepUpdate for a much safer way to sanitize user
input.

Syntax

escapeSQL(string)

Parameters

string string - The starting string.

Results

 - A string that has been formatted so that single quotes are replaced with two single quotes, and backslashes string
are replaced with two backslashes.

Examples

Code Snippet

"SELECT * FROM mytable WHERE option = '" + escapeSQL("Jim's Settings") + "'" // returns SELECT *
FROM mytable WHERE option='Jim''s Settings'

Code Snippet

"SELECT * FROM mytable WHERE option = '" + escapeSQL({Root Container.Text Field.text}) + "'"
//returns a query with sanitized user input from a text field.

escapeXML
This function is used by language.Ignition's Expression

Description

Returns the given string after being escaped to be valid for inclusion in XML. This means replacing XML special characters with
their XML entity equivalents.

Syntax

escapeXML(string)

Parameters

string string - The starting string.

Results

 - A string that has been escaped for XMLstring

Examples

Code Snippet

escapeXML("Use Navigate > PB to get to the Pork&Beans section.") //returns "Use Navigate > PB
to get to the Pork&Beans section."

fromBinary
This function is used by language.Ignition's Expression

Description

Returns an integer value of the binary formatted string argument. Numbers outside of the range (-231) - (231-1), and strings that are
not binary numbers, return null.

Syntax

fromBinary(string)

Parameters

string string - A string representation of a binary.

Results

int - The integer value of the specified binary.

Examples

Code Snippet

fromBinary("1111") //returns 15

Code Snippet

fromBinary("-1111") //returns -15

fromHex
This function is used by language.Ignition's Expression

Description

Returns an integer value of the hex formatted string argument. Numbers outside of the range (-231) - (231-1), and strings that are
not hex numbers, return null.

Syntax

fromHex(string)

Parameters

string string - A string representation of a hex value.

Results

int - The integer of the hex value.

Examples

Code Snippet

fromHex("ff") //returns 255

Code Snippet

fromHex("0xff") //returns 255

Code Snippet

fromHex("-ff") //returns -255

fromOctal
This function is used by language.Ignition's Expression

Description

Returns an integer value of the octal formatted string argument. Numbers outside of the range (-231) - (231-1), and strings that are
not octal numbers, return null.

Syntax

fromOctal(string)

Parameters

string string - A string representation of an octal.

Results

int - The integer of the octal value.

Examples

Code Snippet

fromOctal("77") //returns 63

Code Snippet

fromOctal("-77") //returns -63

indexOf
This function is used by language.Ignition's Expression

Description

Searches for the first occurrence of the substring inside of string. Returns the index of where substring was found, or -1 if it wasn't
found. The first position in the string is position 0.

Syntax

indexOf(string, substring)

Parameters

string string - The string to search through.

string substring - The string to search for.

Results

 - The index where the substring was first found in the string.string

Examples

Code Snippet

indexOf("Hamburger", "urge") //returns 4

Code Snippet

indexOf("Test", "") //returns 0

Code Snippet

indexOf("Dysfunctional", "fun") //returns 3

Code Snippet

indexOf("Dysfunctional", "marble") //returns -1

Code Snippet

indexOf("banana", "n") //returns 2

lastIndexOf
This function is used by language.Ignition's Expression

Description

Searches for the last occurrence of the substring inside of string. Returns the index of where substring was found, or -1 if it wasn't
found. The first position in the string is position 0.

Syntax

lastIndexOf(string, substring)

Parameters

string string - The string to search through.

string substring - The string to search for.

Results

 - The index where the substring was last found in the string.string

Examples

Code Snippet

lastIndexOf("Hamburger", "urge") //returns 4

Code Snippet

lastIndexOf("Test", "") //returns 4

Code Snippet

lastIndexOf("Dysfunctional", "fun") //returns 3

Code Snippet

lastIndexOf("Dysfunctional", "marble") //returns -1

Code Snippet

lastIndexOf("banana", "n") //returns 4

left
This function is used by language.Ignition's Expression

Description

Returns count characters from the left side of string, where count and string are the arguments to the function.

Syntax

left(string, charCount)

Parameters

string string - The starting string.

int charCount - The number of characters to return.

Results

 - A string that is the first charCount number of characters of the specified string.string

Examples

Code Snippet

left("hello", 2) //returns "he"

Code Snippet

left("hello", 0) //returns ""

Code Snippet

left("hello", 5) //returns "hello"

len
This function is used by language.Ignition's Expression

Description

Returns the length of the argument, which may be a string or a dataset. If the argument is a string, it returns the number of
characters in the string. If the argument is a dataset, it returns the number of rows in the dataset. Will return zero if the argument is
null.

Syntax

len(value)

Parameters

object value- The starting object.

Results

int - The length of the provided object.

Examples

Code Snippet

len("Hello World") //returns 11

Code Snippet

len({Root Container.Table.data}) //returns the number of rows in the table.

lower
This function is used by language.Ignition's Expression

Description

Takes a string and returns a lower-case version of it.

Syntax

lower(string)

Parameters

string string - The string to make lowercase.

Results

 - The starting string with all characters lowercase.string

Examples

Code Snippet

lower("Hello World") // returns "hello world"

numberFormat
This function is used by language.Ignition's Expression

Description

Returns a string version of the number argument, formatted as specified by the pattern string. This is commonly used to specify the number of
decimal places to display, but can be used for more advanced formatting as well. The pattern string is a numeric format string, which may include
any of these characters that instruct it how to format the number.

Symbol Description

0 Specifies a required digit.

Specifies an optional digit.

, The grouping separator.

. The decimal separator.

- A minus sign.

E Scientific notation.

; Used to separate positive and negative patterns. The negative subpattern will only be used to specify the prefix and
suffix. The number of digits, , minimal digits, and other characteristics are all the same as the positive pattern.

% Multiplies the value by 100 and shows as a percent.

' Used to quote special characters.

 This table shows some numbers, and the result of using various format strings to format them.

Number Pattern Result

5 0 5

5 0.0 5.0

5 00.0 05.0

123 #,##0 123

1024 #,##0 1,024

1337 #,##0.# 1,337

1337.57 #,##0.# 1,337.6

87.32 #,##0.0000 87.3200

-1234 #,##0 -1,234

-1234 #,##0;(#) (1,234)

4096 0.###E0 4.096E3

.348 #.00% 34.80%

34.8 #0.00'%' 34.80%

Syntax

numberFormat(number, pattern)

Parameters

float number- The number to format.

string pattern - The format pattern.

Results

 - The string representation of the number formatted according to the pattern provided.string

Examples

Code Snippet

numberFormat(34.8, "#0.00'%'") //returns the string "34.80%"

repeat
This function is used by language.Ignition's Expression

Description

Repeats the given string some number of times.

Syntax

repeat(string, count)

Parameters

string string - The string to repeat

int count - The number of times to repeat the string.

Results

 - The given string repeated the given number of times.string

Examples

Code Snippet

repeat("hello", 2) //returns "hellohello"

Code Snippet

repeat("hello", 0) //returns ""

replace
This function is used by language.Ignition's Expression

Description

Finds all occurrences of a substring inside of a source string, and replaces them with the replacement string. The first argument is
the source, the second is the search string, and the third is the replacement.

Syntax

replace(string, substring, replacementString)

Parameters

string string - The starting string.

string substring - The string to search for.

string replacementString - The string to replace any instances of the substring with.

Results

 - The starting string with all instances of the substring replaced by the replacementString.string

Examples

Code Snippet

replace("XYZ", "Y", "and") //returns "XandZ"

Code Snippet

replace("bob and mary went to bob's house", "bob", "judith") //returns "judith and mary went to
judith's house"

right
This function is used by language.Ignition's Expression

Description

Returns count number of characters starting from the right side of string, where count and string are the arguments to the function.

Syntax

right(string, charCount)

Parameters

string string - The starting string.

string charCount - The number of characters to return.

Results

 - A string of the number of characters specified in the charCount from the specified string.string

Examples

Code Snippet

right("hello", 2) //returns "lo"

Code Snippet

right("filename.pdf", 3) //returns "pdf"

Code Snippet

right("hello", 0) //returns ""

split
This function is used by language.Ignition's Expression

Description

This function takes the string string and splits it into a bunch of substrings. The substrings are return as a dataset with one column
called "parts". The split occurs wherever the regular expression regex occurs.

 The optional limit argument, if greater than zero, limits the number of times the regex pattern is applied to limit-1. Put another way,
it limits the length of the resulting dataset to length limit. If limit is non-positive then the regex pattern will be applied as many times
as possible and the returned dataset can have any length. If limit is zero (the default) then the pattern will be applied as many times
as possible, the returned dataset can have any length, and trailing empty strings will be discarded.

Syntax

split(string, regex[, limit])

Parameters

string string - The starting string.

string regex - The string to split on.

int limit - The max number of splits to make. Default 0 which is as many as possible.Optional.

Results

Dataset - The split string, with a single column called parts, where each row is a new part of the string.

Examples

Code Snippet

split("hello,world", ",") //returns dataset [["hello"], ["world"]]

Code Snippet

split("boo:and:foo", ":") //returns dataset [["boo"], ["and"], ["foo"]]

Code Snippet

split("boo:and:foo", ":", 2) //returns dataset [["boo"], ["and:foo"]]

substring
This function is used by language.Ignition's Expression

Description

Substring will return the portion of the string from the startIndex to the endIndex, or end of the string if endIndex is not specified. All
indexes start at 0, so in the string "Test", "s" is at index 2. Indexes outside of the range of the string throw a
StringIndexOutOfBoundsException.

Syntax

substring(string, startIndex[, endIndex])

Parameters

string string - The starting string.

integer startIndex - The index to start the substring at.

integer endIndex - The end index of the substring.Optional.

Results

 - The substring from the start to end indexes of the specified string.string

Examples

Code Snippet

substring("unhappy", 2) //returns "happy"

Code Snippet

substring("hamburger", 4, 8) //returns "urge"

toBinary
This function is used by language.Ignition's Expression

Description

Returns an binary formatted string representing the unsigned integer argument. If the argument is negative, the binary string
represents the value plus 232.

Syntax

toBinary(number)

Parameters

int number - The value to convert to binary.

Results

 - The string form of the binary representation of the specified number.string

Examples

Code Snippet

toBinary(255) //returns "11111111"

Code Snippet

toBinary(-255) //returns "11111111111111111111111100000001"

toHex
This function is used by language.Ignition's Expression

Description

Returns a hex formatted string representing the unsigned integer argument. If the argument is negative, the hex string represents
the value plus 232.

Syntax

toHex(number)

Parameters

int number - The number to convert to hex.

Results

 - A string that is the hex value of the specified value.string

Examples

Code Snippet

toHex(255) //returns "FF"

Code Snippet

toHex(-255) //returns "FFFFFF01"

toOctal
This function is used by language.Ignition's Expression

Description

Returns an octal formatted string representing the unsigned integer argument. If the argument is negative, the octal string
represents the value plus 232.

Syntax

toOctal(number)

Parameters

int number - The value to convert to octal.

Results

 - A string that is the octal of the specified value.string

Examples

Code Snippet

toOctal(255) //returns "377"

Code Snippet

toOctal(-255) //returns "37777777401"

trim
This function is used by language.Ignition's Expression

Description

Takes the argument string and trims of any leading and/or trailing whitespace, returning the result.

Syntax

trim(string)

Parameters

string string - The starting string.

Results

 - The starting string with all whitespace removed.string

Examples

Code Snippet

trim("Hello Carlos ") //returns "Hello Carlos"

Code Snippet

trim(" Goodbye.") //returns "Goodbye."

upper
This function is used by language.Ignition's Expression

Description

Takes a string and returns an upper-case version of it.

Syntax

upper(string)

Parameters

string string - The string to make uppercase.

Results

 - The starting string with all characters uppercase.string

Examples

Code Snippet

upper("Hello World") //returns "HELLO WORLD"

stringFormat
This function is used by language.Ignition's Expression

Description

This expression returns a formatted string using the specified format string and arguments. Mainly, this expression is used for
building dynamic string objects.

Syntax

stringFormat(format[, args...])

Parameters

string format - The a string that contains formatting elements in it (%s, %d, %i).

string args - The arguments to use in the format. Must match the number of formatting elements in the string.Optional.

Results

 - The new formatted string.string

Formatting Elements

Formatting Elements

Element
Character

Data Type to
Substitute
Element
Character

Description

'b', 'B' Boolean If the corresponding argument is NULL, then a False is substituted into the format string. If arg arg
is boolean, then the string conversion of will be substituted into the format string. For every arg
other condition, True is substituted into the format string.

's', 'S' String The string value is substituted into the formatted sting. arg

'c', 'C' Character The unicode value is substituted into the formatted string. arg

'd' Integral The decimal value is substituted into the formatted string. arg

'f' Floating Point The floating point value is substituted into the formatted string. arg

't', 'T' Date/Time This is the for date/time arg values to be used for string formatting. See the Date/Time prefix
Formatting Elements table below for additional characters.

Date/Time Formatting Elements

Date/Time Formatting
Element Suffix

Description

'H' Hour of the day for the 24–hour clock, formatted as two digits with a leading zero where
necessary i.e. 00 - 23.

'I' Hour of the 12-hour clock, formatted as two digits with a leading zero as necessary i.e. 01 - 12.

'k' Hour of the day for the 24-hour clock, i.e. 0-24.

'k' Hour of the 12-hour clock i.e. 1 - 12.

'M' Minute within the hour formatted as two digits with a leading zero where necessary i.e. 00 - 59.

'S' Seconds within a minute, formatted as two digits with a leading zero where necessary i.e. 00 - 59.

'L' Millisecond within the second formatted as three digits with leading zeros as necessary i.e. 000-
999.

'B' Locale-specific full month name i.e. "January", "March".

'b' Locale-specific abbreviated month name i.e. "Jan", "Mar".

'A' Full name of the day of the week i.e. "Monday".

'a' Abbreviated name of the day of the week i.e. "Mon".

'Y' Year formatted as a 4 digit numeric value with leading zeros where necessary i.e. 0005 would be
the year 5 in the Gregorian calendar.

'y' Last two digits of the year formatted with leading zeros where necessary.

'j' Day of the year formatted as three digits with leading zeros where necessary i.e. 001 - 366 for the
Gregorian calendar.

'm' Month, formatted as a two digit number with leading zeros where necessary i.e. 01-13.

'd' Day of the month formatted as two digit number with leading zeros where necessary i.e. 00 - 31.

'e' Day of the month formatted as two digits i.e. 0-31.

Examples

Code Snippet

stringFormat("The boolean value is: %b", null) //returns The boolean value is: False

Code Snippet

stringFormat("Hello %s", "world") //returns "Hello world"

Code Snippet

stringFormat("%s, %s, %s", 1, 2, 3) //returns "1, 2, 3"

Code Snippet

stringFormat("%d, %d, %d", 4, 5, 6) //returns "4, 5, 6"

Code Snippet

stringFormat("Today is: %tA", now()) //returns Today is: Tuesday

Code Snippet

stringFormat("The current month is: %tB", now()) //returns The current month is: June

urlEncode
The following feature is new in Ignition version 8.0.3

 to check out the other new featuresClick here

This function is used by language.Ignition's Expression

Description

The expression function urlEncode() enables users to create an HTTP binding's URL on the fly. It will be possible to freely bind
different URL path parameters to different component properties on a view or window.

The first argument is the string that's being encoded, second parameter is a boolean arg that controls whether you use query
parameter style escaping or URI fragment style escaping.

Syntax

urlEncode(string, [usePercentEscape])

Parameters

string url- The URL to encode.

bool usePercentEscape - . False or black indicates to use query parameter style escaping. True indicates to Optional
use URI fragment style escaping.

Results

string- The encoded URL.

Examples

Code Snippet

urlEncode("Hello World") //yields "Hello+World"

Code Snippet

urlEncode("Hello World", False) //yields "Hello+World"

Code Snippet

urlEncode("Hello World", True) //yields "Hello%20World"

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.3

1.
2.

3.
4.
5.

6.

7.

Example

Vision Example
Drag a Text Field component and a Label component onto a window.
In the Vision Property Editor, enter a parameter for the URL you'll use. For this example, we used ' elH lo
World.'

Select the Label component, then click on the icon for the label's Text property.Binding

On the Property Binding screen, select .Expression
Enter the expression in the Configure Expression Binding section. In the example, we entered the URL plus
the expression function, "urlEncode ()". We entered the oath to the Text Field's text property as the string.

Code Snippet

"https://inductiveuniversity.com/" + urlEncode({Root Container.Text Field 1.
text})

Alternatively, you can get the path for the text field by putting the cursor inside the parentheses, clicking the

Property Value icon, then selecting the text property from the Text Field component.
Click to save the binding.The encoded URL is now displayed in the Label component.OK

https://www.inductiveuniversity.com./

1.
2.

3.
4.
5.

6.

7.

Example

Perspective Example
Drag a Text Field component and a Label component onto a view.
In the Perspective Property Editor, enter a parameter for the URL you'll use. For this example, we used ' loelH
World.'

Select the Label component, then click on the icon for the label's Text property.Binding

On the Property Binding screen, select Expression.
Enter the expression in the Configure Expression Binding section. In the example, we entered the URL plus
the expression function, "urlEncode ()". We entered the oath to the Text Field's text property as the string
and the parameter "True" to use URI fragment style escaping.

Code Snippet

"https://inductiveuniversity.com/" + urlEncode({../TextField_0.props.text},
True)

Alternatively, you can get the path for the text field by putting the cursor inside the parentheses, clicking the

 icon, then selecting the text property from the Text Field component.Property Value
Click to save the binding.The encoded URL is now displayed in the Label component.OK

https://www.inductiveuniversity.com./

Translation

Translation Functions
The following functions allow you to interact with the Translation system through expression bindings.

In This Section ...

translate
This function is used by language.Ignition's Expression

Description

Returns a translated string, based on the current locale. If the string does not exist in the global translations, the original string will
be returned. This function exists in the client and Gateway scopes.

Syntax

 translate(stringKey)

Parameters

string stringKey - The starting string to translate.

The following feature is new in Ignition version 8.0.8
 to check out the other new featuresClick here

string languageString - The language or locale to use.

Results

 - The starting string translated based on the current locale. If the translation does not exist, will return the string
specified value.

Examples

This expression function does not have any examples associated with it.

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.8

Type Casting

Type Casting Functions
The following functions allow you to change value types in expression bindings.

In This Section ...

1.
2.

3.

toBoolean
This function is used by language.Ignition's Expression

Description

Tries to convert value to a boolean, according to these rules:

If value is a number, 0 is false and anything else is true.
If value is a string, then the strings (case insensitive) "on", "true", "t", "yes", "y" are all true. The strings (case insensitive)
"off", "false", "f", "no", "n" are considered false. If the string represents a number, the first rule applies. All other strings fail
type casting.
All other types fail type casting.

If type casting fails, an error is thrown, unless the failover argument is specified, in which case it will be used.

Syntax

toBoolean(value[, failover])

Parameters

object value - The value to type cast.

object failover - The failover value if type casting fails.Optional.

Results

Bool - The value type cast as a bool.

Examples

Code Snippet

toBoolean(1) //returns true

Code Snippet

toBoolean("abc", false) //returns false

toBorder
This function is used by language.Ignition's Expression

Description

This function is used specifically when binding a property on a component. Typically, this is used with a Container or Label Border
component but can be used on any component that has a Border property.

This function takes a string and converts it into a border. The string must be a semi-colon separated list of values. The first value is
the name of the border, and the other values depend on the type of border you use. The following table defines the border types
and the arguments they accept.

Border
Type

Options Type Style Font
Justification

bevel bevelType 0 =
Raised

1 =
Lowered

1010 =
Double

button none

etched etchType 0 =
Raised

1 =
Lowered

etchedtitled title; ; ; ; ; style fontJustification fontPosition fontColor font 0 = Etched /
Lowered

1 = Etched /
Raised

2 = Beveled /
Lowered

3 = Beveled /
Raised

4 = Beveled /
Double

5 = Standard

1 = Left

2 = Center

3 = Right

4 = Leading

5 = Trailing

field none

line color; thickness

linetitled title; ; ; ; ; width lineColor fontJustification fontPosition font
; Color font

1 = Left

2 = Center

3 = Right

4 = Leading

5 = Trailing

matte color; , ; ; topWidth leftWidth bottomWidth rightWidth

paneltitled title; ; ; bgColor, shadowSize, style mainColor fontJustifi
; ; ;cation fontPosition fontColor font

1=Gradient /
West-to-East

2=Gradient /
North-to-South

3=Gradient /
East-to-West

4=Solid

1 = Left

2 = Center

3 = Right

4 = Leading

5 = Trailing

To use this function, you need to include the border type and then any options you want to use in the correct order. ie:

toBorder("paneltitled; title; style; mainColor; bgColor; shadowSize; fontJustification;
fontPosition; fontColor;font")

Syntax

toBorder(value[, failover])

Parameters

string value - The value to type cast.

object failover - The failover value if type casting fails.Optional.

Results

Border - The value type cast as a border object.

Examples

Code Snippet

toBorder("bevel;1010") //returns this...

Code Snippet

toBorder("button")

Code Snippet

toBorder("etched;0")

Code Snippet

toBorder("etchedtitled;Title;5;3;right;green;Arial")

Code Snippet

toBorder("field")

Code Snippet

toBorder("line;blue;2")

Code Snippet

toBorder("linetitled;Title") //returns this...

Code Snippet

toBorder("matte;red;10;1;1;1") //returns this...

Code Snippet

toBorder("paneltitled;Options;1;grey;white;0;3;0;green;Dialog,bold,16") //returns this...

1.

2.

3.

toColor
This function is used by language.Ignition's Expression

Description

This function tries to convert value to a color. It assumes that value is a string. If you have integers representing Red, Green, and
Blue values see the expression. The string color value is converted to a color according to these rules:

 If value is a name of a color as defined in the table below, the corresponding color will be returned. Note that color names
are case insensitive.
 If value is a hex color string (with or without a leading "#", the color equivalent of that hex string will be used. Examples:
"#FF0000", "556B2F"
 If value is a list of 3 or 4 integers, a color will be created that uses the first three integers as red, green, and blue values,
and the optional fourth integer as an alpha channel value. All values should be between 0 and 255. The list is free-form,
any non-digit characters may be used as delimiters between the digits. Examples: "(0,0,0)", "23-99-203", "[255,255,33,127]"

Note: This function was designed to return color objects to Vision bindings, and will not work with Perspective bindings. Instead, Perspective color
properties can simply use string hex codes to derive a color from a binding. Example: "#00FF00".

Syntax

toColor(value[, failover])

Parameters

string value - The color value as a string.

object failover - The failover value if type casting fails.Optional.

Results

Color - The value type cast as a color object.

Examples

Code Snippet

//All of these expressions return the color red.
toColor("red")
toColor("#FF0000")
toColor("255,0,0")

Code Snippet

//You can use the failover parameter to ensure that this expression returns something even if
the input string may be bad:
toColor({UserOptions/CustomColor}, "black")

Color Options

AliceBlue #F0F8FF

AntiqueWhite #FAEBD7

Aqua #00FFFF

Aquamarine #7FFFD4

Azure #F0FFFF

Beige #F5F5DC

Both 'Grey' and 'Gray' are accepted as valid colors as well as the iterations of that color such as 'DarkGrey' and
'DarkGray'.

Bisque #FFE4C4

Black #000000

BlanchedAlmond #FFEBCD

Blue #0000FF

BlueViolet #8A2BE2

Brown #A52A2A

BurlyWood #DEB887

CadetBlue #5F9EA0

Chartreuse #7FFF00

Chocolate #D2691E

Clear see Transparent

Coral #FF7F50

CornflowerBlue #6495ED

Cornsilk #FFF8DC

Crimson #DC143C

Cyan #00FFFF

DarkBlue #00008B

DarkCyan #008B8B

DarkGoldenRod #B8860B

DarkGray

DarkGrey

#A9A9A9

DarkGreen #006400

DarkKhaki #BDB76B

DarkMagenta #8B008B

DarkOliveGreen #556B2F

Darkorange #FF8C00

DarkOrchid #9932CC

DarkRed #8B0000

DarkSalmon #E9967A

DarkSeaGreen #8FBC8F

DarkSlateBlue #483D8B

DarkSlateGray

DarkSlateGrey

#2F4F4F

DarkTurquoise #00CED1

DarkViolet #9400D3

DeepPink #FF1493

DeepSkyBlue #00BFFF

DimGray

DimGrey

#696969

DodgerBlue #1E90FF

Feldspar #D19275

FireBrick #B22222

FloralWhite #FFFAF0

ForestGreen #228B22

Fuchsia #FF00FF

Gainsboro #DCDCDC

GhostWhite #F8F8FF

Gold #FFD700

GoldenRod #DAA520

Gray

Grey

#808080

Green #008000

GreenYellow #ADFF2F

HoneyDew #F0FFF0

HotPink #FF69B4

IndianRed #CD5C5C

Indigo #4B0082

Ivory #FFFFF0

Khaki #F0E68C

Lavender #E6E6FA

LavenderBlush #FFF0F5

LawnGreen #7CFC00

LemonChiffon #FFFACD

LightBlue #ADD8E6

LightCoral #F08080

LightCyan #E0FFFF

LightGoldenRodYellow #FAFAD2

LightGreen #90EE90

LightGray

LightGrey

#D3D3D3

LightPink #FFB6C1

LightSalmon #FFA07A

LightSeaGreen #20B2AA

LightSkyBlue #87CEFA

LightSlateBlue #8470FF

LightSlateGray

LightSlateGrey

#778899

LightSteelBlue #B0C4DE

LightYellow #FFFFE0

Lime #00FF00

LimeGreen #32CD32

Linen #FAF0E6

Magenta #FF00FF

Maroon #800000

MediumAquaMarine #66CDAA

MediumBlue #0000CD

MediumOrchid #BA55D3

MediumPurple #9370DB

MediumSeaGreen #3CB371

MediumSlateBlue #7B68EE

MediumSpringGreen #00FA9A

MediumTurquoise #48D1CC

MediumVioletRed #C71585

MidnightBlue #191970

MintCream #F5FFFA

MistyRose #FFE4E1

Moccasin #FFE4B5

NavajoWhite #FFDEAD

Navy #000080

OldLace #FDF5E6

Olive #808000

OliveDrab #6B8E23

Orange #FFA500

OrangeRed #FF4500

Orchid #DA70D6

PaleGoldenRod #EEE8AA

PaleGreen #98FB98

PaleTurquoise #AFEEEE

PaleVioletRed #DB7093

PapayaWhip #FFEFD5

PeachPuff #FFDAB9

Peru #CD853F

Pink #FFC0CB

Plum #DDA0DD

PowderBlue #B0E0E6

Purple #800080

Red #FF0000

RosyBrown #BC8F8F

RoyalBlue #4169E1

SaddleBrown #8B4513

Salmon #FA8072

SandyBrown #F4A460

SeaGreen #2E8B57

SeaShell #FFF5EE

Sienna #A0522D

Silver #C0C0C0

SkyBlue #87CEEB

SlateBlue #6A5ACD

SlateGray

SlateGrey

#708090

Snow #FFFAFA

SpringGreen #00FF7F

SteelBlue #4682B4

Tan #D2B48C

Teal #008080

Thistle #D8BFD8

Tomato #FF6347

Transparent #FFFFFF

Turquoise #40E0D0

Violet #EE82EE

VioletRed #D02090

Wheat #F5DEB3

White #FFFFFF

WhiteSmoke #F5F5F5

Yellow #FFFF00

YellowGreen #9ACD32

toDataSet
This function is used by language.Ignition's Expression

Description

Tries to coerce value into a dataset. Not many things can be coerced into datasets. Namely, only DataSets and PyDataSets can be
coerced into DataSets. This is useful for the runScript() expression, to convince the expression compiler to let you assign the return
value of a scripting function to a DataSet property.

Syntax

toDataSet(value[, failover])

Parameters

object value - The value to type cast, typically a DataSet or PyDataSet.

object failover - The failover value if type casting fails.Optional.

Results

DataSet - The value type cast as a dataset.

Examples

Code Snippet

toDataSet(runScript("app.funcs.runSomeFunction()")) //coerces the value returned by the a
project scripting function into a dataset.

toDate
This function is used by language.Ignition's Expression

Description

Tries to coerce value into a Date. If value is a number or a string that represents a number, the number is treated as the number of
milliseconds since the epoch, January 1, 1970, 00:00:00 GMT. If value is a string, it is parsed to see if it represents a date in one of
the supported formats:

yyyy-MM-dd
MM/dd/yyyy
MM/dd/yyyy HH:mm:ss
hh:mm:ss a
hh:mm a
MM/dd/yyyy hh:mm:ss a
yyyy-MM-dd HH:mm:ss.SSS
yyyy-MM-dd HH:mm:ss
EEE MMM dd HH:mm:ss z yyyy
yyyyMMdd.HHmmssSSSZ

If not, type casting fails.The failover value must be a number or string with the same restrictions.

Syntax

toDate(value[, failover])

Parameters

object value - The value to type cast into a date.

object failover - The failover value if type casting fails.Optional.

Results

date - The value type cast as a date.

Examples

Code Snippet

toDate("2007-04-12 16:28:22") //returns April 12th, 2007, 4:28:22 PM

toDouble
This function is used by language.Ignition's Expression

Description

Tries to coerce value into a double (64-bit floating point value). If value is a number, the conversion is direct. If value is a string, it is
parsed to see if it represents a double. If not, type casting fails.

Syntax

toDouble(value[, failover])

Parameters

object value - The value to type cast.

object failover - The failover value if type casting fails.Optional.

Results

Double - The value type cast as a double.

Examples

Code Snippet

toDouble("38.772") //returns 38.772

Code Snippet

toDouble({Root Container.Text Field.text}, 0.0) //returns the value in the text box as a double,
or 0.0 if the value doesn't represent an number.

toFloat
This function is used by language.Ignition's Expression

Description

Tries to coerce value into a float (32-bit floating point vaule). If value is a number, the conversion is direct. If value is a string, it is
parsed to see if it represents a float. If not, type casting fails.

Syntax

toFloat(value[, failover])

Parameters

object value - The value to type cast.

object failover - The failover value if type casting fails.Optional.

Results

Float - The value type cast as a float.

Examples

Code Snippet

toFloat("38.772") //returns 38.772

Code Snippet

toFloat({Root Container.Text Field.text}, 0.0) //returns the value in the text box as a float,
or 0.0 if the value doesn't represent an number.

toFont
This function is used by language.Ignition's Expression

Description

Coerces a string into a font. The string must be in the format:

 'fontName, fontType, fontSize)'

 fontName is the name of the font to use. Note that special care must be taken with fonts, because of the web-launched nature of
the clients. You can only use font names that exist on the client machines. The following font names are known as logical fonts,
meaning that they are guaranteed to exist on all systems, mapped to the most appropriate real, or physical font that exists on the
host system:

Serif
SansSerif
Monospaced
Dialog
DialogInput

fontType is a string, that should match one of these (case-insensitive):

Plain
Bold
Italic
BoldItalic

fontSize is an integer that represent the font's point size.

Syntax

toFont(value[, failover])

Parameters

string value - The value to type cast to a font.

object failover - The failover value if type casting fails.Optional.

Results

Font - The value type cast as a font.

Examples

Code Snippet

toFont("font(Dialog,Bold,12)") //returns the standard font used in most clients.

toInt
This function is used by language.Ignition's Expression

Description

Tries to coerce value into an integer (32-bit integer). If value is a number, the conversion is direct (with possible loss of precision). If
value is a string, it is parsed to see if it represents an integer. If not, type casting fails. Will round if appropriate.

Syntax

toInt(value[, failover])

Parameters

object value - The value to type cast.

object failover - The failover value if type casting fails.Optional.

Results

int - The value type cast as an int.

Examples

Code Snippet

toInt("38") //returns 38

Code Snippet

toInt("33.9") // returns 34

Code Snippet

toInt({Root Container.Text Field.text}, -1) //returns the value in the text box as an int, or -1
if the value doesn't represent an number.

toInteger
This function is used by language.Ignition's Expression

Description

Identical to the toInt expression function.

Syntax

toInteger(value[, failover])

Parameters

object value - The value to type cast.

object failover - The failover value if type casting fails.Optional.

Results

int - The value type cast as an int.

Examples

This expression function does not have examples associated with it.

toLong
This function is used by language.Ignition's Expression

Description

Tries to coerce value into a long (64-bit integer). If value is a number, the conversion is direct. If value is a string, it is parsed to see
if it represents a long. If not, type casting fails. Will round if appropriate.

Syntax

toLong(value[, failover])

Parameters

object value - The value to type cast.

object failover - The failover value if type casting fails.Optional.

Results

Long - The value type cast as a long.

Examples

Code Snippet

toLong("38") //returns 38

Code Snippet

toLong("33.9") //returns 34

Code Snippet

toLong({Root Container.Text Field.text}, -1) //returns the value in the text box as an long, or
-1 if the value doesn't represent an number.

toStr
This function is used by language.Ignition's Expression

Description

Identical to the toString expression function.

Syntax

toStr(value[, failover])

Parameters

object value - The value to type cast, typically a DataSet or PyDataSet.

object failover - The failover value if type casting fails.Optional.

Results

string - The value type cast as a string.

Examples

There are no examples associated with this expression function.

toString
This function is used by language.Ignition's Expression

Description

Represents the value as a string. Will succeed for any type of value.

Syntax

toString(value[, failover])

Parameters

object value - The value to type cast.

object failover - The failover value if type casting fails.Optional.

Results

string - The value type cast as a string.

Examples

Code Snippet

toString(1/3.0) // returns "0.3333333333333333"

Code Snippet

toString({Root Container.Table.data}) //returns something like: "Dataset [150R x 3C]"

Users

User Functions
The following functions allow you to interact with the User/Role system through expression bindings.

In This Section ...

hasRole
This function is used by language.Ignition's Expression

Description

 Returns true if the user has the given role. The username and usersource parameters are optional in the client scope, but required in the Gateway
scope.

Syntax

 hasRole(role[, username][, usersource])

Parameters

string role - The name of a role.

string username - A username. Defaults to the current user.Optional.

string usersource - The usersource of the username. Defaults to the usersource of the current user.Optional.

Results

Bool - True if the specified user has the specified role, False if not.

Examples

Code Snippet

// This is an example using a username and userSource:
hasRole("Administrator", "bob", "default")

Code Snippet

// This is an example using the current user and default userSource in the client scope:
hasRole("Administrator")

isAuthorized
The following feature is new in Ignition version 8.0.2

 to check out the other new featuresClick here

This function is used by language.Ignition's Expression

Description

 Returns a qualified value with a boolean value which is true if the user in the current session is authorized, false otherwise.

Syntax

 isAuthorized(isAllOf, securityLevel[, securityLevelN...])

Parameters

boolean isAllOf - True if the current user must have all of the given security levels to be authorized, false if the current
user must have at least one of the given security levels to be authorized

string securityLevels - One or more String paths to a security level node in the form "Path/To/Node". Each level in the
tree is delimited by a forward slash character. Additional security level paths are simply added to the end of the
parameter list. The Public node is never a part of the path.

Results

Bool - Returns a qualified value with a boolean value which is true if the user in the current session is authorized, false
otherwise. The quality of the qualified value is the worst of the qualities of all the qualified values of each argument.

Examples

Code Snippet

// returns true if the current user has both Administrator and Baz roles
// returns false if they have only one or if they have neither
isAuthorized(true, 'Authenticated/Roles/Administrator', 'Foo/Bar/Baz')

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.2

	Expression Functions
	Advanced
	columnRearrange
	columnRename
	forceQuality
	property
	qualifiedValue
	runScript
	sortDataset
	tag

	Aggregates
	groupConcat
	max
	maxDate
	mean
	median
	min
	minDate
	stdDev
	sum

	Alarming Expressions
	isAlarmActive
	isAlarmActiveFiltered

	Colors
	brighter
	color
	darker
	gradient

	Date and Time
	add*
	dateArithmetic
	dateDiff
	dateExtract
	dateFormat
	dateIsAfter
	dateIsBefore
	dateIsBetween
	dateIsDaylight
	*Between
	fromMillis
	get*
	getDate
	getTimezone
	getTimezoneOffset
	getTimezoneRawOffset
	midnight
	now
	setTime
	timeBetween
	toMillis

	Identity Provider
	containsAll
	containsAny

	JSON
	jsonFormat
	jsonGet
	jsonSet

	Logic
	binEnc
	binEnum
	case
	coalesce
	getBit
	hasChanged
	if
	isGood
	isNull
	lookup
	switch
	try

	Math
	abs
	acos
	asin
	atan
	ceil
	cos
	exp
	floor
	log
	log10
	pow
	round
	sin
	sqrt
	tan
	todegrees
	toradians

	String
	concat
	escapeSQL
	escapeXML
	fromBinary
	fromHex
	fromOctal
	indexOf
	lastIndexOf
	left
	len
	lower
	numberFormat
	repeat
	replace
	right
	split
	substring
	toBinary
	toHex
	toOctal
	trim
	upper
	stringFormat
	urlEncode

	Translation
	translate

	Type Casting
	toBoolean
	toBorder
	toColor
	toDataSet
	toDate
	toDouble
	toFloat
	toFont
	toInt
	toInteger
	toLong
	toStr
	toString

	Users
	hasRole
	isAuthorized

