
1. Vision Components . 3
1.1 Vision - Input Palette . 4

1.1.1 Vision - Text Field . 5
1.1.2 Vision - Numeric Text Field . 16
1.1.3 Vision - Spinner . 27
1.1.4 Vision - Formatted Text Field . 30
1.1.5 Vision - Password Field . 42
1.1.6 Vision - Text Area . 53
1.1.7 Vision - Dropdown List . 64
1.1.8 Vision - Slider . 76
1.1.9 Vision - Language Selector . 88

1.2 Vision - Buttons Palette . 94
1.2.1 Vision - Button . 95
1.2.2 Vision - 2 State Toggle . 106
1.2.3 Vision - Multi-State Button . 117
1.2.4 Vision - One-Shot Button . 129
1.2.5 Vision - Momentary Button . 140
1.2.6 Vision - Toggle Button . 151
1.2.7 Vision - Check Box . 161
1.2.8 Vision - Radio Button . 171
1.2.9 Vision - Tab Strip . 181

1.3 Vision - Display Palette . 190
1.3.1 Vision - Label . 191
1.3.2 Vision - Numeric Label . 198
1.3.3 Vision - Multi-State Indicator . 205
1.3.4 Vision - LED Display . 213
1.3.5 Vision - Moving Analog Indicator . 222
1.3.6 Vision - Image . 230
1.3.7 Vision - Progress Bar . 237
1.3.8 Vision - Cylindrical Tank . 245
1.3.9 Vision - Level Indicator . 252
1.3.10 Vision - Linear Scale . 260
1.3.11 Vision - Barcode . 268
1.3.12 Vision - Meter . 275
1.3.13 Vision - Compass . 285
1.3.14 Vision - Thermometer . 292
1.3.15 Vision - IP Camera Viewer . 300

1.4 Vision - Tables Palette . 308
1.4.1 Vision - Table . 309

1.4.1.1 Vision - Table Customizer . 326
1.4.2 Vision - Power Table . 332

1.4.2.1 Vision - Power Table Customizer . 347
1.4.3 Vision - List . 351
1.4.4 Vision - Tree View . 363

1.4.4.1 Vision - Tree View Customizer . 372
1.4.5 Vision - Comments Panel . 375
1.4.6 Vision - Tag Browse Tree . 389

1.5 Vision - Charts Palette . 396
1.5.1 Vision - Easy Chart . 397

1.5.1.1 Vision - Easy Chart Customizer . 413
1.5.2 Vision - Chart . 421

1.5.2.1 Vision - Chart Customizer . 429
1.5.3 Vision - Sparkline Chart . 452
1.5.4 Vision - Bar Chart . 459
1.5.5 Vision - Radar Chart . 468
1.5.6 Vision - Status Chart . 476
1.5.7 Vision - Pie Chart . 489
1.5.8 Vision - Box and Whisker Chart . 498
1.5.9 Vision - Equipment Schedule . 509
1.5.10 Vision - Gantt Chart . 523

1.6 Vision - Calendar Palette . 531
1.6.1 Vision - Calendar . 532
1.6.2 Vision - Popup Calendar . 539
1.6.3 Vision - Date Range . 546
1.6.4 Vision - Day View . 556
1.6.5 Vision - Week View . 563
1.6.6 Vision - Month View . 571

1.7 Vision - Admin Palette . 579
1.7.1 Vision - User Management . 580
1.7.2 Vision - Schedule Management . 590
1.7.3 Vision - Roster Management . 600
1.7.4 Vision - SFC Monitor . 608

1.8 Vision - Alarming Palette . 615
1.8.1 Vision - Alarm Status Table . 616

1.8.1.1 Vision - Alarm Row Style Customizer . 624

1.8.2 Vision - Alarm Journal Table . 629
1.9 Vision - Containers Palette . 642

1.9.1 Vision - Container . 643
1.9.2 Vision - Template Repeater . 650
1.9.3 Vision - Template Canvas . 653

1.10 Vision - Misc Palette . 660
1.10.1 Vision - Paintable Canvas . 661
1.10.2 Vision - Line . 670
1.10.3 Vision - Pipe Segment . 678
1.10.4 Vision - Pipe Joint . 685
1.10.5 Vision - Sound Player . 692
1.10.6 Vision - Timer . 698
1.10.7 Vision - Signal Generator . 700

1.11 Vision - Reporting Palette . 702
1.11.1 Vision - Report Viewer . 703
1.11.2 Vision - Row Selector . 711
1.11.3 Vision - Column Selector . 719
1.11.4 Vision - File Explorer . 727
1.11.5 Vision - PDF Viewer . 734

1.12 Vision - Web Browser Palette . 744
1.12.1 Vision - Web Browser Component . 745

1.13 Vision - The Window Object . 751

Vision Components

This section covers all the built-in Vision components. While the component is selected, you can use the Property Editor panel to alter the
component's , which changes the component's appearance and behavior. Shapes are Vision components too. Each shape may be properties
individually selected, named, and has its own properties. Shapes have some additional capabilities that other Vision components don't have,
such as the ability to be rotated. Shapes are created using the shape tools, not dragged from the component palette.

To make any of these components do something useful, like display dynamic information or control a device register, you configure property
 for the component. To make the component react to user interaction, you configure for it.bindings event handlers

Vision - Input Palette

Vision - Buttons Palette

Vision - Display Palette

Vision - Tables Palette

Vision - Charts Palette

Vision - Calendar
Palette

Vision - Admin Palette

Alarming

Vision - Containers
Palette

Vision - Misc Palette

Vision - Reporting
Palette

Vision - Web Browser
Palette

Vision - The Window
Object

https://legacy-docs.inductiveautomation.com/display/DOC80/Property+Bindings+in+Vision
https://legacy-docs.inductiveautomation.com/display/DOC80/Property+Bindings+in+Vision
https://legacy-docs.inductiveautomation.com/display/DOC80/Property+Bindings+in+Vision
https://legacy-docs.inductiveautomation.com/display/DOC80/Component+Events

Vision - Input Palette

Input Components
The following components allow users to enter or select data.

In This Section ...

Vision - Text Field
General

Component
Palette Icon:

Description

The Text Field component is used for input of any single-line text. This component will accept any alpha-numeric input. If you're
looking for a numeric field, see the . Vision - Numeric Text Field

This field features a protected mode. When you enable the protectedMode property, the field is not editable even when it
receives input focus. The user must double click on the field or press enter in order to edit the field. When they are done (press
enter again or leave the field), the field becomes non-editable again.

The Text Field also supports the reject updates during edit feature. This feature ignores updates coming from property bindings
while the component is being edited by a user.

Properties

Name Description Property
Type

Scripting Category

Background The background color of the text box (when editable). Color .
editableB
ackground

Appearan
ce

Border The border surrounding this component. Options are No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel
(Double), Button Border, Field Border

Border .border Common

Commit
On Focus
Loss

If true, any pending edit will take effect when focus is lost. If false, the user
must press ENTER for an edit to take effect.

boolean .
commitO
nFocusL
ost

Behavior

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Defer
Updates

When true, the 'text' property will not fire updates while typing, it will wait
for Enter to be pressed.

boolean .
deferUpd
ates

Behavior

Editable? If true, this is an input box, if false, this is display-only. boolean .editable Behavior

Enabled If disabled, a component cannot be used. boolean .
compone
ntEnabled

Common

Font Font of text on this component. Font .font Appearan
ce

Foregroun
d Color

The foreground color of the component. Color .
foreground

Appearan
ce

The border is unaffected by rotation.

Horizontal
Alignment

Determines the alignment of the label's contents along the X axis. int .
horizontal
Alignment

Layout

Maximum
Characters

The text box will be limited to this number of characters. Use -1 for
unlimited.

int .
maxChars

Behavior

Mouseove
r Text

The text that is displayed in the tooltip which pops up when the user
mouses over of this component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Non-
Editable
Background

The background color to use when this text box is non-editable. Color .
nonEdita
bleBackg
round

Appearan
ce

Protected
Mode?

If true, users will need to double-click in the field in order to edit the text. boolean .
protected
Mode

Behavior

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Reject
Updates
During
Edit

If true, this field will not accept updates from external sources (like DB
bindings) while the user is editing the field.

boolean .
rejectUpd
atesDurin
gEdit

Behavior

Styles Contains the component's styles. Dataset .styles Appearan
ce

Text Text of this component. String .text Data

Touchscre
en Mode

Controls when this input component responds if touchscreen mode is
enabled.

int .
touchscre
enMode

Behavior

Visible If disabled, the component will be hidden. boolean .visible Common

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting

Scripting Functions

 Description

 Returns the currently selected or highlighted text in the text field.

Parameters

Nothing

Return

String - Returns the currently selected or highlighted text in the text field.

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

This event occurs when a component that can receive input, such as a text box, receives the input focus. This
usually occurs when a user clicks on the component or tabs over to it.

.source The component that fired this event.

.
oppositeCom
ponent

The other component involved in this focus change. That is, the component that lost focus in
order for this one to gain it, or vise versa.

This event occurs when a component that had the input focus lost it to another component.

.source The component that fired this event

.
oppositeCom
ponent

The other component involved in this focus change. That is, the component that lost focus in
order for this one to gain it, or vise versa.

An integer that indicates whether the state was changed to "Selected" (on) or "Deselected" (off). Compare this to
the event object's constants to determine what the new state is.

.
s
o
ur
ce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the keyTyped event.

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the constants, the keyTyped event KEY_LOCATION
always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
ro
lD
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

https://legacy-docs.inductiveautomation.com/display/DOC80/Component+Events

Fires when a key is released and the source component has the input focus. Works for all characters, including
non-printable ones, such as SHIFT and F3.

.
s
o
u
rce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the constants in the documentation, the KEY_LOCATION
keyTyped event always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
r
ol
D
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

https://legacy-docs.inductiveautomation.com/display/DOC80/Component+Events

Fires when a key is pressed and then released when source component has the input focus. Only works for
characters that can be printed on the screen.

.
s
o
u
rce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the constants in the documentation, the KEY_LOCATION
keyTyped event always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
r
ol
D
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

https://legacy-docs.inductiveautomation.com/display/DOC80/Component+Events

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component. Note that this event fires aft

 the pressed and released events have fired.er

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

 This event fires when the mouse leaves the space over the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

 This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a property of the source component changes. This works for standard and custom bindable
(dynamic) properties.

.source The component that fired this event.

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed.

.
property
Name

The name of the property that changed.

Customizers

Component Customizers
Style Customizer

Examples

Code Snippet

#The following code will return the value of the text box's previous value into a variable.
#This code is fired on the propertyChange event for this component.

oldValue = event.source.oldValue

Titled Panel

Property Name Value

Border Bevel (Raised)

Font Dialog, Bold, 14

Horizontal Alignment Center

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers

Vision - Numeric Text Field
General

Component
Palette Icon:

Description

The Numeric Text Field is similar to the standard Text Field, except that it is specialized for use with numbers. Instead of a Text
property, it has four numeric "value" properties: integer, double, long, and float. Which one you use depends on the mode of
the text box.

Like the standard Text Field, this text field can operate in protected mode. When you enable the protected property, the field is
not editable even when it receives input focus. The user must double click on the field or press enter in order to edit the field.
When they are done (press enter again or leave the field), the field becomes non-editable again.

The Numeric Text Field also supports the reject updates during edit feature. This feature ignores updates coming from property
bindings while the component is being edited by a user.

Properties

Name Description Property
Type

Scripting Category

Backgrou
nd

The background color of the text box (when editable). Color .
editableB
ackground

Appearan
ce

Border The border surrounding this component. No border, Etched (Lowered),
Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel (Double), Button
Border, Field Border, Line Border, and Other Border.

Border .border Common

Commit
On
Focus
Loss

If true, any pending edit will take effect when focus is lost. If false, the user
must press Enter for an edit to take effect.

boolean .
commitO
nFocusL
ost

Behavior

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Decimal
Format

The formatting string used for displaying numbers. String .
decimalF
ormat

Appearan
ce

Defer
Updates

When true, the value properties will not fire updates while typing, it will wait
for Enter to be pressed.

boolean .
deferUpd
ates

Behavior

Editable? If true, this is an input box, if false, this is display-only. boolean .editable Behavior

Enabled If disabled, a component cannot be used. boolean .
compone
ntEnabled

Common

The border is unaffected by rotation.

Error on
Out-of-
Bounds

Show an error message if the user input is out-of-bounds? boolean .
errorOnO
utOfBoun
ds

Behavior

Font Font of text this component.on Font .font Appearan
ce

Foregrou
nd Color

The foreground color of the component. Color .
foreground

Appearan
ce

Horizonta
l
Alignment

Determines the alignment of the label's contents along the X axis. int .
horizontal
Alignment

Layout

Maximum The maximum value (inclusive), if useBounds is true. double .
maximum

Data

Minimum The minimum value (inclusive), if useBounds is true. double .minimum Data

Mouseov
er Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Non-
Editable
Backgrou
nd

The background color to use when this text box is non-editable Color .
nonEdita
bleBackg
round

Appearan
ce

Number
Type

What type of numbers should this field accept? int .mode Data

Out Of
Bounds
Message

The error message to display if input is out-of-bounds. String .
outOfBou
ndsMess
age

Behavior

Protected
Mode?

If true, users will need to double-click in the field in order to edit the value. boolean .
protected
Mode

Behavior

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Reject
Updates
During
Edit

If true, this field will not accept updates from external sources (like DB
bindings) while the user is editing the field.

boolean .
rejectUpd
atesDurin
gEdit

Behavior

Styles Contains the component's styles. Dataset .styles Appearan
ce

Suffix A string to display after the value. String .suffix Appearan
ce

Touchscr
een Mode

Controls when this input component responds if touchscreen mode is
enabled.

int .
touchscre
enMode

Behavior

Use
Bounds?

Only allows user-entered values between a minimum and maximum.
Unless you turn on "Error on out-of-bounds", user-entered values will be
silently modified to be in-bounds.

boolean .
useBoun
ds

Behavior

Value
(Double)

The value as a double. Make sure you use the value property that
corresponds to your Number Type setting.

double .
doubleVa
lue

Data

Value
(Float)

The value as a float. Make sure you use the value property that
corresponds to your Number Type setting.

float .
floatValue

Data

Value
(Integer)

The value as an integer. Make sure you use the value property that
corresponds to your Number Type setting.

int .intValue Data

Value
(Long)

The value as a long. Make sure you use the value property that
corresponds to your Number Type setting.

long .
longValue

Data

Visible If disabled, the component will be hidden. boolean .visible Common

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting

Scripting Functions

 Description

Returns the currently selected or highlighted text in the text field.

Parameters

Nothing

Return

String - Returns the currently selected or highlighted text in the text field.

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

This event occurs when a component that can receive input, such as a text box, receives the input focus. This
usually occurs when a user clicks on the component or tabs over to it.

.source The component that fired this event.

.
oppositeCom
ponent

The other component involved in this focus change. That is, the component that lost focus in
order for this one to gain it, or vise versa.

This event occurs when a component that had the input focus lost it to another component.

.source The component that fired this event

.
oppositeCom
ponent

The other component involved in this focus change. That is, the component that lost focus in
order for this one to gain it, or vise versa.

An integer that indicates whether the state was changed to "Selected" (on) or "Deselected" (off). Compare this to
the event object's constants to determine what the new state is.

.
s
o
ur
ce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the constants, the keyTyped event KEY_LOCATION
always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
ro
lD
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

https://legacy-docs.inductiveautomation.com/display/DOC80/Component+Events

Fires when a key is released and the source component has the input focus. Works for all characters, including
non-printable ones, such as SHIFT and F3.

.
s
o
u
rce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the constants in the documentation, the KEY_LOCATION
keyTyped event always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
r
ol
D
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

https://legacy-docs.inductiveautomation.com/display/DOC80/Component+Events

Fires when a key is pressed and then released when source component has the input focus. Only works for
characters that can be printed on the screen.

.
s
o
u
rce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the constants in the documentation, KEY_LOCATION
the keyTyped event always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
r
ol
D
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

https://legacy-docs.inductiveautomation.com/display/DOC80/Component+Events

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component. Note that this event fires aft

 the pressed and released events have fired.er

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

 This event fires when the mouse leaves the space over the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

 This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a property of the source component changes. This works for standard and custom bindable
(dynamic) properties.

.source The component that fired this event.

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed.

.
property
Name

The name of the property that changed.

Customizers

Component Customizers
Style Customizer

Examples

Code Snippet

#The following script can be executed on a mouse released event handler.
#This would write the selected text to a custom property called highlightedText.

event.source.highlightedText = event.source.getSelectedText()

2-digit Numeric Format

Property Name Value

Border Field Border

Number Type Float

Font Dialog, BoldItalic, 15

Decimal Format #,##0.00

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers#VisionComponentCustomizers-StyleCustomizer

Vision - Spinner
General

Component
Palette Icon:

Description

The spinner component represents a value that is part of a series of values, such as numbers and dates. It allows you to not
only edit the value directly, but to 'spin' the value up or down, using the up and down buttons that are part of the component.
When setting up property bindings, make sure you use the value property that corresponds to the spinner mode. For example,
if you chose the Double spinner mode, you should bind the doubleValue property.

Properties

Name Description Property
Type

Scripting Category

Backgr
ound
Color

The background color of the component. Color .
backgrou
nd

Appearan
ce

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel (Double),
Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Date
Format

A date format pattern to use when the spinner is in date mode. String .
dateForm
at

Appearan
ce

Date
in
Millise
conds

The date in milliseconds from epoch time. (Read only. Usable in bindings and
scripting.)

long .
dateInMill
is

Uncatego
rized

Enabled If disabled, a component cannot be used. boolean .
compone
ntEnabled

Common

Font Font of text this component.on Font .font Appearan
ce

Foregr
ound
Color

The foreground color of the component. Can be chosen from color wheel,
chosen from color palette, or entered as or value. See RGB HSL Color

.Selector

Color .
foreground

Appearan
ce

Mouse
over
Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Numbe
r
Format

A number format pattern to use when the spinner is in numeric mode. String .
numberF
ormat

Appearan
ce

The border is unaffected by rotation.

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Numeri
c
Maxim
um

The maximum value this spinner will accept when in 'Integer' or 'Double' mode. double .
maxValue

Data

Numeri
c
Minim
um

The minimum value this spinner will accept when in 'Integer' or 'Double' mode. double .
minValue

Data

Numeri
c Step
Size

The size to step up or down when in 'Integer' or 'Double' mode. double .stepSize Behavior

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Spinne
r Mode

The mode controls which data type this spinner accepts. int .
spinnerM
ode

Behavior

Styles Contains the component's styles. Dataset .styles Appearan
ce

Touch
screen
Mode

Controls when this input component responds if touchscreen mode is enabled. int .
touchscre
enMode

Behavior

Value
(Date)

The current value if mode is 'Date'. Date .
dateValue

Data

Value
(Doubl
e)

The current value if mode is 'Double'. double .
doubleVa
lue

Data

Value
(Intege
r)

The current value if mode is 'Integer'. int .intValue Data

Visible If disabled, the component will be hidden. boolean .visible Common

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

Fires whenever a property of the source component changes. This works for standard and custom bindable
(dynamic) properties.

.source The component that fired this event.

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed.

.
property
Name

The name of the property that changed.

Customizers

Component Customizers
Style Customizer

Examples

Date Spinner

Property Name Value

Spinner Mode Date

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC79/Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers#VisionComponentCustomizers-StyleCustomizer

Vision - Formatted Text Field
General

Component
Palette Icon:

Description

This specialized text field is used for alphanumeric text input that must match some specific pattern or needs to be formatted in
a specific way. It operates in two modes:

 Formatted Mask
In this mode, input is automatically formatted and restricted based on a format mask. For example, a format mask like: (###)
###-#### will allow the entry of a 10-digit US phone number. The formatting characters are automatically inserted if the user
does not type them in. Any other characters are restricted. The following characters may be used in a formatted mask pattern:

Symbol Description

Any valid number, Such as 0-9.

' Escape character, used to escape any of the special formatting characters.

U Any letter. All lowercase letters will be mapped to upper case automatically.

L Any letter. All upper case letters will be mapped to lower case automatically.

A Any letter or number.

? Any letter, case is preserved.

* Anything.

H Any hex character (0-9, a-f or A-F).

Regular Expression
In this mode, input is validated against a regular expression. A regular expression is a special string that defines a set of
allowed strings. Any input that matches the given regular expression is allowed, and input that doesn't match, is restricted. And
yes, while powerful, regular expressions are decidedly difficult to decipher.

Properties

Name Description Property
Type

Scripting Category

Allows
Invalid
Text

Allows Invalid text to Commit. boolean .
allowsInv
alid

Behavior

Backgrou
nd Color

The background color of the component. Can be chosen from color wheel,
chosen from color palette, or entered as RGB or HSL value. See Color
Selector.

Color .
backgrou
nd

Appearan
ce

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Border The border surrounding this component. Options are No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel
(Double), Button Border, Field Border.

Border .border Common

Commit
While
Typing

Commits valid text while user is typing. boolean .
commits
OnValidE
dit

Behavior

Committe
d Value

Committed text value. String .
committe
dValue

Data

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Enabled If disabled, a component cannot be used. boolean .
compone
ntEnabled

Common

Focus
Lost
Behavior

Controls how a transaction can be committed. int .
focusLost
Behavior

Behavior

Font Font of text this component.on Font .font Appearan
ce

Foregrou
nd Color

The foreground color of the component. Can be chosen from color wheel,
chosen from color palette, or entered as RGB or HSL value. See Color
Selector.

Color .
foreground

Appearan
ce

Formatte
d Mask
Pattern

Formatted Mask Validation Pattern. String .
formatted
MaskPatt
ern

Behavior

Horizonta
l
Alignment

Determines the alignment of the label's contents along the X axis. int .
horizontal
Alignment

Layout

Mouseov
er Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Overwrite
s Text

Overwrites text while typing. boolean .
overwrite
Mode

Behavior

Reg Ex
Pattern

Regular Expression Validation Pattern. String .
validation
Pattern

Behavior

Styles Contains the component's styles. Dataset .styles Appearan
ce

Text Contents of this Text Field. String .text Data

Touchscr
een
Mode

Controls when this input component responds if touchscreen mode is
enabled.

int .
touchscre
enMode

Behavior

Validation
Mode

Select regular expression or mask-driven field validation. int .
validation
Mode

Behavior

The border is unaffected by rotation.

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Visible If disabled, the component will be hidden. boolean .visible Common

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

This event occurs when a component that can receive input, such as a text box, receives the input focus. This
usually occurs when a user clicks on the component or tabs over to it.

.source The component that fired this event.

.
oppositeCom
ponent

The other component involved in this focus change. That is, the component that lost focus in
order for this one to gain it, or vise versa.

This event occurs when a component that had the input focus lost it to another component.

.source The component that fired this event

.
oppositeCom
ponent

The other component involved in this focus change. That is, the component that lost focus in
order for this one to gain it, or vise versa.

An integer that indicates whether the state was changed to "Selected" (on) or "Deselected" (off). Compare this to
the event object's constants to determine what the new state is.

.
s
o
ur
ce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the constants, the keyTyped event KEY_LOCATION
always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
ro
lD
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

https://legacy-docs.inductiveautomation.com/display/DOC80/Component+Events

Fires when a key is released and the source component has the input focus. Works for all characters, including
non-printable ones, such as SHIFT and F3.

.
s
o
u
rce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the constants in the documentation, the KEY_LOCATION
keyTyped event always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
r
ol
D
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

https://legacy-docs.inductiveautomation.com/display/DOC80/Component+Events

Fires when a key is pressed and then released when source component has the input focus. Only works for
characters that can be printed on the screen.

.
s
o
u
rce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the constants in the documentation, the KEY_LOCATION
keyTyped event always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
r
ol
D
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

https://legacy-docs.inductiveautomation.com/display/DOC80/Component+Events

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component. Note that this event fires aft

 the pressed and released events have fired.er

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

 This event fires when the mouse leaves the space over the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

 This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a property of the source component changes. This works for standard and custom bindable
(dynamic) properties.

.source The component that fired this event.

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed.

.
property
Name

The name of the property that changed.

Customizers

Vision Component Customizers
Style Customizer

Examples

Formatted Mask

Example Description

##U-####/UU A product code with a specifc format, like 28E-8213/AR

0xHHHH A hex digit, automatically prepends "0x" on the front. e.g. "0x82FF"

#UUU### A California license plate, eg. 4ABC123

Regular Expression

Example Description

\p{Upper}\p{Lower}*, \p{Upper}\p{Lower}* A name, formatted such as Smith, John

\d{3}-\d{2}-\d{4} A US social security number, like 123-45-6789

\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3} A network IPv4 address, like 67.82.120.116

^[a-f0-9A-F]{6}$ A six-digit hexadecimal number

Gallery

Phone Number Format

Property Name Value

Validation Mode Formatted Mask

Formatted Mask Pattern (###) ###-####

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers#VisionComponentCustomizers-StyleCustomizer

Vision - Password Field
General

Component
Palette Icon:

Description

A password field is like a text field that doesn't display the text that is being edited. You may alter the echo character (*) if
you'd like.

Properties

Name Description Property
Type

Scripting Category

Backgr
ound
Color

The background color of the component. Color .
backgrou
nd

Appearan
ce

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel (Double),
Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Echo
Chara
cter

The character that is displayed instead of the real ones. String .
echoChar
acter

Appearan
ce

Enabled If disabled, a component cannot be used. boolean .
compone
ntEnabled

Common

Font Font of text this component.on Font .font Appearan
ce

Foregr
ound
Color

The foreground color of the component. Color .
foreground

Appearan
ce

Mouse
over
Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Styles Contains the component's styles. Dataset .styles Appearan
ce

Text Text of this component String .text Data

Touch
screen
Mode

Controls when this input component responds if touchscreen mode is enabled. int .
touchscre
enMode

Behavior

Visible If disabled, the component will be hidden. boolean .visible Common

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have extension functions associated with it.

The border is unaffected by rotation.

Event Handlers

This event occurs when a component that can receive input, such as a text box, receives the input focus. This
usually occurs when a user clicks on the component or tabs over to it.

.source The component that fired this event.

.
oppositeCom
ponent

The other component involved in this focus change. That is, the component that lost focus in
order for this one to gain it, or vise versa.

This event occurs when a component that had the input focus lost it to another component.

.source The component that fired this event

.
oppositeCom
ponent

The other component involved in this focus change. That is, the component that lost focus in
order for this one to gain it, or vise versa.

An integer that indicates whether the state was changed to "Selected" (on) or "Deselected" (off). Compare this to
the event object's constants to determine what the new state is.

.
s
o
ur
ce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the constants, the keyTyped event KEY_LOCATION
always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
ro
lD
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

https://legacy-docs.inductiveautomation.com/display/DOC80/Component+Events

Fires when a key is released and the source component has the input focus. Works for all characters, including
non-printable ones, such as SHIFT and F3.

.
s
o
u
rce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the constants in the documentation, the KEY_LOCATION
keyTyped event always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
r
ol
D
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

https://legacy-docs.inductiveautomation.com/display/DOC80/Component+Events

Fires when a key is pressed and then released when source component has the input focus. Only works for
characters that can be printed on the screen.

.
s
o
u
rce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the constants in the documentation, the KEY_LOCATION
keyTyped event always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
r
ol
D
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

https://legacy-docs.inductiveautomation.com/display/DOC80/Component+Events

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component. Note that this event fires aft

 the pressed and released events have fired.er

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

 This event fires when the mouse leaves the space over the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

 This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a property of the source component changes. This works for standard and custom bindable
(dynamic) properties.

.source The component that fired this event.

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed.

.
property
Name

The name of the property that changed.

Customizers

Vision Component Customizers
Style Customizer

Examples

Password Field with Question Marks as the Echo Character

Property Name Value

Echo Character ?

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers#VisionComponentCustomizers-StyleCustomizer

Vision - Text Area
General

Component Palette Icon:

Description

Suitable for multi-line text display and editing. Will scroll vertically on demand. Will scroll horizontally if line wrap is off. Only
supports plain-text, no HTML formatting or styled text.

Properties

Name Description Property
Type

Scripting Category

Backgrou
nd Color

The background color of the component. Color .
backgrou
nd

Appearan
ce

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel
(Double), Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Columns The number of columns you expect to display (used as a hint for scrollbars). int .columns Appearan
ce

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Defer
Updates

When true, the 'text' property will not fire updates while typing. It will wait for
the component to lose focus.

boolean .
deferUpd
ates

Behavior

Editable Controls whether or not the user can edit the text within this text area. When
the option is not selected, the text is not editable in the client and the
background of the component will be grey.

boolean .editable Behavior

Enabled If disabled, a component cannot be used. boolean .
compone
ntEnabled

Common

The border is unaffected by rotation.

Font Font of text this component.on Font .font Appearan
ce

Foregrou
nd Color

The foreground color of the component. Color .
foreground

Appearan
ce

Line
Wrap

Should this area wrap lines? boolean .lineWrap Behavior

Mouseov
er Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Reject
Updates
During
Edit

If true, this field will not accept updates from external sources (like DB
bindings) while the user is editing the field.

boolean .
rejectUpd
atesDurin
gEdit

Behavior

Rows The number of rows you expect to display (used as a hint for scrollbars). int .rows Appearan
ce

Styles Contains the component's styles. Dataset .styles Appearan
ce

Tab Size This adjusts the default size of tab characters. int .tabSize Appearan
ce

Text Text of this component. String .text Data

Touchscr
een
Mode

Controls when this input component responds if touchscreen mode is
enabled.

int .
touchscre
enMode

Behavior

Visible If disabled, the component will be hidden. boolean .visible Common

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

This event occurs when a component that can receive input, such as a text box, receives the input focus. This
usually occurs when a user clicks on the component or tabs over to it.

.source The component that fired this event.

.
oppositeCom
ponent

The other component involved in this focus change. That is, the component that lost focus in
order for this one to gain it, or vise versa.

This event occurs when a component that had the input focus lost it to another component.

.source The component that fired this event

.
oppositeCom
ponent

The other component involved in this focus change. That is, the component that lost focus in
order for this one to gain it, or vise versa.

An integer that indicates whether the state was changed to "Selected" (on) or "Deselected" (off). Compare this to
the event object's constants to determine what the new state is.

.
s
o
ur
ce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the constants, the keyTyped event KEY_LOCATION
always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
ro
lD
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

https://legacy-docs.inductiveautomation.com/display/DOC80/Component+Events

Fires when a key is released and the source component has the input focus. Works for all characters, including
non-printable ones, such as SHIFT and F3.

.
s
o
u
rce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the constants in the documentation, the KEY_LOCATION
keyTyped event always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
r
ol
D
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

https://legacy-docs.inductiveautomation.com/display/DOC80/Component+Events

Fires when a key is pressed and then released when source component has the input focus. Only works for
characters that can be printed on the screen.

.
s
o
u
rce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the constants in the documentation, the KEY_LOCATION
keyTyped event always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
r
ol
D
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

https://legacy-docs.inductiveautomation.com/display/DOC80/Component+Events

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component. Note that this event fires aft

 the pressed and released events have fired.er

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

 This event fires when the mouse leaves the space over the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

 This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a property of the source component changes. This works for standard and custom bindable
(dynamic) properties.

.source The component that fired this event.

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed.

.
property
Name

The name of the property that changed.

Customizers

Vision Component Customizers
Style Customizer

Examples

Gallery

Word Wrap and no Scroll Bars until they are needed

Property Name Value

Line Wrap True

Text 468 Characters

Rows 0

Columns 0

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers#VisionComponentCustomizers-StyleCustomizer

Vision - Dropdown List

General

Component Palette Icon:

Dropdown

Watch the Video

Description

The Dropdown component is a great way to display a list of choices in a limited amount of space. The current selection is
shown, and the choices are only presented when the user clicks on the dropdown button. The choices that are shown depend
on the data property. This is a dataset, which can be typed in manually in the Designer, or (more commonly) it can be
populated dynamically from a property binding, often a SQL Query binding.

It is often the case that you want to display choices to the user that are 'dressed up' versions of the actual choices. For
instance, suppose that you are selecting choices for a downtime tracking entry. The choices might be: "Operator Error",
"Machine Malfunction", and "Other". But, you really want to map these choices to some numeric code which is how the choice
is stored. So, for instance, when the user chooses "Other" you really want to get the number 3. The dropdown component is
perfect for such a use. The data property can be set up in one of three fashions, which control how the "selected values"
properties change.

The three ways to set up the data dataset and the corresponding behavior is as follows:

Scenario 1: One column with a set of string values

Column1

Apples

Oranges

Bananas

Drop down displays values from the first column
Selected value is undefined
Selected String Value represents value from first column
Selected Label represents value from first column

Scenario 2: Two column with an integer and string column

Column1 Column2

201 Apples

202 Oranges

203 Bananas

Dropdown displays values from the second column
Selected Value represents a value from the first column
Selected String Value represents value from second column
Selected Label represents value from second column

Scenario 3: Two column with two string columns

Column1 Column2

APL Apples

ORN Oranges

BAN Bananas

https://www.inductiveuniversity.com/videos/dropdown/8.0/8.0

Dropdown displays values from second column
Selected Value is undefined
Selected String Value represents value from first column
Selected Label represents value from second column

The dropdown component can operate in one of three Selection Modes. These modes affect how the dropdown's current
selection (defined by the values of its Selected Value, Selected String Value, and Selected Label properties) behave when the
selection properties are set to values not present in the choice list, or conversely, when the choice list is set to a new dataset
that doesn't contain the current selection:

• . Selected values must always correlate to an option in the list defined by the Data property. If an invalid selection is set Strict
(via a binding or a script), the selection will be set to the values defined by the No Selection properties. If the Data property is
set to a list that does not contain the current selection, the current selection will be reset to the No Selection values.

• . (default) Selected values are independent of the list defined by the Data property. This mode is useful to avoid race Lenient
conditions that can cause problems in Strict mode when both the Data and the Selected Value properties are bound. If the
current selection is not present in the Data list, the read-only property Selected Index will be -1.

• . The same selection rules as defined by Lenient mode, except that the dropdown itself becomes editable, allowing a Editable
user to type in their own arbitrary value. This value will be set as the dropdown's Selected Label.

Properties

Name Description Property
Type

Scripting

Back
groun
d
Color

The background color of the component. Color .
backgrou
nd

Border The border surrounding this component. Options are: No border, Etched (Lowered), Etched (Raised),
Bevel (Lowered), Bevel (Raised), Bevel (Double), Button Border, Field Border, Line Border, and Other
Border.

Border .border

Cursor The mouse cursor to use when hovering over this component. Options are: Default, Crosshair, Text,
Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Data The data which fills up the combo box. Either a one-column or two-column DataSet, with the first column
being the value, and the second being the display

Dataset .data

Dropd
own
Displ
ay
Mode

Changes the dropdown's display. int .mode

Enabl
ed

If disabled, a component cannot be used. boolean .
compone
ntEnabled

Font Font of text this component.on Font .font

Foreg
round
Color

The foreground color of the component. Color .
foreground

Hide
Table
Colu
mns?

A comma separated list of columns to hide from the dropdown table, for example, "0,2" (only used in
table mode).

String .
hideTabl
eColumns

The border is unaffected by rotation.

Horiz
ontal
Align
ment

Determines the alignment of the contents along the X axis. int .
horizontal
Alignment

Max
Row
Count

The number of rows to display in the dropdown list before displaying a scrollbar. int .
maximum
RowCou
nt

Max
Table
Height

The maximum height allowed for the dropdown table (only used in table mode). int .
maxTabl
eHeight

Max
Table
Width

The maximum width allowed for the dropdown table (only used in table mode). int .
maxTabl
eWidth

Mous
eover
Text

The text that is displayed in the tooltip which pops up on mouseover of this component. String .
toolTipTe
xt

Name The name of this component. String .name

No
Selec
tion
Label

The label to display when nothing is selected. String .
noSelecti
onLabel

No
Selec
tion
String

The string value when nothing is selected. String .
noSelecti
onString

No
Selec
tion
Value

The value when nothing is selected. int .
noSelecti
onValue

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality

Row
Height The following feature is new in Ignition version 8.0.16

 to check out the other new featuresClick here

Determines the height of each item in the dropdown list. The default is 16 pixels.

int .
rowHeight

Selec
ted
Index

The index of the selected item. (Read only. Usable in bindings and scripting.) int .
selectedI
ndex

Selec
ted
Label

The currently selected label. String .
selectedL
abel

Selec
ted
String
Value

The currently selected value, if the value column is a string. String .
selected
StringVal
ue

Selec
ted
Value

The currently selected value. Integer .
selected
Value

Selec
tion
Back
ground

The background color of a selected cell in the dropdown list. Color .
selection
Backgrou
nd

Selec
tion
Mode

The selection mode determines the behavior of the dropdown: whether its selected value must strictly be
in the underlying set of choices, whether it is flexible, or if users can type into the component.

int .
selection
Mode

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.16

Show
Table
Head
er?

Selects whether or not the dropdown table header is displayed (only used in table mode). boolean .
showTabl
eHeader

Styles Contains the component's styles. Dataset .styles

Vertic
al
Align
ment

Determines the alignment of the contents along the Y axis. int .
verticalAli
gnment

Visible If disabled, the component will be hidden. boolean .visible

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

This event occurs when a component that can receive input, such as a text box, receives the input focus. This
usually occurs when a user clicks on the component or tabs over to it.

.source The component that fired this event.

.
oppositeCom
ponent

The other component involved in this focus change. That is, the component that lost focus in
order for this one to gain it, or vise versa.

This event occurs when a component that had the input focus lost it to another component.

.source The component that fired this event

.
oppositeCom
ponent

The other component involved in this focus change. That is, the component that lost focus in
order for this one to gain it, or vise versa.

An integer that indicates whether the state was changed to "Selected" (on) or "Deselected" (off). Compare this to
the event object's constants to determine what the new state is.

.
s
o
ur
ce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the constants, the keyTyped event KEY_LOCATION
always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
ro
lD
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

https://legacy-docs.inductiveautomation.com/display/DOC80/Component+Events

Fires when a key is released and the source component has the input focus. Works for all characters, including
non-printable ones, such as SHIFT and F3.

.
s
o
u
rce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the constants in the documentation, the KEY_LOCATION
keyTyped event always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
r
ol
D
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

https://legacy-docs.inductiveautomation.com/display/DOC80/Component+Events

Fires when a key is pressed and then released when source component has the input focus. Only works for
characters that can be printed on the screen.

.
s
o
u
rce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the constants in the documentation, the KEY_LOCATION
keyTyped event always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
r
ol
D
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

https://legacy-docs.inductiveautomation.com/display/DOC80/Component+Events

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component. Note that this event fires aft

 the pressed and released events have fired.er

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

 This event fires when the mouse leaves the space over the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

 This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a property of the source component changes. This works for standard and custom bindable
(dynamic) properties.

.source The component that fired this event.

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed.

.
property
Name

The name of the property that changed.

Customizers

Vision Component Customizers
Style Customizer

Examples

Code Snippet

#The following code will return the first column value of the selection.
#This code would be on a button in the same container as the dropdown.

selRow = event.source.parent.getComponent('Dropdown').selectedIndex
pyData = system.dataset.toPyDataSet(event.source.parent.getComponent('Dropdown').data)
code = pyData[selRow][0]
print code

Display Multiple Columns in Dropdown

Property Name Value

Dropdown Display Mode Table

Show Table Header False

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers#VisionComponentCustomizers-StyleCustomizer

Vision - Slider

General

Component
Palette Icon:

Description

The slider component lets the user drag an indicator along a scale to choose a value in a range. The slider can be configured
to orient horizontally or vertically.

Properties

Name Description Property
Type

Scripting Category

Backg
round
Color

The background color of the component. Color .
backgrou
nd

Appearan
ce

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel (Double),
Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Defer
Updat
es

Only publish updates to value when not actively being changed. boolean .deferred Behavior

Enabl
ed

If disabled, a component cannot be used. boolean .
compone
ntEnabled

Common

Font Font of text this component.on Font .font Appearan
ce

Foregr
ound
Color

The foreground color of the component. Can be chosen from color wheel,
chosen from color palette, or entered as RGB or HSL value. See Color Selector.

Color .
foreground

Appearan
ce

Horizo
ntal
Slider

If true, slider is horizontal, otherwise, it's vertical. boolean .
horizontal

Appearan
ce

Inverte
d?

Specify true to reverse the value range shown for the slider and false to put the
value range in the normal order.

boolean .inverted Behavior

Major
Tick
Spacing

The distance, measured in values, between each major tick mark. int .
majorTick
Spacing

Appearan
ce

The border is unaffected by rotation.

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Maxim
um
Value

The value when the slider is all the way right or up. int .
maximum

Data

Minim
um
Value

The value when the slider is all the way left or down. int .minimum Data

Minor
Tick
Spacing

The distance, measured in values, between each minor tick mark. int .
minorTick
Spacing

Appearan
ce

Mouse
over
Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Paint
Labels?

If true, value labels will be shown. boolean .
paintLab
els

Appearan
ce

Paint
Ticks?

If true, value tick marks will be shown. boolean .
paintTicks

Appearan
ce

Paint
Track?

If true, the track of the slider will be shown. boolean .
paintTrack

Appearan
ce

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Snap
To
Ticks?

Only allows selection of values at the tick marks. boolean .
snapToTi
cks

Behavior

Styles Contains the component's styles. Dataset .styles Appearan
ce

Value The current value of the slider. int .value Data

Visible If disabled, the component will be hidden. boolean .visible Common

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

This event occurs when a component that can receive input, such as a text box, receives the input focus. This
usually occurs when a user clicks on the component or tabs over to it.

.source The component that fired this event.

.
oppositeCom
ponent

The other component involved in this focus change. That is, the component that lost focus in
order for this one to gain it, or vise versa.

This event occurs when a component that had the input focus lost it to another component.

.source The component that fired this event

.
oppositeCom
ponent

The other component involved in this focus change. That is, the component that lost focus in
order for this one to gain it, or vise versa.

An integer that indicates whether the state was changed to "Selected" (on) or "Deselected" (off). Compare this to
the event object's constants to determine what the new state is.

.
s
o
u
rce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the keyTyped event.

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the KEY_LOCATION constants in the documentation.
The keyTyped event always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
r
ol
D
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when a key is released and the source component has the input focus. Works for all characters, including
non-printable ones, such as SHIFT and F3.

.
s
o
u
rce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the keyTyped event.

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the constants in the documentation. KEY_LOCATION
The keyTyped event always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
r
ol
D
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

https://legacy-docs.inductiveautomation.com/display/DOC80/Component+Events

Fires when a key is pressed and then released when source component has the input focus. Only works for
characters that can be printed on the screen.

.
s
o
u
rce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the keyTyped event.

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the constants in the documentation. KEY_LOCATION
The keyTyped event always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
r
ol
D
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

https://legacy-docs.inductiveautomation.com/display/DOC80/Component+Events

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component. Note that this event fires aft

 the pressed and released events have fired.er

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

 This event fires when the mouse leaves the space over the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

 This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a property of the source component changes. This works for standard and custom bindable
(dynamic) properties.

.source The component that fired this event.

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed.

.
property
Name

The name of the property that changed.

Customizers

Vision Component Customizers
Style Customizer

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers#VisionComponentCustomizers-StyleCustomizer

Examples

Code Snippet

#The following code will return the value of the slider's previous value into a variable.
#This code is fired on the property change scripting for this component.

oldValue = event.source.oldValue

Vertical Slider with Border and Blue Text

Property Name Value

Maximum Value 250

Minor Tick Spacing 25

Foreground Color 0,0,255

Major Tick Spacing 50

Horizontal Slider without Tickmarks

Property Name Value

Paint Ticks? False

Minor Tick Spacing 0

Major Tick Spacing 100

Vision - Language Selector
General

Component
Palette Icon:

Description

The Language Selector component gives an easy way to set the user's locale to control display of dates, times, numbers, and
the language used for translations.

Properties

Name Description Property
Type

Scripting Category

Backgro
und
Color

The background color of the component. Color .
backgrou
nd

Appearan
ce

Border The border surrounding this component. No border, Etched (Lowered),
Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel (Double), Button
Border, Field Border, Line Border, and Other Border.

Border .border Common

Font Font of text this component.on Font .font Appearan
ce

Foregro
und
Color

The foreground color of the component. Color .
foreground

Appearan
ce

Mouseo
ver Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Selecte
d
Locale

The display name of the currently selected locale. (Read only. Usable in
bindings and scripting.)

String .
selectedL
ocale

Uncatego
rized

Selectio
n
Backgro
und

The background color of a selected cell in the dropdown list. Color .
selection
Backgrou
nd

Appearan
ce

Visible If disabled, the component will be hidden. boolean .visible Common

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have extension functions associated with it.

The border is unaffected by rotation.

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires the pressed and released events have fired.after

 This event fires when the mouse leaves the space over the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

 This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a property of the source component changes. This works for standard and custom bindable
(dynamic) properties.

.source The component that fired this event.

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed.

.
property
Name

The name of the property that changed.

Customizers

This component does not have any customizers.

Examples

Select Between Languages

Property Name

No property changes made to this component for this example, but there must be at least one Spanish
translation in the system.

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

Vision - Buttons Palette

Button Components
The following components give you push-button options for displaying and writing values.

In This Section ...

Vision - Button
General

Component
Palette Icon:

Description

The Button component is a versatile component, often used for things like opening/closing windows, writing to tags, and
triggering any sort of scripting logic. It can be used for showing status, as well. For example, if you have three buttons, Hand,
Off, and Auto, not only can they set those modes, but their background color can display the current mode, although you'd be
better off using the Multi-State Button for this.

To get buttons to do things, you add an event handler to the actionPerformed event. While you could configure your script on a
mousePressed or mouseClicked event handlers, it is better to use the actionPerformed event. Why? Buttons can also be
activated by tabbing over to them and hitting the space key, or they could be activated by pressing Alt and the button's mnemon
ic character. So, to make sure that your button works in all of these cases, configure your event handler on the actionPerformed
 event, not the mouseClicked event.

Properties

Name Description Property
Type

Scripting Category

Backgro
und
Color

The background color of the button. Can be chosen from color wheel,
chosen from color palette, or entered as RGB or HSL value. See Color
Selector.

Color .
buttonBG

Appearan
ce

Border The border surrounding this component. No Border, Etched (Lowered),
Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel (Double), Button
Border, Field Border, Line Border, and Other Border.

Border .border Common

Border
Painted?

Indicates if the border of this button should be displayed. boolean .
borderPai
nted

Appearan
ce

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Default
Button

If true, this button will be activated when the user presses Enter on the
window.

boolean .
defaultBtn

Behavior

Disabled
Image
Path

The relative path of the image to be displayed when this component is not
enabled.

String .
disabled
Path

Appearan
ce

Enabled If disabled, a component cannot be used. boolean .
compone
ntEnabled

Common

Fill
Area?

Controls whether or not this button's internal area is filled. boolean .
contentAr
eaFilled

Appearan
ce

The border is unaffected by rotation.

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Focusab
le

If a button is not focusable, you will not be able to interact with it with the
keyboard. This means you can't "tab" over to it.

boolean .
focusable

Behavior

Font Font of text this component.on Font .font Appearan
ce

Foregro
und
Color

The foreground color of the component. See Color Selector. Color .
foreground

Appearan
ce

Horizont
al
Alignme
nt

The horizontal alignment of the button's contents (text and/or image). int .
horizontal
Alignment

Layout

Horizont
al Text
Position

The horizontal position of the button's text relative to its image. int .
horizontal
TextPosit
ion

Layout

Icon-
Text
Spacing

The space (in pixels) between the icon (if any) and the text (if any). int .
iconText
Gap

Appearan
ce

Image
Path

The relative path of the image. String .path Appearan
ce

Margin The space between a button's text and its borders. Insets .margin Layout

Mnemon
ic

A single letter that will activate the button using 'ALT- '.mnemonic String .
mnemoni
cChar

Behavior

Mouseo
ver Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Opaque Is this button completely opaque? Most aren't, so this should usually be false. boolean .opaque Common

Quality The data quality code for any bindings on this component. QualityCo
de

.quality Data

Rollover If true, the button may indicate that the mouse is hovering over it. boolean .
rolloverE
nabled

Behavior

Styles Contains the component's styles. Dataset .styles Appearan
ce

Text Text of this component. String .text Appearan
ce

Vertical
Alignme
nt

The vertical alignment of the button's contents (text and/or image). int .
verticalAli
gnment

Layout

Vertical
Text
Position

The vertical position of the button's text relative to its image. int .
verticalTe
xtPosition

Layout

Visible If disabled, the component will be hidden. boolean .visible Common

Deprecated

Data
Quality

The data quality code for any tag bindings on this component. int .
dataQuali
ty

Data

Scripting

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Scripting Functions

Description

Virtually "clicks" the button, meaning that its actionPerformed event handler will run.

Parameters

Nothing

Return

Nothing

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

This event occurs when a component that can receive input, such as a text box, receives the input focus. This
usually occurs when a user clicks on the component or tabs over to it.

.source The component that fired this event

This event occurs when a component that can receive input, such as a text box, receives the input focus. This
usually occurs when a user clicks on the component or tabs over to it.

.source The component that fired this event.

.
oppositeCom
ponent

The other component involved in this focus change. That is, the component that lost focus in
order for this one to gain it, or vise versa.

This event occurs when a component that had the input focus lost it to another component.

.source The component that fired this event

.
oppositeCom
ponent

The other component involved in this focus change. That is, the component that lost focus in
order for this one to gain it, or vise versa.

An integer that indicates whether the state was changed to "Selected" (on) or "Deselected" (off). Compare this to
the event object's constants to determine what the new state is.

.
s
o
ur
ce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the constants, the keyTyped event KEY_LOCATION
always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
ro
lD
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

https://legacy-docs.inductiveautomation.com/display/DOC80/Component+Events

Fires when a key is released and the source component has the input focus. Works for all characters, including
non-printable ones, such as SHIFT and F3.

.
s
o
u
rce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the constants in the documentation, the KEY_LOCATION
keyTyped event always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
r
ol
D
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

https://legacy-docs.inductiveautomation.com/display/DOC80/Component+Events

Fires when a key is pressed and then released when source component has the input focus. Only works for
characters that can be printed on the screen.

.
s
o
u
rce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the constants in the documentation, the KEY_LOCATION
keyTyped event always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
r
ol
D
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

https://legacy-docs.inductiveautomation.com/display/DOC79/Component+Events#ComponentEvents-JavaKeys

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component. Note that this event fires aft

 the pressed and released events have fired.er

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

 This event fires when the mouse leaves the space over the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

 This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a property of the source component changes. This works for standard and custom bindable
(dynamic) properties.

.source The component that fired this event.

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed.

.
property
Name

The name of the property that changed.

Customizers

Component Customizers
Style Customizer

Examples

Styled Button

Property Name Value

Border Etched (Raised)

Font Dialog, Bold, 18

Text Press Me!

Image Path Builtin/icons/48/check2.png

Styled Button

Property Name Value

Border No Border

Fill Area? False

Border Painted? False

Text None

Image Path Builtin/icons/48/stop.png

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers#VisionComponentCustomizers-StyleCustomizer

Vision - 2 State Toggle
General

Component
Palette Icon:

Description

This button is similar to the basic Toggle Button, but more finely tuned to work in realistic controls environments. Use this
button any time you want to toggle a value between two states, such as On/Off, Stop/Run, etc. If you have more than two
states (for example, Hand/Off/Auto, use the Multi-State Button).

If you have a tag whose value you want to toggle between 2 values (like zero and one), you can simply drag and drop the tag
onto the button. This will bind both the Control Value and Indicator Value properties to that tag. Now set the State 1 Value and
State 2 Value to your two states (they default to zero and one, respectively). Lastly, use the Styles Customizer to define the
styles for your two states.

This button has four integer values that you use to set it up: the Control Value, the Indicator Value, and values that define the 2
different states: State 1 Value and State 2 Value. Every time you press the button, one of the state values is written to the
control value. The Indicator Value is used to determine which state you're in. For example, suppose that State 1 Value was
zero and State 2 Value is one. If Indicator Value is zero and you press the button, it'll write a one to the Control Value. This
means that if the Indicator value never changes, the button will continue to write the same value to the Control Value. The Style
of the component is typically driven by the read-only property Current State. Current State equals zero when Indicator
Value=State 1 Value and one otherwise.

Properties

Name Description Property
Type

Scripting Category

Backgro
und
Color

The background color of the button. Can be chosen from color wheel,
chosen from color palette, or entered as or value. RGB HSL See Color
Selector.

Color .
buttonBG

Appearan
ce

Border The border surrounding this component. No border, Etched (Lowered),
Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel (Double), Button
Border, Field Border, Line Border, and Other Border.

Border .border Common

Border
Painted?

Indicates if the border of this button will be displayed. boolean .
borderPai
nted

Appearan
ce

Confirm
Text

The message to ask the user if confirmation is turned on. String .
confirmT
ext

Behavior

Confirm? If true, a confirmation box will be shown. boolean .confirm Behavior

Control
Value

Bind this to the tag that controls the state. (Typically, this is bound to the
same location as).Indicator Value

int .
controlVa
lue

Data

Current
State

Read-only property that shows what state (0 or 1) this button is currently in. int .state Data

The border is unaffected by rotation.

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Disabled
Image
Path

The relative path of the image to be displayed when this component is not
enabled.

String .
disabled
Path

Appearan
ce

Enabled If disabled, a component cannot be used. boolean .
compone
ntEnabled

Common

Fill
Area?

Controls whether or not this button's internal area is filled. boolean .
contentAr
eaFilled

Appearan
ce

Focusab
le

If a button is not focusable, you will not be able to interact with it with the
keyboard. This means you can't "tab" over to it.

boolean .
focusable

Behavior

Font Font of text this component.on Font .font Appearan
ce

Foregro
und
Color

The foreground color of the component. See Color Selector. Color .
foreground

Appearan
ce

Horizont
al
Alignme
nt

The horizontal alignment of the button's contents (text and/or image) int .
horizontal
Alignment

Layout

Horizont
al Text
Position

The horizontal position of the button's text relative to its image. int .
horizontal
TextPosit
ion

Layout

Icon-
Text
Spacing

The space (in pixels) between the icon (if any) and the text (if any). int .
iconText
Gap

Appearan
ce

Image
Path

The relative path of the image. String .path Appearan
ce

Indicator
Value

Bind this to the tag that indicates the current state. (If you don't have
separate tags for status and control, this is bound to the same location as Co

)ntrol Value

int .
indicator
Value

Data

Margin The space between a button's text and its borders. Insets .margin Layout

Mnemon
ic

A single letter that will activate the button using 'ALT- '.mnemonic String .
mnemoni
cChar

Behavior

Mouseo
ver Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Rollover If true, the button may indicate that the mouse is hovering over it. boolean .
rolloverE
nabled

Behavior

State 1
Value

The value that will be written to when the button is pushed in controlValue
state 2.

int .
state1Val
ue

Data

State 2
Value

The value that will be written to when the button is pushed in controlValue
state 1.

int .
state2Val
ue

Data

Styles Contains the component's styles. Dataset .styles Appearan
ce

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Text Text of this component. String .text Appearan
ce

Vertical
Alignme
nt

The vertical alignment of the button's contents (text and/or image). int .
verticalAli
gnment

Layout

Vertical
Text
Position

The vertical position of the button's text relative to its image. int .
verticalTe
xtPosition

Layout

Visible If disabled, the component will be hidden. boolean .visible Common

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Opaque Is this button completely opaque? Most aren't, so this should usually be false. boolean .opaque Deprecat
ed

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

This event occurs when a component that can receive input, such as a text box, receives the input focus. This
usually occurs when a user clicks on the component or tabs over to it.

.source The component that fired this event

This event occurs when a component that can receive input, such as a text box, receives the input focus. This
usually occurs when a user clicks on the component or tabs over to it.

.source The component that fired this event.

.
oppositeCom
ponent

The other component involved in this focus change. That is, the component that lost focus in
order for this one to gain it, or vise versa.

This event occurs when a component that had the input focus lost it to another component.

.source The component that fired this event

.
oppositeCom
ponent

The other component involved in this focus change. That is, the component that lost focus in
order for this one to gain it, or vise versa.

An integer that indicates whether the state was changed to "Selected" (on) or "Deselected" (off). Compare this to
the event object's constants to determine what the new state is.

.
s
o
ur
ce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the constants, the keyTyped event KEY_LOCATION
always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
ro
lD
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

https://legacy-docs.inductiveautomation.com/display/DOC80/Component+Events

Fires when a key is released and the source component has the input focus. Works for all characters, including
non-printable ones, such as SHIFT and F3.

.
s
o
u
rce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the constants in the documentation, the KEY_LOCATION
keyTyped event always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
r
ol
D
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

https://legacy-docs.inductiveautomation.com/display/DOC79/Component+Events#ComponentEvents-JavaKeys

Fires when a key is pressed and then released when source component has the input focus. Only works for
characters that can be printed on the screen.

.
s
o
u
rce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the constants in the documentation, the KEY_LOCATION
keyTyped event always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
r
ol
D
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

https://legacy-docs.inductiveautomation.com/display/DOC80/Component+Events

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component. Note that this event fires aft

 the pressed and released events have fired.er

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

 This event fires when the mouse leaves the space over the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

 This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a property of the source component changes. This works for standard and custom bindable
(dynamic) properties.

.source The component that fired this event.

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed.

.
property
Name

The name of the property that changed.

Customizers

Component Customizers
Style Customizer

Examples

Vertical Slider with Border and Blue Text

Property
Name

Dataset

Styles

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers#VisionComponentCustomizers-StyleCustomizer

Vision - Multi-State Button
General

Component
Palette Icon:

Description

This button is really a series of two or more buttons, arranged in a column, row, or grid. Each button represents an integer-
valued state. Each state defines two styles for a button: the selected style, and the unselected style. Each button is
automatically displayed with the correct style based on the current state (the value of Indicator Value). When a button is
pressed then released, its state's value is written to the Control Value.

To configure a Multi-State Button, simply drag a Tag that represents your state onto the Multi-State Button. This will bind both
the Control Value and Indicator Value to that Tag. Now open up the Multi-State Button customizer, and define your states: their
order, values and styles. Lastly choose if you want the buttons to be a column, row, or grid by setting the Display Style property.

Properties

Name Description Property
Type

Scripting Category

Confirm
Text

The message to ask the user if Confirm is turned on. Default is "Are you
sure?"

string .
confirmT
ext

Behavior

Confirm? If true, a confirmation box will be shown. boolean .confirm Behavior

Control
Value

Bind this to the tag that controls the state. (Typically, this is bound to the
same location as Indicator Value.)

int .
controlVa
lue

Data

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Display
Style

The display style (rows or columns) for this N-state button. int .
displaySt
yle

Appearan
ce

Enabled If disabled, a component cannot be used. boolean .
compone
ntEnabled

Common

Focusa
ble

If a button is not focusable, you will not be able to interact with it with the
keyboard. This means you can't "tab" over to it.

boolean .
focusable
Enabled

Behavior

Font Font of text this component.on Font .font Appearan
ce

Grid
Cols

The number of columns if the Display Style is set to "Grid" mode. int .gridCols Appearan
ce

Grid
Rows

The number of rows if the Display Style is set to "Grid" mode. int .
gridRows

Appearan
ce

Horizon
tal Gap

The horizontal spacing between buttons. int .hGap Appearan
ce

Indicato
r Value

Bind this to the tag that indicates the current state. (Typically, this is bound to
the same location as Control Value.)

int .
indicator
Value

Data

Mouseo
ver Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Quality The data quality code for any tag bindings on this component. QualityCo
de

.quality Data

Rollover If true, the button may indicate that the mouse is hovering over it. boolean .
rolloverE
nabled

Behavior

States A Dataset that stores the information for the different states. Dataset .states Behavior

Vertical
Gap

The vertical spacing between buttons. int .vGap Appearan
ce

Visible If disabled, the component will be hidden. boolean .visible Common

Deprecated Properties

Data
Quality

The data quality code for any tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

An integer that indicates whether the state was changed to "Selected" (on) or "Deselected" (off). Compare this to
the event object's constants to determine what the new state is.

.
s
o
ur
ce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the KEY_LOCATION constants, the keyTyped event
always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
ro
lD
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when a key is released and the source component has the input focus. Works for all characters, including
non-printable ones, such as SHIFT and F3.

.
s
o
u
rce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the KEY_LOCATION constants in the documentation, the
keyTyped event always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
r
ol
D
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when a key is pressed and then released when source component has the input focus. Only works for
characters that can be printed on the screen.

.
s
o
u
rce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the KEY_LOCATION constants in the documentation, the
keyTyped event always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
r
ol
D
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component. Note that this event fires aft

 the pressed and released events have fired.er

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

 This event fires when the mouse leaves the space over the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

 This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a property of the source component changes. This works for standard and custom bindable
(dynamic) properties.

.source The component that fired this event.

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed.

.
property
Name

The name of the property that changed.

Customizers

The Multi-State Button has its own Customizer. Here, you can define your states, change the order, values, and styles. You
You'll notice can organize your buttons to be a column, row, or grid by setting the property in the Property Editor. Display Style

that the Multi-State Button Customizer already has some preset states and pre-defined styles to help you get started.

The Multi-State Button works by defining a set of visual styles that change based on a single State. When one of the buttons is
pressed, its state value is written to the Control Value property and the Indicator value, and then the visual style will change.

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

Multi-State Button Customizer Property Descriptions

Property Description

Preview Lets you preview each button's display style, states, and the selected style and unselected style as you
configure it.

States Shows a list of all possible states. You can add, remove, and the change the order of each state listed. Each
state also defines two visual styles for a button: Selected Style and Unselected Style.

Selected
Style

Shows the visual style when the button is selected. You can configure the styles you want to change: Text, Back
ground Color, Foreground Color, Border type, and even add an Image.

Unselect
ed Style

Shows the visual style when the button is not selected. You can configure the styles you want to change: Text, B
ackground Color, Foreground Color, Border type, and even add an Image.

Text Text displayed on the button.

Backgrou
nd Color

Color of the button

Foregrou
nd Color

Color of the text

Border Type of border around the button

Image
Path

Relative path name for an image on the button

For additional customizers, see:

Vision Component Customizers
Style Customizer

Examples

The Multi-State Button component in this example has its property set to . Each button represents an Display Style Grid
integer-valued state. Each state defines two styles for a button: the selected style, and the unselected style. When a button is
pressed, its state's value is written to the submit your changes property. The displayed state is based on the Indicator Value
property.

Stylized Multi-State Button

Property
Name

Value

Display
Style

Grid

Styles

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers

Vision - One-Shot Button
General

Component
Palette Icon:

Description

The One-Shot button is great for telling a PLC to do something. It simply writes a value, and then waits for it to be reset by the
PLC before it is available again. This is only applicable when the PLC is programmed to reset the value after reading it. If your
PLC expects the HMI to reset the bit, use the Momentary Button. Also note that this component is considered safer than the
momentary button, because it receives positive feedback from the PLC that the signal was received, avoiding the timing
dangers associated with a Momentary Button.

To use the One-Shot button, bind an OPC tag bidirectionally to the button's Value property. When clicked, the button will write
the value in its Set Value property to the Value property. Typically, Set Value is 1, and Value is 0 in a ready state, although the
logic could be reversed or change simply by altering Set Value. The button can disable itself when it is writing, and will display
different text. Note that the button considers itself to be writing whenever Value equals Set Value - you must make sure that the
PLC resets this value, otherwise the button will remain in a writing state.

Properties

Name Description Property
Type

Scripting Category

Backgro
und
Color

The background color of the button. Can be chosen from color wheel, chosen
from color palette, or entered as or value. RGB HSL See Color Selector.

Color .
buttonBG

Appearan
ce

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel
(Double), Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Border
Painted?

Indicates whether the border of this button will be displayed. boolean .
borderPai
nted

Appearan
ce

Confirm
Text

The message to ask the user if confirmation is turned on. String .
confirmT
ext

Behavior

Confirm? If true, a confirmation box will be shown. boolean .confirm Behavior

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Disable
While
Writing

If true, the button will be disabled while it is writing. boolean .
disableW
hileWriting

Behavior

Disable
d
Image
Path

The relative path of the image to be displayed when this component is not
enabled.

String .
disabled
Path

Appearan
ce

The border is unaffected by rotation.

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Enabled If disabled, a component cannot be used. boolean .
compone
ntEnabled

Common

Fill
Area?

Controls whether or not this button's internal area is filled boolean .
contentAr
eaFilled

Appearan
ce

Focusa
ble

If a button is not focusable, you will not be able to interact with it with the
keyboard. This means you can't "tab" over to it.

boolean .
focusable

Behavior

Font Font of text this componenton Font .font Appearan
ce

Foregro
und
Color

The foreground color of the component. Can be chosen from color wheel,
chosen from color palette, or entered as RGB or HSL value. See Color
Selector.

Color .
foreground

Appearan
ce

Horizont
al
Alignme
nt

The horizontal alignment of the button's contents (text and/or image). int .
horizontal
Alignment

Layout

Horizont
al Text
Position

The horizontal position of the button's text relative to its image. int .
horizontal
TextPosit
ion

Layout

Icon-
Text
Spacing

The space (in pixels) between the icon (if any) and the text (if any). int .
iconText
Gap

Appearan
ce

Idle
Text

The text of the button while its value is not being written. String .
normalTe
xt

Behavior

Image
Path

The relative path of the image. String .path Appearan
ce

Margin The space between a button's text and its borders. Insets .margin Layout

Mnemo
nic

A single letter that will activate the button using 'ALT-<i>mnemonic</i>'. String .
mnemoni
cChar

Behavior

Mouseo
ver Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Opaque Is this button completely opaque? Most aren't, so this should usually be false. boolean .opaque Common

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Rollover If true, the button may indicate that the mouse is hovering over it. boolean .
rolloverE
nabled

Behavior

Set
Value

The value to set the control value to when the button is pushed. int .setValue Data

Styles Contains the component's styles. Dataset .styles Appearan
ce

Value The current value. Should be bound bi-directionally to a tag. int .value Data

Vertical
Alignme
nt

The vertical alignment of the button's contents (text and/or image). int .
verticalAli
gnment

Layout

Vertical
Text
Position

The vertical position of the button's text relative to its image. int .
verticalTe
xtPosition

Layout

Visible If disabled, the component will be hidden. boolean .visible Common

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Writing
Text

The text of the button while its value is being written. String .
writePen
dingText

Behavior

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

This event is fired when the 'action' of the component occurs. This means when somebody selects the radio
button.

.source The component that fired this event

This event occurs when a component that can receive input, such as a text box, receives the input focus. This
usually occurs when a user clicks on the component or tabs over to it.

.source The component that fired this event.

.
oppositeCom
ponent

The other component involved in this focus change. That is, the component that lost focus in
order for this one to gain it, or vise versa.

This event occurs when a component that had the input focus lost it to another component.

.source The component that fired this event

.
oppositeCom
ponent

The other component involved in this focus change. That is, the component that lost focus in
order for this one to gain it, or vise versa.

An integer that indicates whether the state was changed to "Selected" (on) or "Deselected" (off). Compare this to
the event object's constants to determine what the new state is.

.
s
o
ur
ce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the KEY_LOCATION constants, the keyTyped event
always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
ro
lD
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when a key is released and the source component has the input focus. Works for all characters, including
non-printable ones, such as Shift and F3.

.
s
o
u
rce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the KEY_LOCATION constants in the documentation, the
keyTyped event always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
r
ol
D
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when a key is pressed and then released when source component has the input focus. Only works for
characters that can be printed on the screen.

.
s
o
u
rce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the KEY_LOCATION constants in the documentation, the
keyTyped event always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
r
ol
D
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires after the pressed and released events have fired.

 This event fires when the mouse leaves the space over the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

 This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a property of the source component changes. This works for standard and custom bindable
(dynamic) properties.

.source The component that fired this event.

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed.

.
property
Name

The name of the property that changed.

Customizers

Vision Component Customizers
Style Customizer

Examples

One Shot Button

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers#VisionComponentCustomizers-StyleCustomizer

Vision - Momentary Button
General

Component
Palette Icon:

Description

Momentary buttons are used to set a value for either a fixed amount of time, or however long the button remains held down,
whichever is longer. Once the button is released, or the minimum time expires, the value is reset.

The momentary button uses its Control Value property to affect the underlying data. Typically, this property uses a bidirectional
tag binding to an OPC tag. When pressed, it will write its On Value to the Control Value property. When released, it will either
write Off Value to the Control Value immediately, or wait until On Time has elapsed (since the pressed event).

The button's Indicator Value, which is typically bound to the same OPC tag as Control Value, is used to draw an "active"
indication border around the button. This gives the operator positive feedback that the value has written successfully. It also
lets an operator at one terminal know if an operator at a different terminal is using the button currently.

Properties

Name Description Property
Type

Scripting Category

Backgro
und
Color

 The background color of the button. Can be chosen from color wheel,
chosen from color palette, or entered as RGB or HSL value. See Color
Selector.

Color .
buttonBG

Appearan
ce

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel
(Double), Button Border, Field Border, Line Border, and Other Border.

Border .
innerBord
er

Common

Control
Value

Bind this to the tag that you want to control. (Typically, this is bound to the
same location as).Indicator Value

int .
controlVa
lue

Data

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Disable
d
Image
Path

The relative path of the image to be displayed when this component is not
enabled.

String .
disabled
Path

Appearan
ce

Enabled If disabled, a component cannot be used. boolean .
compone
ntEnabled

Common

If the client is closed before the period on the Momentary Button expires, then it is possible for the button to remain Min Hold Time
in the ON or latched state. Thus, if the Control Value property of the component is bound to a tag, the tag will remain in the ON
state after the client is closed. Some logic or functionality will need to be applied to reset the tag in this scenario: typically the PLC
is relied on in these scenarios to reset the value

Alternatively, you may wish to use a instead, as that component was designed for use in situations where Vision - One-Shot Button
the PLC will reset the value.

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Fill
Area?

Controls whether or not this button's internal area is filled. boolean .
contentAr
eaFilled

Appearan
ce

Font Font of text on this component. Font .font Appearan
ce

Foregro
und
Color

The foreground color of the component. Can be chosen from color wheel,
chosen from color palette, or entered as RGB or HSL value. See Color
Selector.

Color .
foreground

Appearan
ce

Horizont
al
Alignme
nt

The horizontal alignment of the button's contents (text and/or image). int .
horizontal
Alignment

Layout

Horizont
al Text
Position

The horizontal position of the button's text relative to its image. int .
horizontal
TextPosit
ion

Layout

Icon-
Text
Spacing

The space (in pixels) between the icon (if any) and the text (if any). int .
iconText
Gap

Appearan
ce

Image
Path

The relative path of the image. String .path Appearan
ce

Indicato
r Value

Bind this to the tag that indicates the current state of the control value.
(Typically, this is bound to the same location as <i>Control Value</i>).

int .
indicator
Value

Data

Indicato
r Width

The width of the indication border that shows whether or not the indicator
value is currently set.

int .
indicator
Width

Appearan
ce

Max
Hold
Time

The maximum amount of time to keep the control value at the "On Value".
When set to 0, this property is ignored.

int .
maxOnTi
me

Behavior

Min
Hold
Time

The minimum amount of time to keep the control value at the "On Value". int .onTime Behavior

Mnemo
nic

A single letter that will activate the button using 'ALT-<i>mnemonic</i>'. String .
mnemoni
cChar

Behavior

Mouseo
ver Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Off
Color

The color of the indicator border when the indicator value is off. Can be
chosen from color wheel, chosen from color palette, or entered as RGB or HSL
 value. See Color Selector.

Color .offColor Appearan
ce

Off
Value

The value that will be written to the Control Value on mouse-up. int .offValue Behavior

On
Color

The color of the indicator border when the indicator value is on. Can be
chosen from color wheel, chosen from color palette, or entered as RGB or HSL
 value. See Color Selector.

Color .onColor Appearan
ce

On
Value

The value that will be written to the Control Value on mouse-down. int .onValue Behavior

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Rollover? If true, the button may indicate that the mouse is hovering over it. boolean .
rolloverE
nabled

Appearan
ce

Styles Contains the component's styles. Dataset .styles Appearan
ce

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Text Text of this component. String .text Appearan
ce

Vertical
Alignme
nt

The vertical alignment of the button's contents (text and/or image). int .
verticalAli
gnment

Layout

Vertical
Text
Position

The vertical position of the button's text relative to its image. int .
verticalTe
xtPosition

Layout

Visible If disabled, the component will be hidden. boolean .visible Common

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

This event is fired when the 'action' of the component occurs. This means when somebody selects the radio
button.

.source The component that fired this event

This event occurs when a component that can receive input, such as a text box, receives the input focus. This
usually occurs when a user clicks on the component or tabs over to it.

.source The component that fired this event.

.
oppositeCom
ponent

The other component involved in this focus change. That is, the component that lost focus in
order for this one to gain it, or vise versa.

This event occurs when a component that had the input focus lost it to another component.

.source The component that fired this event

.
oppositeCom
ponent

The other component involved in this focus change. That is, the component that lost focus in
order for this one to gain it, or vise versa.

An integer that indicates whether the state was changed to "Selected" (on) or "Deselected" (off). Compare this to
the event object's constants to determine what the new state is.

.
s
o
ur
ce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the KEY_LOCATION constants, the keyTyped event
always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
ro
lD
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when a key is released and the source component has the input focus. Works for all characters, including
non-printable ones, such as SHIFT and F3.

.
s
o
u
rce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the KEY_LOCATION constants in the documentation, the
keyTyped event always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
r
ol
D
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when a key is pressed and then released when source component has the input focus. Only works for
characters that can be printed on the screen.

.
s
o
u
rce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the KEY_LOCATION constants in the documentation, the
keyTyped event always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
r
ol
D
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component. Note that this event fires aft

 the pressed and released events have fired.er

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

 This event fires when the mouse leaves the space over the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

 This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a property of the source component changes. This works for standard and custom bindable
(dynamic) properties.

.source The component that fired this event.

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed.

.
property
Name

The name of the property that changed.

Customizers

Vision Component Customizers
Style Customizer

Examples

Vertical Slider with Border and Blue Text

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers#VisionComponentCustomizers-StyleCustomizer

Vision - Toggle Button
General

Component
Palette Icon:

Description

The Toggle button represents a bit: on (selected) or off (not selected). Visually the button looks down or depressed when it is
selected, and up when it is not selected. Logically, this component is very similar to the Check Box component. Note that for
implementing a controls screen, the 2 State Toggle is usually more appropriate than this component.

Properties

Name Description Property
Type

Scripting Category

Backgr
ound
Color

The background color of the button. Can be chosen from color wheel, chosen
from color palette, or entered as RGB or HSL value. See Color Selector.

Color .
buttonBG

Appearan
ce

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel (Double),
Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Border
Painte
d?

Indicates whether the border of this button is displayed. boolean .
borderPai
nted

Appearan
ce

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Enabled If disabled, a component cannot be used. boolean .
compone
ntEnabled

Common

Fill
Area?

Controls whether or not this button's internal area is filled. boolean .
contentAr
eaFilled

Appearan
ce

Focusa
ble

If a button is not focusable, you will not be able to interact with it with the
keyboard. This means you can't "tab" over to it.

boolean .
focusable

Behavior

Font Font of text this component.on Font .font Appearan
ce

Foregr
ound
Color

The foreground color of the component. Can be chosen from color wheel,
chosen from color palette, or entered as RGB or HSL value. See Color
Selector.

Color .
foreground

Appearan
ce

Image
Path

The relative path of the image. String .path Appearan
ce

Label Text displayed on this button. String .text Appearan
ce

The border is unaffected by rotation.

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Margin The space between a button's text and its borders. Insets .margin Layout

Mouse
over
Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Opaque Set this to false if you want the button to be completely opaque. boolean .opaque Appearan
ce

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Rollove
r?

If true, the button may indicate that the mouse is hovering over it. boolean .
rolloverE
nabled

Appearan
ce

Selected State of this toggle button. boolean .selected Data

Selecte
d
Image
Path

The relative path of the image to be displayed when this component is
selected (toggled on).

String .
selected
Path

Appearan
ce

Styles Contains the component's styles. Dataset .styles Appearan
ce

Visible If disabled, the component will be hidden. boolean .visible Common

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

This event is fired when the 'action' of the component occurs. This means when somebody selects the radio
button.

.source The component that fired this event

This event occurs when a component that can receive input, such as a text box, receives the input focus. This
usually occurs when a user clicks on the component or tabs over to it.

.source The component that fired this event.

.
oppositeCom
ponent

The other component involved in this focus change. That is, the component that lost focus in
order for this one to gain it, or vise versa.

This event occurs when a component that had the input focus lost it to another component.

.source The component that fired this event

.
oppositeCom
ponent

The other component involved in this focus change. That is, the component that lost focus in
order for this one to gain it, or vise versa.

This event occurs when the state of the component changes, as when the radio button goes from selected to not
selected.

.source The component that fired this event

.stateChange An integer that indicates what the state was changed to.

SELECTED The constant that the stateChange property will be equal to if this event represents a
selection.

DESELECTED The constant that the stateChange property will be equal to if this event represents a de-
selection.

An integer that indicates whether the state was changed to "Selected" (on) or "Deselected" (off). Compare this to
the event object's constants to determine what the new state is.

.
s
o
ur
ce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the KEY_LOCATION constants, the keyTyped event
always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
ro
lD
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when a key is released and the source component has the input focus. Works for all characters, including
non-printable ones, such as SHIFT and F3.

.
s
o
u
rce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the KEY_LOCATION constants in the documentation, the
keyTyped event always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
r
ol
D
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when a key is pressed and then released when source component has the input focus. Only works for
characters that can be printed on the screen.

.
s
o
u
rce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the KEY_LOCATION constants in the documentation, the
keyTyped event always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
r
ol
D
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component. Note that this event fires aft

 the pressed and released events have fired.er

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

 This event fires when the mouse leaves the space over the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

 This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a property of the source component changes. This works for standard and custom bindable
(dynamic) properties.

.source The component that fired this event.

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed.

.
property
Name

The name of the property that changed.

Customizers

Vision Component Customizers
Style Customizer

Examples

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers#VisionComponentCustomizers-StyleCustomizer

Vision - Check Box

General

Component
Palette Icon:

Description

A CheckBox is a familiar component that represents a bit - it is either on (selected) or off (not selected). It is functionally
equivalent to the Toggle Button component.

Properties

Name Description Property
Type

Scripting Category

Backgr
ound
Color

The background color of the component. Can be chosen from color wheel,
chosen from color palette, or entered as RGB or HSL value. See Color
Selector.

Color .
backgrou
nd

Appearan
ce

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel (Double),
Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Enabled If disabled, a component cannot be used. boolean .
compone
ntEnabled

Common

Fill
Backgr
ound

If true, the label's background color will be drawn. If false, it will have a
transparent background.

boolean .
fillBackgr
ound

Appearan
ce

Focusa
ble

If a button is not focusable, you will not be able to interact with it with the
keyboard. This means you can't "tab" over to it.

boolean .
focusable

Behavior

Font Font of text this component.on Font .font Appearan
ce

Foregr
ound
Color

The foreground color of the component. Can be chosen from color wheel,
chosen from color palette, or entered as RGB or HSL value. See Color
Selector.

Color .
foreground

Appearan
ce

Horizo
ntal
Alignm
ent

The horizontal alignment of the button's contents (text and/or image). int .
horizontal
Alignment

Layout

Margin The internal margin that provides padding for the contents of this button. Insets .margin Appearan
ce

The border is unaffected by rotation.

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Mouse
over
Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Rollover If true, the button may indicate that the mouse is hovering over it. boolean .
rolloverE
nabled

Behavior

Selected The current state of the checkbox. boolean .selected Data

Styles Contains the component's styles. Dataset .styles Appearan
ce

Text The text displayed on the checkbox. String .text Appearan
ce

Vertical
Alignm
ent

The vertical alignment of the button's contents (text and/or image). int .
verticalAli
gnment

Layout

Visible If disabled, the component will be hidden. boolean .visible Common

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

This event is fired when the 'action' of the component occurs. This means when somebody selects the radio
button.

.source The component that fired this event

This event occurs when a component that can receive input, such as a text box, receives the input focus. This
usually occurs when a user clicks on the component or tabs over to it.

.source The component that fired this event.

.
oppositeCom
ponent

The other component involved in this focus change. That is, the component that lost focus in
order for this one to gain it, or vise versa.

This event occurs when a component that had the input focus lost it to another component.

.source The component that fired this event

.
oppositeCom
ponent

The other component involved in this focus change. That is, the component that lost focus in
order for this one to gain it, or vise versa.

This event occurs when the state of the component changes, as when the radio button goes from selected to not
selected.

.source The component that fired this event

.stateChange An integer that indicates what the state was changed to.

SELECTED The constant that the stateChange property will be equal to if this event represents a
selection.

DESELECTED The constant that the stateChange property will be equal to if this event represents a de-
selection.

An integer that indicates whether the state was changed to "Selected" (on) or "Deselected" (off). Compare this to
the event object's constants to determine what the new state is.

.
s
o
ur
ce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the KEY_LOCATION constants, the keyTyped event
always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
ro
lD
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when a key is released and the source component has the input focus. Works for all characters, including
non-printable ones, such as SHIFT and F3.

.
s
o
u
rce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the KEY_LOCATION constants in the documentation, the
keyTyped event always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
r
ol
D
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when a key is pressed and then released when source component has the input focus. Only works for
characters that can be printed on the screen.

.
s
o
u
rce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the KEY_LOCATION constants in the documentation, the
keyTyped event always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
r
ol
D
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component. Note that this event fires aft

 the pressed and released events have fired.er

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

 This event fires when the mouse leaves the space over the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

 This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a property of the source component changes. This works for standard and custom bindable
(dynamic) properties.

.source The component that fired this event.

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed.

.
property
Name

The name of the property that changed.

Customizers

Vision Component Customizers
Style Customizer

Examples

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers#VisionComponentCustomizers-StyleCustomizer

Vision - Radio Button
General

Component
Palette Icon:

Description

The radio button is similar to the CheckBox component, except for one special property. All radio buttons in the same Container
 (including the Root Container) will automatically be mutually exclusive. This means that only one radio button can be selected

Dropdown Listsat a time. Radio buttons are a good way to let the user choose just one of a number of options. are another
good way to do this.

Properties

Name Description Property
Type

Scripting category

Backgr
ound
Color

The background color of the component. Can be chosen from color wheel,
chosen from color palette, or entered as RGB or HSL value. See Color Selector
.

Color .
backgrou
nd

Appeara
nce

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel (Double),
Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Enabled If disabled, a component cannot be used. boolean .
compone
ntEnabled

Common

Fill
Backgr
ound

If true, the label's background color will be drawn. If false, it will have a
transparent background.

boolean .
fillBackgr
ound

Appeara
nce

Focusa
ble

If a button is not focusable, you will not be able to interact with it with the
keyboard. This means you can't "tab" over to it.

boolean .
focusable

Behavior

Font Font of text this component.on Font .font Appeara
nce

Foregr
ound
Color

The foreground color of the component. Can be chosen from color wheel,
chosen from color palette, or entered as RGB or HSL value. See Color Selector
.

Color .
foreground

Appeara
nce

Horizo
ntal
Alignm
ent

The horizontal alignment of the button's contents (text and/or image). int .
horizontal
Alignment

Layout

Margin The internal margin that provides padding for the contents of this button. Insets .margin Appeara
nce

The border is unaffected by rotation.

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Mouse
over
Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Rollover If true, the button may indicate that the mouse is hovering over it. boolean .
rolloverE
nabled

Behavior

Selected The current state of the RadioButton. boolean .selected Data

Styles Contains the component's styles. Dataset .styles Appeara
nce

Text Text of this component. String .text Appeara
nce

Vertical
Alignm
ent

The vertical alignment of the button's contents (text and/or image). int .
verticalAli
gnment

Layout

Visible If disabled, the component will be hidden. boolean .visible Common

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

This event is fired when the 'action' of the component occurs. This means when somebody selects the radio
button.

.source The component that fired this event

This event occurs when a component that can receive input, such as a text box, receives the input focus. This
usually occurs when a user clicks on the component or tabs over to it.

.source The component that fired this event.

.
oppositeCom
ponent

The other component involved in this focus change. That is, the component that lost focus in
order for this one to gain it, or vise versa.

This event occurs when a component that had the input focus lost it to another component.

.source The component that fired this event

.
oppositeCom
ponent

The other component involved in this focus change. That is, the component that lost focus in
order for this one to gain it, or vise versa.

This event occurs when the state of the component changes, as when the radio button goes from selected to not
selected.

.source The component that fired this event

.stateChange An integer that indicates what the state was changed to.

SELECTED The constant that the stateChange property will be equal to if this event represents a
selection.

DESELECTED The constant that the stateChange property will be equal to if this event represents a de-
selection.

An integer that indicates whether the state was changed to "Selected" (on) or "Deselected" (off). Compare this to
the event object's constants to determine what the new state is.

.
s
o
ur
ce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the KEY_LOCATION constants, the keyTyped event
always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
ro
lD
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when a key is released and the source component has the input focus. Works for all characters, including
non-printable ones, such as SHIFT and F3.

.
s
o
u
rce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the KEY_LOCATION constants in the documentation, the
keyTyped event always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
r
ol
D
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when a key is pressed and then released when source component has the input focus. Only works for
characters that can be printed on the screen.

.
s
o
u
rce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the KEY_LOCATION constants in the documentation, the
keyTyped event always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
r
ol
D
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component. Note that this event fires aft

 the pressed and released events have fired.er

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

 This event fires when the mouse leaves the space over the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

 This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a property of the source component changes. This works for standard and custom bindable
(dynamic) properties.

.source The component that fired this event.

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed.

.
property
Name

The name of the property that changed.

Customizers

Vision Component Customizers
Style Customizer

Examples

A Selection of Radio Buttons

Radio buttons inside a container will be exclusive therefore selecting one radio button will de-select the other
radio buttons.

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers#VisionComponentCustomizers-StyleCustomizer

1.

2.

Vision - Tab Strip
General

Component Palette Icon:

Description

In general, a Tab Strip is just a single-selection multiple choice component. In practice it is used anywhere that a user needs to
be able to select between multiple windows or to select between containers to display. It is most commonly used in a docked
window to provide automatic window navigation. To support this typical use-case, the tab strip has two navigation modes:

Swap to Window - (default) The Tab Strip will automatically call system.nav.swapTo() with the name of the selected
tab. This facilitates very easy navigation for most common projects.
Disabled - The Tab Strip doesn't do anything when the tab selection changes. Users can implement their own via
property bindings or by responding to the propertyChange scripting event.

The Tab Strips visual style is highly customizable. There are different rendering styles, and things such as fonts, colors, line
thicknesses, hover colors, and gradients are customizable within each rendering style. Use the Tab Strip's customizer to come
up with a style that suits your project, as well as to manage the tabs that are present. The tabs and their styles are all stored in
a dataset property (called Tab Data), so they can be modified at runtime as well.

Properties

Name Description Property
Type

Scripting Category

Backgr
ound
Color

The background color of the component. Can be chosen from color wheel,
chosen from color palette, or entered as RGB or HSL value. See Color
Selector.

Color .
backgrou
nd

Appearan
ce

Border The border surrounding this component. Options are:No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel (Double),
Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Enabled If disabled, a component cannot be used. boolean .
compone
ntEnabled

Common

Interta
b
Space

The amount of space between each tab. int .
interTabS
pace

Appearan
ce

Name The name this component.of String .name Common

Naviga
tion
Mode

Navigation mode. Disabled does nothing when a tab is pressed. Swap to
window swaps to the window whose name corresponds to the name of the
selected tab, provided that window exists.

int .
navigatio
nMode

Behavior

Orienta
tion

Orientation of the tab strip. int .
orientation

Appearan
ce

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

The border is unaffected by rotation.

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Render
er

The renderer to use when rendering tabs. int .renderer Appearan
ce

Roundi
ng
Radius

Rounding radius for the tab corners. int .
rounding
Radius

Appearan
ce

Selecte
d Tab

Name of the selected tab. This is also the name of the window that, if it exists,
will be swapped to when this tab is pressed.

String .
selectedT
ab

Appearan
ce

Separa
tor
Color

Color of the line drawn across the bottom and around each tab. See Color
Selector.

Color .
separator
Color

Appearan
ce

Separa
tor
Thickn
ess

Thickness of the line drawn across the bottom and around each tab. float .
separator
Thickness

Appearan
ce

Size
Mode

The sizing mode tabs use when deciding their size. Automatic means every
tab is the same fixed size. Individual lets each tab decide its own size based
on the size of its text.

int .
sizeMode

Appearan
ce

Styles Contains the component's styles. Dataset .styles Appearan
ce

Tab
Data

Tab data to be displayed. Dataset .tabData Data

Text
Alignm
ent

The alignment of the tab text. int .
textAlign
ment

Appearan
ce

Text
Offset

Padding on the left or right side of tab's text, depending on alignment. int Appearan
ce

Text
Padding

Padding on each side of the text inside a tab. int .
textPaddi
ng

Appearan
ce

Visible If disabled, the component will be hidden. boolean .visible Common

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

The following feature is new in Ignition version 8.0.16
 to check out the other new featuresClick here

As of 8.0.16, the Tab Strip's "mouse" events .x and .y coordinates are now based on cursor position over the
entire component, as opposed to coordinates based on the individual tab that the event was triggered from.

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.16

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component. Note that this event fires
after the pressed and released events have fired.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Customizers

The Tab Strip Customizer has its own set of properties that you can set and modify which dictate how the Tab Strip component
looks and behaves whether or not it is used for window navigation. The tabs and the styles are stored in the dataset Tab Data
property.

When customizing the Tab Strip, keep in mind how you are using the component when setting your properties. Some Tab Strip
properties may behave a little differently based on style, tab orientation, or text alignment. It's a good idea to use the preview
window to verify the style you configured is the style you want.

Tab Strip Customizer - Property Descriptions

Properties Description

Orientation Orientation of the Tab Strip on a window: Top, Left, Bottom and Right. For example, use the orientation Top
to place the Tab Strip component at the top of your window.

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

Navigation
Mode

Two Navigation modes:

Swap Windows - the Tab Strip automatically calls to perform a window swap from system.nav.swapTo()
the current window to another window when a tab is pressed. Swap Windows is the default mode.
Disabled - the Tab Strip only sets the property when pressed. You can set the Selected Tab
component's behavior using property bindings or by responding to the scripting event.propertyChange

Size Mode Two Size modes:

Individual - all the tabs are the same size.
Automatic - all the tabs are sized to fit the text.

Style Three style options to change the appearance of the individual tabs: Simple, Fancy, and Folder.

Add Tab Adds a new tab next to the selected tab.

Remove
Tab

Removes a selected tab.

Move Up /
Move
Down

Depends on the current Orientation selection. Moves the selected tab or in the tab strip when using Up Down
the or .Left Right orientation

Move Left
/ Move
Right

Depends on the current Orientation selection. Moves the selected tab either or in the tab strip when Left Right
using the Top / Bottom orientation.

Text
Alignment

Inserts text in the Center, Left, or Right inside a tab.

Text Offset Specifies how many pixels to move text to the left or right within a tab.

Text
Padding

Specifies the number of pixels around the text in the tab.

Intertab
Space

Specifies the number of pixels between tabs.

Rounding
Radius

Specifies the number of pixels to round the corners of the tab depending on the tab orientation.

General

Window
Name

Pathname of the window location

Display
name

The name to display on the tab.

Mouseover
Text

The text to display in the tooltip which pops up when mousing over a tab.

Hover
Color

The color to display in the tootip which pops up when mousing over a tab.

When Selected / When Unselected

Backgroun
d Color

The background color of the tab.

Foregroun
d Color

The foreground color is the color of the text.

Font Select the font type, font size, and style.

Gradient
Start Color

Select a start color to begin the gradient. Gradients are not valid for the Fancy style, and are shown as being
grayed out. Select Simple or Folder style to use the gradient feature.

Gradient
End Color

Select an end color to end the gradient. Gradients are not valid for the Fancy style, and are shown as being
grayed out. Select Simple or Folder style to use the gradient feature.

Use
Gradient

Select Use Gradient checkboxes to use gradient features. Uncheck the Use Gradient checkboxes to disable
the gradient feature.

https://legacy-docs.inductiveautomation.com/display/DOC80/system.nav.swapTo
https://legacy-docs.inductiveautomation.com/display/DOC80/Component+Events

Tab Icon Select an image from the Image Browsser to insert on a tab.

Apply to All The button applies all of the currently shown settings (except Window Name and Display Name) to all of the
tabs. Note: this does not .save your changes

Navigation - Tab Strip
Vision Component Customizers
Style Customizer

Examples

Horizontal Tabs

Horizontal Tab - Property Descriptions

Property Name Value

Style Fancy

Orientation Top

Tab Data Dataset customized with the Tab Strip Customizer.
Notice how the Gradient features are grayed out with the Fancy style.

https://legacy-docs.inductiveautomation.com/display/DOC80/Navigation+-+Tab+Strip
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers#VisionComponentCustomizers-StyleCustomizer

Vision - Display Palette

Display Components
The following components give you various options for displaying values and more.

In This Section ...

Vision - Label
General

Component
Palette Icon:

Description

The Label is one of the most versatile components. It can display text, images, or both. Its text can be HTML formatted (like
most components). It can even be made to respond to user interaction through its events.

Labels are one of the most common components that you will want to add dynamic properties to. For instance, you can put an
integer dynamic property "state" on a label, and then bind the text to be "On" when the state is 1 and "Off" otherwise, using an
expression binding. Bind the background color to be red when the state is 0, and green when the state is 1 using a property
binding. Now you have a re-usable binary state indicator. While you could have used the Multi-State Indicator to achieve the
same effect, the exercise is good practice for creating custom components. You can see how the flexibility of bindings and
dynamic properties make the Label extremely versatile.

Properties

Name Description Property
Type

Scripting Category

Backgro
und
Color

The background color of the label, if opaque is set to "true". Can be chosen
from color wheel, chosen from color palette, or entered as RGB or HSL value.
See Color Selector.

Color .
backgrou
nd

Appearan
ce

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel
(Double), Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Disable
d
Image
Path

The relative path of the image to be displayed when this component is not
enabled.

String .
disabled
Path

Appearan
ce

Enabled If disabled, a component cannot be used. boolean .
compone
ntEnabled

Common

Fill
Backgro
und

If true, the label's background color will be drawn. If false, it will have a
transparent background.

boolean .
fillBackgr
ound

Appearan
ce

Font Font of text this component.on Font .font Appearan
ce

Foregro
und
Color

The color of the Label's text. Color .
foreground

Appearan
ce

The border is unaffected by rotation.

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Horizont
al
Alignme
nt

Determines the alignment of the label's contents along the X axis. int .
horizontal
Alignment

Layout

Horizont
al Text
Position

Determines the horizontal position of the label's text, relative to its image. int .
horizontal
TextPosit
ion

Layout

Icon-
Text
Spacing

The space (in pixels) between the icon (if any) and the text (if any). int .
iconText
Gap

Appearan
ce

Image
Path

The relative path of the image. String .path Appearan
ce

Mouseo
ver Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Deprecat
ed

Rotation The angle of rotation in degrees. int .rotation Appearan
ce

Styles Contains the component's styles. Dataset .styles Appearan
ce

Text Text of this Label. String .text Data

Vertical
Alignme
nt

Determines the alignment of the label's contents along the Y axis. int .
verticalAli
gnment

Layout

Vertical
Text
Position

Determines the vertical position of the label's text, relative to its image. int .
verticalTe
xtPosition

Layout

Visible If disabled, the component will be hidden. boolean .visible Common

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Data

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires after the pressed and released events have fired.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Customizers

Vision Component Customizers
Style Customizer

Examples

Stylized Label Inside a Popup Window

Property Name Value

Image Path Builtin/icons/48/document_edit.png

Text <html><p><center><h2>Procedure 10a:

React to a Reactor Shutdown.</h2></center></p>

Inspect cameras for potential safety incident.
Contact Supervisor and Floor Coordinator.
Continue to Sub Process 1a: Reactor Reset.

</html>

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers#VisionComponentCustomizers-StyleCustomizer

Vision - Numeric Label
General

Component
Palette Icon:

Description

This component is a specialized label designed to display a number. It can include units, and has an integrated number format
string. By default the number is displayed bold and the units are not. This can be customized, see the Prefix and Suffix expert
properties. This label's text is constructed as follows:

 Prefix + numberFormat (Value, Pattern) + Suffix + Units

It is important to note that you could customize the standard Label component using custom properties and bindings to mimic this component
exactly. If this component doesn't do something that you need, you can make your own numeric label and use it everywhere in your project.

Properties

Name Description Property
Type

Scripting Category

Backgro
und
Color

The background color of the component. Can be chosen from color wheel,
chosen from color palette, or entered as RGB or HSL value. See Color
Selector.

Color .
backgrou
nd

Appearan
ce

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel
(Double), Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Disable
d
Image
Path

The relative path of the image to be displayed when this component is not
enabled.

String .
disabled
Path

Appearan
ce

Enabled If disabled, a component cannot be used. boolean .
compone
ntEnabled

Common

Fill
Backgro
und

If true, the label's background color will be drawn. If false, it will have a
transparent background.

boolean .
fillBackgr
ound

Appearan
ce

Font Font of text this component.on Font .font Appearan
ce

Foregro
und
Color

The foreground color of the component. Can be chosen from color wheel,
chosen from color palette, or entered as RGB or HSL value. See Color
Selector.

Color .
foreground

Appearan
ce

The border is unaffected by rotation.

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Horizont
al
Alignme
nt

Determines the alignment of the label's contents along the X axis. int .
horizontal
Alignment

Layout

Horizont
al Text
Position

Determines the horizontal position of the label's text, relative to its image. int .
horizontal
TextPosit
ion

Layout

Icon-
Text
Spacing

The space (in pixels) between the icon (if any) and the text (if any). int .
iconText
Gap

Appearan
ce

Image
Path

The relative path of the image. String .path Appearan
ce

Mouseo
ver Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Number
Format
Pattern

The number formatting string used to format the value. String .pattern Appearan
ce

Prefix A string that will be placed before the number. String .prefix Data

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Rotation The angle of rotation in degrees. int .rotation Appearan
ce

Styles Contains the component's styles. Dataset .styles Appearan
ce

Suffix A string that will be placed after the number, and before the units. String .suffix Data

Units The engineering units to display after the number. String .units Data

Value The numeric value of this label. double .value Data

Vertical
Alignme
nt

Determines the alignment of the label's contents along the Y axis. int .
verticalAli
gnment

Layout

Vertical
Text
Position

Determines the vertical position of the label's text, relative to its image. int .
verticalTe
xtPosition

Layout

Visible If disabled, the component will be hidden. boolean .visible Common

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires after the pressed and released events have fired.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Customizers

Vision Component Customizers
Style Customizer

Examples

Numeric label with red background and percent sign

Property Name Value

Units %

Background Color 255,0,0

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers#VisionComponentCustomizers-StyleCustomizer

Vision - Multi-State Indicator
General

Component
Palette Icon:

Description

This component is a specialized label used to display a discrete state. The state must be represented by an integer, but the
values and number of different states is customizable. Use the component's styles customizer to configure the different states.

Properties

Name Description Property
Type

Scripting Category

Backgro
und
Color

The background color of the component. Can be chosen from color wheel,
chosen from color palette, or entered as or value. See RGB HSL Color

.Selector

Color .
backgrou
nd

Appearan
ce

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel
(Double), Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Disable
d
Image
Path

The relative path of the image to be displayed when this component is not
enabled.

String .
disabled
Path

Appearan
ce

Enabled If disabled, a component cannot be used. boolean .
compone
ntEnabled

Common

Font Font of text this component.on Font .font Appearan
ce

Foregro
und
Color

The foreground color of the component. Can be chosen from color wheel,
chosen from color palette, or entered as or value. See RGB HSL Color

.Selector

Color .
foreground

Appearan
ce

Horizont
al
Alignme
nt

Determines the alignment of the label's contents along the X axis. int .
horizontal
Alignment

Layout

Horizont
al Text
Position

Determines the horizontal position of the label's text, relative to its image. int .
horizontal
TextPosit
ion

Layout

Icon-
Text
Spacing

The space (in pixels) between the icon (if any) and the text (if any). int .
iconText
Gap

Appearan
ce

The border is unaffected by rotation.

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Image
Path

The relative path of the image. String .path Appearan
ce

Mouseo
ver Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

State The current state of the component. int .state Data

Styles Contains the component's styles. Dataset .styles Appearan
ce

Text Text of this Label. String .text Data

Vertical
Alignme
nt

Determines the alignment of the label's contents along the Y axis. int .
verticalAli
gnment

Layout

Vertical
Text
Position

Determines the vertical position of the label's text, relative to its image. int .
verticalTe
xtPosition

Layout

Visible If disabled, the component will be hidden. boolean .visible Common

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component. Note that this event fires
after the pressed and released events have fired.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Customizers

The Multi-State Indicator component does not have a special customizer, however, it relies on the Style Customizer. When you
open the Style Customizer, you'll notice that it has the driving property selected, and several visual properties defined State
such as , , , and . If you don't like the predefined properties, you can change Background Color Border Foreground Color Text
them, as well as add or remove any styled properties.

The Style Customizer for the Multi-State Indicator works by configuring a set of visual properties that change based on a
different state. The State is represented by an integer, but the values and number of different states are customizable.

Style Customizer for the Multi-State Indicator - Property Description

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

Property Description

Driving
Property

Property that drives the style of the component.

Styled
Properties

There are two categories of properties: Available Properties and Used Properties.

Available
Properties

Styled properties that have not been used.

Used
Properties

Styled properties that have been used.

Styles Styles section for the defining states and styles.

Values Driving property represented by an integer.

Preview View the label after the visual styles are configured. Expand each value to configure, or change any of the
styles. There is an Animate checkbox that you can check to enable the label to blink.

For additional Customizers, see:

Style Customizer
Vision Component Customizers

Examples

Property Name Value

Styles As defined by the style customizer.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers#VisionComponentCustomizers-StyleCustomizer
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers

Vision - LED Display

General

Component
Palette Icon:

Description

The LED display is a stylized numeric or alphanumeric label. It has three different visual styles which all correspond to a kind
of physical display: 7-segment, 14-segment, and 5x7 matrix. By default this component is in numeric mode, which means you
should use its Value property. If you need to display characters as well, switch the mode to alphanumeric, and use the Text pro
perty.

Properties

Name Description Property
Type

Scripting Category

Backgro
und
Color

The color of the background. Can be chosen from color wheel, chosen from
color palette, or entered as or value. See .RGB HSL Color Selector

Color .
backgrou
nd

Appearan
ce

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel
(Double), Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Horizont
al
Alignme
nt

Determines the alignment of the display's contents along the X axis. int .
horizontal
Alignment

Layout

LED Lit The color of lit LED segments. See .Color Selector Color .
glyphFor
eground

Appearan
ce

LED
Unlit

The color of unlit LED segments. See Color Selector. Color .
glyphBac
kground

Appearan
ce

Letter
Gap

The percentage of the height to be used as an inter-character spacing. float .gap Layout

Margin The margin for the interior of the display. Insets .margin Layout

Mode The mode of the display. int .mode Behavior

Mouseo
ver Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Number
Format
Pattern

The number formatting string used to format the value. String .
numberF
ormat

Behavior

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Style The visual style of the display. int .style Appearan
ce

Styles Contains the component's styles. Dataset .styles Appearan
ce

Text The text value of the display, used when is Mode Alphanumeric. String .text Data

Value The numeric value of the display, used when is .Mode Numeric double .value Data

Visible If disabled, the component will be hidden. boolean .visible Common

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

The border is unaffected by rotation.

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component. Note that this event fires
after the pressed and released events have fired.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Customizers

Vision Component Customizers
Style Customizer

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers#VisionComponentCustomizers-StyleCustomizer

Examples

Custom LED Component

Property Name Value

Mode Alphanumeric

Text ERR-28

Background Color 0,0,0

LED Lit 255,0,0

LED Unlit 0,0,0

Custom LED Component

Property Name Value

Mode Alphanumeric

Text Hello World

Horizontal Alignment Center

Custom LED Component

Property Name Value

Border Line Border

Mode Alphanumeric

Text 852.23 lbs

Style 7 Segment

Background Color 255,255,255

LED Lit 0,0,0

LED Unlit 255,255,255

Custom LED Component

Property Name Value

Style 5x7 Matrix

Background Color 255,255,255

Horizontal Alignment Right

Vision - Moving Analog Indicator
General

Component Palette Icon:

Moving Analog
Indicator

Watch the Video

Description

The Moving Analog Indicator is another component that fits well with the . This High Performance techniques and practicesHMI
component displays an analog value in context with other information about that value so that you can visually quickly see if
the value is in the normal range or not. The current value is shown as an arrow pointing at a bar with segments showing the
desired operating range, low and high alarm ranges, and interlock ranges.

The Moving Analog Indicator component allows for extremely fast information delivery. At a glance, it is obvious to an operator
whether or not the value is where it should be, or if it needs attention. If the value is in one of its alarm ranges, then that range
changes color to get attention.

To switch the Moving Analog Indicator between a horizontal vs vertical orientation, simply change the size so that it is either
wide or tall, respectively. Typical setup of this component involves setting the ranges, and binding the Process Value property
to a Tag's value. Some properties may be cleared out (null value) in order to disable them. For example, you may indicate
where the current setpoint is by setting the Setpoint Value property. If you don't want to display the setpoint, simply clear this
value out.

Properties

Name Description Property
Type

Scripting Category

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel
(Double), Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Desired
High

The upper value of the desired operating range. Double .
desiredHi

Data

Desired
Low

The lower value of the desired operating range. Double .
desiredLo

Data

The border is unaffected by rotation.

https://www.inductiveuniversity.com/video/moving-analog-indicator/8.0
https://legacy-docs.inductiveautomation.com/display/DOC80/High+Performance+HMI+Techniques

Desired
Range
Color

The color of the desired range. Can be chosen from color wheel, chosen from
color palette, or entered as or value. RGB HSL See Color Selector.

Color .
desiredR
angeColor

Appearan
ce

High
Alarm

The value above which is a high alarm. Double .hiAlarm Data

High
High
Alarm

The value above which is a high-high alarm. Double .
hihiAlarm

Data

High
Interlock

The value above which an interlock will be activated. Double .
hiInterlock

Data

Inactive
Alarm
Color

The color of inactive alarm range. See Color Selector. Color .
inactiveAl
armColor

Appearan
ce

Interloc
k Color

The color of the interlock range. See Color Selector. Color .
interlock
Color

Appearan
ce

Level 1
Alarm
Color

The color of an active level 1 alarm (Hi-Hi or Lo-Lo). See Color Selector. Color .
level1Ala
rmColor

Appearan
ce

Level 2
Alarm
Color

The color of an active level 2 alarm (Hi or Lo). See Color Selector. Color .
level2Ala
rmColor

Appearan
ce

Low
Alarm

The value below which is a low alarm. Double .loAlarm Data

Low
Interlock

The value below which an interlock will be activated. Double .
loInterlock

Data

Low
Low
Alarm

The value below which is a low-low alarm. Double .
loloAlarm

Data

Mouse
over
Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Proces
s Value

The current value of the process. Double .
processV
alue

Data

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Range
Fill

The background color of the range strip. See Color Selector. Color .rangeFill Appearan
ce

Range
High

The overall high value for the display. double .rangeHi Data

Range
Low

The overall low value for the display. double .rangeLo Data

Range
Stroke

The stroke color for the range strip. See Color Selector. Color .
rangeStr
oke

Appearan
ce

Revers
e
Indicator

Put the indicator triangle on the other side of the track. boolean .
reverseIn
dicatorLo
cation

Appearan
ce

Setpoin
t Fill

The fill color of the setpoint indicator. See Color Selector. Color .
setpointFi
ll

Appearan
ce

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Setpoin
t Stroke

The stroke color of the setpoint indicator. See Color Selector. Color .
setpointS
troke

Appearan
ce

Setpoin
t Value

The current value of the setpoint. Double .
setpointV
alue

Data

Show
Value

Show the current value above or beneath the value indicator. boolean .
showValue

Appearan
ce

Stroke
Width

The stroke width for lines drawn. float .
strokeWi
dth

Appearan
ce

Styles Contains the component's styles Dataset .styles Appearan
ce

Value
Color

The color of the value label. See Color Selector.

Value
Font

The font for the value label. Font .font Appearan
ce

Value
Format

The string format for the value, if it is shown. String .
valueFor
mat

Appearan
ce

Value
Indicato
r Fill

The fill color of the value indicator. See Color Selector. Color .valueFill Appearan
ce

Value
Indicato
r Stroke

The stroke color of the value indicator. See Color Selector. Color .
valueStro
ke

Appearan
ce

Visible If disabled, the component will be hidden. boolean .visible Common

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component. Note that this event fires
after the pressed and released events have fired.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Customizers

Vision Component Customizers
Style Customizer

Examples

Moving Analog Indicator Expanded Horizontally

Property Name Value

None n/a

Stylized Moving Analog Indicator

Property Name Value

Show Value True

Reverse Indicator True

Stroke Width 0.0

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers#VisionComponentCustomizers-StyleCustomizer

1.
2.
3.
4.

Vision - Image
General

Component
Palette Icon:

Description

The image component is a powerful component. While you can use other components, like the Label, to display images as
well, this component gives you more flexibility. In particular, this component has four important features for displaying images:

Scaling
Rotation - Rotate to create spinning animations by binding to a timer component.
Color Tinting - Dynamically apply a color tint to an image to allow it to display real-time status
Color Swapping - Color swapping to change one specific color in an image to another in real time.

To choose an image, simply press the Browse icon next to this component's Image Path property. You can drag new images (*.png, *.gif,
*.jpg, *.bmp) into the Image Management window to upload them.

Images are stored on the Gateway, not in your window or project. This means that you can alter an image globally, and it will affect all
windows in all projects. It also means that you must be careful to migrate custom images if you do project backups (as opposed to Gateway
backups, which will automatically include both projects and images)

External Images

The Image component can also be used to show external images stored relative to the local file system on the client. The file
path is similar to having your browser view a local document:

file:///C:/folder/anotherFolder/image.PNG

Properties

Name Description Property
Type

Scripting Category

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel (Double),
Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Color
Swap
Filter

Swap a specific color to another. Can be chosen from color wheel, chosen
from color palette, or entered as or value. RGB HSL See Color Selector.

boolean .
useColor
Swap

Image
Manipulat
ion

The border is unaffected by rotation.

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Disabl
ed
Image
Path

The relative path of the image to be displayed when this component is not
enabled.

String .
disabled
Path

Data

Enabled If disabled, a component cannot be used. boolean .
compone
ntEnabled

Common

Flip
Horizo
ntal

Flip (mirror) the image horizontally. boolean .
flipHorizo
ntal

Image
Manipulat
ion

Flip
Vertical

Flip (mirror) the image vertically. boolean .
flipVertic
al

Image
Manipulat
ion

Image
Path

The relative path of the image. String .path Data

Load
In
Backgr
ound

Controls whether or not the image loading takes place on the UI thread or a
background thread.

boolean .
loadInBa
ckground

Behavior

Mouse
over
Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Rotation The angle of rotation in degrees. int .rotation Image
Manipulat
ion

Stretch
Height

If stretch mode is "Parameters", this will be the stretched height of the
image
If stretch mode is "% Bounds", this will be the percentage of the
component's height.

int .
stretchHe
ight

Image
Manipulat
ion

Stretch
Mode

Sets the stretch mode for this image. int .
stretchM
ode

Image
Manipulat
ion

Stretch
Width

If stretch mode is "Parameters", this will be the stretched width of the
image
If stretch mode is "% Bounds", this will be the percentage of the
component's width.

int .
stretchWi
dth

Image
Manipulat
ion

Styles Contains the component's styles. Dataset .styles Appearan
ce

Swap
From

If the Color Swap Filter is on, this color will be changed to the Swap To color. Color .
swapFro
mColor

Image
Manipulat
ion

Swap
Thresh
old

Threshold (0-255) for the swap from color matching. 0 is no tolerance, 255 is
max tolerance.

int .
swapThr
eshold

Image
Manipulat
ion

Swap
To

If the Color Swap Filter is on, the Swap From color will be changed to this
color. See Color Selector.

Color .
swapToC
olor

Image
Manipulat
ion

Tint
Color

If the Tint Filter is on, this is the color of the tint. See Color Selector. Color .tintColor Image
Manipulat
ion

Tint
Filter

Tint the entire image a color (works best with greyscale images). boolean .useTint Image
Manipulat
ion

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Use
Cache

If false, this image will bypass the client image cache and load the image
directly from the source.

boolean .
useCache

Behavior

Visible If disabled, the component will be hidden. boolean .visible Common

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component. Note that this event fires
after the pressed and released events have fired.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Customizers

Vision Component Customizers
Style Customizer

Examples

Property Name Value

Image Path Builtin/Valve/Valve 29.png

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers#VisionComponentCustomizers-StyleCustomizer

Vision - Progress Bar
General

Component
Palette Icon:

Description

Visually indicates the progress of some task. Can be used to display any value that has an upper and lower bound.

Properties

Name Description Property
Type

Scripting Category

Backg
round
Color

The background color of the component. Can be chosen from color wheel,
chosen from color palette, or entered as or value. RGB HSL See Color Selector.

Color .
backgrou
nd

Appearan
ce

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel (Double),
Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Directi
on

Determines the direction of progress for this progress bar. int .direction Appearan
ce

Enabl
ed

If disabled, a component cannot be used. boolean .
compone
ntEnabled

Common

Font Font of text this component.on Font .font Appearan
ce

Foregr
ound
Color

The foreground color of the component. See Color Selector. Color .
foreground

Appearan
ce

Horizo
ntal?

If true, the progress bar will display horizontally, else it will display vertically.
Manually resize the progress bar to display vertically.

boolean .
horizontal

Appearan
ce

Indete
rminat
e?

When true, the progress bar displays animation indicating that something is
happening, but it will take an indeterminate amount of time

boolean .
indetermi
nate

Behavior

Maxim
um

The maximum value that this progress bar will reach. int .
maximum

Data

Minim
um

The minimum value that this progress bar will reach. int .minimum Data

Mouse
over
Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Show
Perce
ntage?

If true, the progress bar will display its percentage. boolean .
stringPai
nted

Appearan
ce

Styles Contains the component's styles. Dataset .styles Appearan
ce

Value The current state of the Progress Bar. int .value Data

Visible If disabled, the component will be hidden. boolean .visible Common

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

The border is unaffected by rotation.

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires after the pressed and released events have fired.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event

.
newValue

The new value for this property.

.
oldValue

The value that this property was before it changed. Not all components include an accurate
oldValue in their events.

.
property
Name

The name of the property that changed.

Customizers

Vision Component Customizers
Style Customizer

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers#VisionComponentCustomizers-StyleCustomizer

Examples

Horizontal Blue Progress Bar

Property Name Value

Border Line Border

Value 85

Foreground Color 0,0,255

Horizontal? True

Show Percentage? True

Gallery

Wide Vertical Blue Progress Bar

Property Name Value

Border Bevel (Double)

Value 85

Foreground Color 0,0,255

Horizontal? False

Show Percentage? True

Vision - Cylindrical Tank
General

Component Palette Icon:

Description

A component that looks like a 3D cylindrical tank, with some liquid inside. The liquid rises and falls as the Value property
changes.

Properties

Name Description Property
Type

Scripting Category

Backg
round
Color

The background color of the component. Can be chosen from color wheel,
chosen from color palette, or entered as or value. RGB HSL See Color Selector.

Color .
backgrou
nd

Appearan
ce

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel (Double),
Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Capac
ity

Total capacity of tank. double .capacity Data

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Font Font of text this component.on Font .font Appearan
ce

Font
Color

The color of the value and/or percentage labels. See Color Selector. Color .fontColor Appearan
ce

Foregr
ound
Color

The foreground color of the component. See Color Selector. Color .
foreground

Appearan
ce

Liquid
Color

Color of the filled tank section. See Color Selector. Color .
liquidCol
or

Appearan
ce

The border is unaffected by rotation.

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Mous
eover
Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Perce
nt
Format

Format string used for the percentage. String .
percentF
ormat

Appearan
ce

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Rotati
on

The angle of rotation in degrees. int .rotation Appearan
ce

Show
Perce
ntage

Show percentage of tank filled? boolean .
showPer
cent

Appearan
ce

Show
Value

Show numeric value, capacity, and units? boolean .
showValue

Appearan
ce

Styles Contains the component's styles. Dataset .styles Appearan
ce

Tank
Color

Color of the non-filled tank section. See Color Selector. Color .
tankColor

Appearan
ce

Units Units of measure for tank contents. String .units Appearan
ce

Value Numeric value of tank's level. double .value Data

Value
Format

Format string used for the value. String .
valueFor
mat

Appearan
ce

Visible If disabled, the component will be hidden. boolean .visible Common

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component. Note that this event fires
after the pressed and released events have fired.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Customizers

Vision Component Customizers
Style Customizer

Examples

Cylindrical Tank

Property Name Value

Value 25

Font Georgia, Bold 12

Liquid Color 0,217,217

Show Value True

Show Percentage False

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers#VisionComponentCustomizers-StyleCustomizer

Vision - Level Indicator
General

Component
Palette Icon:

Description

A component that can be filled up with water. Usually used behind a symbol factor object that has a cutout in it.

Properties

Name Description Property
Type

Scripting Category

Backg
round
Color

The color of the background. Can be chosen from color wheel, chosen from
color palette, or entered as or value. RGB HSL See Color Selector.

Color .
backgrou
nd

Appearan
ce

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel (Double),
Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Capac
ity

Total capacity of tank. double .capacity Data

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Filled
Color

Set the color of filled portion. See Color Selector. Color .
foreground

Appearan
ce

Font Font of text this component.on Font .font Appearan
ce

Font
Color

The foreground color of the component. See Color Selector. Color .fontColor Appearan
ce

Gradi
ent

Indicates whether the level will be drawn as a 3D gradient. boolean .gradient Appearan
ce

Liquid
Waves

Indicate whether liquid waves are drawn. boolean .waves Appearan
ce

The border is unaffected by rotation.

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Mous
eover
Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Orient
ation

Determines which direction the level "grows" for an increase in value. int .
orientation

Appearan
ce

Perce
nt
Format

Format string used for the percentage. String .
percentF
ormat

Appearan
ce

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Show
Perce
ntage

Indicates whether the percentage of tank filled is displayed. boolean .
showPer
cent

Appearan
ce

Show
Value

Indicates whether the numeric value, capacity, and units are displayed. boolean .
showValue

Appearan
ce

Styles Contains the component's styles. Dataset .styles Appearan
ce

Units Units of measure for tank contents. String .units Appearan
ce

Value Numeric value of tank's level. double .value Data

Value
Format

Format string used for the value. String .
valueFor
mat

Appearan
ce

Visible If disabled, the component will be hidden. boolean .visible Common

Wave
Height

The height of each wave. int .
waveHei
ght

Appearan
ce

Wave
Length

The length of each wave. int .
waveLen
gth

Appearan
ce

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Data

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component. Note that this event fires
after the pressed and released events have fired.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Customizers

Vision Component Customizers
Style Customizer

Examples

Level Indicator

Property Name Value

Border Line Border

Value 75

Units Gallons

Show Value True

Gradient False

Filled Color 0,100,240

Font Arial Black, Plain, 16

Wave Height 10

Wave Length 15

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers#VisionComponentCustomizers-StyleCustomizer

Level Indicator

Created using Symbol Factory Tanks > Tank with Rivets and Ladder. Then ungrouped twice. Fill paint set to
0,100,240.

Property Name Value

Border Line Border

Value 75

Units Gallons

Show Value True

Gradient False

Filled Color 0,100,240

Background Color 250,250,251

Font Arial Black, Plain, 16

Wave Height 10

Wave Length 15

Vision - Linear Scale
General

Component
Palette Icon:

Description

The Linear Scale component has two main purposes. The first is to display a series of tick marks and labels that visually
represent a linear range between a minimum value and a maximum value. The second purpose is to display indicators that
represent a value or range of values, correctly positioned on the linear scale.

To configure the indicators, use the Linear Scale Customizer which is described below. To configure the tick marks, use the
Linear Scale's various properties in the Property Editor that determine the minimum value, maximum value, and the various
tick mark spans.

There is no tall/wide option for this component. This is based on the width/height of the component. A tall Linear Scale has tick
marks on the left or right, and a wide component has tick marks on the top or bottom.

Properties

Name Description Property
Type

Scripting Category

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel (Double),
Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Cursor The mouse cursor to use when hovering over this component. The mouse
cursor to use when hovering over this component. Options are: Default,
Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Fine
Tick
Color

The line color for fine ticks. Can be chosen from color wheel, chosen from
color palette, or entered as or value. RGB HSL See Color Selector.

Color .
fineTickC
olor

Appearan
ce

Fine
Tick
Length

The line length for fine ticks, in pixels. double .
fineTickL
ength

Appearan
ce

The border is unaffected by rotation.

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Fine
Tick
Span

The span length for fine ticks. Should be a factor of the major and minor tick
spans. Use zero to disable fine ticks.

double .
fineTickS
pan

Data

Fine
Tick
Thickn
ess

The line thickness for fine ticks, in pixels. float .
fineTickS
troke

Appearan
ce

Indicat
ors

This dataset stores the indicators (if any) for the scale. Dataset .
indicators

Data

Label
Angle

Changes the angle that the labels are drawn. int .
labelAngle

Appearan
ce

Label
Color

The color used for drawing tick labels. See Color Selector. Color .
majorTick
LabelCol
or

Appearan
ce

Label
Font

The font used for drawing tick labels. See Color Selector. Font .
majorTick
Font

Appearan
ce

Label
Format

The label format string. Examples: "%.1f" will render numbers like "15.0", "%.
0f" will render numbers like "15". Using the empty string "" will disable the
labels.

String .
majorTick
LabelFor
mat

Appearan
ce

Major
Tick
Color

The line color for major ticks. See Color Selector. Color .
majorTick
Color

Appearan
ce

Major
Tick
Length

The line length for major ticks, in pixels. double .
majorTick
Length

Appearan
ce

Major
Tick
Span

The span length for major ticks. Should be a multiple of the minor and fine tick
spans.

double .
majorTick
Span

Data

Major
Tick
Thickn
ess

The line thickness for major ticks, in pixels. float .
majorTick
Stroke

Appearan
ce

Margin The margin to leave blank as a percentage of the total height or width of the
scale.

double .margin Appearan
ce

Max
Value

The upper bound of the scale. double .
maxValue

Data

Min
Value

The lower bound of the scale. double .
minValue

Data

Minor
Tick
Color

The line color for minor ticks. See Color Selector. Color .
minorTick
Color

Appearan
ce

Minor
Tick
Length

The line length for minor ticks, in pixels. double .
minorTick
Length

Appearan
ce

Minor
Tick
Span

The span length for minor ticks. Should be a factor of the major tick span and
a multiple of the fine tick spans. Use zero to disable minor ticks.

double .
minorTick
Span

Data

Minor
Tick
Thickn
ess

The line thickness for minor ticks, in pixels. float .
minorTick
Stroke

Appearan
ce

Mirror Mirror the scale so it paints against the opposite edge. boolean .mirror Appearan
ce

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Mouse
over
Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Revers
e
Range

Reverse the scale so that values go from high to low instead of low to high. boolean .
reverseR
ange

Appearan
ce

Visible If disabled, the component will be hidden. boolean .visible Common

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component. Note that this event fires
after the pressed and released events have fired.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Customizers

The Linear Scale component has a special customizer called the Linear Scale Customizer. The customizer is where you
configure the indicators that visually represent how your data is displayed on the scale. You can choose from several indicator
styles: Arrow, Line, Range, and Wedge. There are a number of properties available to customize the appearance of your data
on the Linear Scale. Not all Linear Scale Customizer properties are available with all indicator styles. The property will be
grayed out if it is not available for that particular indicator. Use the preview window to validate the style you want to use for your
data.

To make your indicator values dynamic, you can use a binding on the property of this component.Cell Update Indicators

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

Linear Scale Customizer - Property Descriptions

Property Description

Indicator Style There are four indicator styles to choose from: Arrow, Line, Range, and Wedge.

Arrow: A line with an arrow head at the given value
Line: A basic flat line at the given value
Range: a rectangle displayed with the given value at the bottom and a height equal to the Extent
Wedge: a wedge shape centered on the given value and Extenta height equal to the

Value The position of the indicator.

Extent Overall thickness of the indicator. Not valid for a Line style.

Length The number of pixels to draw the indicator starting at the component edge.

Width Thickness of the line in the indicator. Only valid for Arrow and Line styles.

Label Name displayed next to the indicator.

Label Angle The angle of the label specified in degrees.

Color Color of the indicator.

Label Color Color of the indicator Label.

Vision Component Customizers

Examples

In this example, the Linear Scale displays indicators for high and low levels. A Binding was used on an Arrow Cell Update
indicator to make the "Current" level value dynamic.

Vertical Scale with Blue Indicators

Property
Name

Value

Indicators

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers

Vision - Barcode
General

Component
Palette Icon:

Description

The barcode component displays some text as a barcode. The supported formats are:

Code 128
Code 39
Extended Code 39
Codabar
Interleaved Code 25
MSI
EAN-13
EAN-8
Aztec*
Data Matrix*
PDF-417*
QR Code*
UPC-A*

* Introduced in Ignition 7.8.0

Properties

Name Description Property
Type

Scripting Category

Backgroun
d Color

The background color of the component. Can be chosen from color wheel,
chosen from color palette, or entered as or value. RGB HSL See Color
Selector.

Color .
backgrou
nd

Appearan
ce

Barcode
Background

The background color of the actual barcode. Can be chosen from color
wheel, chosen from color palette, or entered as RGB or HSL value. See Co
lor Selector.

Color .
barcodeB
ackground

Appearan
ce

Barcode
Format

The barcode format to display. int .
barcodeT
ype

Data

Barcode
Height

The height of the barcode. int .
barcodeH
eight

Appearan
ce

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel
(Double), Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Check
Digit

Include Check Digit? boolean .
checkDigit

Data

Code The code string that is converted into a barcode to display. String .code Data

Font Font of text on this component. Font .font Appearan
ce

Foregroun
d Color

The foreground color of the component. Can be chosen from color wheel,
chosen from color palette, or entered as RGB or HSL value. See Color
Selector.

Color .
foreground

Appearan
ce

Mouseove
r Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Narrowest
Bar Width

The width (in pixels) of the narrowest bar. int .
narrowes
tBarWidth

Appearan
ce

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Rotation The angle of rotation in degrees. int .
angleDeg
rees

Appearan
ce

QRCode
Error
Correction
Level

If you're creating a QR code, the QR code error correction level to use. int .
qrEcLevel

Data

QRCode
Version

If you're creating a QR code, the QR code version to use. int .
qrCodeV
ersion

Data

Show
Text?

If true, the code is displayed in human-readable text beneath the barcode. boolean .
showText

Appearan
ce

Visible If disabled, the component will be hidden. boolean .visible Common

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

The border is unaffected by rotation.

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component. Note that this event fires
after the pressed and released events have fired.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Customizers

This component does not have any custom properties.

Examples

Barcode

Property Name Value

Code 123456789

Barcode Format Extended Code 39 (narrow)

Show Text? True

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

Vision - Meter

General

Component
Palette Icon:

Description

A meter display shows a value on a needle-gauge. The gauge's range can be broken up into five intervals. The intervals can
have their own edge and background colors. How the meter looks is affected by its appearance properties.

You can modify colors, thicknesses, start and extend angles, needle size, etc to get the meter that you want. For example, the
meter on the far right of the example has a Meter Angle Extent of 90°, a Meter Angle of 45°, a reversed range, and two
intervals.

Properties

Name Description Property
Type

Scripting Category

Arc
Width

The width of the colored interval arcs. float .arcWidth Appearan
ce

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel
(Double), Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Dial
Backgr
ound

The background color of the dial face. Can be chosen from color wheel,
chosen from color palette, or entered as RGB or HSL value. See Color
Selector.

Color .
dialBackg
round

Appearan
ce

Dial
Shape

The shape of the dial. This property determines how the dial face looks in the
area not covered by the meter angle extent.

int .dialType Appearan
ce

Interval
1
Backgr
ound

The color to fill the wedge of this interval. See Color Selector. Color .
interval1
Backgrou
nd

Intervals

The border is unaffected by rotation.

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Interval
1 High

The upper bound of this interval. double .
interval1
High

Intervals

Interval
1 Low

The lower bound of this interval. double .
interval1L
ow

Intervals

Interval
1
Outline

The color to paint the arc of this interval. See Color Selector. Color .
interval1
Outline

Intervals

Interval
2
Backgr
ound

The color to fill the wedge of this interval. See Color Selector. Color .
interval2
Backgrou
nd

Intervals

Interval
2 High

The upper bound of this interval. double .
interval2
High

Intervals

Interval
2 Low

The lower bound of this interval. double .
interval2L
ow

Intervals

Interval
2
Outline

The color to paint the arc of this interval. See Color Selector. Color .
interval2
Outline

Intervals

Interval
3
Backgr
ound

The color to fill the wedge of this interval. See Color Selector. Color .
interval3
Backgrou
nd

Intervals

Interval
3 High

The upper bound of this interval. double .
interval3
High

Intervals

Interval
3 Low

The lower bound of this interval. double .
interval3L
ow

Intervals

Interval
3
Outline

The color to paint the arc of this interval. See Color Selector. Color .
interval3
Outline

Intervals

Interval
4
Backgr
ound

The color to fill the wedge of this interval. See Color Selector. Color .
interval4
Backgrou
nd

Intervals

Interval
4 High

The upper bound of this interval. double .
interval4
High

Intervals

Interval
4 Low

The lower bound of this interval. double .
interval4L
ow

Intervals

Interval
4
Outline

The color to paint the arc of this interval. See Color Selector. Color .
interval4
Outline

Intervals

Interval
5
Backgr
ound

The color to fill the wedge of this interval. See Color Selector. Color .
interval5
Backgrou
nd

Intervals

Interval
5 High

The upper bound of this interval. double .
interval5
High

Intervals

Interval
5 Low

The lower bound of this interval. double .
interval5L
ow

Intervals

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Interval
5
Outline

The color to paint the arc of this interval. See Color Selector. Color .
interval5
Outline

Intervals

Meter
Angle

The angle in degrees of the centerpoint of the meter (90 is straight up). int .
meterAng
le

Appearan
ce

Meter
Angle
Extent

The extent, in degrees, of the entire meter. int .
meterAng
leExtent

Appearan
ce

Mouse
over
Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Needle
Color

The color of the meter's needle. See Color Selector. Color .
needleCo
lor

Appearan
ce

Needle
Size

The size of the base of the needle. float .
needleSi
ze

Appearan
ce

Needle
Stroke
Color

The color of the needle's stroke. See Color Selector. Color .
needleStr
okeColor

Appearan
ce

Needle
Stroke
Size

The size of the needle's stroke. float .
needleStr
okeSize

Appearan
ce

Overall
High
Bound

The high bound for the whole meter. double .
overallHi
gh

Data

Overall
Low
Bound

The lower bound for the whole meter. double .
overallLow

Data

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Revers
e
Range?

If true, the meter will consider right to left needle movement as positive. boolean .
reverseR
ange

Data

Show
Tick
Labels?

If true, value will be shown on interval-boundary ticks. boolean .ticks Appearan
ce

Styles Contains the component's styles. Dataset .styles Appearan
ce

Tick
Color

The color of tick marks. Color .tickColor Appearan
ce

Tick
Format

The number format to use for the tick labels. String .
tickLabel
Format

Appearan
ce

Tick
Label
Color

The color of the tick labels. See Color Selector. Color .
tickLabel
Color

Appearan
ce

Tick
Label
Font

The font to use for the tick labels. Font .
labelFont

Appearan
ce

Tick
Size

The distance between ticks. double .tickSize Appearan
ce

Units A string to describe the units for the current value label. String .units Appearan
ce

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Value The value to display in this meter. The needle and current value label will
change to reflect this.

double .value Data

Value
Color

The color of the meter's current value label. See Color Selector. Color .
valueCol
or

Appearan
ce

Value
Format

The number format to use for the value label. String .
valueLab
elFormat

Appearan
ce

Value
Label
Font

The font to use for the current value label. Font .
valueFont

Appearan
ce

Visible If disabled, the component will be hidden. boolean .visible Common

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

The following feature is new in Ignition version 8.0.16
 to check out the other new featuresClick here

Description

Provides an opportunity to perform further configuration via scripting.

Parameters

 A reference to the component that is invoking this function.Component self-

JFreeChart chart- A JFreeChart object. Refer to the JFreeChart documentation for API details.

Return

Nothing

Event Handlers

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.16
http://www.jfree.org/jfreechart/api/javadoc/index.html

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component. Note that this event fires
after the pressed and released events have fired.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Customizers

Vision Component Customizers
Style Customizer

Examples

Updated fonts

Property Name Value

Dial Background 0,0,128

Value 35

Unit m/s

Value Label Font Caibri, Italic, 16

Tick Label Font Caibri, Italic, 12

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers#VisionComponentCustomizers-StyleCustomizer

Chord Meter with modified value intervals

Property Name Value

Value 35

Reverse Range? True

Units 'None'

Arc Width 10

Meter Angle Extent 220

Meter Angle 0

Dial Shape Chord

Interval 1 Low 40

Interval 2 High 60

Interval 2 Low 0

Interval 3 High 80

Interval 3 Low 60

Interval 4 High 100

Interval 3 Low 81

Vision - Compass

General

Component
Palette Icon:

Description

The compass is a component that displays up to three needles at once on a cardinal direction compass. This can be useful for
plotting anything that has a cardinal direction, such as the wind direction.

 Each needle can be one of nine different styles. Use the "Disabled" style to turn off any needle.

Properties

Name Description Property
Type

Scripting Category

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel (Double),
Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Cente
r
Color

The center color of the compass. Can be chosen from color wheel, chosen from
color palette, or entered as or value. RGB HSL See Color Selector.

Color .
centerCol
or

Appearan
ce

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Label
Font

The font to use for the compass's labels. Font .
labelFont

Appearan
ce

Mous
eover
Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

The border is unaffected by rotation.

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Rose
Color

The background color of the rose. See Color Selector. Color .
roseColor

Appearan
ce

Rose
Highli
ght

The highlight color of the rose. See Color Selector. Color .
roseHighl
ightColor

Appearan
ce

Styles Contains the component's styles. Dataset .styles Appearan
ce

Value
1

Value 1 for the compass. double .value1 Data

Value
1
Color

The main color for Value 1's needle. See Color Selector. Color .
value1Co
lor

Appearan
ce

Value
1
Needle

The needle type for this value. int .
value1Ne
edle

Data

Value
1
Outline

The outline color for value 1's needle. See Color Selector. Color .
value1Ou
tlineColor

Appearan
ce

Value
2

Value 2 for the compass. double .value2 Data

Value
2
Color

The main color for Value 2's needle. See Color Selector. Color .
value2Co
lor

Appearan
ce

Value
2
Needle

The needle type for this value. int .
value2Ne
edle

Data

Value
2
Outline

The outline color for Value 2's needle. See Color Selector. Color .
value2Ou
tlineColor

Appearan
ce

Value
3

Value 3 for the compass. double .value3 Data

Value
3
Color

The main color for Value 3's needle. See Color Selector. Color .
value3Co
lor

Appearan
ce

Value
3
Needle

The needle type for this value. int .
value3Ne
edle

Data

Value
3
Outline

The outline color for Value 3's needle. See Color Selector. Color .
value3Ou
tlineColor

Appearan
ce

Visible If disabled, the component will be hidden. boolean .visible Common

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Extension Functions

The following feature is new in Ignition version 8.0.16
 to check out the other new featuresClick here

The following feature is new in Ignition version 8.0.16
 to check out the other new featuresClick here

Description

Provides an opportunity to perform further configuration via scripting.

Parameters

 A reference to the component that is invoking this function.Component self-

JFreeChart chart- A JFreeChart object. Refer to the JFreeChart documentation for API details.

Return

Nothing

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component. Note that this event fires
after the pressed and released events have fired.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.16
https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.16
http://www.jfree.org/jfreechart/api/javadoc/index.html

This event fires when the mouse enters the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Customizers

Vision Component Customizers
Style Customizer

Examples

Property Name Value

Center Color 0,217,0

Rose Color 172,95,0

Label Font Times New Roman, Bold, 14

Value 1 140

Value 1 Color 255,0,0

Value 1 Needle Pointer

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers#VisionComponentCustomizers-StyleCustomizer

Vision - Thermometer
General

Component
Palette Icon:

Description

This component displays a temperature value depicted as a level in a mercury thermometer. Three temperature intervals can
optionally be defined with their own colors. The mercury will change color based on the range that it is in.

Properties

Name Description Property
Type

Scripting Category

Axis
Label
Color

The color of the meter's y-axis label. Can be chosen from color wheel, chosen
from color palette, or entered as or value. RGB HSL See Color Selector.

Color .
axisColor

Appearan
ce

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel (Double),
Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Follow
data in
ranges

If true, the thermometer's Y axis will scale itself to zoom in on the current
range.

boolean .
followDat
aInSubra
nges

Behavior

Interval
1 Color

The color of this interval. See Color Selector. Color .
interval1
Color

Intervals

The borders is unaffected by rotation.

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Interval
1 High

The upper bound of this interval. double .
interval1
High

Intervals

Interval
1 Low

The lower bound of this interval. double .
interval1L
ow

Intervals

Interval
2 Color

The color of this interval. See Color Selector. Color .
interval2
Color

Intervals

Interval
2 High

The upper bound of this interval. double .
interval2
High

Intervals

Interval
2 Low

The lower bound of this interval. double .
interval2L
ow

Intervals

Interval
3 Color

The color of this interval. See Color Selector. Color .
interval3
Color

Intervals

Interval
3 High

The upper bound of this interval. double .
interval3
High

Intervals

Interval
3 Low

The lower bound of this interval. double .
interval3L
ow

Intervals

Mercur
y Color

The default color of the mercury. See Color Selector. Color .
mercuryC
olor

Appearan
ce

Mouse
over
Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Overall
High
Bound

The high bound for the whole thermometer double .
overallHi
gh

Data

Overall
Low
Bound

The lower bound for the whole thermometer double .
overallLow

Data

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Styles Contains the component's styles Dataset .styles Appearan
ce

Therm
ometer
Color

The color of the outline of the thermometer. See Color Selector. Color .
thermom
eterColor

Appearan
ce

Therm
ometer
Width

The width of the lines used to draw the thermometer. int .
strokeWi
dth

Appearan
ce

Units A string to describe the units for the current value label. int .units Appearan
ce

Use
Range
Color

Controls whether or not the mercury color changes based on the range it is in. boolean .
useSubra
ngePaint

Appearan
ce

Value The value to display in this thermometer. The mercury level and value label
will change to reflect this.

double .value Data

Value
Color

The color of the meter's current value label. See Color Selector. Color .
valueCol
or

Appearan
ce

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Value
Label
Font

The font to use for the current value label. Font .
valueFont

Appearan
ce

Visible If disabled, the component will be hidden. boolean .visible Common

 Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

The following feature is new in Ignition version 8.0.16
 to check out the other new featuresClick here

Description

Provides an opportunity to perform further configuration via scripting.

Parameters

 A reference to the component that is invoking this function.Component self-

JFreeChart chart- A JFreeChart object. Refer to the JFreeChart documentation for API details.

Return

Nothing

Event Handlers

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.16
http://www.jfree.org/jfreechart/api/javadoc/index.html

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse
release, both of which must have occurred over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCou
nt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupTri
gger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is operating system
dependent, which is why this abstraction exists.

.altDown True (1) if the Alt key was held down during this event, false (0) otherwise.

.
controlD
own

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDown

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCou
nt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupTri
gger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is operating system
dependent, which is why this abstraction exists.

.altDown True (1) if the Alt key was held down during this event, false (0) otherwise.

.
controlD
own

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDown

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires after the pressed and released events have fired.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCou
nt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupTri
gger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is operating system
dependent, which is why this abstraction exists.

.altDown True (1) if the Alt key was held down during this event, false (0) otherwise.

.
controlD
own

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDown

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCou
nt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupTri
gger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is operating system
dependent, which is why this abstraction exists.

.altDown True (1) if the Alt key was held down during this event, false (0) otherwise.

.
controlD
own

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDown

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCou
nt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupTri
gger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is operating system
dependent, which is why this abstraction exists.

.altDown True (1) if the Alt key was held down during this event, false (0) otherwise.

.
controlD
own

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDown

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCou
nt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupTri
gger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is operating system
dependent, which is why this abstraction exists.

.altDown True (1) if the Alt key was held down during this event, false (0) otherwise.

.
controlD
own

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDown

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCou
nt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupTri
gger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is operating system
dependent, which is why this abstraction exists.

.altDown True (1) if the Alt key was held down during this event, false (0) otherwise.

.
controlD
own

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDown

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic)
properties.

.source The component that fired this event

.newValue The new value that this property changed to.

.oldValue The value that this property was before it changed. Note that not all components include an accurate oldValue
in their events.

.
propertyN
ame

The name of the property that changed.

Remember to always filter out these events for the property that you are looking for! Components
often have many properties that change.

Customizers

Vision Component Customizers
Style Customizer

Examples

Property Name Value

Units Fahrenheit

Value 192

Interval 1 High 59

Interval 1 Low 20

Interval 2 High 100

Interval 2 Low 50

Interval 3 High 187

Interval 3 Low 100

Mercury Color 255, 200,0

Use Range Color True

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers#VisionComponentCustomizers-StyleCustomizer

Vision - IP Camera Viewer
General

Component Palette Icon:

Description

The IP camera viewing component displays a video stream from a network camera directly in one of your windows. This can
be a very powerful tool for allowing operators to view remote or inaccessible locations. Cameras can provide positive feedback
about the state and position of machinery, weather, and other factors.

This component is capable of displaying two types of video:

MJPEG (a.k.a. Motion JPEG) is a streaming video protocol that compresses video frames using standard JPEG
compression. Compression rates are quite good, requiring low network bandwidth utilization. Framerates depend
greatly on the dimensions of the video, but typically range from 1-20 frames per second.
JPEG stills is not a true video protocol, but is rather the practice of continually refreshing an image that a camera is
constantly overwriting. Its simplicity means that many cameras support it (usually along with another protocol). Frame
rates are typically lower than MJPEG because a new connection must be opened for each frame.

Most network cameras on the market support one, if not both of these protocols. Even better, if you have an existing CCTV
camera system, video server devices are available that CCTV camera inputs and provide MJPEG streams the network.

Finding the URL for your network camera's video stream is usually the only challenge in connecting this component. Most, if
not all, network cameras have an internal web server, allowing viewers to use web browsers to view their video stream. If you
go to that webpage, and look at the HTML source of the page, you should be able to find the URL of the MJPEG or JPEG still
stream.

Some examples:

High Resolution Streams

When viewing a feed from a High Resolution camera, the Camera Buffer Size property may need to be increased to
contain all of the data from the stream.

Axis 2100 (MJPEG)

http://ip.address.here/axis-cgi/mjpg/video.cgi?resolution=640x480

Panasonic BL-C10A (MJPEG)

http://ip.address.here/nphMotionJpeg?Resolution=640x480&Quality=Standard

StarDot Netcam (JPEG stills)

http://ip.address.here/netcam.jpg

Properties

Name Description Property
Type

Scripting Category

Backgr
ound
Color

The background color of the component. Can be chosen from color wheel,
chosen from color palette, or entered as or value. See RGB HSL Color

.Selector

Color .
backgrou
nd

Appearan
ce

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel (Double),
Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Camer
a
Buffer
Size

Set the size of the video buffer in bytes. int .
cameraB
ufferSize

Behavior

Conne
ction
Retries

The number of times to attempt to connect to the stream. int .
connectR
etries

Behavior

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Font Font of text this component.on Font .font Appearan
ce

Foregr
ound
Color

The foreground color of the component. See Color Selector. Color .
foreground

Appearan
ce

Mouse
over
Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Passw
ord

The password to authenticate with. String .
password

Behavior

Refres
h Rate

The rate (in ms) to poll the image if mode is 'JPEG Stills'. int .
refreshR
ate

Behavior

Retry
Delay

The delay (in ms) to wait between connection attempts. int .
retryDelay

Behavior

Scale
Mode

The scaling performance hint to use. int .
scaleMode

Behavior

Scale
Video

Scale the video to the size of the viewer component. Warning: CPU-intensive. boolean .
scaleVideo

Behavior

Show
Stats

If true, fps and Kbps statistical information will be overlaid on the video. boolean .
showStats

Appearan
ce

URL The HTTP URL of the video stream to display. String .url Behavior

Use
Authen
tication?

If true, the URL connection will try to authenticate using the given username
and password.

boolean .
useAuthe
ntication

Behavior

User-
Agent

If non-empty, the HTTP User-Agent to spoof. String .
userAgent

Behavior

Userna
me

The username to authenticate with. String .
username

Behavior

Video
Mode

Choose what type of video stream the URL points to. int .mode Behavior

Visible If disabled, the component will be hidden. boolean .visible Common

The border is unaffecte by rotation.

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires after the pressed and released events have fired.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Customizers

This component does not have any custom properties.

Examples

IP Camera Viewer

Property Name Value

URL http://trackfield.webcam.oregonstate.edu/mjpg/video.mjpg

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

Vision - Tables Palette

Table Components
The following components give you various types of tables for displaying values.

In This Section ...

Vision - Table

General

Component Palette Icon:

Table

Watch the Video

Description

The Table component is very powerful and easy to configure. It is very flexible, allowing you to easily display your tabular data
in a variety of ways. Important features include:

Column Sorting. Your users can easily sort the data by clicking on the column headers. The sorting is a 3-mode sort:
Ascending, Descending, and "Natural", which uses the default order of the data.
Mapped Row Coloring. Map the background color of each row to a particular column. This allows you to give powerful
visual indication of different types of rows in you tables, such as differentiating between alarm states.
Column Translation. Allow the table component to handle all code mapping, such as mapping 0 to "Off" and 1 to "On".
No fancy SQL knowledge required.
Images. Map values to images, allowing intuitive visual cues.
Progress Bar Indication. Display numeric data as progress bars inside cells, providing fast visual reference for
bounded amounts.
Number and Date formatting. Format numbers and dates to your exact specification.
Column Hiding. Hide columns from view that contain identifying data used by the row coloring or by other components.
Printing. Print tables directly to multi-paged printouts.
Editing. Columns can be made editable. Changes will be reflected in the underlying dataset, at which point they can be
mapped back to a database.

Basic Usage

The basic usage of the Table is to use a SQL Query binding on its Data property to let the table display data from a database.
Often this query will by dynamic or indirect. See the Property Binding section for more information.

Binding to Selected Data

 It is common to want to bind other components to values in the selected row of the table. In order to do this safely, you need to
write an expression binding that protects against the case when nothing is selected or there are no rows. An expression like
this would bind a label to the selected row's value for a column named "ProductCode":

Expression Binding

if({Root Container.MyTable.selectedRow} = -1,
 "n/a", // this is the fail case
 {Root Container.MyTable.data}[{Root Container.MyTable.selectedRow},"ProductCode"] // this
selects from the dataset
)

If you're binding to an integer, date, or other non-String type value thats inside a dateset, you'll need to cast the value to the
correct type to make the expression parser happy. This binding would cast the selected "Quantity" column to an integer:

Expression Binding

if({Root Container.MyTable.selectedRow} = -1,
 -1, // this is the fail case
 toInt({Root Container.MyTable.data}[{Root Container.MyTable.selectedRow},"Quantity"]) //
this selects from the dataset
)

Changing the Column Widths

https://inductiveuniversity.com/video/table/8.0

To change a table's column's widths, simply switch into preview mode and use your mouse to resize the columns, and then
switch back to design mode. To ensure that the changes to the column widths appear in the client, right-click on the table to
open the table customizer and click OK without clicking anywhere else in the customizer. Clicking anywhere else in the
customizer before clicking OK will reset the table column widths.

Editable Table

By setting any column to editable in the Table's customizer, the user will be able to double-click in the cell and edit the data.
You can the respond to the resulting cellEdited event with an event handler and persist the data. See the Script Builders in

 section for more information.Vision

Exporting to HTML

You can export the table to an HTML file that retain's the table's formatting. To do this, use a script like this: (more about the
table's export HTML function is here.)

Python Scripting

Get a reference to the table
table = event.source.parent.getComponent("Table")

Prompt user to save the exported file
table.exportHTML("MyTable.html", "My Table Header", 500)

Exporting to CSV

 You can export the table's raw data to a CSV file. To do this, use a script like this: (more about the fpmi.db.exportCSV function
is here.)

Python Scripting

Get a reference to the table
table = event.source.parent.getComponent("Table")
system.dataset.exportCSV("mydata.csv", 1, table.data)

Printing

 Printing a table is a snap! Simply use the table's built in print function like this: table = event.source.parent.getComponent
("Table") # Get a reference to the table table.print()

Python Scripting

table = event.source.parent.getComponent("Table") # Get a reference to the table table.print()

Properties

Name Description Property
Type

Scripting Category

Auto-
Resize
Mode

Determines how the table resizes the columns. int .
autoResi
zeMode

Behavior

Backgrou
nd Color

The background color of the component. Can be chosen from color wheel,
chosen from color palette, or entered as or value. RGB HSL See Color
Selector.

Color .
backgrou
nd

Appearan
ce

Backgrou
nd Mode

This mode determines the color that this table's cell's backgrounds will be. int .
backgrou
ndColorM
ode

Appearan
ce

https://legacy-docs.inductiveautomation.com/display/DOC80/Script+Builders+in+Vision
https://legacy-docs.inductiveautomation.com/display/DOC80/Script+Builders+in+Vision
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel
(Double), Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Column
Attributes
Data

The dataset describing the column attributes. Dataset .
columnAt
tributesD
ata

Data

Column
Selection
Allowed

This flag is used in conjunction with the Row Selection Allowed flag to
determine whether not whole-rows, whole-columns, or both (single-cells)
are selectable.

boolean .
columnS
electionAl
lowed

Behavior

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Data The data for this table. Dataset .data Data

Edit
Click
Count

The number of clicks required to start editing a cell. int .
clickCoun
tToStart

Behavior

Enabled If disabled, a component cannot be used. boolean .
compone
ntEnabled

Common

Font Font of text this component.on Font .font Appearan
ce

Foregrou
nd Color

The foreground color of the component. See Color Selector. Color .
foreground

Appearan
ce

Grid Line
Color

The color used to draw grid lines. See Color Selector. Color .gridColor Appearan
ce

Header
Font

Font of the table's header text. Font .
headerFo
nt

Appearan
ce

Header
Foregrou
nd Color

The foreground color of the table's header. See Color Selector. Color .
headerFo
reground

Appearan
ce

Header
Visible

Whether or not the table header is visible. boolean .
headerVi
sible

Appearan
ce

Initially
Selected
Row

The index of the row that should be selected by default when this
table's
data is filled in.

int .
initialRow
Selection

Behavior

Mouseov
er Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Odd
Row
Backgrou
nd

The color which odd rows will be colored if background mode is
'Alternating'. See Color Selector.

Color .
oddBack
ground

Appearan
ce

Opaque If false, backgrounds are not drawn. If true, backgrounds are drawn. boolean .opaque Common

Propertie
s Loading

The number of properties currently being loaded. (Read only. Usable in
bindings and scripting.)

int .
propertie
sLoading

Uncatego
rized

The border is unaffected by rotation.

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Deprecat
ed

Resizing
Allowed

Whether or not the user is allowed to resize table headers or not. boolean .
resizingAl
lowed

Behavior

Row
Height

The height of each row, in pixels. int .
rowHeight

Appearan
ce

Row
Selection
Allowed

This flag is used in conjunction with the Column Selection Allowed flag to
determine whether not whole-rows, whole-columns, or both (single-cells)
are selectable.

boolean .
rowSelec
tionAllow
ed

Behavior

Selected
Column

The index of the first selected column, or -1 if none. int .
selected
Column

Data

Selected
Row

The index of the first selected row, or -1 if none. int .
selected
Row

Data

Selection
Backgrou
nd

The background color of a selected cell. See Color Selector. Color .
selection
Backgrou
nd

Appearan
ce

Selection
Foregrou
nd

The foreground color of a selected cell. See Color Selector. Color .
selection
Foregrou
nd

Appearan
ce

Selection
Mode

This mode determines if only one row/cell/column can be selected at once,
or single or multiple intervals.

int .
selection
Mode

Behavior

Show
Horizonta
l Grid
Lines?

Shows horizontal grid lines. boolean .
showHori
zontalLin
es

Appearan
ce

Show
Vertical
Grid
Lines?

Shows vertical grid lines. boolean .
showVert
icalLines

Appearan
ce

TestData Toggle this property to fill in the table's data with random data. boolean .test Misc

Touchscr
een
Mode

Controls when this table component responds if touchscreen mode is
enabled.

int .
touchscre
enMode

Behavior

Visible If disabled, the component will be hidden. boolean .visible Common

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting

Scripting Functions

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Description

Adds a new row to the end of the table's dataset

Parameters

PySequence newRow - A sequence containing the values for the new row. The length of the
sequence must match the number of columns in the table, and each value must be coercible into the
correct datatype of the corresponding column.

Return

Nothing

Description

Deletes a row from the table's dataset.

Parameters

int rowIndex - The index of the row to delete.

Return

Nothing

Description

Prompts the user to save the table's data as a CSV file.

Parameters

String filename - A suggested filename for the user. For example: "table_data.csv"

boolean showHeaders - If true, include headers in CSV file.

Return

String - The path to the saved file, or null if the operation was cancelled.

Description

Creates an HTML page as a string in memory. This can then be written to a file, a database,
emailed, etc.

Parameters

String title - The title for the HTML page.

int width - The width (in pixels) for the "table" element in the resulting html page.

Return

String - A string containing an HTML-formatted version of the table's data.

Description

Returns a list of ints that represent the underlying dataset's rows as they appear in the current sort
order that the user is viewing.

Parameters

none

Return

List of Integers

Description

Returns the index of the currently selected column, or -1 if none is selected.

Parameters

none

Return

int

Description

Returns the number of columns that are currently selected.

Parameters

none

Return

int

Description

Returns the index of the currently selected row, or -1 if none is selected.

Parameters

none

Return

int

Description

Returns a list of the indexes of the selected row, or none if none is selected.

Parameters

none

Return

List, None

Description

Returns the number of rows that are currently selected.

Parameters

none

Return

int

Description

Tests whether the cell at the given row and column is currently selected or not.

Parameters

int row - The row to test.

int column - The column to test.

Return

boolean

Description

Tests whether the given column is currently selected or not.

Parameters

int column- The column to test.

Return

boolean

Description

Tests whether the given row is currently selected or not.

Parameters

int row - The row to test.

Return

boolean

Description

This specialized print function will paginate the table onto multiple pages.This function accepts
keyword-style invocation.

Keyword Args

boolean fitWidth- If true, the table's width will be stretched to fit across one page's width. Rows will
still paginate normally. If false, the table will paginate columns onto extra pages. (default = true) [optio
nal]

string headerFormat- A string to use as the table's page header. The substring "{0}" will be replaced
with the current page number. (default = None) [optional]

string footerFormat- A string to use as the table's page footer. The substring "{0}" will be replaced
with the current page number. (default = "Page {0}") [optional]

boolean showDialog- Whether or not the print dialog should be shown to the user. Default is true. [opt
ional]

boolean landscape- Used to specify portrait (0) or landscape (1) mode. Default is portrait (0). [optiona
l]

Return

boolean- True if the print job was successful.

Description

Used to set a column's header label to a new string at runtime.

Parameters

int column - The column index that will get a new headel label.

 label - The new header label.String

Return

nothing

Description

Sets the given range of columns to be selected. If index0==index1, it will select a single column.

Parameters

int index0 - the first index.

int index1 - the second index.

Return

boolean - True if selection range is valid.

Description

Used to set a column's width at runtime.

Parameters

int column - The index of the column.

int width - The width to set it at in pixels.

Return

nothing

Description

Sets the given range of rows to be selected. If index0==index1, it will select a single row.

Parameters

int index0 - The first index.

int index1 - The second index.

Return

boolean - True if selection range is valid.

Description

Sets the given column to be the selected column.

Parameters

int column - Column to select.

Return

nothing

Description

Sets the given row to be the selected row.

Parameters

int row - Row to select.

Return

nothing

Description

Sets the value in the specified cell, altering the table's Data property. Will fire a propertyChange
event for the "data" property, as well as a cellEdited event.

Parameters

int row - The index of the row to set the value at.

int column - The index or name of the column to set a value at.

PyObject value - The new value to use at the given row/column location.

Return

nothing

Description

Instructs the table to sort the data by the named column.

Parameters

String columnName - The name of the column.

boolean asc - 1 means ascending, 0 means descending. (default = 1) [optional]

Return

nothing

Description

Instructs the table to clear any custom sort columns and display the data as it is sorted in the
underlying dataset.

Parameters

nothing

Return

nothing

Description

Updates an entire row of the table's dataset.

Parameters

int rowIndex - The index of the row to update.

PyDictionary changes - A sequence containing the updated values for the row. The length of the
sequence must match the number of columns in the table, and each value must be coercible into
the correct datatype of the corresponding column.

Return

nothing

Extension Functions

Description

Called for each cell, returns the appropriate background color. Do not block, sleep, or execute any I
/O; called on painting thread.

Parameters

 self - A reference to the component that is invoking this function.Component

 row -The row index of the cell.int

 col -The column index of the cell.int

 isSelected - A boolean representing if the cell is currently selected.boolean

 value -The value in the table's dataset at index [row, col].Object

 defaultColor -The color the table would have chosen if this function was not implemented.Color

Return

Color

 Description

Called for each cell, returns the appropriate foreground (text) color. Do not block, sleep, or execute
any I/O; called on painting thread.

Parameters

 self - A reference to the component that is invoking this function.Component

 row -The row index of the cell.int

 col -The column index of the cell.int

 isSelected - A boolean representing if the cell is currently selected.boolean

 value -The value in the table's dataset at index [row, col].Object

 defaultColor - The color the table would have chosen if this function was not implemented.Color

Return

Color

Description

Called for each cell, returns a String which will be used as the text of the cell. Do not block, sleep or
execute any I/O; called on the painting thread.

Parameters

 self - A reference to the component that is invoking this function.Component

 row-The row index of the cell.int

 col-The column index of the cell.int

 isSelected: A boolean representing if the cell is currently selected.boolean

 value-The value in the table's dataset at index [row, col].Object

String defaultText -The string the table would have chosen if this function was not implemented.

Return

String

Event Handlers

This event occurs when a component that can receive input, such as a text box, receives the input focus. This
usually occurs when a user clicks on the component or tabs over to it.

.source The component that fired this event

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
newVal
ue

The new value that this property changed to.

.row The row of the dataset this cell represents.

.column The column of the dataset this cell represents.

This event occurs when a component that can receive input, such as a text box, receives the input focus. This
usually occurs when a user clicks on the component or tabs over to it.

.source The component that fired this event.

.
oppositeCom
ponent

The other component involved in this focus change. That is, the component that lost focus in
order for this one to gain it, or vise versa.

This event occurs when a component that had the input focus lost it to another component.

.source The component that fired this event

.
oppositeCom
ponent

The other component involved in this focus change. That is, the component that lost focus in
order for this one to gain it, or vise versa.

An integer that indicates whether the state was changed to "Selected" (on) or "Deselected" (off). Compare this to
the event object's constants to determine what the new state is.

.
s
o
ur
ce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the KEY_LOCATION constants, the keyTyped event
always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
ro
lD
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when a key is released and the source component has the input focus. Works for all characters, including
non-printable ones, such as SHIFT and F3.

.
s
o
u
rce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the KEY_LOCATION constants in the documentation, the
keyTyped event always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
r
ol
D
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when a key is pressed and then released when source component has the input focus. Only works for
characters that can be printed on the screen.

.
s
o
u
rce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the KEY_LOCATION constants in the documentation, the
keyTyped event always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
r
ol
D
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component. Note that this event fires aft

 the pressed and released events have fired.er

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

 This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a property of the source component changes. This works for standard and custom bindable
(dynamic) properties.

.source The component that fired this event.

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed.

.
property
Name

The name of the property that changed.

Customizers

The Table component has a Table customizer to manage column configurations and configure background color mapping. It
allows you to customize how you want the table to look to users.

Vision - Table Customizer
Vision Component Customizers
Understanding Component Customizers

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers

Examples

Code Snippet

#The following would add a row to the table.
#Note that this function takes a list
#And that the property types of the list are the same as the table.

name = "Motor 1"
state = 2
amps = 35
list = [name, state, amps]
table = event.source.parent.getComponent('Table')
table.addRow(list)

Vision - Table Customizer

Description

The is one of the most flexible and easy to configure components in Ignition. It has its own Table Customizer Table component
that allows you to make changes to tabular data and display it in a variety ways. The customizer not only lets you customize
each column in the table, but together with its data properties and use of scripting and extension functions, it lets you configure
how each cell in the table looks and behaves.

Customizers

The Table Customizer allows you to configure how you want the table to look to users. When you open the Table Customizer,
you'll notice two tabs: Column Configuration and Background Color Mapping. The Column Configuration tab contains a number
of column configuration properties that can be used to customize each column in the dataset to look a certain way. You can
assign a header name, hide a column, make the column editable and sortable, align the text within the column, add a prefix by
putting a "$" in front of a value, or suffix by adding a "%" at the end of a value, select a number and date format, turn the
column into a progress bar, translate a number into a string or image or even into a background or foreground color. It's even
possible to change the background, foreground, and font for the text in each particular column or cell.

In the Background Color Mapping tab, you can set the table's Background property to 'Mapped', and choose a column to
govern the background color of each row. The column is specified in the Mapping Column dropdown selector. The column
must be a numeric type. The number to color translation works with the contents of the mapping column rows to format the
cells in accordance with the selected color.

Component Customizers
Understanding Component Customizers

Table Customizer Properties

Column Configuration Tab

Property Description

Header Provide a custom name to the column header.

Hide Hides the column.

Editable Allows the editing of the cell pertaining to the column.

Sortable Allows the user to sort the table according to the selected column.

Horiz Align Aligns the contents of the column.

Vert Align Aligns the contents of the column.

Hdr Horiz Align Aligns the contents of the column.

Prefix A custom text that proceeds the contents of each cell.

Suffix A custom text that follows the contents of each cell.

Number
Format

A format of the cell if the contents of the cell are number types.

Boolean Changes the contents of the cell to reflect a 'check box' look and feel.

Progress Bar A graphical bar is represented in the cell instead of a number.

Progress Bar
Range

Sets the min and max range of the progress bar.

Hide Text
Over P-Bar

Makes the value and text that controls the progress bar visible or invisible.

P-Bar Color The color of the progress bar.

P-Bar
Background

The color of the cell that has a progress bar.

Translation
List Column

This works in conjunction with the Translation List. The key is provided by a named column resulting in the
cells being translated according to the list that contains the key pairs.

TestData Property

If you want to test how the Table Customizer works in the Table, drag a Table on to your workspace, go to the Test
Data property in the Property Editor, and check the 'false' checkbox. It will automatically fill the table with some test
data so you get test out the Table Customizer

https://legacy-docs.inductiveautomation.com/display/DOC79/Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC79/Understanding+Components#UnderstandingComponents-ComponentCustomizers

Translation List Defines the key/Translation pairs and translates the contents of the cell accordingly.

Image Path
Column

This works in conjunction with the Image Path List. The key is provided by a named column resulting in
the cells being translated according to the list that contains the key pairs.

Image Path List Defines the key/Translation pairs and translates the contents of the cell accordingly.

Background
Color Column

This works in conjunction with the Background Color List. The key is provided by a named column
resulting in the cells being translated according to the list that contains the key pairs.

Background
Color List

Defines the key/Translation pairs and translates the contents of the cell accordingly.

Foreground
Color Column

This works in conjunction with the Foreground Color List. The key is provided by a named column
resulting in the cells being translated according to the list that contains the key pairs.

Foreground
Color List

Defines the key/Translation pairs and translates the contents of the cell accordingly.

Font Map
Column

This works in conjunction with the Foreground Color List. The key is provided by a named column
resulting in the cells being translated according to the list that contains the key pairs.

Font Map Defines the key/Translation pairs and translates the contents of the cell accordingly. An example of a font
translation could look like this "Dialog, Bold, 12"

Color Mapping Tab

Mapping
Column

Select a column to govern the background color of each row.

Number to
Color
Translation

A numeric value (typically an integer) that drives the background and foreground color of a row. For every
number or value, you can choose a different color.

Fallback Color Default color that can be set when a value does is not defined.

Example

The table in this example uses several mappings:

Col 4 changed a number into a string: translated a priority "1" to Critical, and priority "2" to High. It also change the
background colors of the cells for both priorities.
Col 3 changed the background colors for the equipment status's "Maintenance" and "Idle" to pale red.
Col 2 change the background color of the equipment name to pale red for the equipment status's that were "Idle" and
"Maintenance."

Table

Table Customizer

Data Property Dataset

Vision - Power Table

General

Component Palette Icon:

Power Table

Watch the Video

https://www.inductiveuniversity.com/videos/power-table/8.0/8.0

Description

The power table is a more customizable version of the table component, and it comes with advanced features such as drag-
extensiand-drop rows, multi-column sorting, column filtering, and cell-spanning. Customization comes through extensive use of

on functions, which are available to configure how each cell of the table looks, how the headers look, etc.

Basic Usage

The basics are just like the classic - you simply bind the table's "data" property to your data, most often by using a SQL table
query binding. Note that many of the options built into the classic table have been moved to extension functions in the power
table.

Power Table Features

Multi-column sorting. To sort multiple columns, select the header of the first column, hold down the Control key, then
select the header of the next column. Click on the header again to reverse the sort order, and click a third time to

 remove sorting on the column.
Column filtering. Columns can be temporarily hidden from view using column filtering. Right-click on the header of
the table, and uncheck columns that you would like to hide. You can disable this feature by disabling the Column
Chooser Menu property on the table.
Column reordering. You can switch the locations of columns on the table using column reordering. Drag the header
of the column that you would like to move to a new location on the table. You can disable this feature by disabling the
Columns Re-Orderable property on the table.
Cell spanning. A cell can be spanned across multiple columns and rows. Keep in mind that you must explicitly define
the locations of cells that must be spanned. This means that if you would like to use cell spanning, any other table
features that change how the table is displayed will be disabled automatically (such as sorting, column filtering and
column reordering). Click on the Cell Span Data dataset to configure spanning. Within the dataset, add a row for each
new span. The "row" column controls the row in the table where the span will start. The "column" column controls the
column where the span will start. The "width" column controls how many columns the span will cover. The "height"
column controls how many rows the span will cover. Adding a row where "row=4, column=1, width=2, height=3" results
in a span starting on the fifth row of the table and the second column (using 0-based indexing). The span will cover the
second and third columns in the row and will also cover two rows below the fifth row, as shown below.
Drag and Drop. This feature allows you to drag rows from one power table to another power table. In order to perform
drag and drop, you must implement the onRowsDropped() extension function on the destination table. This is so that
you can adapt the data from one table to the other within the function. You must also enable the Row Dragging
Enabled property on both tables.
Row Copying. This feature allows you to select rows and copy them to the clipboard using the standard keyboard
shortcut Ctrl + C. These can then be pasted anywhere, even outside of Ignition.

Properties

Name Description Property
Type

Scripting Category

Auto
Row
Height

Enables automatic resizing of row height. boolean .
rowResiz
eEnabled

Behavior

Auto-
Resize
Mode

Determines how the table resizes the columns. int .
autoResi
zeMode

Behavior

Backgro
und
Color

The background color of the component. Can be chosen from color wheel,
chosen from color palette, or entered as or value. RGB HSL See Color
Selector.

Color .
backgrou
nd

Appearan
ce

Cell
Span
Data

This dataset holds information about how cells in the table span multiple
rows and/or columns. Incompatible with column sorting and re-ordering.

Dataset .
cellSpan
Data

Data

Column
Attribute
s Data

The dataset describing the column attributes.

Note: the data in this doesn't get initialized until the customizer is property
opened and the OK button is pressed.

Dataset .
columnAt
tributesD
ata

Appearan
ce

Even if a column is set to be editable, the edit must be handled by the onCellEdited extension function. If that
extension function is not enabled and properly set up, the cell will revert back to its previous value.

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Column
Chooser
Menu

Enables a right-click popup menu on the column headers with options to
show and hide columns.

boolean .
headerC
olumnCh
ooserMe
nus

Behavior

Column
Resize
Menu

Enables a right-click popup menu on the column headers with resizing
options.

boolean .
headerR
esizeMen
us

Behavior

Column
Selectio
n
Allowed

This flag is used in conjunction with the Row Selection Allowed flag to
determine whether not whole-rows, whole-columns, or both (single-cells) are
selectable.

boolean .
columnS
electionAl
lowed

Behavior

Column
Sizing

Represents column sizing and position to preserve user-selected ordering. String .
defaultCo
lumnView

Appearan
ce

Column
s Re-
Orderab
le

Enables the re-ordering of columns by dragging the column headers. boolean .
columnR
eordering
Allowed

Behavior

Column
s
Resizable

Enables the resizing of columns by dragging the margins of the column
headers.

boolean .
columnR
esizingAll
owed

Behavior

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Data The data for this table. Dataset .data Data

Edit
Click
Count

The number of clicks required to start editing a cell. int .
clickCoun
tToStart

Behavior

Enabled If disabled, a component cannot be used. boolean .
compone
ntEnabled

Common

Font Font of text this component.on Font .font Appearan
ce

Foregro
und
Color

The foreground color of the component. See Color Selector. Color .
foreground

Appearan
ce

Grid
Line
Color

The color used to draw grid lines. See Color Selector. Color .gridColor Appearan
ce

Header
Font

Font of the table's header text. Font .
headerFo
nt

Appearan
ce

Header
Visible

Allows for hiding of the table's header. boolean .
headerVi
sible

Appearan
ce

Inter
Cell
Spacing

The space (in pixels) between the cells. Dimension .
interCellS
pacing

Appearan
ce

Name The name of this component. String .name Common

Non-
Contigu
ous
Selection

Enables totally non-contiguous selection in the table. boolean .
nonConti
guousCel
lSelection

Behavior

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Properti
es
Loading

The number of properties currently being loaded. (Read only. Usable in
bindings and scripting.)

int .
propertie
sLoading

Uncatego
rized

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Row
Draggin
g
Enabled

Enables drag-and-drop re-ordering for table rows. Implementing the
'onRowsDropped' extension function is also required to have functional drag-
and-drop.

boolean .
rowDrag
Enabled

Behavior

Row
Height

If row resizing is disabled, this will set the height of all rows. int .
rowHeight

Behavior

Row
Selectio
n
Allowed

This flag is used in conjunction with the Column Selection Allowed flag to
determine whether not whole-rows, whole-columns, or both (single-cells) are
selectable.

boolean .
rowSelec
tionAllow
ed

Behavior

Selecte
d
Column

The index of the first selected column, or -1 if none. int .
selected
Column

Data

Selecte
d Row

The index of the first selected row, or -1 if none. int .
selected
Row

Data

Selectio
n
Backgro
und

The default background color of selected cells. See Color Selector. Color .
selection
Backgrou
nd

Appearan
ce

Selectio
n
Foregro
und

The default foreground color of selected cells. See Color Selector. Color .
selection
Foregrou
nd

Appearan
ce

Selectio
n Mode

This mode determines if only one row/cell/column can be selected at once, or
single or multiple intervals.

int .
selection
Mode

Behavior

Show
Horizont
al Grid
Lines?

Shows horizontal grid lines. boolean .
showHori
zontalLin
es

Appearan
ce

Show
Vertical
Grid
Lines?

Shows vertical grid lines. boolean .
showVert
icalLines

Appearan
ce

Sorting
Enabled

Enables automatic multi-column sorting by clicking and CTRL-clicking on the
table header.

boolean .
sortingEn
abled

Behavior

TestData Toggle this property to fill in the table's data with random data. boolean .test Misc

View
Dataset

A read-only copy of the data as it appears on screen in the table. The
purpose of this property is to preserve the column ordering, column visibility,
and applied sorting order. Other attributes, such as formatting, will not be
preserved in this dataset.

Dataset .
viewData
set

Data

Visible If disabled, the component will be hidden. boolean .visible Common

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Scripting

Scripting Functions

Description

Returns a list of ints representing the currently selected columns.

Parameters

none

Return

Object of Integers - An object containing integers that represent the indices of the selected columns.
Can be iterated over in a similar manner to a Python List.

Description

Returns a list of ints representing the currently selected rows.

Parameters

none

Return

Object of Integers - An object containing integers that represent the indices of the selected rows.
Can be iterated over in a similar manner to a Python List.

Description

This specialized print function will paginate the table onto multiple pages.This function accepts
keyword-style invocation.

Keyword Args

boolean fitWidth - If true, the table's width will be stretched to fit across one page's width. Rows will
 still paginate normally. If false, the table will paginate columns onto extra pages. (default = true) [opti

onal]

String headerFormat - A string to use as the table's page header. The substring "{0}" will be
 replaced with the current page number. (default = None) [optional]

String footerFormat - A string to use as the table's page footer. The substring "{0}" will be replaced
 with the current page number. (default = "Page {0}") [optional]

boolean showDialog - Used to determine if the print dialog should be shown to the user. Default is
 true. [optional]

boolean landscape - Used to specify portrait (0) or landscape (1) mode. Default is portrait (0). [optio
nal]

Return

boolean - True if the print job was successful.

Description

Used to set a column's width at runtime.

Parameters

int column - Column to adjust.

 width - Width in pixels.int

Return

Nothing

Extension Functions

Description

Provides a chance to configure the contents of each cell. Returns a dictionary of name-value pairs
with the desired attributes. Available attributes (and their Java types) include: 'background' (color),
'border' (border), 'font' (font), 'foreground' , 'horizontalAlignment' (int), 'iconPath' (string), 'text' (color)
(string), 'toolTipText' (string), 'verticalAlignment' (int).

You can also specify the attribute 'renderer', which is expected to be a javax.swing.JComponent
which will be used to render the cell.

Parameters

 self - A reference to the component that is invoking this function.Component

Object value - The value in the dataset at this cell.

 textValue - The text the table expects to display at this cell (may be overriden by including 'text' string
attribute returned in dictionary).

 selected - A boolean indicating whether this cell is currently selected.boolean

 rowIndex - The index of the row in the underlying datasetint

 colIndex - The index of the column in the underlying datasetint

 colName - The name of the column in the underlying datasetstring

 rowView - The index of the row, as it appears in the table view (affected by sorting)int

 colView - The index of the column, as it appears in the table view (affected by column re-int
arranging and hiding)

Return

Dictionary of Attributes

Description

Provides a change to configure how each column is edited. Returns a dictionary of name-value pairs
with desired editor attributes. Visual attributes to modify existing editors include: 'background',
'border', 'font', 'foreground', 'horizontalAlignment', 'toolTipText', and 'verticalAlignment'

If the attribute 'options' is specified, it is expected to be a list of tuples representing (value, label).
The editor in this case will become a dropdown list.

If the attribute 'editor' is specified, it is expected to be an instance of javax.swing.table.
TableCellEditor, and other attributes will be ignored.

The following feature is new in Ignition version 8.0.16
 to check out the other new featuresClick here

As of 8.0.16, the 'options' editor on the Power Table’s configureEditor Extension Function now
accepts a rowHeight key allowing you to change the height of items in the dropdown. For example:

return {'options': [(0, 'Option A'), (1, 'Option B')], 'rowHeight':100}

Parameters

 self - A reference to the component that is invoking this functionComponent

 colIndex - The index of the column in the underlying datasetint

 colName - The name of the column in the underlying datasetstring

Return

Dictionary of name value pairs

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.16

Description

Provides a chance to configure the style of each column header. Return a dictionary of name-value
pairs with the designed attributes. Availible attributes include: 'background', 'border', 'font',
'foreground', 'horizontalAlignment', 'toolTipText', 'verticalAlignment'

Parameters

 self - A reference to the component that is invoking this functionComponent

 colIndex - The index of the column in the underlying datasetint

 colName - The name of the column in the underlying datasetstring

Return

Dictionary of name value pairs

Description

Called when the window containing this table is opened, or the template containing it is loaded.
 Provides a chance to initialize the table further, for example, selecting a specific row.

Parameters

 self - A reference to the component that is invoking this functionComponent

Return

Nothing

Description

 Returns a boolean that determines whether or not the current cell is editable.

Parameters

 self - A reference to the component that is invoking this function.Component

 rowIndex - Index of the row that was edited, relative to the underlying dataset.int

 colIndex - Index of the column that was edited, relative to the underlying dataset.int

 colName - Name of the column in the underlying dataset.string

value - The value at the cell location.Object

Return

boolean

Description

Called when the user has edited a cell in the table. It is up to the implementation of this function to
alter the underlying data that drives the table. This might mean altering the dataset directly, or
running a SQL UPDATE query to update data in the database.

Parameters

 self - A reference to the component that is invoking this function.Component

 rowIndex - Index of the row that was edited, relative to the underlying dataset.int

 colIndex - Index of the column that was edited, relative to the underlying dataset.int

 colName - Name of the column in the underlying dataset.string

oldValue - The old value at the location, before it was edited.Object

newValue - The new value input by the user.Object

Return

Nothing

The following feature is new in Ignition version 8.0.4
 to check out the other new featuresClick here

Description

 Called when the user initially presses the mouse button on a table cell.

Parameters

 self - A reference to the component that is invoking this function.Component

 rowIndex - Index of the row, starting at 0, relative to the underlying dataset.int

 colIndex - Index of the column starting at 0, relative to the underlying dataset.int

value - The value at the location clicked on.Object

 event - The MouseEvent object that caused this pressed event.MouseEvent

Return

Nothing

If the script on this extension function causes the Power Table to lose focus, the cell commit will occur
twice. For example, if system.gui.confirm() is called, then two confirmation boxes will appear. In cases
where the script will cause the focus to switch between multiple objects, the script should be placed in
a function, and wrapped in a call to ()system.util.invokeLater

 def myFunction():
 """
 Do your work here
 """
 system.gui.messageBox("Assuming you don't change focus
outside of this script\nYou will only see this message once per cell
edit")
 system.util.invokeLater(myFunction)

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.4
https://legacy-docs.inductiveautomation.com/display/DOC80/system.util.invokeLater

The following feature is new in Ignition version 8.0.4
 to check out the other new featuresClick here

Description

 Called when the user releases the mouse button on a table cell.

Parameters

 self - A reference to the component that is invoking this function.Component

 rowIndex - Index of the row, starting at 0, relative to the underlying dataset.int

 colIndex - Index of the column starting at 0, relative to the underlying dataset.int

value - The value at the location that the mouse is released on.Object

 event - The MouseEvent object that caused this released event.MouseEvent

Return

Nothing

The following feature is new in Ignition version 8.0.4
 to check out the other new featuresClick here

Description

 Called when the user clicks on a table cell.

Parameters

 self - A reference to the component that is invoking this function.Component

 rowIndex - Index of the row, starting at 0, relative to the underlying dataset.int

 colIndex - Index of the column starting at 0, relative to the underlying dataset.int

value - The value at the location clicked on.Object

 event - The MouseEvent object that caused this click event.MouseEvent

Return

Nothing

Description

 Called when the user double-clicks on a table cell.

Parameters

 self - A reference to the component that is invoking this function.Component

 rowIndex - Index of the row, starting at 0, relative to the underlying dataset.int

 colIndex - Index of the column starting at 0, relative to the underlying dataset.int

value - The value at the location clicked on.Object

 event - The MouseEvent object that caused this double-click event.MouseEvent

Return

Nothing

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.4
https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.4

Description

Called when the user right-clicks on a table cell. This would be the appropriate time to create and
display a popup menu.

Parameters

 self - A reference to the component that is invoking this function.Component

 rowIndex - Index of the row, starting at 0, relative to the underlying dataset.int

 colIndex - Index of the column starting at 0, relative to the underlying dataset.int

 colName - Name of the column in the underlying dataset.string

value - The value at the location clicked on.Object

 event - The MouseEvent object that caused this double-click event.MouseEvent

Return

Nothing

Description

Called when the user has dropped rows on this table. Note that the rows may have come from this
 table or another table. The source table must have dragging enabled.

Parameters

 self - A reference to the component that is invoking this functionComponent

 sourceTable - A reference to the table that the rows were dragged and dropped in the Component
same table.

 rows - An array of the rows indices that were dragged, in the order they were selectedlist

 rowData - A dataset containing the rows that were draggedDataset

 dropIndexLocation - Row index where the rows were droppedint

Return

Nothing

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component. Note that this event fires
after the pressed and released events have fired.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Customizers

This component has a table customizer that allows customization of the individual columns including hiding columns, enabling
editing, changing format, etc. It is important to note that when editing cells directly in the Power Table, it doesn't modify the
underlying dataset. You can use the onCellEdited extension function and uncomment the sample code to make table edits
change the underlying Dataset, or even the original source of data (ie: if using a SQL Query).

Vision - Power Table Customizer
Vision Component Customizers
Understanding Component Customizers

Examples

Code Snippet

#Example of an onRowsDropped() extension script for two power tables with identical columns:

def onRowsDropped(self, sourceTable, rows, rowData, dropIndexLocation):
 if self != sourceTable:
 destDataset = self.getData()
 pyRowData = system.dataset.toPyDataSet(rowData)
 # Loop thru all the rows that have been selected and dragged to the
 # destination table.
 for row in pyRowData:
 newRow = []
 for column in row:
 newRow.append(column)
 destDataset = system.dataset.addRow(destDataset, dropIndexLocation, newRow)
 # Adds the rows to the destination table.
 self.setData(destDataset)
 # Optional. Deletes the dragged rows from the source table.
 sourceDataset = system.dataset.deleteRows(sourceTable.getData(), rows)
 sourceTable.setData(sourceDataset)
 else:
 system.gui.messageBox("Dropping on to same table not supported")
 # To drop onto the same table, the new row indices must be calculated
 # for both the dropped and deleted rows, taking changes into account.

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers#VisionComponentCustomizers-StyleCustomizer

Vision - Power Table Customizer

Description

The offers the same functionality as the classic component, but has more features. Just Vision - Power Table Vision - Table
like the classic Table, it not only provides a Table Customizer that allows you to make changes to the table columns, but
coupled with its data properties and use of extension functions, it lets you configure how each cell in the table looks and
behaves.

Customizers

The Table Customizer allows you to configure how you want the table to look to users. When you open the customizer, you'll
notice that the data is formatted into different columns. The left column contains all the Table Customizer properties. For each
column in the customizer, you can assign a header name, hide the column, make it editable and sortable, change the
horizontal and vertical alignment of text, and select a number format and date format style.

Vision - Power Table
Component Customizers
Understanding Component Customizers

TestData Property

If you want to test how the Table Customizer works in the Power Table, drag a Power Table on to your workspace,
go to the Test Data property in the Property Editor, and check the 'false' checkbox. It will automatically fill the table
with some test data so you get test out the Table Customizer.

https://legacy-docs.inductiveautomation.com/display/DOC79/Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC79/Understanding+Components#UnderstandingComponents-ComponentCustomizers

Table Customizer Properties

Property Description

Header Provide a custom name to the column header.

Hide Hides the column.

Editable Allows the editing of the cell pertaining to the column. While the cell will be editable, the edit won't do anything
and the cell will revert back to its previous value unless the edit is handled by the onCellEdited extension
function.

Sortable Allows the user to sort the table according to the selected column.

Filterable Allows the user to filter the table according to the selected column.

Horiz
Align

Aligns the contents of the column: Auto, Left, Center, Right.

Vert
Align

Aligns the contents of the column: Top, Center, Bottom.

Wrap
Text

The text will wrap if its contents are longer than the width of the cell.

Prefix A custom text that proceeds the contents of each cell.

Suffix A custom text that follows the contents of each cell.

Number
Format

A format of the cell if the contents of the cell are number types.

Date
Format

A format of the cell if the contents of the cell are date types.

Boolean Changes the contents of the cell to reflect a 'check box' look and feel.

Power Table Customizer

In this example, compare the columns in the dataset and the table customizer to see how the individual columns were
customized to create the chart below.

Power Table

Table Customizer

Data Property Dataset

Vision - List

General

Component
Palette Icon:

Description

The List component displays a list of options, allowing freeform selection of the items. It is powered by a Dataset, from which it displays the
first column.

Properties

Name Description Property
Type

Scripting Category

Backgr
ound
Color

The background color of the component. Can be chosen from color wheel,
chosen from color palette, or entered as or value. RGB HSL See Color
Selector.

Color .
backgrou
nd

Appearan
ce

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel
(Double), Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Data The data for the list. If multiple columns exist, the first will be used. Dataset .data Data

Enabled If disabled, a component cannot be used. boolean .
compone
ntEnabled

Common

Font Font of text this component.on Font .font Appearan
ce

Foregro
und
Color

The foreground color of the component. See Color Selector. Color .
foreground

Appearan
ce

Layout
Orientat
ion

This property defines the orientation of the list elements. int .
layoutOri
entation

Appearan
ce

Mouseo
ver Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

The border is unaffected by rotation.

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Opaque If false, backgrounds are not drawn. If true, backgrounds are drawn. boolean .opaque Common

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Row
Height

An integer specifying the row height, or -1 for automatic row height. int .
rowHeight

Appearan
ce

Selecte
d
Backgr
ound

The color of the background for the selected cell(s). Color .
selected
Backgrou
nd

Appearan
ce

Selecte
d
Focus
Border

The border for the selected, focused cell. Border .
selectedF
ocusBord
er

Appearan
ce

Selecte
d
Foregro
und

The color of the foreground for the selected cell(s). See Color Selector. Color .
selectedF
oreground

Appearan
ce

Selecte
d Index

The index of the selected cell, or -1 if none. int .
selectedI
ndex

Data

Selectio
n Mode

This mode determines if only one cell can be selected at once, or single or
multiple intervals.

int .
selection
Mode

Behavior

Styles Contains the component's styles. Dataset .styles Appearan
ce

Visible If disabled, the component will be hidden. boolean .visible Common

Visible
Row
Count

An integer specifying the preferred number of rows to display without
requiring scrolling.

int .
visibleRo
wCount

Appearan
ce

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting

Scripting Functions

Description

Adds the options at indexes start through end (inclusive) to the selected options.

Parameters

int start - The first index (stating at 0) to add to the selection.

int end - The last index (stating at 0) to add to the selection.

Return

Nothing

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Description

Clears the current selection, making nothing selected.

Parameters

Nothing

Return

Nothing

Description

Returns a list of the selected indices in increasing order. Returns an empty list if nothing is selected.

Parameters

Nothing

Return

List of Integers

Description

Returns the currently selected value, or None if the selection is empty.

Parameters

Nothing

Return

Object

Description

Returns a list of the currently selected values. Returns an empty list if the selection is empty.

Parameters

Nothing

Return

Object[]

Description

Checks whether or not the given index is currently selected.

Parameters

int index

Return

boolean

Description

Checks to see if anything is selected in the list or not.

Parameters

Nothing

Return

boolean

Description

Sets the currently selected value to the argument, if found in the list.

Parameters

Object value

Return

Nothing

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

This event occurs when a component that can receive input, such as a text box, receives the input focus. This
usually occurs when a user clicks on the component or tabs over to it.

.source The component that fired this event.

.
oppositeCom
ponent

The other component involved in this focus change. That is, the component that lost focus in
order for this one to gain it, or vise versa.

This event occurs when a component that had the input focus lost it to another component.

.source The component that fired this event

.
oppositeCom
ponent

The other component involved in this focus change. That is, the component that lost focus in
order for this one to gain it, or vise versa.

An integer that indicates whether the state was changed to "Selected" (on) or "Deselected" (off). Compare this to
the event object's constants to determine what the new state is.

.
s
o
ur
ce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the KEY_LOCATION constants, the keyTyped event
always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
ro
lD
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when a key is released and the source component has the input focus. Works for all characters, including
non-printable ones, such as SHIFT and F3.

.
s
o
u
rce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the KEY_LOCATION constants in the documentation, the
keyTyped event always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
r
ol
D
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when a key is pressed and then released when source component has the input focus. Only works for
characters that can be printed on the screen.

.
s
o
u
rce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the KEY_LOCATION constants in the documentation, the
keyTyped event always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
r
ol
D
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component. Note that this event fires aft

 the pressed and released events have fired.er

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

 This event fires when the mouse leaves the space over the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

 This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a property of the source component changes. This works for standard and custom bindable
(dynamic) properties.

.source The component that fired this event.

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed.

.
property
Name

The name of the property that changed.

Customizers

Vision Component Customizers
Style Customizer

Examples

Code Snippet

#The following code will print the selected value to the console when called on the
'mouseClicked' event handler.
value = event.source.getSelectedValue()
print value

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers#VisionComponentCustomizers-StyleCustomizer

Vision - Tree View

General

Component Palette Icon:

Tree View

Watch the Video

Description

The Tree View component can display any tree hierarchy. It is configured by filling in a dataset. Each column title in the dataset
is a property of the .Tree View Customizer

Each row in the dataset will become a node in the tree. Each node has a path , for that determines its location in the tree
example, "West Area/Process/Valve1". The Separation Character property (by default is a forward-slash), dictates how the
paths are broken up. Any missing folder nodes needed by a leaf node are created implicitly. The other columns in the dataset
besides "Path" are used to configure the look for the node, both when it is selected and when it is not. All column properties in
the dataset are described in the .Tree View Customizer

Tree View Component Properties

Name Description Property
Type

Scripting Category

Auto
Expand

If true, the tree will automatically expand the tree structure up to the level
specified by Auto Expansion Level.

boolean .
autoExpa
nd

Behavior

Auto
Expansion
Level

If Auto Expand is true, this is the depth level that will be expanded. Zero
means expand-all.

int .
autoExpa
nsionLev
el

Behavior

Auto Sort Whether or not to automatically sort the tree. boolean .autoSort Behavior

Backgroun
d Color

The background color of the component. Can be chosen from color
wheel, chosen from color palette, or entered as or value. See RGB HSL C

.olor Selector

Color .
backgrou
nd

Appearan
ce

https://inductiveuniversity.com/video/tree-view/8.0
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel
(Double), Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Default
Closed Icon

The default closed icon if no icon is set. String .
defaultCl
osedIcon
Path

Appearan
ce

Default
Leaf Icon

The default leaf icon if no icon is set. String .
defaultLe
afIconPath

Appearan
ce

Default
Node
Background

The default background of a node if no background is set. See Color
Selector.

Color .
defaultBa
ckground

Appearan
ce

Default
Node
Border

The default border of a node if no border is set. Border .
defaultBo
rder

Appearan
ce

Default
Node
Foreground

The default foreground of a node if no foreground is set. See Color
Selector.

Color .
defaultFo
reground

Appearan
ce

Default
Node
Selected
Background

The default selected background of a node if no background is set. See C
olor Selector.

Color .
defaultSe
lectedBa
ckground

Appearan
ce

Default
Node
Selected
Border

The default selected border of a node if no border is set. Border .
defaultSe
lectedBor
der

Appearan
ce

Default
Node
Selected
Foreground

The default selected foreground of a node if no foreground is set. See Col
or Selector.

Color .
defaultSe
lectedFor
eground

Appearan
ce

Default
Open Icon

The default open icon if no icon is set. String .
defaultOp
enIconPa
th

Appearan
ce

Enabled If disabled, a component cannot be used. boolean .
compone
ntEnabled

Common

Font Font of text this component.on Font .font Appearan
ce

Items Contains the items of the tree view. Dataset .data Data

Line Style The tree's line style. int .lineStyle Appearan
ce

Mouseover
Text

The text that is displayed in the tooltip which pops up on mouseover of
this component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Row Height The height of each row in the tree. int .
rowHeight

Appearan
ce

The border is unaffected by rotation.

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Selected
Item

The index of the currently selected item, or -1 if no selection. int .
selectedIt
em

Data

Selected
Path

The path of the currently selected item, or "" if no selection. String .
selected
Path

Data

Selection
Mode

What kind of selection regions does the tree allow. int .
selection
Mode

Behavior

Separation
Character

The separation character for the path. String .
separatio
nCharact
er

Behavior

Show Root
Handles

Whether or not to show handles next to parent nodes. boolean .
showRoo
tHandles

Appearan
ce

Visible If disabled, the component will be hidden. boolean .visible Common

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting

Scripting Functions

Description

Clears the current selection.

Parameters

Nothing

Return

Nothing

Description

Collapses all nodes in the tree.

Parameters

Nothing

Return

Nothing

Description

Expands all nodes in the tree.

Parameters

Nothing

Return

Nothing

Description

Returns a list of the selected item's indexes. These are the row indexes that the selected tree nodes
were found in the underlying dataset. Implicitly created folder nodes that have no index will not be
included.

Parameters

Nothing

Return

List of Integers

Description

Returns a list of the selected item's paths. A path to an item is the path to its parent plus its normal
(non-selected) text.

Parameters

Nothing

Return

List of Strings

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component. Note that this event fires
after the pressed and released events have fired.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Customizers

The Tree View customizer allows for easy custom manipulation of the tree view components underlying formatting.

Tree View Customizer
Vision Component Customizers

Examples

Expression Snippet

//The Selected Item property will be updated as the user selects different nodes in the tree.
//It represents the index in the Items dataset at which the node is defined. If the selected
//node was implicitly created, the Selected Item will be -1.
//You can use this index to get the path and name of the selected node with an expression
binding like this:
if ({Root Container.Tree View.selectedItem}<0,"n/a",{Root Container.Tree View.data}[{Root
Container.Tree View.selectedItem},"text"])

Script Snippet

#This script will swap to the script that was double clicked on, if this code is placed in
the mouseClicked event handler for the treeview
#This script utilizes an extra column called windowPath that contains the full path to the
window. You can add an extra column to the Items dataset property
#as long as the column name doesn't match one of the reserved column titles listed above.
if event.clickCount == 2:
 row = event.source.selectedItem
 data = event.source.data
 if row != -1:
 # Grab the window path value out of the tree view's items dataset
 windowPath = data.getValueAt(row, "windowPath")
 system.nav.swapTo(windowPath)

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers

Vision - Tree View Customizer

Description

The Tree View has its own customizer which allows you to easily configure the items dataset property. The customizer
You provides some useful dropdowns and color selectors for certain properties that require more than just a name or a path.

can add and remove nodes, and change the node hierarchy and appearance through the properties in the dataset.

Customizers

The Tree View Customizer allows you to easily configure how you want the tree view to look to users. When you open the
customizer for the first time, you'll notice the dataset contains some predefined nodes and settings. Each row in the dataset
represents a node in the tree. Each column in the dataset represents properties that configure the appearance of the tree to
look a certain way.

Configuring the Tree View Customizer is very straightforward. To add a node to the tree, click the green icon on the right side
of the window, and a new row will be added at the the bottom of the dataset. All the columns will default to the predefined
properties with the exception of the "path" to the node's location. This field will be blank so you need to enter a path to the
node. You can edit any of the of the preset properties. At a minimum, you should always edit the and Text SelectedText
properties replacing the default names with a more appropriate name so the item is easily identifiable when it is selected and
unselected in the tree. You can also move a node up or down the tree hierarchy using the arrows on Move Up or Move Down
the right side of the window. To delete a node from the tree, simply select the node and hit .Delete

The additional properties are optional, but can enhance your tree view for your users. For example:

To change an icon for any node in the tree, choose an icon from the Image Management Tool. All you need to do is
right click on the icon in the Image Management tool and select Copy Path, and paste it in the Icon field for that node.
Add a tooltip for any item in the tree by simply typing in your tooltip in the Tooltip field for that node. When you hover
over the item in the tree view, you'll see your tooltip.
Add a foreground and background color for any item in the tree when it is selected or unselected.
Add a border for any item in the tree when it selected or unselected.

The references to optional properties in the table below means that a dataset does not need to have them present in the
dataset for the tree to render and function.

While the Customizer allows you to configure the columns of the Items dataset, the customizer will not display any columns that
the user adds to the dataset. However, user added columns are still configurable in the dataset itself, and can be used to store
additional information about each item such as a window path.

Tree View Customizer Properties

Property Description

Path Path that determines the node's locaton. Broken up into a list by splitting on the separation character.

Text Text of the node while not selected.

Icon Path to an icon for the node. Use the value: "default" to use the tree automatic folder/leaf icons. (optional)

Backgro
und

Controls the background appearance of the unselected item. A string column that will be coerced into a color for
the unselected background. (e.g., "white" or "(255,255,255)". Use an empty string to use the default color.
(optional)

Foregrou
nd

Control the foreground appearance of the unselected item. A string representation of the unselected foreground
color. (optional)

Tooltip If not empty, will be use as the tooltip for the node. (optional)

Border A string that will be coerced into a border for the node while unselected. May be empty. (optional)

Selected
Text

Text of the node while selected. (optional)

Selected
Icon

A path to an icon for the node while selected. Use the value: "default" to use the tree automatic folder/leaf icons.
(optional)

Selected
Backgro
und

Controls the background appearance of the selected item. A string representation of the the selected
background color. (optional)

Selected
Foregrou
nd

Controls the background appearance of the selected item. A string representation of the selected foreground
color. (optional)

Selected
Tooltip

If not empty, will be used as the tooltip for the node while selected. (optional)

Selected
Border

A string that will be coerced into a border for the node while selected. May be emplty. (optional)

Example

Tree View with Larger Version of SelectedIcons

Below is an example configuration of the tree view's items property. Notice how not all of the fields listed in the
property table above are used, because there are certain properties that are not necessary to build our tree view.
A larger version of the images was chosen for the SelectedIcon, so that when an item gets selected, not only
does the background color change, but the size of the image changes as well.

Path Text Icon Background Foreground SelectedText SelectedIcon SelectedBackground SelectedForeground

HMI
Scre
ens

Over
view

Builti
n
/icon
s/16
/ho
me.
png

color(255,
255, 255,
255)

color(0, 0,
0, 255)

Overview Builtin/icons
/24/home.png

color(250, 214, 138,
255)

color(0,0,0,255)

Admi
nistr
ation
/Use
rs

User
Man
age
ment

Builti
n
/icon
s/16
/use
rs3.
png

color(255,
255, 255,
255)

color(0, 0,
0, 255)

User
Management

Builtin/icons
/24/users3.
png

color(250, 214, 138,
255)

color(0,0,0,255)

Admi
nistr
ation
/Use
rs

Sch
edul
e
Man
age
ment

Builti
n
/icon
s/16
/cale
ndar
.png

color(255,
255, 255,
255)

color(0, 0,
0, 255)

Schedule
Management

Builtin/icons
/24/calendar.
png

color(250, 214, 138,
255)

color(0,0,0,255)

Admi
nistr
ation

Rost
er
Man
age
ment

Builti
n
/icon
s/16
/cloc
k.
png

color(255,
255, 255,
255)

color(0, 0,
0, 255)

Roster
Management

Builtin/icons
/24/clock.png

color(250, 214, 138,
255)

color(0,0,0,255)

Vision - Comments Panel
General

Component Palette Icon:

Comments Panel

Watch the Video

Description

The comments panel is used to power a blog-style comments system within your project. This can be useful for ad-hoc
collaboration and communication between shifts, remote users, etc. This component is driven by a dataset that should be
bound to a SQL query. Unlike most components, this component has built-in functionality to alter an external database. It
expects three tables in the database, and that they are queried properly on the data property.

You can opt out of this three-table default system by simply making use of the Extension Functions on the component. See
below for more details.

Behavior Description

Three-Table (Default) Configuration

Required Database Tables

The default behavior of the component expects three database tables be present under the same database
connection, and each table needs to have certain columns with specific names.

Table: Notes

Stores all of the notes across the board.

Looking for documentation on the legacy Comments Panel component? Please see the page.Legacy Comments Panel

Not sure which version you are looking at? The Legacy version of this component has several properties that the new one does
not: "Insert Query 1", " Insert Query 2", "Delete Query", "Unstick Query", and "Download Attachment Query".

The following section assumes the default configuration: all Extension Functions on the component are
disabled.

https://www.inductiveuniversity.com/video/comments-panel/8.0
https://legacy-docs.inductiveautomation.com/display/DEP/Legacy+Comments+Panel

Column
Name

Description Data Type

id An auto-incrementing integer that is the primary key. This maps to
the ID field in the dataset.

Integer

whoID A mapping to the Username field in the dataset Integer

tStamp A mapping to the Timestamp field in the dataset Date or Datetime

note A mapping to the NoteText field in the dataset Varchar

filename A mapping to the AttachmentFilename in the dataset Varchar

sticky A mapping to the Sticky field in the dataset Boolean or Integer

attachm
ent

A column to hold the attachment data. LongBlobs do not exist in
MSSQL, so a varbinary type must be used

LongBlob or Varbinary
(depending on database)

Table: ItemNotes

Used to associate notes with other things. This allows you to have different sets of notes for different screens
/objects.

Column
Name

Description Data
Type

accountId

An automatically generated UUID for the Comment Panel instance. You can use the
accountId in a WHERE clause on the data property so that the component only shows
notes from a particular Comments Panel in the project.

Varc
har

noteId An integer that maps to the ID column on the Notes table Integ
er

Tables: Users

A user mapping table that assigns an ID to each user on the table. This is easiest to do if a database
authentication profile is used as the _users table automatically creates the required columns, but non-database
authentication profiles can be used as long as the table is manually created and maintained.

Column Name Description Data Type

id An integer that is inserted into the whoID column on the Notes table Integer

username The username of the user that created the note Varchar

Configuring the Component

This component expects that its data property is populated with the following columns. The dataset in the Data
property is very specific , and expects certain datatypes at precise positions. The order of expected column

 positions is listed below. Should the order of datatypes in the dataset differ from the order below, the names of
 the columns must match the column names below. Aliasing can be used to modify the names of the columns in

the dataset.

The names do need to be exact, but different names can be used as long as the query that builds the dataset
uses aliases. The data type for each column in your notes table must match the table below.

Column
Name

Description Data
Type

Expected
Column
Position

id an integer that should be the primary key for the notes table.
Used for deleting and looking up attachments

integer 0

username the user who added the note string
/varchar

1

timestamp when the note was added dateTime 2

notetext The text of the note itself string
/varchar

3

attachme
ntname

filename for a file attached to the note string
/varchar

4

issticky 0 or 1 indicating whether or not the note is "sticky", which means
it gets highlighted and put at the top

boolean
or integer

5

Example

The following query returns note data from the above tables, and displays the data on a Comments Panel
component. This query should be placed in a SQL Query binding on the Data property

 SELECT

notes.id,

users.
username
as whoid,

notes.
tstamp,

notes.
note,

notes.
filename,

notes.
sticky

FROM

notes

JOIN users
 ON
notes.
whoid =
users.id

ORDER BY

notes.
tstamp DESC

By default, users can remove their own comments, and comments can have files attached.

Custom Configuration

Enabling the Extension Functions on the component will allow for custom functionality on the component. Some
examples are:

Store all note data on a single database table - simply modify each Extension Function to run queries
against a single database table
Save the attachment to a shared drive instead of a database column - modify insertNote to save the
attachment to a hard drive.
Allow users to delete all notes by role - check the role of the user in canDelete and return True if the
user has a specific role.

Properties

Name Description Property
Type

Scripting Category

Add
Note
Text

The word(s) used for the "Add Note" button. String .
addNote
Text

Appearan
ce

Attach
File Text

The word(s) used for the "Attach File" link. String .
attachTe
xt

Appearan
ce

Attachm
ents
Enabled

Controls whether or not files can be attached to notes. boolean .
attachme
ntsEnabl
ed

Behavior

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel
(Double), Button Border, Field Border, Line Border, and Other Border.

border .border Common

Cancel
Text

The word(s) used for the "Cancel" button. String .
cancelTe
xt

Appearan
ce

Data Fill this DataSet in with the notes for the desired entity. Columns are: ID,
Username, Timestamp, Note, Filename, IsSticky.

Dataset .data Data

Databas
e
Connecti
on

Name of the database connection to run the queries against. Leave blank to
use project's default connection.

String .
datasour
ce

Behavior

Date
Format

The format string to use for the date of the note. String .
dateForm
at

Appearan
ce

Display
Mode

Horizontal display mode will layout so that the comment header will be
positioned to the left of the comment. Vertical display mode will have the
comment header above the comment.

int .
displayM
ode

Behavior

Enabled If disabled, a component cannot be used. boolean .
compone
ntEnabled

Common

Font Font of text on this component. Font .font Appearan
ce

Foregrou
nd Color

The foreground color of the component. Can be chosen from color wheel,
chosen from color palette, or entered as or value. RGB HSL See Color
Selector.

Color .
foreground

Appearan
ce

The border is unaffected by rotation.

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Header
Color

The background color of the header notes. See Color Selector. Color .
headersC
olor

Appearan
ce

Maximu
m
Attachm
ent Size

The maximum attachment size in bytes that will be accepted. A value of 0
means no limit.

long .
maxAttac
hmentSize

Behavior

Mouseov
er Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Note
Color

The background color for notes. See Color Selector. Color .
noteColor

Appearan
ce

Padding The amount of padding between the notes. int .padding Appearan
ce

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Skip
Audit

If true, update queries originating from this component will skip the audit
system. Can be important when attachments are turned on.

boolean .skipAudit Behavior

Sticky
Header
Color

The background color of the header for sticky notes. See Color Selector. Color .
stickyHea
derColor

Appearan
ce

Sticky
Note
Color

The background color for sticky notes. See Color Selector. Color .
stickyNot
eColor

Appearan
ce

Sticky
Text

The word(s) used for the "Sticky" checkbox. String .
stickyText

Appearan
ce

Touchscr
een
Mode

Controls when this input component responds if touchscreen mode is
enabled.

int .
touchscre
enMode

Behavior

Visible If disabled, the component will be hidden. boolean .visible Common

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Extension Functions

Description

Called when a note is added.

Parameters

component self - A reference to the component that is invoking this function

string note - The text contents of the note

 - The full string filename filepath to the the attachment

 string sticky - A boolean indicating whether this note should be flagged as stickied

Return

Nothing

Description

Called when a user clicks the 'delete' link on a note.

Parameters

component self - A reference to the component that is invoking this function

integer id - The id of the note

Return

Nothing

Description

Called when a user clicks the 'unstick' link on a note.

Parameters

component self - A reference to the component that is invoking this function

integer id - The id of the note

Return

Nothing

Description

Called when a user attempts to download an attachment from a note.

Parameters

component self - A reference to the component that is invoking this function

integer id - The id of the note

Return

Nothing

Description

Returns whether or not a note with the given id can be deleted. Notes that return True will show a
'delete' link.

Parameters

component self - A reference to the component that is invoking this function

integer id - The id of the note

Return

boolean - Notes with a True return can be deleted by the user, False return can not be deleted.

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component. Note that this event fires
after the pressed and released events have fired.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event.

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Customizers

Vision Component Customizers

Examples

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

The following examples may need to be modifed to match the table and column names in your database.

These examples are written for a MySQL database connection. If you are using a different database, some things
may need to be changed. For example, using MS SQL Server requires:

the python value None may not be used when inserting into a byte array. NULL must be used in its place.
binary data must be converted to a varbinary type when inserting. See the examples below

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers

insertNote: using default table configuration

Inserts a note using the three default tables: notes, users, and itemNotes.
Also stores only the file name in the database instead of the full path to the file.
Assumes a User ID is used in the notes table.

determine the ID for the logged in user
user = system.db.runScalarPrepQuery("SELECT id from users where username = ?", [system.
security.getUsername()])

determine if a file is being attached
if filename is None:
 # a file was not attached, provide a blank for the bytes
 attachmentBytes = None
else:
 # get the bytes of the file at the path the user selects
 attachmentBytes = system.file.readFileAsBytes(filename)

 # splits the file name from the file path. This way we can show just the file name on
the component
 # Using '\' as a delimiter, but python requires two since it's an escape character
 pathAndFile = filename.rsplit('\\', 1)
 filename = pathAndFile[1]

build the query
#MySQL query
query = "INSERT INTO Notes (note, whoid, tstamp, attachment, filename, sticky) VALUES (?, ?,
CURRENT_TIMESTAMP, ?, ?, ?)"
#MSSQL Server query
We're converting the binary data into a VARBINARY datatype, and checking for a NULL in the
attachment query.
#if attachmentBytes == None:
query = "INSERT INTO Notes (note, whoid, tstamp, attachment, filename, sticky)
VALUES (?, ?, CURRENT_TIMESTAMP, NULL, ?, ?)"
#else:
query = "INSERT INTO Notes (note, whoid, tstamp, attachment, filename, sticky)
VALUES (?, ?, CURRENT_TIMESTAMP, CONVERT(VARBINARY(MAX),?), ?, ?)"

Set arguments and run the query
arguments = [note, user, attachmentBytes, filename, sticky]
insertId = system.db.runPrepUpdate(query, arguments, getKey=1))

insert a row onto the itemNotes table
replace 'MYID' with the proper code - this is based on how you are dividing the notes.
this ID could be an area, page, or machine code, or anything else that you may want to
organize on.
myId = 'MYID'
system.db.runPrepUpdate("INSERT INTO ItemNotes (AccountId, NoteId) VALUES (?, ?)", [myId,
insertId])

insertNote: using a single table

Similar to the above example, but only a single database table is required.
Assumes a User Name is used in the notes table.

determine the name for the logged in user
user = system.security.getUsername()

determine if a file is being attached
if filename is None:
 # a file was not attached, provide a blank for the bytes
 attachmentBytes = None

else:
 # get the bytes of the file at the path the user selects
 attachmentBytes = system.file.readFileAsBytes(filename)

 # splits the file name from the file path. This way we can show just the file name on
the component
 # Using '\' as a delimiter, but python requires 2 since it's an escape character
 pathAndFile = filename.rsplit('\\', 1)
 filename = pathAndFile[1]

build the query
#MySQL query
query = "INSERT INTO Notes (note, whoid, tstamp, attachment, filename, sticky) VALUES (?, ?,
CURRENT_TIMESTAMP, ?, ?, ?)"
#MSSQL Server query
#We're converting the binary data into a VARBINARY datatype, and checking for a NULL in the
attachment query.
#if attachmentBytes == None:
query = "INSERT INTO Notes (note, whoid, tstamp, attachment, filename, sticky)
VALUES (?, ?, CURRENT_TIMESTAMP, NULL, ?, ?)"
#else:
query = "INSERT INTO Notes (note, whoid, tstamp, attachment, filename, sticky)
VALUES (?, ?, CURRENT_TIMESTAMP, CONVERT(VARBINARY(MAX),?), ?, ?)"

Set arguments and run the query
arguments = [note, user, attachmentBytes, filename, sticky]
system.db.runPrepUpdate(query, arguments)

Vision - Tag Browse Tree

General

Component
Palette Icon:

Description

The Tag Browse Tree component is similar to the Tag Browser in the Designer, allowing tags to be browsed in both the Designer and the
Client, and dragged on to other components like the Easy Chart. Unlike the Tag Browser, tags can not be edited, tag properties can not be
displayed, and UDT definitions can not be displayed. Tags in the component can be refreshed through scripting by calling refresh().

Properties

Name Description Property
Type

Scripting Category

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel
(Double), Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Font Font of text on this component. Font .font Appearan
ce

Include
Historic
al Tags

Whether or not to display historical tags. boolean .
showHist
orical

Realtime
Tag Tree
Settings

Include
Realtim
e Tags

Whether or not to display non-historical tags. boolean .
showRea
ltime

Realtime
Tag Tree
Settings

Mouse
over
Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

The border is unaffected by rotation.

Name The name of this component. String .name Common

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Root
Node
Path

The path of the root of this tree structure, or "" if no selection. When
intentionally setting the root node, the exact syntax changes depending on
what the property is set to:Tag Tree Mode

Realtime Tag Tree: [TagProvider]FolderPath/

The example below is using the "default" tag provider, and a folder named
"machine_1"

Example

[default]machine_1/

Historical Tag Tree: [DatabaseConnection/GatewayName:TagProvider]
FolderPath/

The example below is using a database connection named "DB", the system
name of the Gateway is "ignition", the tag provider is "default" and will set the
path to a folder named " "machine_1

Example

[DB/ignition:default]machine_1/

String .
rootNode
Path

Data

Selecte
d Paths

Contains the paths that should be selected on the tree which should be in the
format of a single string column.

Dataset .
selected
Paths

Data

Selecti
on
Mode

What kind of selection regions does the tree allow. Options are Single,
Multiple - Contiguous, and Multiple - Discontiguous.

int .
selection
Mode

Behavior

Show
Root
Handles

Whether or not to show handles next to parent nodes. boolean .
showRoo
tNodeHa
ndles

Appearan
ce

Show
Root
Node

Whether or not to show the root node of the tree. boolean .
showRoo
tNode

Appearan
ce

Tag
Tree
Mode

Choose whether the tree is built using tags from the default provider or the
historical provider.

int .
treeMode

Appearan
ce

Visible If disabled, the component will be hidden. boolean .visible Common

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

Description

Called for each tag loaded into tag browse tree. Return false to hide this tag from the tree.

Note that this is called for each , not any folders that appear in the component.Tag

Parameters

A reference to the component that is invoking this function.Component self-

- The tag itself.Tag Object tag

Return

Boolean

Description

Returns a popup menu that will be displayed when the user triggers a popup menu (right click) on
the tree. Use system.gui.createPopupMenu to create the popup menu.

Parameters

A reference to the component that is invoking this function.Component self-

Tag Object clickedTag - The tag of the clicked on tree path.

List selectedTags - The tags of the selected paths of the tree.

Return

JPopupMenu

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires after the pressed and released events have fired.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Customizers

Vision Component Customizers

Examples

Code Snippet

The following code shows a right-click popup menu.
Add these lines after the """ """ section of the createPopupMenu extension function.
Note how lines below are indented, the first def command should line up with the
indentation of the """ """ section of the Extension Function.

 def showValue(self):
 value = str(clickedTag.getCurrentValue().value)
 system.gui.messageBox(value)

 def showLastChange(self):
 lastChange = str(clickedTag.getCurrentValue().timestamp)
 system.gui.messageBox(lastChange)

 itemsDict = {"Show Value": showValue, "Show Last Change":showLastChange}
 JPopupMenu = system.gui.createPopupMenu(itemsDict)
 return JPopupMenu

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers

Vision - Charts Palette

Chart Components
The following components give you various charts for displaying data.

In This Section ...

1.
2.

3.

1.

2.

3.

Vision - Easy Chart
General

Component Palette Icon:

Description

Description

This component is used to make powerful and runtime-configurable time-series charts. It is configured by defining a set of pens
and axes. Each pen represents a series of data. Pens can be many different styles, such as line, area, bar, and shape. This
chart automatically creates controls for picking the time range and for hiding or displaying pens.

Features

Easy configuration
User-selectable set of pens
Automatic time-selection controls
SQL Query and/or SQLTags Historian data sources
Automatic SPC and calculated pen support
Zoom, Pan, X-Trace modes
Any number of Y-axes and subplots
Realtime or Historical

Pens

There are three kinds of pens in the Easy Chart:

Tag Historian Pens: These pens pull their data from the system.Historian
Database Pens: These pens will automatically create SQL SELECT queries to pull data from a database table.
Typically, this is a table that is the target of a .Historical Transaction Group
Calculated Pens: These pens display a calculated dataset based off another pen, such as a moving average or
Statistical Process Control (SPC) function such as the Upper Control Limit (UCL).

Modes: Realtime vs Historical

The Easy Chart can operate in three different modes. These modes affect the range of data that is displayed, the controls the
user is shown, and whether or not the chart polls for data.

Historical Mode. In this mode, the user is shown a component to pick the range of data to fetch Vision - Date Range
and display. The initial values of this component are set through properties on the chart. In historical mode, the chart
does not poll.
Realtime Mode. In this mode, the user is given the opportunity to pick the amount of time in the past to display. For
example, the last 5 minutes or the last 2 hours. The chart will poll at a rate according to the Poll Rate parameter.
Manual Mode. In this mode, the chart will use the values if its Start Date and End Date parameters to govern what
data is displayed. Polling is controlled by having the Poll Rate at zero (polling off) or greater than zero.

https://legacy-docs.inductiveautomation.com/display/DOC80/Tag+Historian+Module
https://legacy-docs.inductiveautomation.com/display/DOC80/Understanding+Transaction+Groups

Basic Chart Configuration

The Easy Chart has many properties, like other components, that control its behavior. Things like its Mode, Polling Rate,
etc are configured via the properties. All of the setup for adding pens, axes, subplots, and so forth is done through its Custo

. You can also drag and drop Historian-enabled tags onto the chart directly in the Designer to add those tags as chart mizer
pens. For an example, see .Using the Vision Easy Chart

Y-Axes

The easy chart supports any number of Y-axes. To add an axis, go to the Axes tab of the chart customizer. When adding
an axis, you get a number of options such as the type (numeric or logarithmic), label, color, autorange vs fixed range, and
auto-ticks vs fixed ticks. You can also modify the position of the axis, but note that by default the Chart's Auto Axis Positioni
ng property is enabled, which means that the chart will balance the axes automatically between left and right depending on
demand. As pens are turned on and off by the user, only the axes that are used by visible pens are shown.

After you add your axes, you edit any pens that you want to use your new axes. Simply choose the new axis in the axis
dropdown of the pen editing window.

Subplots

The Subplots feature lets you break up the chart's plot area into multiple distinct subplots that share the X axis, but have
their own Y axes. This is often useful for digital data, as shown in the screenshot above. By default the chart has 1 subplot
(the main plot). To add a new subplot, simply hit the add button in the Subplots tab of the chart customizer.

Subplots have relatively few options. The Weight option determines how much room the subplot gets relative to the other
subplots. For example, in the screenshot above subplot #1's weight is 5, and subplot #2's weight is 1, leading to a 5-to-1
distribution of space. Just like axes, once you add your subplots you should go back to your pens and modify you pens'
subplot property for any pens you want to appear on the subplot.

Pen Groups

You can put your pens in groups to break up the pens into some logical separation. For instance, in the screenshot above
there are three pen groups: C1, C2, and Valves. The group name is used as the titled border for the pens' grouping
container. Groups also have another purpose, but it is more advanced and most people won't have to worry about it. For
more, read the Dynamic Pens section below.

Advanced Configuration

Dynamic Pens

In is often the case that you'll want to make one chart window that services many similar pieces of equipment. For
instance, if you have 30 tanks and they all have the same datapoints, you want to be able to use one window for all 30 of
them and simply pass the tank number into the chart window as a parameter. There are actually a number of ways to
accomplish this, each method suitable for different scenarios.

Database pens have 2 ways to be made dynamic. The first is the Chart's Where Clause property. This is a snippet of SQL
where clause syntax, like "machine_num = 28" that will be included for alldatabase pens in their queries. The second is to
use a dynamic group. Any group can be made a dynamic group in the customizer. For each dynamic group, the easy chart
will get a special dynamic property associated with that group. That property is another snippet of SQL where clause that
will be applied to all database pens in that group.

The other way to make your pens (and anything else about the chart) dynamic at runtime is to use dynamic configuration.
Read on...

Dynamic Configuration

The Easy Chart is not just meant to be easy to configure, but also very powerful. In particular, there is an emphasis on the
ability to make any configuration change dynamically in a client - not just statically in the Designer. While a bit of scripting
or clever property binding may be required, the technique is very powerful. This is achieved by storing all of the settings
that you alter in the customizer in a set of expert-level dataset properties. So altering the datasets alters the chart
configuration. You can inspect these various datasets, which hold the pens, axes, and subplot information, to see their
format. They all look up information by column name (case-insensitive). So, if you have pen configuration stored in a
database, you can bind an indirect SQL Query binding to alter the chart's pen set at runtime.

Properties

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC80/Using+the+Vision+Easy+Chart

Name Description Property
Type

Scripting Category

3D X
Offset

The offset to use in the x direction for the '3D Line' pen style. int .
xOffset3D

Pen
Style
Options

3D Y
Offset

The offset to use in the y direction for the '3D Line' pen style. int .
yOffset3D

Pen
Style
Options

Allow
Color
Changes

If true, pen colors can be set to different values. boolean .
allowColo
rChanges

Behavior

Allow
Tag
History
Interpola
tion

If enabled and the query mode is not raw, the data will be interpolated for
time spans with no data available.

boolean tagHistor
yAllowInt
erpolation

Tag
History

Auto
Apply

If true, user changes to pen visibility will occur immediately. boolean .
autoApply

Behavior

Auto
Axis
Positioni
ng

If true, axes alternate automatically between left and right, rather than being
placed explicitly.

boolean .
autoPosit
ionAxes

Behavior

Auto
Color
List

The list of colors to use if auto pen coloring is enabled. Color[] .
autoColor
List

Behavior

Auto
Pen
Coloring

If true, pens are assigned different colors automatically. boolean .
autoColor
Pens

Behavior

Axes This Dataset defines all axes that can be used by the pens. Dataset .axes Chart
Configura
tion

Axis
Font

The font for axis labels. Font .
axisLabel
Font

Appearan
ce

Backgro
und
Color

The background color of the component. See Color Selector. Color .
backgrou
nd

Appearan
ce

Bar
Margin

The margin to use for the 'Bar' pen style. double .
barMargin

Pen
Style
Options

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel
(Double), Button Border, Field Border, Line Border, and Other Border. Note:
The border is unaffected by rotation.

Border .border Appearan
ce

Box Fill For historical-mode date range. The fill color for the selection box. Can be
chosen from color wheel, chosen from color palette, or entered as or RGB H

 value. See SL Color Selector.

Color .boxFill Historical
Range

Button
Size

The size of the utility button icons. int .
utilityButt
onSize

Utility
Buttons

Bypass
Tag
History
Cache

If true, tag history queries will not use the client history cache. boolean .
tagHistor
yBypass
Cache

Tag
History

Calculat
ed Pens

This Dataset defines the calculated pens for the chart. Dataset .calcPens Chart
Configura
tion

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Chart
Border

The border for the chart itself. Border .
chartBord
er

Appearan
ce

Chart
Mode

Affects the mode that the chart operates in; Manual Mode, Historical Mode,
Realtime Mode.

Integer Value Corresponding Mode

0 Manual

1 Historical

2 Realtime

int .
chartMode

Behavior

Chart
Title

Sets an optional title to be displayed above the chart. String .title Appearan
ce

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

DB Pens This Dataset defines all of the database pens for the chart. Dataset .pens Chart
Configura
tion

Date
Editor
Backgro
und

The background color for the date editor. See Color Selector. Color .
editorBac
kgroundC
olor

Appearan
ce

Date
Editor
Foregrou
nd

The foreground color for the date editor. See Color Selector. Color .
editorFor
eground
Color

Appearan
ce

Date
Range

Affects the position of the date range control. int .
dateRang
eLocation

Layout

Date
Range
Border

The border for the date range control, if visible. Border .
dateRang
eBorder

Appearan
ce

Date
Style

The style to display dates in. For international support. int .
dateStyle

Historical
Range

Digital
Gap

The size of the gap to use between digital pens. double .
digitalGap

Pen
Style
Options

Empty
Group
Name

The group name to use for pens that are not in a pen group. String .
emptyGr
oupName

Behavior

End
Date

For manual-mode. The end date to use for selecting pen data Date .endDate Data

Font Font of text this component.on Font .font Appearan
ce

Foregrou
nd Color

The foreground color of the component. See Color Selector. Color .
foreground

Appearan
ce

Gap
Threshold

The relative threshold to use for determining continuity breaks for the
'Discontinous Line' pen style.

double .
gapThres
hold

Pen
Style
Options

Gridline
Color

The color of the gridlines. See Color Selector. Color .
gridlineC
olor

Appearan
ce

Gridline
Dash
Pattern

Enter a string of comma-delimited numbers which indicate the stroke pattern
for a dashed line. For instance, "3,5" means three pixels on, five pixels off.

String .
gridlineD
ashPattern

Appearan
ce

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Gridline
Width

The width (thickness) of the gridlines. float .
gridlineW
idth

Appearan
ce

Group
Pens

If true, pens will be grouped by their group name. boolean .
penGrou
ping

Behavior

High
Density
Color

For historical-mode date range. The color used to indicate high data density.
See Color Selector.

Color .
highDens
ityColor

Historical
Range

Horiz
Gap

The horizontal spacing to use for the pen checkboxes. int .hGap Layout

Ignore
Bad
Quality
Data

If true, causes the system to ignore any bad quality data. boolean tagHistor
yIgnoreB
adData

Tag
History

Invert
Time
Axis

If true, the time axis values will increase from the right to left or from top to
bottom depending on the Plot Orientation.

boolean .
invertTim
eAxis

Layout

Legend Where the legend should appear, if any. int .legend Layout

Max
Selection

For historical-mode date range. The maximum size of the selected date
range.

String .
maxSele
ctionSize

Historical
Range

Maximiz
e Plot

If true, displays maximized plot. boolean .
currently
Maximized

Layout

Mouseov
er Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Outer
Range
End

For historical-mode date range. The end date for the outer range. Date .
outerRan
geEnd

Historical
Range

Outer
Range
Start

For historical-mode date range. The start date for the outer range. Date .
outerRan
geStart

Historical
Range

Pen
Control
Border

The border for the pen control panel, if visible. Border .
penBorder

Appearan
ce

Pen
Control
Mode

The style in which the pen control panel alters the chart configuration. In
heavyweight mode, unchecked pens are not queried, so checking and
unchecking pens refreshes the chart. In lightweight mode, all pens are
constantly queried, so checking and unchecking pens is quick.

int .
penContr
olMode

Behavior

Pen
Control?

Controls whether or not end-users can turn on and off pens. boolean .
allowPen
Manipulat
ion

Behavior

Plot
Backgro
und

The background color for all plots, unless they override it. See Color
Selector.

Color .
plotBack
ground

Appearan
ce

Plot
Orientati
on

The plot orientation for all plots. int .
plotOrient
ation

Layout

Plot
Outline

The color to use for the plot outline. See Color Selector. Color .
plotOutlin
eColor

Appearan
ce

Poll Rate The rate (in milliseconds) at which this chart's queries poll. Historical charts
don't use this property.

int .pollRate Behavior

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Propertie
s
Loading

The number of properties currently being loaded. (Read only. Usable in
bindings and scripting.)

int .
propertie
sLoading

Uncatego
rized

Realtime
Text

For realtime-mode date range. The text to display on the realtime date
control.

String .rtLabel Realtime
Range

Selected
X Value

The selected domain axis value for X-Trace and Mark modes. (Read only.
Usable in bindings and scripting.)

String .
selected
XValue

Uncatego
rized

Selectio
n
Highlight

For historical-mode date range. The focus highlight color for the selection
box. See Color Selector.

Color .
selection
Highlight

Historical
Range

Show
Density

For historical-mode date range. If true, a data density histogram will be
shown in the date range.

boolean .
showHist
ogram

Historical
Range

Show
Loading

If true, an animated indicator will be shown when data is loading. boolean .
showLoa
ding

Behavior

Show
Maximiz
e
Button?

If true, a small maximize button will be displayed next to the chart. boolean .
showMax
imize

Utility
Buttons

Show
Popup?

If true, a popup menu will be shown on right-click that allows the user to
change mode, print, save, etc.

boolean .
showPop
up

Behavior

Show
Print
Button?

If true, a small print button will be displayed next to the chart.. boolean .
showPrint

Utility
Buttons

Show
Save
Button?

If true, a small save button will be displayed next to the chart. boolean .
showSave

Utility
Buttons

Show
Tooltips?

If true, tooltips showing point values will be displayed on the chart. boolean .tooltips Behavior

Show
Warnings

If true, warnings generated during chart configuration will be printed to the
console.

boolean .
showWar
nings

Behavior

Sort
Pens

If true, pens visibility checkboxes will be sorted. boolean .
alphabeti
zePens

Layout

Start
Date

For manual-mode. The start date to use for selecting pen data. Date .startDate Data

Startup
Range

For historical-mode date range. If startup mode is Automatic, this will be the
starting range of time available for selection.

String .
startupRa
nge

Historical
Range

Startup
Selection

For historical-mode date range. If startup mode is Automatic, this will be the
starting selected range.

String .
startupSe
lection

Historical
Range

Subplot
Gap

The gap between subplots. double .
subplotG
ap

Layout

Subplots This Dataset defines all subplots' relative size and color. Dataset .subplots Chart
Configura
tion

Tag
History
Resoluti
on

The number of datapoints to request for tag history pens. -1 means raw
data, 0 means automatic, which uses the width of the chart.

int .
tagHistor
yResoluti
on

Tag
History

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Tag
History
Resoluti
on Mode

The mode used for the number of requested points. Fixed will use the Tag
History Resolution Size, Natural will return a value per scanclass execution,
Chart Width will be based on the actual width of the chart component, and
Raw will be the raw data.

int tagHistor
yResoluti
onMode

Tag
History

Tag
Pens

This Dataset defines all of the Tag History pens for the chart. Dataset .tagPens Chart
Configura
tion

Tick
Density

For historical-mode date range. This is multiplied by the width to determine
the current ideal tick unit.

float .
tickDensity

Historical
Range

Tick
Font

The font for tick labels. Font .
axisTickL
abelFont

Appearan
ce

Time
Style

The style to display times of day. For international support. int .
timeStyle

Historical
Range

Title
Font

The font for the optional chart title. Font .titleFont Appearan
ce

Today
Color

For historical-mode date range. The color of the "Today Arrow" indicator. See
Color Selector.

Color .
todayIndi
catorColor

Historical
Range

Total
Datapoin
ts

The number of datapoints being displayed by the graph. (Read only. Usable
in bindings and scripting.)

int .
datapoints

Uncatego
rized

Track
Margin

For historical-mode date range. The amount of room on either side of the
slider track. May need adjusting of default font is changed.

int .
trackMar
gin

Historical
Range

Unit For realtime-mode date range. The selected unit of the realtime date control. int .unit Realtime
Range

Unit
Count

For realtime-mode date range. The number of units back to display. int .
unitCount

Realtime
Range

Validate
Scan
Class
Executio
ns

Causes the tag history query to verify the scan class execution records,
generating bad data for the time periods where the scanclasses did not
execute.

boolean tagHistor
yValidate
Scanclass

Tag
History

Vert Gap The vertical spacing to use for the pen checkboxes. int .vGap Layout

Visible If disabled, the component will be hidden. boolean .visible Common

Where
Clause

A snippet of where clause that will be applied to all pens, like "TankNum = 2". String .
globalWh
ereClause

Data

X Axis
AutoRan
ge?

If true, the X axis will automatically fit the range of available data, if false, it
will display a fixed range based on the start date and end date.

boolean .
xAxisAut
oRange

Behavior

X Axis
Label

The label shown on the X Axis (time axis). String .
xAxisLab
el

Appearan
ce

X Axis
Margin

A margin for the upper and lower ends of the x axis, expressed as a
percentage of the total range.

double .
xAxisMar
gin

Behavior

X Axis
Visible

Should the x-axis be displayed? boolean .
xAxisVisi
ble

Appearan
ce

X-Trace
Large
Number
Format

The large decimal format for the x-trace value in the Easy Chart. String .
xTraceLa
rgeNumb
erFormat

Appearan
ce

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

X-Trace
Number
Format
Threshold

If the magnitude of the to-be-formatted value is below this threshold, then
the X-Trace Small Number Format will be used.

double .
xTraceNu
mberFor
matThres
hold

Appearan
ce

X-Trace
Small
Number
Format

The small decimal format for the x-trace value in the Easy Chart. String .
xTraceS
mallNum
berFormat

Appearan
ce

X-Trace
Track
Mouse

If set enabled, and the chart is set to X-Trace mode, the X-Trace will auto
track the mouse position while the cursor is over the component. This is
particularly useful when displaying the Easy Chart on a touchscreen.

boolean xTraceTr
ackMouse

Appearan
ce

Scripting

Scripting Functions

Description

This function save the chart's datasets as an Excel file. Returns a String of the complete file path
chosen by the user, or None if the user canceled the save.

Parameters

String filename - The default file name for the Save dialog.

Return

String

 Description

This function will print the chart.

Parameters

Nothing

Return

Nothing

 Description

Sets the current mode for the chart.

Parameters

Int mode - The mode to set the chart to. The mode options are as follows:

0 : Zoom Mode. This is the default mode, where the user can draw a zoom rectangle with the
mouse pointer.

1 : Pan Mode. This mode lets the user use the mouse pointer to pan the chart to the left and
right.

3 : Mark mode. This mode lets the user click near a datapoint to annotate the point with its X
and Y value.

4 : X-Trace mode. This mode lets the user click and drag on the chart to see all values that fall
along that X value.

Return

Nothing

 Description

returns an Array List of datasets, representing the time series data of each type of pen.

Parameters

None

Return

Array List of datasets. Each dataset represents timeseries data for set of pens. The order of the
datasets are listed below.

Index order of datasets

Index Dataset

0 Tag Pens

1 Calculated Pens

2 Database Pens

Python - Accessing the Tag Pens Dataset

This example will extract the Tag Pens series data that is already
present in an Easy Chart, and pass it to a Power Table on the same window.
This script could be placed on the Easy Chart's propertyChanged event.

Filter on the name of the property
if event.propertyName == 'tagPens':

 # Wrap our dataset behavor in a function, so we can pass it to
system.util.invokeLater
 def func():
 chart = event.source

 # Extract the datasets
 datasets = chart.exportDatasets()

 # Pass the first dataset (index 0 contains data for Tag
Pens) to the Power Table
 event.source.parent.getComponent('Power Table').data =
datasets[0]

 # Using invokeLater to provide a delay. We want this to run after
the chart has finished loading the new tag.
 system.util.invokeLater(func, 1000)

Extension Functions

Description

Provides an opportunity to perform further chart configuration via scripting. Doesn't return anything.

Parameters

 - A reference to the component that is invoking this function.Component self

JFreeChart chart- A JFreeChart object. Refer to the JFreeChart documentation for API details.

Return

Nothing

http://www.jfree.org/jfreechart/api/javadoc/index.html

Description

Provides an opportunity to configure the x-trace label. Return a string to override the default label.

Parameters

 - A reference to the component that is invoking this function.Component self

 - A JFreeChart object. Refer to the JFreeChart documentation for API details.JFreeChart chart

 - The name of the pen the x-trace label applies to.String penName

 - The y-value of the pen at the x-trace location.int yValue

Return

Nothing

Description

Called when the user has dropped rows from a power table on the chart. The source table must
have dragging enabled.

Parameters

 - A reference to the component that is invoking this function.Component self

 - A reference to the table that the rows were dragged from.Component sourceTable

 - An array of the row indicies that were dragged, in the order they were selected.List rows

 - A dataset containing the rows that were dragged.Dataset rowData

Return

Nothing

Description

Called when the user has dropped tags from the tag tree onto the chart. Normally, the chart will add
pens automatically when tags are dropped, but this default behavior will be suppressed if this
extension function is implemented.

Parameters

 - A reference to the component that is invoking this function.Component self

 - A list of the tag paths that were dropped on the chart.List paths

Return

Nothing

Example - Pen Name Replacement

#This will take a tag that gets dropped from a Tag Browse Tree set in Realtime
Tag Tree mode,
#and will replace the underscores in the name of the tag "_" and replace them
with spaces.
tagPens = self.tagPens

for tag in paths:
 tagPath = tag.replace("default", "~")
 splitTag = tag.split("/")
 name = splitTag[-1].replace("_", " ")

 newRow = [name, tagPath, "MinMax", "Default Axis", 1, 1, system.gui.color
(255, 85, 85, 255), "", 1, 1, 0, 1, 0, "", 0, 0, 0, 1, 0, 0]

 self.tagPens = system.dataset.addRow(tagPens, newRow)

Example - Group Name

#This will take a tag that gets dropped from a Tag Browse Tree set in Realtime
Tag Tree mode,
#and will place it into a Pen Group titled "My Group Name".

tagPens = self.tagPens
groupName = "My Group Name"
for tag in paths:

 newRow = [name, tagPath, "MinMax", "Default Axis", 1, 1, system.gui.color
(255, 85, 85, 255), "", 1, 1, 0, 1, 0, "groupName", 0, 0, 0, 1, 0, 0]

 self.tagPens = system.dataset.addRow(tagPens, newRow)

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component. Note that this event fires
after the pressed and released events have fired.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Customizers

Refer to the and the sections of the manualVision - Easy Chart Customizer Using the Vision Easy Chart for examples and
tutorials on how to use the Easy Chart Customizer. With the customizer, you can set up:

Axes
Subplots
Pen Groups
Pen Display
Offsets
Calculated Pens
Ad-Hoc Charting
Indirection

Examples

There are no examples associated with this component.

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Using+the+Vision+Easy+Chart
https://legacy-docs.inductiveautomation.com/display/DOC80/Easy+Chart+-+Axes
https://legacy-docs.inductiveautomation.com/display/DOC80/Easy+Chart+-+Subplots
https://legacy-docs.inductiveautomation.com/display/DOC80/Easy+Chart+-+Pen+Names+and+Groups
https://legacy-docs.inductiveautomation.com/display/DOC80/Easy+Chart+-+Pen+Renderer
https://legacy-docs.inductiveautomation.com/display/DOC80/Easy+Chart+-+Digital+Offset
https://legacy-docs.inductiveautomation.com/display/DOC80/Easy+Chart+-+Calculated+Pens
https://legacy-docs.inductiveautomation.com/display/DOC80/Ad+Hoc+Charting
https://legacy-docs.inductiveautomation.com/display/DOC80/Indirect+Easy+Chart

Vision - Easy Chart Customizer

Description

The component allows you to display the history of your Tags on a chart. When you drag and drop Tags onto an Easy Chart
Easy Chart, it automatically trends the data for you. It has a special customizer that has some default settings to help you get
started.

Customizers

The Easy Chart Customizer allows you to easily modify the chart to your own style. You can add pens and modify the contents
of your pens, and create new axes, subplots, and pen groups. When you open the customizer, you'll notice four tabs at the top
of the window: Pens, Axes, Subplots, and Dynamic Groups. Each have their own properties.

Shown below is each tab in the Easy Chart Customizer listing all its properties along with a brief description.

The Pens tab is where you can add new pens, create custom names for your pens, and group pens. There are three types of
pens, and each functions in a similar manner, but what makes them different is how their data is collected. Each pen type has
a few unique properties and is listed at the bottom of the table.

 - Pens are driven by the Tag history system. (Data from any historical provider can be used).Tag pens
 - Pens that are driven by an SQL query. They can query for data in any connected SQL database.Database pens

 - Pens that derive their data from calculations performed on other pens.Calculated pens

Action Description

Add pen (Browse for Tags).

Add a pen manually.

Edit pen.

Delete pen.

Property Description

Edit Pen Panel

Name The name of the pen is what the user will see in the legend and the pen panel.

Enabled If false, this pen will not show up on the chart and the data will not be generated. The user will be able to enable
it via the pen control panel.

https://legacy-docs.inductiveautomation.com/display/DOC80/Using+the+Vision+Easy+Chart

Hidden If true, the pen will not show up on the chart or the pen control panel. The data will be generated.

User
Selectab
le

If false, the pen will show up on the chart, but not the pen control panel.

Axis Select the Y axis this pen will use.

Subplot Putting pens on separate subplots can increase chart clarity.

Group
Name

The group name is used for logical grouping in the pen panel and for advanced dynamic grouping.

Digital
Offset

If true, a small gap will be placed between this and other digital pens so they don't overlap each other.

Color Pen color.

Style The style of the pen determines how it looks in the chart.

Dash
Pattern

Uses a dash pattern like "5,5" to specify 5 pixels on, 5 pixels off.

Line
Weight

The thickness of the pen's line.

Shape If the renderer style uses shapes, this will be the shape for each point.

Fill
Shape

If true, the shape will be filled in rather than an outline.

Labels If true, shows a label of the value above each bar.

Preview Field where you can view the pen style.

Tag History Pens Properties

Tag
Path

String-based path where the Tag is located.

Aggrega
tion
Mode

Type of calculation (i.e., Constant, UCL, UWL, Avg, LWL, LCL, MovingAvg, Multiply, Min, Max).

Database Pens Properties

Volume
Column

The name of the column for the pen's value (Y value).

Time
Column

The name of the column for the pen's timestamp (X value).

Table
Name

The name of the table where the pen will be found.

Datasou
rce

The name of the datasource to use for this pen (MySQL).

Where
Clause

You can specify a snippet of WHERE clause here, like "TankNum = 16."

Run
Diagnost
ics

Test this pen for data configuration for validity.

Calculated Pens Properties

Function Function is the type of calculation (i.e., Constant, UCL, UWL, Avg, LWL, LCL, MovingAvg, Multiply, Min, Max).

Driving
Pen

Dedicated pen that will drive the value.

Paramet
er

Value which is the horizontal line drawn on the graph. The parameter type can be different for the Function used:

Constant Value - constant value of the pen.(Used with the Constant function).
Window Size - the size of the moving average window, specified as a multiplier of the chart's date range. It's
the percentage of time that you're going to do the moving average on. (Used with MovingAvg function).
Factor - multiply by 'X' factor (Used with Multiply function).
Secondary pen - another pen added to the chart to show the sum and/or the difference. (Used with the Sum
and Difference functions).

Edit Pen Panel for Tag History Pens

Edit Pen Panel for Database Pens

Edit Pen Panel for Calculated Pens

For more information, refer to the following sections:

Easy Chart - Pen Names and Groups
Easy Chart - Calculated Pens
Using the Vision Easy Chart

The Axes tab is where you can configure multiple axes on the Easy Chart component.

Property Description

Name The name of the axis is what pens use to refer to it.

Label The label will be displayed on the chart next to the axis.

Type The type of axis determines the plotting behavior. (i.e., Numeric, Logarithmic, Symbol)

Position The position of the axis, if automatic, axis positioning is turned off.

Label Color Color of the label.

Tick Label Color Color of the tick label.

Tick Color Color of the tick mark.

Axis Inverted If true, inverts the axis.

Auto Range If true, the axis will automatically scale itself to the data, rather than display a fixed range.

Auto Range Incl
Zero

If true, forces the auto range to include zero.

Auto Range Margin The extra margin (as percent of the total range) for the top and bottom of an auto range axis.

Lower Bound The lower bound of a non-auto-ranging axis.

Upper Bound The upper bound of a non-auto-ranging axis.

Auto Tick Units If true, the distance between the tick marks and the gridlines will be automatically calculated rather
than a fixed number.

Tick Units If false, this amount will be used as the distance between tick marks.

Gridline Units If false, this amount will be used as the distance between gridlines.

Number Format
Override

Specifies a number format pattern to use for tick labels. Leave blank for automatic number formatting.

https://legacy-docs.inductiveautomation.com/display/DOC80/Easy+Chart+-+Pen+Names+and+Groups
https://legacy-docs.inductiveautomation.com/display/DOC80/Easy+Chart+-+Calculated+Pens
https://legacy-docs.inductiveautomation.com/display/DOC80/Using+the+Vision+Easy+Chart

For more information, refer to the .Easy Chart - Axes

https://legacy-docs.inductiveautomation.com/display/DOC80/Easy+Chart+-+Axes

The Subplot tab is where you can break up a chart's plot area into multiple distinct subplots that share the X axis, and also
where you can add additional subplots.

Property Description

Plot Number Number of plots in a chart plot area.

Relative
Weight

Ratio between all subplots. (If you have two subplots, and Plot 1's weight is 3 and Plot 2's weight is 1, then
Plot 1 will be 3 times larger than Plot 2).

Custom
Background

If false, the default background is white.

Background Color of the plot area's background.

For more information, go to Easy Chart - Subplots.

In the Pens Tab

Once you add a subplot, go to the Pens Tab, edit your pen, and put your pen into a different subplot.

https://legacy-docs.inductiveautomation.com/display/DOC80/Easy+Chart+-+Subplots

Dynamic Groups are used with Database pens. They allow you to apply a dynamic condition, like using a WHERE clause, to a
subset of pens. For each pen group, a dynamic string property will appear in the Property Editor under Custom Properties of
your Easy Chart component. You can create a WHERE Clause that will search the database and return values if the pens
meet a true condition.

Property Editor - Custom Properties - Where Clause for Dynamic Group Property

To learn more about Dynamic Groups, refer to the section.Vision - Easy Chart

Vision - Chart
General

Component
Palette Icon:

Description

The Chart component (also called the Classic Chart when contrasted with the Easy Chart) provides a flexible way to display
either timeseries or X-Y charts that are powered by any number of datasets. Typically, these datasets are bound to SQL Query

.Bindings in Vision

Features

SQL Query and/or SQLTags Historian data sources
Zoom, Pan, X-Trace modes
Any number of Y-axes and subplots
Realtime or Historical
Many different rendering styles

Configuration

The basic idea behind configuring the classic chart is simple: add datasets, and fill them in with data in a format that the chart
understands. You can add datasets to the chart using the chart's customizer. You then use standard property bindings to put
data into these charts. Commonly you'll use a . Since these datasets are just normal dynamic SQL Query Bindings in Vision
properties, you can also access them via scripting.

The Customizer also lets you add additional X and Y axes. There are various types of axes, and they each have a large
number of properties. Lastly, you can configure additional properties for each dataset, such as which axes it maps to, its visual
style, subplot, etc.

Datasets

Each dataset should define one or more "series" (a.k.a "pens"). The format for these datasets is quite simple. Each series in a
dataset shares common X-values, defined by the first column. Each additional column are the Y-values for a series.

Binding Techniques

The classic chart can be used to make almost any kind of chart, with some effort. Historical, realtime, dynamic pen selection,
etc., is all possible. Your job is just to fill the datasets with the pertinent data, and the chart will display it. The most common
idea is to make the chart dynamic by varying the date range that the dataset's SQL Query bindings run. This is easy to do by
adding a component and using . Date Range Indirect Tag Binding

Chart Type: XY vs Category

The classic chart is typically in XY Plot mode. This means that the X-axis is either date or numeric, and the Y-axes are
numeric. If your X-axis is categorical (names, not numbers), you can switch the Chart Type property to Category Chart in the
Property Editor. Don't be surprised when you get a few errors - you'll need to go and switch your X-axis to be a Category Axis,
and fill your dataset in with valid category data, that is, String-based X-values. This is most often used with the Bar Renderer
(see the).Vision - Chart Customizer

Properties

https://legacy-docs.inductiveautomation.com/display/DOC80/SQL+Query+Bindings+in+Vision
https://legacy-docs.inductiveautomation.com/display/DOC80/SQL+Query+Bindings+in+Vision
https://legacy-docs.inductiveautomation.com/display/DOC80/SQL+Query+Bindings+in+Vision
https://legacy-docs.inductiveautomation.com/display/DOC80/Indirect+Tag+Bindings+in+Vision

Name Description Property
Type

Scripting Category

Backgro
und
Color

The background color of the component. Can be chosen from color wheel,
chosen from color palette, or entered as or value. RGB HSL See Color
Selector.

Color .
backgrou
nd

Appearan
ce

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel
(Double), Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Chart
Orientati
on

The orientation of the domain axis of the chart. int .
orientation

Appearan
ce

Chart
Title

An optional title that will appear at the top of the chart. String .title Appearan
ce

Chart
Type

Choose the type for this chart: XY (Numeric X-axis) or Category (String X-
axis).

int .
chartType

Behavior

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Extract
Order

Extract order for how category datasets should be interpreted. int .
extractOr
der

Behavior

Font Font of text this component.on Font .font Appearan
ce

Foregro
und
Color

The foreground color of the component. Color .
foreground

Appearan
ce

Mouseo
ver Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Plot
Backgro
und

The background color for all plots, unless they override it. Color .
plotBack
ground

Appearan
ce

Properti
es
Loading

The number of properties currently being loaded. (Read only. Usable in
bindings and scripting.)

int .
propertie
sLoading

Uncatego
rized

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Selected
Datapoi
nt

The currently selected datapoint. (Read only. Usable in bindings and
scripting.)

String .
selected
Data

Uncatego
rized

Selected
X Value

The selected domain axis value for X-Trace and Mark modes. (Read only.
Usable in bindings and scripting.)

String .
selected
XValue

Uncatego
rized

Selectio
n
Enabled?

If true, the user will be able to select datapoints on the chart. The selected
datapoint will be highlighted, and the selectedData property will reflect it.

boolean .
selection
Enabled

Behavior

Selectio
n
Highlight
Color

The color of the selection highlight. Color .
selection
Highlight
Color

Appearan
ce

The border is not affected by rotation.

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Selectio
n
Highlight
Width

The line width of the selection highlight. float .
selection
Highlight
Width

Appearan
ce

Show
Legend?

If true, a legend will be shown for the series displayed in the chart. boolean .legend Appearan
ce

Show
Popup?

If true, a popup menu will be shown on right-click that allows the user to
change mode, print, save, etc.

boolean .
showPop
up

Behavior

Show
Tooltips?

If true, tooltips showing point values will be displayed. boolean .tooltips Behavior

Subplot
Mode

The axis that subplots share if more than one subplot. int .
subplotM
ode

Behavior

Visible If disabled, the component will be hidden. boolean .visible Common

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

Description

Provides an opportunity to perform further chart configuration via scripting.

Parameters

 A reference to the component that is invoking this function.Component self-

JFreeChart chart- A JFreeChart object. Refer to the JFreeChart documentation for API details.

Return

Nothing

Description

Provides an opportunity to configure the x-trace label. Return a string to override the default label.

Parameters

 A reference to the component that is invoking this function.Component self-

A JFreeChart object. Refer to the for API details.JFreeChart chart - JFreeChart documentation

 - The name of the pen the x-trace label applies to.String penName

 - The y-value of the pen at the x-trace locationint yValue

Return

Nothing

Event Handlers

https://www.jfree.org/jfreechart/javadoc/index.html
https://www.jfree.org/jfreechart/javadoc/index.html

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component. Note that this event fires
after the pressed and released events have fired.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Customizers

The Chart component uses its own customizer called the . You can add datasets and additional XY Vision - Chart Customizer
axes to a chart using the tabs in the chart customizer. You can configure additional properties for each dataset, like what axes
it maps to as well as select from a host of visual styles. It also has six axis types to choose from, each with an extensive list of
properties.

The customizer already has some default styles in place to help you get started, but you can modify these default settings to
your own style. Refer to the section for property descriptions and examples of chart axis types.Vision - Chart Customizer

Vision - Chart Customizer
Vision Component Customizers
Understanding Component Customizers

Example

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers

Vision - Chart Customizer

Description

The , also known as the Classic Chart, can be used to make almost any kind of chart. It provides a flexible Chart component
way to display XY charts using a host of built-in properties. All you need to do to create a chart is add datasets, fill them in with
data, configure a property binding, and setup the chart properties using the customizer.

Customizer

The Chart component has its own special customizer called the Chart Customizer. When you open the customizer, you'll notice
five tabs at the top: Dataset, X-Axes, Y-Axes, Dataset Properties, and Plot Properties. Each tab has its own set of properties
and defaults.

To get started, first add your dataset(s) and any additional XY axes using the appropriate tabs in the customizer. You can
configure additional properties for each dataset, like what axes the data maps to, as well as select from a host of visual styles.

There are six types of axes to choose from when configuring a chart, each having its own list of properties: Number Axis, Date
Axis, Category Axis, Logarithmic Axis, Elapsed Axis, and Symbols Axis. and Y axes properties are used in the Most of the X
customizer, and some properties are specific to the axis type and have their own unique properties

The customizer already has some default styles in place to help you get started, but you can modify these default settings to
your own style If you don't like one style, try another.using the XY properties, Axes Type, Renderer and Plot styles.

Shown below is each tab in the Chart Customizer with all its properties, description, and what axes type it supports. Note: Not
all properties are available for all axes type charts.

The Dataset tab is where you setup, add, and remove datasets.

Property Description

Data Default dataset property.

 Add
Adds a new dataset. Click the plus icon a new row will be added. Enter the dataset Name and Description.

 Delete
Deletes an existing dataset. Click the Delete icon to delete an existing dataset.

Name Name of the dataset. Double click in the field to rename the dataset.

Type Default type is "Dataset."

Description Describes the dataset.

The X-Axes tab is where X-Axis properties are configured. You can also add and delete X axes here.

 Property Description Supports Axes
Types

Add X axis. When you add an X axis, you can select from one of the following axis types:
Number, Date, Category, Logarithmic, Elapsed, and Symbol.
Click the green plus icon, select an Axis Type, enter an Axis Name, and click OK.

All

Delete an existing axis. Select the axis, and click the Delete icon. All

Axis
Visible

If false, the axis will be hidden. All

Axis
Label

Name of the axis. All

Axis
Label
Angle

Angle of the value on the axis label. All

Axis
Label
Color

Color of axis label. All

Axis
Label
Font

Font type and size of text on axis label. All

Tick
Labels
Visible

If false, the tick labels will be hidden. All

Tick
Label
Color

Color of tick labels. All

Tick
Label
Font

Font type and size of text on tick labels. All

Tick
Marks
Visible

If false, the tick marks will be hidden. All

Tick
Mark
Color

Color of tick marks. All

Tick
Mark
Inside
Length

Length of tick marks inside the chart. All

Tick
Mark
Outside
Length

Length of tick marks outside the chart. All

Axis
Position

Depends on the axis selected. X-axis label alternates between top and bottom. Y-axis label
alternates between left and right. You many need to change both X and Y axis properties
to get your intended axis position.

All

Auto
Range

If true, the value axis range will be determined automatically. If false, the specified Lower
and Upper bounds will be used.

All

Auto
Range
Min Size

If true, the minimum value range is used. Date, Number,
Logarithmic,
Symbol, Elapsed

Fixed
Auto
Range

Sets an axis up for dynamic graphs. Date, Number,
Logarithmic,
Symbol, Elapsed

Lower
Bound

Lower bound value. Used only when Auto Range is false. Date, Number,
Logarithmic,
Symbol, Elapsed

Upper
Bound

Upper bound value. Used only when Auto Range is false. Date, Number,
Logarithmic,
Symbol, Elapsed

Lower
Margin
(% of
range)

Lower margin represented as a percentage. Used only when Auto Range is true. Date, Number,
Logarithmic,
Symbol, Elapsed

Upper
Margin
(% of
range)

Upper margin represented as a percentage. Used only when the Auto Range is true. Date, Number,
Logarithmic,
Symbol, Elapsed

Negative
Arrow

If true, negative arrow is visible. Date, Number,
Logarithmic,
Symbol, Elapsed

Positive
Arrow

If true, positive arrow is visible. Date, Number,
Logarithmic,
Symbol, Elapsed

Vertical
Tick
Labels

Vertical orientation for tick labels. Date, Number,
Logarithmic,
Symbol, Elapsed

Auto
Range
Includes
Zero

If true, the range includes a zero. Date, Number,
Logarithmic,
Symbol, Elapsed

Auto
Range
Sticky
Zero

If true, the zero is on both the XY axes. Date, Number,
Logarithmic,
Symbol, Elapsed

Number
Format
Override

Overwrites the current number format. Date, Number,
Logarithmic,
Symbol

Date
Style

The style of the date displayed on the axis. Date

Time
Style

The style of the time displayed on the axis. Date

Max Date Max value in a series of dates. Date

Min Date Min value in a series of dates. Date

Display
Date in
Title

If true, the date will be displayed in the title when the range is zoomed into the hour range. Date

Label
Angle

The angle for the value axis labels. Category

"1e#"-
style tick
labels

If true, uses scientific notation format (i.e.,1e5, 1e6, etc.,). Logarithmic

"10^n"-
style tick
labels

If true, uses power notation format (i.e., 10 to the "X" power). Logarithmic

Symbols
String

Sequence of characters such as a literal constant. (i.e., On,Off,Auto) Symbols

Grid
Bands
Visible

If true, grid bands will be hidden. Symbols

Grid
Bands
Color

Color of grid bands. Symbols

Grid
Bands
Alternate
Color

Backup color of grid bands. Symbols

Format
String

Specified sequence of characters. Elapsed

The Y-Axes tab is where Y-Axis properties are configured. You can also add and delete Y axes here.

 Property Description Axes Types
Supports

Add axis. When you add a Y axis, you can select from one of the following axis types:
Number, Date, Category, Logarithmic, Elapsed, and Symbol.
Click the green plus icon, select an Axis Type, enter an Axis Name, and click OK.

All

Delete an existing axis. Select an axis, and click the Delete icon. All

Axis
Visible

If false, the axis will be hidden. All

Axis
Label

Name of the axis. All

Axis
Label
Angle

Angle of the value on the axis label. All

Axis
Label
Color

Color of axis label. All

Axis
Label
Font

Font type and size of text on axis label. All

Tick
Labels
Visible

If false, the tick labels will be hidden. All

Tick
Label
Color

Color of tick labels. All

Tick
Label
Font

Font type and size of text on tick labels. All

Tick
Marks
Visible

If false, the tick marks will be hidden. All

Tick
Mark
Color

Color of tick marks. All

Tick
Mark
Inside
Length

Length of tick marks inside the chart. All

Tick
Mark
Outside
Length

Length of tick marks outside the chart. All

Axis
Position

Depends on the axis selected. X-axis label alternates between top and bottom. Y-axis label
alternates between left and right. You many need to change both X and Y axis properties
to get your intended axis position.

All

Auto
Range

If true, the value axis range will be determined automatically. If false, the specified Lower
and Upper bounds will be used.

All

Auto
Range
Min Size

If true, the minimum value range is used. Date, Number,
Logarithmic,
Symbol, Elapsed

Fixed
Auto
Range

Sets an axis up for dynamic graphs. Date, Number,
Logarithmic,
Symbol, Elapsed

Lower
Bound

Lower bound value. Used only when Auto Range is false. Date, Number,
Logarithmic,
Symbol, Elapsed

Upper
Bound

Upper bound value. Used only when Auto Range is false. Date, Number,
Logarithmic,
Symbol, Elapsed

Lower
Margin
(% of
range)

Lower margin represented as a percentage. Used only when Auto Range is true. Date, Number,
Logarithmic,
Symbol, Elapsed

Upper
Margin
(% of
range)

Upper margin represented as a percentage. Used only when the Auto Range is true. Date, Number,
Logarithmic,
Symbol, Elapsed

Negative
Arrow

If true, negative arrow is visible. Date, Number,
Logarithmic,
Symbol, Elapsed

Positive
Arrow

If true, positive arrow is visible. Date, Number,
Logarithmic,
Symbol, Elapsed

Vertical
Tick
Labels

Vertical orientation for tick labels. Date, Number,
Logarithmic,
Symbol, Elapsed

Auto
Range
Includes
Zero

If true, the range includes a zero. Date, Number,
Logarithmic,
Symbol, Elapsed

Auto
Range
Sticky
Zero

If true, the zero is on both the XY axes. Date, Number,
Logarithmic,
Symbol, Elapsed

Number
Format
Override

Overwrites the current number format. Date, Number,
Logarithmic,
Symbol

Date
Style

The style of the date displayed on the axis. Date

Time
Style

The style of the time displayed on the axis. Date

Max Date Max value in a series of dates. Date

Min Date Min value in a series of dates. Date

Display
Date in
Title

If true, the date will be displayed in the title when the range is zoomed into the hour range. Date

Label
Angle

The angle for the value axis labels. Category

"1e#"-
style tick
labels

If true, uses scientific notation format (i.e.,1e5, 1e6, etc.,). Logarithmic

"10^n"-
style tick
labels

If true, uses power notation format (i.e., 10 to the "X" power). Logarithmic

Symbols
String

Sequence of characters such as a literal constant. (i.e., On,Off,Auto) Symbols

Grid
Bands
Visible

If true, grid bands will be hidden. Symbols

Grid
Bands
Color

Color of grid bands. Symbols

Grid
Bands
Alternate
Color

Backup color of grid bands. Symbols

Format
String

Specified sequence of characters. Elapsed

The Dataset tab is where you can modify the visual styles of your chart. You can configure your chart with subplots, experiment
with different renderer types and property types to change how the data is displayed until you find what best meets your
requirements. Note: Not all Renderer properties are available for each axis type.

Dataset Tab Properties

Property Description Axes Types
Supports

Dataset Collection of data in tabular form. Data from the dataset drives the chart. All

X Axis Horizontal axis. All

Y Axis Vertical axis. All

Subplot
Number

Number of plot areas on one chart. All

Enabled If true, the chart is displayed with the selected renderer properties. All

Renderer The visual style of the data presented on the chart. Select from various renderer styles:

XY Line/Shape Renderer
XY Bar Renderer
XY Area Renderer
XY Step Renderer
XY Step Area Renderer
XY Dot Renderer
Category Line/Shape Renderer
Category Bar Renderer

All

Series
Colors

An ordered list of the colors to draw series in. All

Type Type of XY Item Renderer. All

Line Size The thickness of the line. All

Dash Pattern The pattern used for dashed lines. All

Fill Shapes If false, there is only an outline of the shape, no fill color. All

Shape Offset The offset into the standard shape list to start this renderer at. Offsets and their shapes
are listed below.

Offset Shape

0 Square

1 Circle

2 Upward triangle

3 Diamond

4 Horizontal rectangle

5 Downward triangle

6 Horizontal ellipse

7 Rightward triangle

8 Vertical rectangle

9 Leftward triangle

All

Margin The percentage by which the bars are trimmed using the XY Bar Renderer. All

Shadows If true, draws shadows under the bars using the XY Bar Renderer. All

Outline If true, draws an outline around the area using the XY Area Renderer. All

Draw Lines If true, lines will be drawn to connect the datapoints using the Category Line/Shape
Renderer.

All

Draw
Shapes

If true, shapes will be drawn to connect each datapoint if using the Category Line
/Shape Renderer.

All

The Plot Properties tab allows you to break up the chart plot area into multiple distinct subplots.

Property Name Description

Plot The chart area displaying data. All

Override Background Color If enabled, allows you to change the background color. All

Background Color Background color of the chart. All

Plot Weight (Relative) The chart ratio between subplots. All

References

Vision - Chart
Component Customizers
Understanding Component Customizers

Axis Type Examples

The Chart Customizer has six different axis types to choose from when configuring a chart, each with its own list of properties.
Note: Some customizer properties are specific to the axis type and have their own unique properties. Examples of all axis
types are shown below along with the property settings used to create each chart.

Number Axis Chart

https://legacy-docs.inductiveautomation.com/display/DOC79/Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC79/Understanding+Components#UnderstandingComponents-ComponentCustomizers

Binding Type

Tag Tag History

Chart Customizer Property Settings

Datasets Tab

Property Name Value

Datasets Data

X-Axes Tab

Axes Number

X Axis Label Number Axis

Axis Label Color Red

Tick Label Color Green

Y-Axes Tab

Axes Default Y Axis

Y Axis Label Output Temp

Axis Label Color Red

Tick Label Color Green

Dataset Properties Tab

X Axis Number

Y Axis Default Y Axis

Renderer XY Line/Shape Renderer

Type Shapes Only

Data Property Dataset

Date Axis Chart

Chart Customizer Property Settings

Datasets Tab

Propert Name Description

Dataset Data

X-Axes Tab

Axes Date

Axis Label Date

Axis Label Color Red

Y-Axes Tab

Axes Default Y Axis

Axis Label Value

Axis Label Color Red

Dataset Properties Tab

Datasets Data

X Axis Date

Y Axis Default Y Axis

Renderer XY Line/Shape Render

Type Lines Only

Data Property Dataset

Category Axis Chart

Property Editor Setting

Behavior

Property Value

Chart Type Category

Chart Customizer Property Settings

Datasets Tab

Property Name Value

Dataset Data

X-Axes Tab

Axes Category

Axis Label Category Axis

Axis Label Color Blue

Y-Axes Tab

Axes Default Y Axis

Axis Label Value

Axis Label Color Blue

Dataset Properties Tab

Datasets Data

X Axis Category

Y Axis Default Y Axis

Renderer Category Bar Renderer

Style Bar

Data Property Dataset

Logarithmic Axis Chart

Chart Customizer Property Settings

Datasets Tab

Property Value

Datsets Data

X-Axes Tab

Axes Logarithmic

Axis Label Logarithmic Axis

Axis Label Color Red

Y-Axes Tab

Axes Default Y Axis

Axis Label Value

Axis Label Color Red

Dataset Properties Tab

Datasets Data

X Axis Logarithmic

Y Axis Default Y Axis

Renderer XY Line/Shape Renderer

Type Lines Only

Data Property Dataset

Symbols Axis Chart

Chart Customizer Property Settings

Datasets Tab

Property Name Value

Dataset Data

X-Axes Tab

Axes Default Axis

Axis Label Symbol Axis

Axis Label Color Green

Y-Axes Tab

Axes Symbol

Axis Label State

Axis Label Color Green

Symbols String On,Off,Auto

Dataset Properties Tab

Datasets Data

X Axis Default X Axis

Y Axis Symbol

Renderer XY Line/Shape Renderer

Type Lines Only

Line Size 3

Data Property Dataset

Elapsed Time Axis Chart

Binding Type

Database SQL Query

Chart Customizer Property Settings

Datasets Tab

Property Name Value

Dataset Data

X-Axes Tab

Axes Elapsed Time

Axis Label Timestamp

Axis Label Color Red

Tick Label Color Green

Upper Bound 60,000

Tick Size (ms) 30,000

Y-Axes Tab

Axes Default Y Axis

Axis Label Value

Axis Label Color Red

Tick Label Color Green

Dataset Properties Tab

Datasets Data

X Axis Elapsed

Y Axis Default Y Axis

Renderer XY Line/Shape Renderer

Type Lines Only

Data Property Dataset

Vision - Sparkline Chart
General

Component Palette Icon:

Description

The sparkline chart is a minimalistic chart component that displays a line-chart history for a single datapoint. Sparklines
were invented by Edward Tufte as a way to show a great deal of contextual information in a very small amount of space.
Sparklines are typically used to display the recent history (up to current time) of a datapoint so that the viewer can quickly
discern the recent trend of a datapoint: is it rising? falling? oscillating? etc..

To use a sparkline, bind its Data property either to a Tag Historian realtime query, or to a database query. There should be
two columns in this dataset: the first one a date column, the second a number. Each row will become a datapoint on the
chart, and the dataset must be sorted by time in ascending order.

Instead of using axes to convey scale, the sparkline can display a band of color across the back of the chart which
indicates the desired operating range of the datapoint. In this way, it is instantly obvious when a value is in its expected
range, above that range, or below. The sparkline automatically configures its internal axes based on the data given to it. To
give it a fixed range, simply fill in the Range Highand Range Low properties.

Properties

Name Description Property
Type

Scripting Category

Backgr
ound
Color

The background color of the component. Can be chosen from color wheel,
chosen from color palette, or entered as or value. See RGB HSL Color
Selector.

Color .
backgrou
nd

Appearan
ce

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel (Double),
Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Border
Inset

The amount of space to inset the chart inside its border. double .
borderIns
et

Appearan
ce

Chart
Max

The value that corresponds to the upper edge of the chart. (Read only. Usable
in bindings and scripting.)

Double .
chartMax

Uncatego
rized

Chart
Min

The value that corresponds to the lower edge of the chart. (Read only. Usable
in bindings and scripting.)

Double .chartMin Uncatego
rized

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Data The history data to draw in the sparkline chart. Dataset .data Data

Desire
d High

The high value of the desired operating range. If left blank (null), no desired
range band will be shown.

Double .
desiredHi

Data

The border is not affected by rotation.

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Desire
d Low

The low value of the desired operating range. If left blank (null), no desired
range band will be shown.

Double .
desiredLo

Data

Desire
d
Range
Color

The color of the desired operating range band. Only used if the desired
operating range is configured. See Color Selector.

Color .
desiredR
angeColor

Appearan
ce

First
Marker
Color

The color of the first value marker. See Color Selector. Color .
firstMark
erColor

Markers

First
Marker
Size

The size of the first value marker. double .
firstMark
erSize

Markers

First
Marker
Style

The style of the first value marker. int .
firstMark
erStyle

Markers

First
Value

The first (oldest) value in the dataset. (Read only. Usable in bindings and
scripting.)

Double .
firstValue

Uncatego
rized

High
Marker
Color

The color of the high value marker. See Color Selector. Color .
hiMarker
Color

Markers

High
Marker
Size

The size of the high value marker. double .
hiMarker
Size

Markers

High
Marker
Style

The style of the high value marker. int .
hiMarker
Style

Markers

Last
Marker
Color

The color of the last value marker. See Color Selector. Color .
lastMarke
rColor

Markers

Last
Marker
Size

The size of the last value marker. double .
lastMarke
rSize

Markers

Last
Marker
Style

The style of the last value marker. int .
lastMarke
rStyle

Markers

Last
Value

The last (most recent) value in the dataset. (Read only. Usable in bindings
and scripting.)

Double .
lastValue

Uncatego
rized

Line
Color

The color of the sparkline. See Color Selector. Color .
foreground

Appearan
ce

Line
Width

The width of the sparkline. float .
lineWidth

Appearan
ce

Low
Marker
Color

The color of the low value marker. See Color Selector. Color .
loMarker
Color

Markers

Low
Marker
Size

The size of the low value marker. double .
loMarker
Size

Markers

Low
Marker
Style

The style of the low value marker. int .
loMarker
Style

Markers

Max
Value

The largest value in the dataset. (Read only. Usable in bindings and scripting.) Double .
maxValue

Uncatego
rized

Min
Value

The smallest value in the dataset. (Read only. Usable in bindings and
scripting.)

Double .
minValue

Uncatego
rized

Mouse
over
Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Name The name of this component. String .name Common

Quality The data quality code for any Tag bindings on this component. int .quality Data

Range
High

A fixed value for the upper edge of the chart. If left blank (null), the upper
range will be calculated automatically.

Double .rangeHi Data

Range
Low

A fixed value for the lower edge of the chart. If left blank (null), the lower range
will be calculated automatically.

Double .rangeLo Data

Styles Contains the component's styles. Dataset .styles Appearan
ce

Visible If disabled, the component will be hidden. boolean .visible Common

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component. Note that this event fires
after the pressed and released events have fired.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Customizers

This component does not have any custom properties.

Examples

Sparkline Chart with Low and High Limits

Property Name Value

Desired Range Color 184,218,255

Range High 100

Range Low 0

Desired High 75

Desired Low 40

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

Vision - Bar Chart
General

Component
Palette Icon:

Description

The Bar Chart is a very easy-to-use chart that provides a familiar bar representation of any numeric values. That is, the
height of the bars is determined by some numeric value in the underlying dataset. It is often configured to display as a
category chart. A category chart is a chart whose X-values are categories (strings, names, groupings, etc) rather than
numeric values (numbers, dates).

Like most chart components (other than the Easy Chart), the Data property drives the chart. The first column in the Data
dataset defines the names of the categories. The rest of the columns define the values for each of the series (if there is
more than one series per category), and thus should be numeric. Note - if your data is 'turned on its side', meaning that the
columns define the categories and rows define the series, then set the Extract Order to "By Column".

Properties

Name Description Property
Type

Scripting Category

Bar
Label
Color

The color for the bar labels. Can be chosen from color wheel, chosen from
color palette, or entered as or value. See RGB HSL Color Selector.

Color .
barLabel
Color

Axes

Bar
Label
Font

The font for the bar labels. Font .
barLabel
Font

Axes

Bar
Label
Offset

The offset between the bar and the bar label. double .
barLabel
Offset

Axes

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel
(Double), Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Category
Axis
Label

The label for the category axis. String .
category
Label

Axes

The border is unaffected by rotation.

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Category
Axis
Label
Angle

The angle for the value axis' labels. int .
catAxisLa
belPosition

Axes

Category
Axis
Label
Color

The color for the category axis label. See Color Selector. Color .
catAxisLa
belColor

Axes

Category
Axis
Label
Font

The font for the category axis label. Font .
catAxisLa
belFont

Axes

Category
Axis
Lower
Margin

The lower margin, as a percentage, of the category axis. double .
catAxisLo
werMargin

Axes

Category
Axis Tick
Color

The color for the category axis' ticks. See Color Selector. Color .
catAxisTi
ckColor

Axes

Category
Axis Tick
Font

The font for the category axis' ticks. Font .
catAxisTi
ckFont

Axes

Category
Axis
Upper
Margin

The upper margin, as a percentage, of the category axis. double .
catAxisU
pperMarg
in

Axes

Category
Margin

The margin between categories as a fraction of the total space. double .
category
Margin

Appearan
ce

Chart
Title

An optional title that will appear at the top of the chart. String .title Appearan
ce

Chart
Type

Controls how the bar chart is displayed. int .
renderer
Type

Appearan
ce

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Data The data driving the chart. Dataset .data Data

Extract
Order

Controls whether the first row defines the categories or the series. int .
extractOr
der

Data

Foregrou
nd
Transpar
ency

The transparency of the bars (useful for 3D bars). values are between Valid
0 (0% opacity) and 1 (100% opacity).

float .
foregroun
dAlpha

Appearan
ce

Gradient
bars?

If true, bars will be painted with a gradient 'shine'. boolean .gradient Appearan
ce

Item
Margin

The margin between bars in a category as a fraction. double .
itemMarg
in

Appearan
ce

Labels? Always display labels? boolean .labels Appearan
ce

Legend
Font

The font for the legend items. Font .
legendFo
nt

Axes

Legend? If true, show a legend for the chart. boolean .legend Appearan
ce

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Mouseov
er Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Plot
Backgrou
nd

The background color for the plot. Color .
plotBack
ground

Appearan
ce

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Series
Colors

The sequence of colors used for series in the bar chart. See Color Selector. Color[] .
seriesCol
ors

Appearan
ce

Shadows? If true, bars will have a drop-shadow beneath them. boolean .shadows Appearan
ce

Title Font The font for the chart's title. Font .titleFont Axes

Tooltips? If true, show tooltips. boolean .tooltips Behavior

Value
Axis
Auto-
Range

If true, the value axis range will be determined automatically. If false, the
specified upper and lower bounds will be used.

boolean .
valAxisA
utoRange

Axes

Value
Axis
Label

The label for the value axis String .
valueLab
el

Axes

Value
Axis
Label
Color

The color for the value axis label. See Color Selector. Color .
valAxisLa
belColor

Axes

Value
Axis
Label
Font

The font for the value axis label. Font .
valAxisLa
belFont

Axes

Value
Axis
Lower
Bound

The lower bound of the value axis. Used only when auto-range is false. double .
valAxisLo
werBound

Axes

Value
Axis Tick
Color

The color for the value axis' ticks. See Color Selector. Color .
valAxisTi
ckColor

Axes

Value
Axis Tick
Font

The font for the value axis' ticks. Font .
valAxisTi
ckFont

Axes

Value
Axis
Upper
Bound

The upper bound of the value axis. Used only when auto-range is false. double .
valAxisU
pperBound

Axes

Value
Axis
Upper
Margin

The upper margin, as a percentage, of the value axis. Only used when auto-
range is true.

double .
valAxisU
pperMarg
in

Axes

Vertical Sets the orientation of the chart to vertical (true) or horizontal(false) boolean .vertical Appearan
ce

Visible If disabled, the component will be hidden. boolean .visible Common

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

The following feature is new in Ignition version 8.0.16
 to check out the other new featuresClick here

Description

Provides an opportunity to perform further chart configuration via scripting.

Parameters

 A reference to the component that is invoking this function.Component self-

JFreeChart chart- A JFreeChart object. Refer to the JFreeChart documentation for API details.

Return

Nothing

Description

Provides a chance to override the color of each bar. Can be used to have bar colors changed based upon bar
value. Returning the value None will use the default bar color for the series.

Parameters

 A reference to the component that is invoking this function.Component -self

 - The series index for this bar.int series

 The category index for this bar.int -category

 - The value (a number) of this bar.int value

 The color that the bar would be if this function wasn't invoked.Color -defaultColor

Return

Color

Event Handlers

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.16
http://www.jfree.org/jfreechart/api/javadoc/index.html

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse
release, both of which must have occurred over the source component. Note that this event fires after the pressed and
released events have fired.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCou
nt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupTri
gger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is operating system
dependent, which is why this abstraction exists.

.altDown True (1) if the Alt key was held down during this event, false (0) otherwise.

.
controlD
own

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDown

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCou
nt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupTri
gger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is operating system
dependent, which is why this abstraction exists.

.altDown True (1) if the Alt key was held down during this event, false (0) otherwise.

.
controlD
own

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDown

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCou
nt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupTri
gger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is operating system
dependent, which is why this abstraction exists.

.altDown True (1) if the Alt key was held down during this event, false (0) otherwise.

.
controlD
own

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDown

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCou
nt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupTri
gger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is operating system
dependent, which is why this abstraction exists.

.altDown True (1) if the Alt key was held down during this event, false (0) otherwise.

.
controlD
own

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDown

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCou
nt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupTri
gger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is operating system
dependent, which is why this abstraction exists.

.altDown True (1) if the Alt key was held down during this event, false (0) otherwise.

.
controlD
own

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDown

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCou
nt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupTri
gger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is operating system
dependent, which is why this abstraction exists.

.altDown True (1) if the Alt key was held down during this event, false (0) otherwise.

.
controlD
own

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDown

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCou
nt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupTri
gger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is operating system
dependent, which is why this abstraction exists.

.altDown True (1) if the Alt key was held down during this event, false (0) otherwise.

.
controlD
own

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDown

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic)
properties.

.source The component that fired this event

.newValue The new value that this property changed to.

.oldValue The value that this property was before it changed. Note that not all components include an accurate oldValue
in their events.

.
propertyN
ame

The name of the property that changed.

Remember to always filter out these events for the property that you are looking for! Components
often have many properties that change.

Customizers

Vision Component Customizers

Example

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers

Vision - Radar Chart
General

Component Palette Icon:

Radar Chart

Watch the Video

Description

Radar charts, also known as web charts, spider charts, spider plots, and a few other names, display a dataset as a two
dimensional polygon. The plot is arranged as a set of spokes with equal angles between them. Each spoke represents a
value axis for the variable it corresponds to. Each dataset is then drawn as a connected polygon, where the points of the
polygon are arranged on the spokes according to their value. Each row of the dataset has a minimum and maximum
column -- these values are used to determine the scale of the spoke for that variable, with the midpoint representing the
desired value.

The intended use of radar plots is to display realtime information in such a way that outliers can be quickly identified. This
can be an efficient way to convey if a process is running on-spec or off-spec at a glance.

The radar chart gets its data from a dataset. Each row in the dataset will become a single variable (spoke) on the chart.
The dataset must have a columns labeled "Value", "Min", and "Max"; other columns will be ignored. To display realtime
data on a radar chart, you can use a cell-update binding to bind individual values to tag values. You can also drop tags
onto a radar chart, with the EngMin binding to min and EngMax binding to max. If there are no existing cell-update
bindings, the tags will replace existing data, otherwise the tags will be added to the end of the dataset. Alternatively, you
can have realtime information stored by a transaction group to a database table, and drive the radar chart's dataset with a
query binding.

Refer to to learn more.Radar Chart

Properties

Name Description Property
Type

Scripting Category

Actual
Fill
Color

Fill color for the actual polygon. Can be chosen from color wheel, chosen from
color palette, or entered as or value. See RGB HSL Color Selector.

Color .
actualFill
Color

Appearan
ce

Actual
Stroke
Color

Stroke color for the actual polygon. See Color Selector. Color .
actualStr
okeColor

Appearan
ce

Actual
Stroke
Width

Stroke width for the actual polygon. float .
actualStr
okeWidth

Appearan
ce

Backgr
ound
Color

The background color of the component. See Color Selector. Color .
backgrou
nd

Appearan
ce

https://inductiveuniversity.com/video/radar-chart/8.0
https://legacy-docs.inductiveautomation.com/display/DOC80/Comparison+Charts#ComparisonCharts-RadarChart
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel (Double),
Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Border
Inset

The amount of area that the chart should be inset from the component bounds. double .
borderIns
et

Appearan
ce

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Data Contains the datapoints for the radar plot. Each row represents a spoke and
point on the polygon.

Dataset .data Data

Desire
d Fill
Color

Fill color for the desired polygon. See Color Selector. Color .
desiredFil
lColor

Appearan
ce

Desire
d
Stroke
Color

Stroke color for the desired polygon. See Color Selector. Color .
desiredSt
rokeColor

Appearan
ce

Desire
d
Stroke
Width

Stroke width for the desired polygon. float .
desiredSt
rokeWidth

Appearan
ce

Name The name of this component. String .name Common

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Show
Desire
d
Shape

Display the desired shape on the chart. boolean .
showDesi
redShape

Appearan
ce

Spoke
Color

The color to use for the chart's spokes and exterior ring. See Color Selector. Color .
foreground

Appearan
ce

Spoke
Width

The line width for the chart's spokes and exterior ring. float .
strokeWi
dth

Appearan
ce

Styles Contains the component's styles. Dataset .styles Appearan
ce

Visible If disabled, the component will be hidden. boolean .visible Common

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have extension functions associated with it.

The border is unaffected by rotation.

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires after the pressed and released events have fired.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Customizers

Vision Component Customizers
Style Customizer

Examples

Radar Charts display realtime information in such a way that outliers can be quickly identified. In this example, the Radar Chart
plotted the values forming a polygon using the raw data in the code block below. You can quickly see where the process is out-
of-spec and compare the values to where they should be.

Radar Chart - Dataset Editor

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers#VisionComponentCustomizers-StyleCustomizer

Radar Chart - Raw Data

"#TYPES"
"D","D","D"
"#ROWS","12"
"98.09962923575328","2.0","98.09962923575328"
"35.524092312648314","7.0","81.0"
"20.619468859704142","17.0","94.0"
"81.49014792489209","3.0","90.0"
"34.97383734960057","17.0","98.0"
"22.866686267453773","18.0","84.0"
"33.70266314329313","19.0","86.0"
"22.402620699908937","1.0","79.0"
"42.111234986669811","20.0","85.0"
"40.494873208734567","30.0","80.0"
"55.756456098723458","23.0","90.0"
"52.455123456944321","12.0","88.0"

Vision - Status Chart
General

Component Palette Icon:

Description

The S C component allows you to visualize the of one or more discrete datapoints over a time range. The X-tatus hart status
axis is always a timeseries axis, and the Y-axis is a category axis, with one entry per data series. The is populated with a chart
single dataset, the first column of which must be a datetime column.

 Wide vs Tall Datasets

In Wide format, all of the columns but the first must be numeric. These "series" columns' headers will be used as the names on
the y-axis. In Tall format, there should be exactly 3 columns. The first is the timestamp, the second is the series name, and the
third is the value. For example:

Wide Format

t_stamp Valve1 Valve2

2010-01-13 8:00:00 0 2

2010-01-13 8:02:00 0 2

2010-01-13 8:04:00 1 2

2010-01-13 8:06:00 1 1

2010-01-13 8:08:00 0 1

Tall Format

t_stamp Name Value

2010-01-13 8:00:00 Valve1 0

2010-01-13 8:00:00 Valve2 2

2010-01-13 8:02:00 Valve1 0

2010-01-13 8:02:00 Valve2 2

2010-01-13 8:04:00 Valve1 1

2010-01-13 8:04:00 Valve2 2

2010-01-13 8:06:00 Valve1 1

2010-01-13 8:06:00 Valve2 1

2010-01-13 8:08:00 Valve1 0

2010-01-13 8:08:00 Valve2 1

 Color Mapping

Apart from getting the data into the series , the only other commonly configured option is the mapping of discrete values to chart
colors. This is done in the Status Customizer. Each named series can have its own mapping of colors, if desired. These Chart
mappings are stored in the expert-level dataset property Series Properties Data so they can be altered at runtime.

Properties

Name Description Property
Type

Scripting Category

Backgr
ound
Color

The background color of the component. Can be chosen from color wheel,
chosen from color palette, or entered as RGB or HSL value. See Color
Selector.

Color .
backgrou
nd

Appearan
ce

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel
(Double), Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Chart
Title

Title of this chart. String .
chartTitle

Appearan
ce

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Data
Format

Format of the incoming data. In "wide" format, the first column of the dataset
needs to be a timestamp, and every subsequent column represents one
series in the chart. In "tall" format, the first column is a timestamp, the second
column is a series name.

int .
dataForm
at

Data

Date
Style

The style to display dates in. For international support. int .
dateStyle

Appearan
ce

Domain
Axis
Color

Color used on the domain axis. See Color Selector. Color .
domainA
xisColor

Domain
Axis

Domain
Axis
Font

Font used on the domain axis. Font .
domainA
xisFont

Domain
Axis

Domain
Axis
Label

Label on the domain axis. String .
domainA
xisLabel

Domain
Axis

Domain
Axis
Location

Location of the domain axis. int .
domainA
xisLocati
on

Domain
Axis

Legend Maps chart colors to descriptions. dataset .legend Appearan
ce

Mouse
over
Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Propert
ies
Loading

The number of properties currently being loaded. (Read only. Usable in
bindings and scripting.)

int .
propertie
sLoading

Uncatego
rized

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Range
Axis
Color

Color used on the range axis. See Color Selector. Color .
rangeAxi
sColor

Range
Axis

Range
Axis
Font

Font used on the range axis. Font .
rangeAxi
sFont

Range
Axis

Range
Axis
Label

Label on the range axis. String .
rangeAxi
sLabel

Range
Axis

Range
Axis
Location

Location of the range axis. int .
rangeAxi
sLocation

Range
Axis

The border is unaffected by rotation.

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Range
Axis
Lower
Margin

Lower margin of the range axis. double .
rangeAxi
sLowerM
argin

Range
Axis

Range
Axis
Upper
Margin

Upper margin of the range axis. double .
rangeAxi
sUpperM
argin

Range
Axis

Series
Data

Data about each series. Data can be in either "wide" or "tall" format. Dataset .data Data

Series
Propert
ies
Data

Properties for each series. Dataset .
properties

Data

Series
Spacing

Affects the amount of spacing between series. Can be between 0.0 and 1.0.
The series present on this chart are given equal space to display themselves.
Series spacing is the percentage of that space that they use to do so.

double .
seriesSp
acing

Appearan
ce

Show
Domain
Axis

Sets whether or not the domain axis is visible. boolean .
domainA
xisVisible

Domain
Axis

Show
Range
Axis

Sets whether or not the range axis is visible. boolean .
rangeAxi
sVisible

Range
Axis

Time
Style

The style to display times of day. For international support. int .
timeStyle

Appearan
ce

Title
Color

Color of the chart title. See Color Selector. Color .titleColor Appearan
ce

Title
Font

Font on the chart title. Font .titleFont Appearan
ce

Visible If disabled, the component will be hidden. boolean .visible Common

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting

This component does not have scripting functions associated with it.

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Extension Functions

The following feature is new in Ignition version 8.0.16
 to check out the other new featuresClick here

Description

Provides an opportunity to perform further chart configuration via scripting.

Parameters

Component self- A reference to the component that is invoking this function.

JFreeChart chart- A JFreeChart object. Refer to the for details.JFreeChart documentation API

Return

Nothing

Description

Return a formatted tool tip String

Parameters

Component self- A reference to the component that is invoking this function.

int seriesIndex-The series index corresponding to the column in the series dataset.

int selectedTimeStamp-The time stamp corresponding to the x value of the displayed tooltip. The time stamp is
the number of seconds since the epoch.

int timeDiff-The width of the current status interval measured in seconds since the epoch.

int seletedStatus-The status value corresponding to the x value of the displayed tooltip.

PyDataset data-The series dataset as a PyDataset.

PyDataset properties-The series properties dataset as a PyDataset.

string defaultString-The default tooltip string.

Return

String defaultString

Event Handlers

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.16
http://www.jfree.org/jfreechart/api/javadoc/index.html

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse
release, both of which must have occurred over the source component. Note that this event fires after the pressed and
released events have fired.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCou
nt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupTri
gger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is operating system
dependent, which is why this abstraction exists.

.altDown True (1) if the Alt key was held down during this event, false (0) otherwise.

.
controlD
own

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDown

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCou
nt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupTri
gger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is operating system
dependent, which is why this abstraction exists.

.altDown True (1) if the Alt key was held down during this event, false (0) otherwise.

.
controlD
own

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDown

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCou
nt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupTri
gger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is operating system
dependent, which is why this abstraction exists.

.altDown True (1) if the Alt key was held down during this event, false (0) otherwise.

.
controlD
own

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDown

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCou
nt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupTri
gger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is operating system
dependent, which is why this abstraction exists.

.altDown True (1) if the Alt key was held down during this event, false (0) otherwise.

.
controlD
own

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDown

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCou
nt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupTri
gger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is operating system
dependent, which is why this abstraction exists.

.altDown True (1) if the Alt key was held down during this event, false (0) otherwise.

.
controlD
own

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDown

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCou
nt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupTri
gger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is operating system
dependent, which is why this abstraction exists.

.altDown True (1) if the Alt key was held down during this event, false (0) otherwise.

.
controlD
own

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDown

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCou
nt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupTri
gger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is operating system
dependent, which is why this abstraction exists.

.altDown True (1) if the Alt key was held down during this event, false (0) otherwise.

.
controlD
own

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDown

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic)
properties.

.source The component that fired this event

.newValue The new value that this property changed to.

.oldValue The value that this property was before it changed. Note that not all components include an accurate oldValue
in their events.

.
propertyN
ame

The name of the property that changed.

Remember to always filter out these events for the property that you are looking for! Components
often have many properties that change.

Customizers

The Status Chart component has its own customizer, used to set a number-to-color mapping for each series in the Series Data
property.

Status Chart Customizer - Property Description

Property Description

Series Selectable list of all objects in the Series Data property.

Wide format: Each non-timestamp column.
Tall format: each unique value in the Name column.

Properties Table The number-to-color mapping for the selected Series.

Value A numeric value to match against.

Color The color to display for the given value.

Apply To All Set all of the Series mappings to the currently selected mapping.

Examples

This example uses the Status Chart to display the state of each of the three machines over consecutive days using the Muli-
State button. Tag History was turned on to record history HOA values. The Series Data property's dataset populates the Status

You can view the raw data by clicking on the Dataset Viewer icon to the right of the Chart using a Tag History Binding.
Series Data property. Each color represents a state for the machine and can be set in the Series Properties Data property. This
example also has the raw data in the code block in case you want to try it for yourself.

Series Data - Dataset Viewer

Series Raw Data

"#NAMES"
"Timestamp","Machine 3","Machine 2","Machine 1"
"#TYPES"
"date","I","I","I"
"#ROWS","10"
"2008-10-15 00:00:00.000","0","0","1"
"2008-10-16 00:00:00.000","2","2","1"
"2008-10-17 00:00:00.000","0","0","0"
"2008-10-18 00:00:00.000","1","1","1"
"2008-10-19 00:00:00.000","0","0","2"
"2008-10-20 00:00:00.000","0","1","2"
"2008-10-21 00:00:00.000","0","0","1"
"2008-10-22 00:00:00.000","1","2","1"
"2008-10-23 00:00:00.000","0","1","1"
"2008-10-24 00:00:00.000","0","0","1"

Series Properties Data - Dataset Viewer

Each machine has three states, and each of the three states (i.e., HOA) have different colors assigned representing a different
state.

Series Properties Raw Data

"#NAMES"
"SeriesName","Value","Color"
"#TYPES"
"str","I","clr"
"#ROWS","9"
"Series1","0","color(255,0,0,255)"
"Series1","1","color(0,255,0,255)"
"Series1","2","color(255,255,0,255)"
"Series2","0","color(255,0,0,255)"
"Series2","1","color(0,255,0,255)"
"Series2","2","color(255,255,0,255)"
"Series3","0","color(255,0,0,255)"
"Series3","1","color(0,255,0,255)"
"Series3","2","color(255,255,0,255)"

Vision - Pie Chart

General

Component
Palette Icon:

Description

The Pie Chart component displays a familiar-looking pie chart. A Pie Chart displays a list of named items, each of which has a
value that is part of a total. The total is the sum of the value of each item. The key to the Pie Chart component is the Data prop
erty, which contains the items that will be displayed as pie wedges. Typically, this dataset will be bound to a SQL Query

 to pull dynamic data out of an external database.Binding in Vision

 Extract Order

Similar to other charts, the pie chart can actually accept data in two formats. You can tell the pie chart which format to use via
its oExtract Order property. The two extract orders are By Column r By Row. The following table shows the two styles for the
data that created the pie chart in the screenshot.

By Column By Row

Label Value

Grapefruit 7

Apples 15

Bananas 56

Kiwis 19

Grapefruit Apples Bananas Kiwis

7 15 56 19

 Labels

In addition to the color-coded legend, the pie chart can annotate each wedge with a label. The format of the label is controlled
via the Label Format property.

For example, the format string used in the screenshot is " {0} = {2} ({3}) " This is a pattern string that uses the following
placeholders:

{0} - the item label
 {1} - the item value
 {2} - the item percentage

Properties

Name Description Property
Type

Scripting

3D
Depth
Factor

The depth of a 3D pie as a factor of the chart height. double .
depthFac
tor

Border The border surrounding this component. Options are: No border, Etched (Lowered), Etched (Raised),
Bevel (Lowered), Bevel (Raised), Bevel (Double), Button Border, Field Border, Line Border, and Other
Border.

Border .border

Chart
Title

An optional title that will appear at the top of the chart. String .title

Cursor The mouse cursor to use when hovering over this component. Options are: Default, Crosshair, Text,
Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Data The data driving the chart. Dataset .data

The border is unaffected by rotation.

https://legacy-docs.inductiveautomation.com/display/DOC80/SQL+Query+Bindings+in+Vision
https://legacy-docs.inductiveautomation.com/display/DOC80/SQL+Query+Bindings+in+Vision

Enfor
ce
Circul
arity?

If true, the pie cannot be an oval, even if the overall chart is. boolean .circular

Extra
ct
Order

Controls whether or not a pie plot views columns as pies, or rows. int .
extractOr
der

Foreg
round
Trans
paren
cy

The transparency of the pie (useful for 3D pies). Valid values are between 0 (0% opacity) and 1 (100%
opacity).

double .
foregroun
dAlpha

Label
Font

The font for labels items, if there are labels. Font .
labelFont

Label
Form
at

Formatting String. '{0}' is the wedge name, '{1}' is the value, '{2}' is the percent. String .
labelFor
mat

Label
s?

Should labels be displayed near sections? boolean .labels

Lege
nd
Font

The font for legend items, if there is a legend. Font .
legendFo
nt

Lege
nd?

Should there be an item legend below the chart? boolean .legend

Mous
eover
Text

The text that is displayed in the tooltip which pops up on mouseover of this component. String .
toolTipTe
xt

Name The name of this component. String .name

Outlin
e
Colors

The colors to use for the pie wedge outlines. Can be chosen from color wheel, chosen from color palette,
or entered as or value. See RGB HSL Color Selector.

Color[] .
outlineCo
lors

Outlin
e
Visible

The following feature is new in Ignition version 8.0.16
 to check out the other new featuresClick here

 Whether to display an outline around the pie chart.

boolean .
outlineVis
ible

Outlin
e
Stroke

The width for the section outline stroke. float .
outlineStr
oke

Plot
Back
ground

The background color for all plots, unless they override it. See Color Selector. Color .
plotBack
ground

Plot
Insets The following feature is new in Ignition version 8.0.16

 to check out the other new featuresClick here

 The padding to use around the actual plot rendering area.

int .
plotInsets

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality

Rotati
on

Draw the wedges clockwise or counter-clockwise from the starting angle? int .rotation

Secti
on
Colors

The colors to use for the pie wedge fills. See Color Selector. Color[] .
sectionC
olors

Selec
ted
Wedge

The currently selected wedge. (Read only. Usable in bindings and scripting.) String .
selected
Data

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.16
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.16
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Selec
tion
Enabl
ed?

If true, the user will be able to select wedges on the chart. The selected wedge will be highlighted, and
the "selectedData" property will reflect it.

boolean .
selection
Enabled

Selec
tion
Highli
ght
Color

The color of the selection highlight. See Color Selector. Color .
selection
Highlight
Color

Selec
tion
Highli
ght
Width

The line width of the selection highlight. float .
selection
Highlight
Width

Starti
ng
Angle

The start angle to draw the pie wedges. int .
startAngle

Style Style of pie chart, standard, 3D, or ring. int .style

Title
Font

The font for the chart's title. Font .titleFont

Toolti
p
Form
at

Formatting String. '{0}' is the wedge name, '{1}' is the value, '{2}' is the percent. String .
tooltipFor
mat

Toolti
ps?

Should tooltips be displayed when the mouse hovers over sections? boolean .tooltips

Visible If disabled, the component will be hidden. boolean .visible

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Scripting

The following feature is new in Ignition version 8.0.16
 to check out the other new featuresClick here

Description

Provides an opportunity to perform further chart configuration via scripting.

Parameters

 A reference to the component that is invoking this function.Component self-

 A JFreeChart object. Refer to the for API details.JFreeChart chart- JFreeChart documentation

Return

Nothing

Event Handlers

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.16
http://www.jfree.org/jfreechart/api/javadoc/index.html

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component. Note that this event fires
after the pressed and released events have fired.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Customizers

Vision Component Customizers

Examples

Code Snippet

#The following code will print named and value of the selected wedge to the console.
#Alternatively, this can be used to write to a custom property of a table that is used to
create the 'Where' clause of a SQL query that populates a table.

selectedWedge = event.source.selectedData
print selectedWedge

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers

Vision - Box and Whisker Chart
General

Component
Palette Icon:

Description

A Box and Whisker chart displays pertinent statistical information about sets of data. Each box represents a set of numbers.
The upper and lower bounds of the box represent the 1st and 3rd quartiles. The line inside the box represents the median. The
extends of the "whiskers" represent the max and min outliers. For a more detailed description, see http://mathworld.wolfram.
com/Box-and-WhiskerPlot.html.

The configuration for setting up a box and whisker chart, like most charts, is populating the Data property. The dataset for a
box and whisker chart contains sets of numbers. Each column defines a series of values, for which a "box" will be calculated.
The column headers define the name for the box. You may also have an optional first column that is a String column, which
can break up the series into categories.

To learn more, refer to .Box and Whisker Chart

http://mathworld.wolfram.com/Box-and-WhiskerPlot.html
http://mathworld.wolfram.com/Box-and-WhiskerPlot.html
https://legacy-docs.inductiveautomation.com/display/DOC80/Comparison+Charts#ComparisonCharts-BoxandWhiskerChart

Properties

Name Description Property
Type

Scripting Category

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel (Double),
Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Categ
ory
Axis
Title

A text label to display on the category axis. String .
category
AxisTitle

Appearan
ce

Chart
Title

An optional title that will appear at the top of the chart. String .title Appearan
ce

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Data The data driving the chart. Dataset .data Data

Fill
Boxes?

Fill the boxes with their color? boolean .fillBoxes Appearan
ce

Font Font of text on this component. Font .font Appearan
ce

Legen
d?

Show a legend on the chart? boolean .legend Appearan
ce

Mouse
over
Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Plot
Backg
round

The background color for the plot. Can be chosen from color wheel, chosen
from color palette, or entered as or value. See RGB HSL Color Selector.

Color .
plotBack
ground

Appearan
ce

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Series
Colors

The colors to paint each box in a series. See Color Selector. Color[] .
seriesCol
ors

Appearan
ce

Tooltip
s?

Show tooltips on tasks? boolean .tooltips Behavior

Value
Axis
Title

A text label to display on the value axis. String .
valueAxis
Title

Appearan
ce

Visible If disabled, the component will be hidden. boolean .visible Common

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

The border is unaffected by rotation.

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires after the pressed and released events have fired.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Customizers

This component does not have any custom properties.

Example

This example uses the Box & Whisker Chart to display information about two sets of data, Bin A and Bin B, and both
contain Diamonds and Rubies. The Box and Whisker Chart is displaying a large amount of data as you can tell from looking at
the code block below. It displays high, low, and median values which is where 50% of the data falls. The dataset contains all
the raw data and calculates the upper and lower bounds of each box which are the solid colored boxes, horizontal line inside
the box which represents the median value, and the whiskers which represent the minimum and maximum values which are
outside the solid color boxes.

The dataset populates the chart. You can view the data in the dataset by clicking on the dataset icon. This example also
has the raw data in the code block in case you want to try it for yourself.

Box and Whisker - Dataset Editor

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

Box and Whisker Raw Data

"#NAMES"
"Key","Diamonds","Rubies"
"#TYPES"
"str","I","I"
"#ROWS","200"
"Bin A","12","122"
"Bin A","16","108"
"Bin A","82","63"
"Bin A","53","118"
"Bin A","97","103"
"Bin A","42","96"
"Bin A","49","86"
"Bin A","88","115"
"Bin A","51","106"
"Bin A","28","76"
"Bin A","72","76"
"Bin A","91","93"
"Bin A","91","118"
"Bin A","60","125"
"Bin A","14","107"
"Bin A","19","108"
"Bin A","60","104"
"Bin A","42","72"
"Bin A","97","69"
"Bin A","99","69"
"Bin A","95","119"
"Bin A","76","92"
"Bin A","84","101"
"Bin A","27","99"
"Bin A","33","101"
"Bin A","12","53"
"Bin A","90","83"

"Bin A","78","61"
"Bin A","101","61"
"Bin A","50","84"
"Bin A","93","126"
"Bin A","15","85"
"Bin A","43","117"
"Bin A","37","57"
"Bin A","79","81"
"Bin A","5","53"
"Bin A","65","75"
"Bin A","94","76"
"Bin A","79","80"
"Bin A","94","97"
"Bin A","45","58"
"Bin A","104","77"
"Bin A","29","74"
"Bin A","22","89"
"Bin A","20","115"
"Bin A","61","73"
"Bin A","5","70"
"Bin A","12","117"
"Bin A","36","118"
"Bin A","42","85"
"Bin A","92","87"
"Bin A","100","57"
"Bin A","42","72"
"Bin A","102","114"
"Bin A","7","90"
"Bin A","75","112"
"Bin A","36","92"
"Bin A","84","105"
"Bin A","80","69"
"Bin A","46","67"
"Bin A","48","77"
"Bin A","100","62"
"Bin A","32","72"
"Bin A","11","113"
"Bin A","23","127"
"Bin A","53","95"
"Bin A","67","108"
"Bin A","45","54"
"Bin A","47","51"
"Bin A","62","68"
"Bin A","86","72"
"Bin A","80","70"
"Bin A","77","113"
"Bin A","103","126"
"Bin A","21","57"
"Bin A","22","128"
"Bin A","11","77"
"Bin A","48","57"
"Bin A","73","118"
"Bin A","35","125"
"Bin A","57","52"
"Bin A","34","124"
"Bin A","66","68"
"Bin A","81","79"
"Bin A","43","78"
"Bin A","16","53"
"Bin A","81","109"
"Bin A","64","53"
"Bin A","94","59"
"Bin A","67","95"
"Bin A","67","57"
"Bin A","27","115"
"Bin A","18","120"
"Bin A","17","77"
"Bin A","56","87"
"Bin A","32","124"
"Bin A","30","57"
"Bin A","5","78"
"Bin A","68","82"
"Bin A","31","58"
"Bin B","66","74"
"Bin B","64","85"

"Bin B","29","86"
"Bin B","34","85"
"Bin B","16","36"
"Bin B","42","68"
"Bin B","26","33"
"Bin B","9","85"
"Bin B","27","74"
"Bin B","42","58"
"Bin B","6","72"
"Bin B","14","79"
"Bin B","40","54"
"Bin B","12","42"
"Bin B","21","34"
"Bin B","6","73"
"Bin B","46","43"
"Bin B","39","36"
"Bin B","67","42"
"Bin B","55","71"
"Bin B","42","42"
"Bin B","34","41"
"Bin B","24","54"
"Bin B","20","42"
"Bin B","66","75"
"Bin B","12","80"
"Bin B","75","84"
"Bin B","43","57"
"Bin B","62","50"
"Bin B","12","37"
"Bin B","65","32"
"Bin B","11","60"
"Bin B","5","32"
"Bin B","21","58"
"Bin B","36","53"
"Bin B","12","79"
"Bin B","37","78"
"Bin B","24","30"
"Bin B","73","87"
"Bin B","53","70"
"Bin B","70","82"
"Bin B","6","36"
"Bin B","65","72"
"Bin B","54","88"
"Bin B","10","47"
"Bin B","10","70"
"Bin B","63","41"
"Bin B","12","84"
"Bin B","77","47"
"Bin B","64","72"
"Bin B","72","84"
"Bin B","68","49"
"Bin B","23","88"
"Bin B","78","63"
"Bin B","40","57"
"Bin B","14","76"
"Bin B","7","45"
"Bin B","77","60"
"Bin B","19","86"
"Bin B","52","50"
"Bin B","64","88"
"Bin B","57","37"
"Bin B","50","69"
"Bin B","45","85"
"Bin B","27","51"
"Bin B","28","56"
"Bin B","54","54"
"Bin B","43","32"
"Bin B","11","68"
"Bin B","44","85"
"Bin B","22","55"
"Bin B","74","76"
"Bin B","51","83"
"Bin B","50","42"
"Bin B","65","77"
"Bin B","22","43"
"Bin B","34","36"

"Bin B","29","46"
"Bin B","33","51"
"Bin B","39","55"
"Bin B","17","43"
"Bin B","35","44"
"Bin B","50","31"
"Bin B","10","49"
"Bin B","78","38"
"Bin B","15","31"
"Bin B","45","78"
"Bin B","79","76"
"Bin B","22","55"
"Bin B","37","49"
"Bin B","10","50"
"Bin B","40","76"
"Bin B","40","44"
"Bin B","17","45"
"Bin B","16","87"
"Bin B","7","41"
"Bin B","67","77"
"Bin B","70","35"
"Bin B","69","52"
"Bin B","30","71"

Vision - Equipment Schedule

General

Component
Palette Icon:

Description

The Equipment Schedule view is a mix between the status chart, gantt chart, and a calendar view. It conveys a lot of
information about equipment, including current status, production schedule, production status, scheduled and unexpected
downtime.

The ment schedule is powered by four datasets. Information is retrieved from the datasets by column name, case-equip
insensitive. The order of the columns is not important. Optional columns may be omitted.

The "Items" Dataset

Describes the "items" or "cells" to display schedules for. Each entry in this dataset will become a row of the chart.

Name Type Optional Description

ID Any N The identifier for this item. May be any type, will referenced by each entry in the
Scheduled Events dataset.

Label String N The text to display in the header.

Foreground Color Y Text color.

Background Color Y Background color.

StatusImageP
ath

String Y A path to an image to display to the right of the header label.

The "Scheduled Items" Dataset

Lists the scheduled events for each item described in the "Items" dataset. Each scheduled event can have a colored lead, or
change-over time, a label, a background color, and a progress.

Name Type Optional Description

EventId String Y An identifier for the event, used for event selection.

ItemId Any N The ID of the item to correlate this event with. If no such item is found, the event won't be
shown.

Label String N The text ot display in the event's box.

StartDate Date N The start-time for the event.

EndDate Date N The end-time for the event.

Foreground Color Y The text color of the event.

Background Color Y The background color of the event.

LeadTime Integer Y Time, in seconds, to display as lead time.

LeadColor Color Y The color for the lead time, if any.

PctDone Number Y A value from 0 to 100 to be displayed as a progress bar, use -1 to hide progress bar.

The "Downtime" Dataset

Entries in this dataset will be displayed as simple colored overlays on top of the events, correlated against an item defined in
the "Items" dataset.

Name Type Optional Description

ItemId Any N The ID of the item to correlate this downtime event with. If no such item is found, the downtime
event won't be shown.

StartD
ate

Date N The start-time for the downtime event.

EndDa
te

Date N The end-time for the downtime event.

Color Color Y The color to use, typically transparent.

Layer Integ
er

Y 0 or 1, with 0 meaning that the rectangle gets painted below the events, and 1 means it will be
painted above the events.

The "Breaks" Dataset

Entries in this dataset will be displayed as colored underlays beneath all events.

Name Type Optional Description

StartDate Date N The start-time for the break event.

EndDate Date N The end-time for the break event.

Color Color Y The color to use.

Properties

Name Description Property
Type

Scripting Category

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel
(Double), Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Break
Events

Scheduled breaks, which will appear as downtime for all items. Dataset .
breakEve
nts

Data

Current
Time
Color

The color of the current time indicator. Can be chosen from color wheel,
chosen from color palette, or entered as or value. See RGB HSL Color
Selector.

Color .
nowColor

Appearan
ce

Downtim
e Events

Downtime events correlated to a specific item. Dataset .
downtime
Events

Data

Drag
Enabled

Controls whether or not scheduled events can be dragged for rescheduling. boolean .
dragEnab
led

Behavior

Enabled If disabled, a component cannot be used. boolean .
compone
ntEnabled

Common

End
Date

The end of the time range to display. Date .endDate Data

Event
Border

The normal border for a scheduled event. Border .
eventBor
der

Appearan
ce

Event
Font

The font to use for the event labels. Font .
eventFont

Appearan
ce

Event
Margin

The margin to leave visible above and below a scheduled event. int .
schedule
dEventM
argin

Appearan
ce

Header
Backgro
und

The color of the background for the header timeline. See Color Selector. Color .
headerBa
ckground

Appearan
ce

Header
Font

The font of the text in the header timeline. Font .
headerFo
nt

Appearan
ce

Header
Item
Font

The font to use for the header items' labels. Font .itemFont Appearan
ce

Header
Text
Color

The color of the text in the header timeline. See Color Selector. Color .
headerTe
xtColor

Appearan
ce

Items The cells, or equipment items, to have their schedules displayed. Dataset .items Data

Line
Color

The color of separating lines in the schedule. Color .lineColor Appearan
ce

Name The name of this component. String .name Common

Progress
Bar
Backgro
und

The background color for the event progress bars. See Color Selector. Color .
progress
Backgrou
nd

Appearan
ce

Progress
Bar
Border

The border color for the event progress bars. See Color Selector. Color .
progress
Border

Appearan
ce

The border is unaffected by rotation.

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Progress
Bar Fill

The color for 'done' portion the event progress bars. See Color Selector. Color .
progress
Fill

Appearan
ce

Resize
Enabled

Controls whether or not scheduled events resized for duration changes. boolean .
resizeEn
abled

Behavior

Row
Height

The height of each event's schedule row. int .
lineHeight

Appearan
ce

Schedul
e
Backgro
und

The background color of the schedule area. See Color Selector. Color .
schedule
Backgrou
nd

Appearan
ce

Schedul
ed
Events

The scheduled events for all configured items. Dataset .
schedule
dEvents

Data

Selected
Event
Border

The border for a selected scheduled event. Border .
selected
EventBor
der

Appearan
ce

Selected
Event ID

The ID of the selected event. String .
selected
Event

Data

Start
Date

The beginning of the time range to display. Date .startDate Data

Visible If disabled, the component will be hidden. boolean .visible Common

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

Description

Called when the user drags a segment on the schedule background.

Parameters

 - A reference to the component that is invoking this function.Component self

 - The ID of the equipment item of the row where the user dragged.int itemID

 - The datetime corresponding to where the user started dragging.Date startDate

 - The datetime corresponding to where the user ended dragging.Date endDate

 - The mouse event.Event Object event

Return

Nothing

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Description

Called when the user clicks on a scheduled event. Use event.clickCount to detect double clicks.

Parameters

 - A reference to the component that is invoking this function.Component self

 - The ID of the equipment item of the event that was clicked on.int itemID

 - The ID of the event that was clicked on.int eventId

 - The mouse event.Event Object event

Return

Nothing

Description

Called when the user drags and drops a scheduled event. It is up to this script to actually alter the
underlying data to reflect the schedule change.

Parameters

 - A reference to the component that is invoking this function.Component self

 - The ID of the scheduled event that was moved.int eventId

 - The ID of the item this event was originally correlated against.int oldItemId

 - The ID of the item whose schedule the event was dropped on.int newItemId

 - The original starting datetime of the event.Date oldStartDate

 - The new starting datetime of the event.Date newStartDate

 - The new ending datetime of the event.Date newEndDate

Return

Nothing

Description

Called when the user right-clicks on a scheduled event. This would be the appropriate time to create
and display a popup menu.

Parameters

 - A reference to the component that is invoking this function.Component self

 - The ID of the equipment item of the event that was right-clicked on.int itemId

 - The ID of the event that was right-clicked on.int eventId

 - The mouse event that caused the popup trigger.Event Object event

Return

Nothing

Description

Called when the user drags the edge of an event to resize its time span. It is up to this script to
actually alter the underlying data to reflect the schedule change.

Parameters

 - A reference to the component that is invoking this function.Component self

 - The ID of the scheduled event that was resized.int eventId

 - The ID of the item this event is correlated against.int itemId

 - The original starting datetime of the event.Date oldStartDate

 - The original ending datetime of the event.Date oldEndData

 - The new starting datetime of the event.Date newStartDate

 - The new ending datetime of the event.Date newEndDate

Return

Nothing

Description

Called when the user right-clicks outside of an event. This would be the appropriate time to create
and display a popup menu.

Parameters

 - A reference to the component that is invoking this function.Component self

 - The item ID of the equipment line that was clicked on (if any).int itemId

 - The mouse event that caused the popup trigger.Event Object event

Return

Nothing

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component. Note that this event fires
after the pressed and released events have fired.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

This event is deprecated. Please use the onEventDropped extension function.

Customizers

Vision Component Customizers

Examples

The E ment Schedule contains quip a lot information about Machines 1-4 from May 18 through May 20 such as equipment
status, the production schedule, production status, and schedule and unscheduled downtime. It provides a view into the status
of equipment on the production floor in realtime and scheduled work planned for three days. It uses four datasets: Items,
Scheduled Events, Downtime Events, and Break Events. Each dataset is shown below with it's associated raw data.

You'll notice each piece of equipment has a lead time or change-over time, a unique Order number for the run, background
color and displays a progress bar. Equipment downtime entries are displayed as colored overlays on top of the events. Break
events with a start and end time are displayed as colored underlays beneath the events.

Equipment Schedule - Items Dataset

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers

Equipment Schedule - Items Raw Data

"#NAMES"
"ID","Label","StatusImagePath","Foreground","Background"
"#TYPES"
"I","str","str","clr","clr"
"#ROWS","4"
"1","Machine 1","Builtin/icons/24/media_play.png","color(0,0,0,255)","color(0,255,0,255)"
"2","Machine 2","Builtin/icons/24/media_stop_red.png","color(0,0,0,255)","color
(192,192,192,255)"
"3","Machine 3","Builtin/icons/24/media_play.png","color(0,0,0,255)","color(0,255,0,255)"
"4","Machine 4","Builtin/icons/24/media_play.png","color(0,0,0,255)","color(0,255,0,255)"

Equipment Schedule - Scheduled Events Dataset

Equipment Schedule - Scheduled Events Raw Data

"#NAMES"
"EventID","ItemID","StartDate","EndDate","Label","Foreground","Background","LeadTime","
LeadColor","PctDone"
"#TYPES"
"str","I","date","date","str","clr","clr","I","clr","D"
"#ROWS","24"
"evt-1-0","1","2020-05-18 03:30:29.002","2020-05-18 10:09:29.002","Ord#B041","color
(0,0,0,255)","color(214,255,198,255)","120","color(255,255,0,255)","100.0"
"evt-1-1","1","2020-05-18 12:15:29.002","2020-05-18 17:44:29.002","Ord#8F3","color
(0,0,0,255)","color(255,220,198,255)","660","color(255,255,0,255)","100.0"
"evt-1-2","1","2020-05-18 19:34:29.002","2020-05-19 01:48:29.002","Ord#8F3","color
(0,0,0,255)","color(255,220,198,255)","3600","color(255,255,0,255)","100.0"
"evt-1-3","1","2020-05-19 03:05:29.002","2020-05-19 07:25:29.002","Ord#E9A6","color
(0,0,0,255)","color(198,255,242,255)","360","color(255,255,0,255)","100.0"
"evt-1-4","1","2020-05-19 08:35:29.002","2020-05-19 17:56:29.002","Ord#87BE","color
(0,0,0,255)","color(255,198,207,255)","3060","color(255,255,0,255)","0.0"
"evt-1-5","1","2020-05-19 19:05:29.002","2020-05-20 05:06:29.002","Ord#8F3","color
(0,0,0,255)","color(255,220,198,255)","4740","color(255,255,0,255)","0.0"
"evt-2-0","2","2020-05-18 03:20:29.002","2020-05-18 10:56:29.002","Ord#8F3","color
(0,0,0,255)","color(255,220,198,255)","3180","color(255,255,0,255)","100.0"
"evt-2-1","2","2020-05-18 13:33:29.002","2020-05-18 19:18:29.002","Ord#8F3","color
(0,0,0,255)","color(255,220,198,255)","840","color(255,255,0,255)","100.0"
"evt-2-2","2","2020-05-18 21:30:29.002","2020-05-19 06:06:29.002","Ord#8F3","color
(0,0,0,255)","color(255,220,198,255)","1380","color(255,255,0,255)","100.0"
"evt-2-3","2","2020-05-19 08:27:29.002","2020-05-19 14:01:29.002","Ord#87BE","color
(0,0,0,255)","color(255,198,207,255)","2400","color(255,255,0,255)","87.0"
"evt-2-4","2","2020-05-19 15:18:29.002","2020-05-19 21:37:29.002","Ord#87BE","color
(0,0,0,255)","color(255,198,207,255)","2520","color(255,255,0,255)","0.0"
"evt-2-5","2","2020-05-19 23:47:29.002","2020-05-20 09:48:29.002","Ord#E9A6","color
(0,0,0,255)","color(198,255,242,255)","5040","color(255,255,0,255)","0.0"
"evt-3-0","3","2020-05-18 02:00:29.002","2020-05-18 09:00:29.002","Ord#B041","color
(0,0,0,255)","color(214,255,198,255)","3360","color(255,255,0,255)","100.0"
"evt-3-1","3","2020-05-18 10:29:29.002","2020-05-18 20:41:29.002","Ord#E9A6","color
(0,0,0,255)","color(198,255,242,255)","1800","color(255,255,0,255)","100.0"
"evt-3-2","3","2020-05-18 23:38:29.002","2020-05-19 09:16:29.002","Ord#87BE","color
(0,0,0,255)","color(255,198,207,255)","2580","color(255,255,0,255)","64.0"
"evt-3-3","3","2020-05-19 10:28:29.002","2020-05-19 20:45:29.002","Ord#E9A6","color
(0,0,0,255)","color(198,255,242,255)","5820","color(255,255,0,255)","0.0"
"evt-3-4","3","2020-05-19 23:11:29.002","2020-05-20 05:26:29.002","Ord#87BE","color
(0,0,0,255)","color(255,198,207,255)","3060","color(255,255,0,255)","0.0"
"evt-3-5","3","2020-05-20 06:27:29.002","2020-05-20 13:17:29.002","Ord#B041","color
(0,0,0,255)","color(214,255,198,255)","3900","color(255,255,0,255)","0.0"
"evt-4-0","4","2020-05-18 02:35:29.002","2020-05-18 09:51:29.002","Ord#87BE","color
(0,0,0,255)","color(255,198,207,255)","3060","color(255,255,0,255)","100.0"
"evt-4-1","4","2020-05-18 12:30:29.002","2020-05-18 17:18:29.002","Ord#87BE","color
(0,0,0,255)","color(255,198,207,255)","2220","color(255,255,0,255)","100.0"
"evt-4-2","4","2020-05-18 18:47:29.002","2020-05-19 04:48:29.002","Ord#E9A6","color
(0,0,0,255)","color(198,255,242,255)","4980","color(255,255,0,255)","100.0"
"evt-4-3","4","2020-05-19 06:37:29.002","2020-05-19 11:44:29.002","Ord#87BE","color
(0,0,0,255)","color(255,198,207,255)","1920","color(255,255,0,255)","47.0"
"evt-4-4","4","2020-05-19 14:14:29.002","2020-05-19 21:18:29.002","Ord#8F3","color
(0,0,0,255)","color(255,220,198,255)","1080","color(255,255,0,255)","0.0"
"evt-4-5","4","2020-05-20 00:00:29.002","2020-05-20 07:49:29.002","Ord#8F3","color
(0,0,0,255)","color(255,220,198,255)","1500","color(255,255,0,255)","0.0"

Equipment Schedule - Downtime Events Dataset

Equipment Schedule - Downtime Events Raw Data

"#NAMES"
"ItemID","StartDate","EndDate","Color","Layer"
"#TYPES"
"I","date","date","clr","I"
"#ROWS","18"
"1","2020-05-18 13:25:29.002","2020-05-18 13:37:29.002","color(212,49,49,75)","1"
"1","2020-05-18 14:11:29.002","2020-05-18 14:49:29.002","color(212,49,49,75)","1"
"1","2020-05-18 20:34:29.002","2020-05-18 21:12:29.002","color(212,49,49,75)","1"
"1","2020-05-18 21:48:29.002","2020-05-18 22:09:29.002","color(212,49,49,75)","1"
"1","2020-05-19 03:42:29.002","2020-05-19 04:07:29.002","color(212,49,49,75)","1"
"1","2020-05-19 04:55:29.002","2020-05-19 05:13:29.002","color(212,49,49,75)","1"
"1","2020-05-19 06:09:29.002","2020-05-19 06:46:29.002","color(212,49,49,75)","1"
"2","2020-05-18 04:00:29.002","2020-05-18 04:31:29.002","color(212,49,49,75)","1"
"2","2020-05-18 05:02:29.002","2020-05-18 05:39:29.002","color(212,49,49,75)","1"
"2","2020-05-18 22:08:29.002","2020-05-18 22:45:29.002","color(212,49,49,75)","1"
"3","2020-05-18 02:56:29.002","2020-05-18 03:34:29.002","color(212,49,49,75)","1"
"3","2020-05-18 04:21:29.002","2020-05-18 04:56:29.002","color(212,49,49,75)","1"
"3","2020-05-18 05:26:29.002","2020-05-18 05:40:29.002","color(212,49,49,75)","1"
"4","2020-05-18 03:11:29.002","2020-05-18 03:26:29.002","color(212,49,49,75)","1"
"4","2020-05-18 04:14:29.002","2020-05-18 04:50:29.002","color(212,49,49,75)","1"
"4","2020-05-18 05:35:29.002","2020-05-18 06:01:29.002","color(212,49,49,75)","1"
"4","2020-05-18 13:39:29.002","2020-05-18 13:50:29.002","color(212,49,49,75)","1"
"4","2020-05-18 14:29:29.002","2020-05-18 14:57:29.002","color(212,49,49,75)","1"

Equipment Schedule - Break Events

Equipment Schedule - Break Events Raw Data

"#NAMES"
"StartDate","EndDate","Color"
"#TYPES"
"date","date","clr"
"#ROWS","9"
"2020-05-18 08:30:00.002","2020-05-18 09:15:00.002","color(55,120,55,50)"
"2020-05-18 12:00:00.002","2020-05-18 13:00:00.002","color(55,120,55,50)"
"2020-05-18 16:15:00.002","2020-05-18 17:00:00.002","color(55,120,55,50)"
"2020-05-19 08:30:00.002","2020-05-19 09:15:00.002","color(55,120,55,50)"
"2020-05-19 12:00:00.002","2020-05-19 13:00:00.002","color(55,120,55,50)"
"2020-05-19 16:15:00.002","2020-05-19 17:00:00.002","color(55,120,55,50)"
"2020-05-20 08:30:00.002","2020-05-20 09:15:00.002","color(55,120,55,50)"
"2020-05-20 12:00:00.002","2020-05-20 13:00:00.002","color(55,120,55,50)"
"2020-05-20 16:15:00.002","2020-05-20 17:00:00.002","color(55,120,55,50)"

Vision - Gantt Chart
General

Component
Palette Icon:

Description

A Gantt chart is used for task scheduling. It shows a list of named tasks, each of which have a start date, an end date, and a
percentage complete. This allows an easy way to visualize tasks, workflows, and scheduling.

The Gantt chart is configured by populating its Data property. Each row of the dataset
represents a task. There should be four columns: the task label, the start date, the end date, and
the percentage (0-100) complete.

Properties

Name Description Property
Type

Scripting Category

Axis
Font

The font for axis labels. Font .
axisLabel
Font

Appearan
ce

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel (Double),
Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Chart
Title

An optional title that will appear at the top of the chart. String .title Appearan
ce

Comp
lete
Color

The color to draw the amount completed in. Can be chosen from color wheel,
chosen from color palette, or entered as or value. See RGB HSL Color Selector.

Color .
complete
Color

Appearan
ce

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Data The data driving the chart. Dataset .data Data

Date
Axis
Title

A date label to display on the axis title. String .
dateAxis
Title

Appearan
ce

Incom
plete
Color

The color to draw the amount remaining to do in. See Color Selector. Color .
incomplet
eColor

Appearan
ce

Mous
eover
Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Plot
Backg
round

The background color for the plot. See Color Selector. Color .
plotBack
ground

Appearan
ce

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Task
Axis
Title

 A task label to display on the Axis Title. String .
taskAxisT
itle

Appearan
ce

Task
Color

The main color to draw tasks. See Color Selector. Color .
taskColor

Appearan
ce

Tick
Font

The font for tick labels. Font .
axisTickL
abelFont

Appearan
ce

Title
Font

The font for the optional chart title. Font .titleFont Appearan
ce

Toolti
ps?

Show tooltips on tasks? boolean .tooltips Behavior

Visible If disabled, the component will be hidden. boolean .visible Common

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

The border is unaffected by rotation.

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

The following feature is new in Ignition version 8.0.16
 to check out the other new featuresClick here

Description

Provides an opportunity to perform further chart configuration via scripting.

Parameters

 A reference to the component that is invoking this function.Component self-

JFreeChart chart- A JFreeChart object. Refer to the JFreeChart documentation for API details.

Return

Nothing

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press and a mouse
release, both of which must have occurred over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCou
nt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupTri
gger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is operating system
dependent, which is why this abstraction exists.

.altDown True (1) if the Alt key was held down during this event, false (0) otherwise.

.
controlD
own

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDown

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires after the pressed and released events have fired.

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.16
http://www.jfree.org/jfreechart/api/javadoc/index.html

This event fires when the mouse enters the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCou
nt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupTri
gger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is operating system
dependent, which is why this abstraction exists.

.altDown True (1) if the Alt key was held down during this event, false (0) otherwise.

.
controlD
own

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDown

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCou
nt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupTri
gger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is operating system
dependent, which is why this abstraction exists.

.altDown True (1) if the Alt key was held down during this event, false (0) otherwise.

.
controlD
own

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDown

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCou
nt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupTri
gger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is operating system
dependent, which is why this abstraction exists.

.altDown True (1) if the Alt key was held down during this event, false (0) otherwise.

.
controlD
own

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDown

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCou
nt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupTri
gger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is operating system
dependent, which is why this abstraction exists.

.altDown True (1) if the Alt key was held down during this event, false (0) otherwise.

.
controlD
own

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDown

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCou
nt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupTri
gger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is operating system
dependent, which is why this abstraction exists.

.altDown True (1) if the Alt key was held down during this event, false (0) otherwise.

.
controlD
own

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDown

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCou
nt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupTri
gger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is operating system
dependent, which is why this abstraction exists.

.altDown True (1) if the Alt key was held down during this event, false (0) otherwise.

.
controlD
own

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDown

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic)
properties.

.source The component that fired this event

.newValue The new value that this property changed to.

.oldValue The value that this property was before it changed. Note that not all components include an accurate oldValue
in their events.

.
propertyN
ame

The name of the property that changed.

Remember to always filter out these events for the property that you are looking for! Components
often have many properties that change.

Customizers

This component does not have any custom properties.

Examples

This example shows the tasks associated with a construction project on a new house. It is configured by populating the Data
Property. Each row of the dataset includes the start date, end date and a percentage complete for each task. It is a good tool
for task scheduling and a easy way to visualize tasks, workflow and scheduling.

Gantt Chart - Dataset Editor

Gantt Chart - Raw Data

"#NAMES"
"Task Name","Start Date","End Date","Percentage Done"
"#TYPES"
"str","date","date","I"
"#ROWS","12"
"Grading and Site Preparation","2020-05-18 08:00:00.000","2020-05-27 17:00:00.000","100"
"Foundation Construction","2020-05-28 08:00:00.000","2020-06-03 17:00:00.000","100"
"Framing","2020-06-04 08:00:00.000","2020-06-09 17:00:00.000","100"
"Install Windows & Doors","2020-06-10 08:00:00.000","2020-06-16 17:00:00.000","40"
"Roofing","2020-06-10 08:00:00.000","2020-06-26 17:00:00.000","60"
"Electrical","2020-06-22 08:00:00.000","2020-06-30 17:00:00.000","50"
"Plumbing","2020-06-22 08:00:00.000","2020-06-30 17:00:00.000","30"
"Insulation & Drywall","2020-07-01 08:00:00.000","2020-07-07 17:00:00.000","0"
"Interior & Exterior Painting","2020-07-08 08:00:00.000","2020-07-15 17:00:00.000","0"
"Install Cabinetry ","2020-07-13 08:00:00.000","2020-07-17 17:00:00.000","0"
"Carpet & Flooring","2020-07-16 08:00:00.000","2020-07-21 17:00:00.000","0"
"Final Walk Thru","2020-07-22 08:00:00.000","2020-07-22 20:00:00.000","0"

Vision - Calendar Palette

Calendar Components
The following components give you options for displaying and selecting dates and times.

In This Section ...

Vision - Calendar
General

Component
Palette Icon:

Description

Displays a calendar and time input directly embedded in your window. Most commonly used by including one of the two date
properties (immediate or latched) from the calendar in dynamic SQL Query Binding in Vision.

Properties

Name Description Property
Type

Scripting Category

Backgro
und
Color

The background color of the component. Can be chosen from color wheel,
chosen from color palette, or entered as or value. See RGB HSL Color
Selector.

Color .
backgrou
nd

Appearan
ce

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel
(Double), Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Date
(immedi
ate)

The date as it is selected right now. Date .date Data

Date
(latched)

The date the last time "OK" was pressed. Date .
latchedD
ate

Data

Enabled If disabled, a component cannot be used. boolean .
compone
ntEnabled

Common

The border is unaffected by rotation.

https://legacy-docs.inductiveautomation.com/display/DOC80/SQL+Query+Bindings+in+Vision
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Font Font of text on this component. Font .font Appearan
ce

Foregro
und
Color

The foreground color of the component. See Color Selector. Color .
foreground

Appearan
ce

Format
String

The date formatting pattern used to format the string versions of the dates. String .format Behavior

Formatt
ed Date

The date property, as formatted by the format string. String .
formatted
Date

Data

Formatt
ed
Latched
Date

The latched date property, as formatted by the format string. String .
formatted
LatchedD
ate

Data

Mouseo
ver Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Opaque If false, backgrounds are not drawn. If true, backgrounds are drawn. boolean .opaque Common

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Selecte
d Border

The border for the selected day indicator. Border .
selected
Border

Appearan
ce

Show
OK
Button

Turn this off if you don't want to show the OK button. The latched date and
the immediate date will be equivalent.

boolean .
showOkB
utton

Behavior

Show
Time

Turn this off if you don't want to show the time panel. boolean .
showTime

Behavior

Styles Contains the component's styles. Dataset .styles Appearan
ce

Time
Display
Format

The format for displaying time in the panel. int .
timeDispl
ayFormat

Behavior

Time
Style

Select how this calendar should treat the time portion of the date. int .
timeStyle

Behavior

Title
Backgro
und

The background of the title bar. See Color Selector. Color .
titleBackg
round

Appearan
ce

Today
Backgro
und

Background color for the today indicator. See Color Selector. Color .
todayBac
kground

Appearan
ce

Today
Foregro
und

Foreground color for the today indicator. See Color Selector. Color .
todayFor
eground

Appearan
ce

Visible If disabled, the component will be hidden. boolean .visible Common

Weeken
d
Backgro
und

Background color for the weekend indicators. See Color Selector. Color .
weekend
Backgrou
nd

Appearan
ce

Weeken
d
Foregro
und

Foreground color for the weekend indicators. See Color Selector. Color .
weekend
Foregrou
nd

Appearan
ce

Deprecated Properties

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires after the pressed and released events have fired.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Customizers

Vision Component Customizers
Style Customizer

Examples

There are no examples associated with this component.

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers#VisionComponentCustomizers-StyleCustomizer

Vision - Popup Calendar
General

Component
Palette Icon:

Description

The popup calendar is a popular way to provide date/time choosing controls on a window. Similar to the Calendar component, but takes up
much less screen real estate. Most commonly used by including this component's Date property in dynamic .SQL Query Binding

Properties

Name Description Property
Type

Scripting Category

Backgr
ound
Color

The background color of the component. Can be chosen from color wheel,
chosen from color palette, or entered as or value. See RGB HSL Color
Selector.

Color .
backgrou
nd

Appearan
ce

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel
(Double), Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Calend
ar
Backgr
ound

The background color for the popup calendar. See Color Selector. Color .
calendar
Backgrou
nd

Appearan
ce

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Date The date that this component represents. Date .date Data

Enabled If disabled, a component cannot be used. boolean .
compone
ntEnabled

Common

Font Font of text on this component. Font .font Appearan
ce

Foregro
und
Color

The foreground color of the component. See Color Selector. Color .
foreground

Appearan
ce

Format
String

The date formatting pattern used to display this date. String .format Behavior

Mouse
over
Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

The border is unaffected by rotation.

https://legacy-docs.inductiveautomation.com/display/DOC80/SQL+Query+Bindings+in+Vision
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Selecte
d
Border

The border for the selected day indicator. Border .
selected
Border

Appearan
ce

Show
Navigat
ion

Turn this off if you don't want to show the year and month navigation buttons. boolean .
showNavi
gation

Appearan
ce

Show
OK
Button

Turn this off if you don't want to show the OK button. The latched date and
the immediate date will be equivalent.

boolean .
showOkB
utton

Behavior

Show
Time

Turn this off if you don't want to show the time panel. boolean .
showTime

Behavior

Styles Contains the component's styles. Dataset .styles Appearan
ce

Text The displayed text of the date (depends on the format string). String .text Data

Time
Display
Format

The format for displaying time in the panel. int .
timeDispl
ayFormat

Behavior

Time
Style

Select how this calendar should treat the time portion of the date. int .
timeStyle

Behavior

Title
Backgr
ound

The background of the title bar. Color .
titleBackg
round

Appearan
ce

Today
Backgr
ound

Background color for the today indicator. See Color Selector. Color .
todayBac
kground

Appearan
ce

Today
Foregro
und

Foreground color for the today indicator. See Color Selector. Color .
todayFor
eground

Appearan
ce

Visible If disabled, the component will be hidden. boolean .visible Common

Weeke
nd
Backgr
ound

Background color for the weekend indicators. See Color Selector. Color .
weekend
Backgrou
nd

Appearan
ce

Weeke
nd
Foregro
und

Foreground color for the weekend indicators. See Color Selector. Color .
weekend
Foregrou
nd

Appearan
ce

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component. Note that this event fires
after the pressed and released events have fired.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Customizers

Vision Component Customizers
Style Customizer

Examples

There are no examples associated with this component.

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers#VisionComponentCustomizers-StyleCustomizer

Vision - Date Range

General

Component
Palette Icon:

Description

The date range component provides an intuitive, drag-and-drop way to select a contiguous range of time. The user is shown a
timeline and can drag or stretch the selection box around on the timeline. The selected range is always a whole number of
units, where the unit is determined by the current zoom level.

Note: The dates and dates will be ignored when the window opens unless the Startup Mode Start/End Outer Start/End
property is set to "None."

 Data Density Histogram

As an advanced optional feature, the date range can display a data density histogram inside the timeline. This is useful for
historical data with gaps in it, so that the end user isn't hunting for data. (Tip: This is also great for demos, to make it easy to

 find historical data in a database that isn't being continuously updated).

To use this feature, bind the Data Density dataset to a query that returns just the timestamps of the target table. These
timestamps will be used to fill in the histogram behind the timeline. You can use the Outer Range Start Date and Outer Range

 End Date properties in your query to limit the overall return size for the query.

Properties

Name Description Property
Type

Scripting Category

Backg
round
Color

The background color of the component. Can be chosen from color wheel,
chosen from color palette, or entered as or value. See RGB HSL Color
Selector.

Color .
backgrou
nd

Appearan
ce

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel (Double),
Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Box
Fill

The fill color for the selection box. Color .boxFill Appearan
ce

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Timestamps must be ordered by date (ascending) to display correctly.

The border is unaffected by rotation.

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Data
Density

A dataset that is used to calculate a histogram of data density. Dataset .
densityD
ata

Data

Date
Style

The style to display dates in. For international support. int .
dateStyle

Appearan
ce

Editor
Backg
round

The background color of the textual date range editor portion of this component. Color .
editorBac
kground

Appearan
ce

Enabl
ed

If disabled, a component cannot be used. boolean .
compone
ntEnabled

Common

End
Date

The ending date of the currently selected range. Date .endDate Data

Font Font of text on this component. Font .font Appearan
ce

Foregr
ound
Color

The foreground color of the component. Color .
foreground

Appearan
ce

High
Densit
y
Color

The color used to indicate high data density. See Color Selector. Color .
highDens
ityColor

Appearan
ce

Max
Selecti
on

The maximum size of the selected date range. String .
maxSele
ctionSize

Behavior

Mouse
over
Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Opaque If false, backgrounds are not drawn. If true, backgrounds are drawn. boolean .opaque Common

Outer
Range
End

The ending date of the available outer range. Date .
outerRan
geEndDa
te

Data

Outer
Range
Start

The starting date of the available outer range. Date .
outerRan
geStartD
ate

Data

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Selecti
on
Highli
ght

The focus highlight color for the selection box. See Color Selector. Color .
selection
Highlight

Appearan
ce

Start
Date

The starting date of the currently selected range. Date .startDate Data

Startu
p
Mode

Controls whether or not this date range automatically assigns itself a starting
range based on the current time

int .
startupM
ode

Behavior

Startu
p
Range

If startup mode is Automatic, this will be the starting range of time available for
selection.

String .
startupRa
nge

Behavior

Startu
p
Selecti
on

If startup mode is Automatic, this will be the starting selected range. String .
startupSe
lection

Behavior

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Styles Contains the component's styles. Dataset .styles Appearan
ce

Tick
Density

This is multiplied by the width to determine the current ideal tick unit. float .
tickDensity

Behavior

Time
Style

The style to display times of day. For international support. int .
timeStyle

Appearan
ce

Today
Color

The color of the "Today Arrow" indicator. See Color Selector. Color .
todayIndi
catorColor

Appearan
ce

Track
Margin

The amount of room on either side of the slider track. May need adjusting of
default font is changed.

int .
trackMar
gin

Appearan
ce

Visible If disabled, the component will be hidden. boolean .visible Common

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting

Scripting Functions

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Since 7.8.1

Description

Sets the selected range. The outer range will move if needed. Note: The start and end times are
determined based on the zoom level and may not move (or may move farther than intended) if the
component is zoomed out too far for the amount of change attempted. For example, when days are
showing, moving the start time 5 minutes forward will not effect the start, and moving the end time 5

 minutes forward will add one day.

Parameters

Date start - The starting date for the new selection.

 end - Date The ending date for the new selection.

Return

Nothing

Code Snippet

This example moves the existing Start Date and End Date
of a Date Range component ahead 8 hours
from java.util import Calendar

Get the current start and end
dateRangeComponent = event.source.parent.getComponent('Date Range')
startDate = dateRangeComponent.startDate
endDate = dateRangeComponent.endDate

Calculate the new start and end dates
cal = Calendar.getInstance();
cal.setTime(startDate);
cal.add(Calendar.HOUR, -8);
newStart = cal.getTime();

cal.setTime(endDate);
cal.add(Calendar.HOUR, -8);
newEnd = cal.getTime();

Set the new range for the component. The outer range will
automatically expand if needed.
dateRangeComponent.setRange(newStart, newEnd)

Since 7.8.1

Description

Sets the outer range. The selected range will move if needed. Note: The start and end times are
determined based on the zoom level and may not move (or may move farther than intended) if the
component is zoomed out too far for the amount of change attempted. For example, when days are
showing, moving the start time 5 minutes forward will not effect the start, and moving the end time 5

 minutes forward will add one day.

Parameters

Date start - The starting date for the new outer range.

 end - Date The ending date for the new outer range.

Return

Nothing

Code Snippet

This example moves the existing Outer Date Range
of a Date Range component back two days
from java.util import Calendar

Get the current start and end of the outer range
dateRangeComponent = event.source.parent.getComponent('Date Range')
startDate = dateRangeComponent.outerRangeStartDate
endDate = dateRangeComponent.outerRangeEndDate

Calculate the new start and end dates for the outer range
cal = Calendar.getInstance();
cal.setTime(startDate);
cal.add(Calendar.DAY_OF_MONTH, 2);
newStart = cal.getTime();

cal.setTime(endDate);
cal.add(Calendar.DAY_OF_MONTH, 2);
newEnd = cal.getTime();

Set the new outer range for the component.
dateRangeComponent.setOuterRange(newStart, newEnd)

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires after the pressed and released events have fired.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Customizers

Vision Component Customizers
Style Customizer

Examples

Code Snippet

//A Query binding on another component on the same window might look like this:

SELECT Column1, Column2, Column3
FROM MyTable WHERE
 t_stamp >= "{Root Container.Date Range.startDate}" AND
 t_stamp <= "{Root Container.Date Range.endDate}"

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers#VisionComponentCustomizers-StyleCustomizer

Vision - Day View
General

Component
Palette Icon:

Description

This component displays a timeline for a single day, similar to what you might find in a personal planner/organizer. By filling in
the Calendar Events dataset property, the component will display events that occur on this day. Each event can have custom
text and a custom display color associated with it.

Properties

Name Description Property
Type

Scripting Category

24 Hour
Format

Whether or not to show 24 hour or 12 hour format. boolean .
twentyFo
urHour

Appearan
ce

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel
(Double), Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Calendar
Background
Color

The color of the calendar's background. Can be chosen from color
wheel, chosen from color palette, or entered as or value. See RGB HSL
Color Selector.

Color .
calendar
Backgrou
nd

Appearan
ce

Calendar
events

Contains the calendar events. Dataset .events Data

Cursor The mouse cursor to use when hovering over this component. Options
are: Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE
Resize.

int .
cursorCo
de

Common

Day Set the calendar's day. int .day Data

The border is unaffected by rotation.

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Day Outline
Color

The color of the day's outline. See Color Selector. Color .
boxOutline

Appearan
ce

Event Font The font for all calendar events. Font .
eventFont

Appearan
ce

Grid marks Set the amount of grid lines. int .
gridMarks

Appearan
ce

Hour Font The font for the hour of the day. Font .hourFont Appearan
ce

Hour
Foreground
Color

The foreground color for hours in a day. See Color Selector. Color .
hourFore
ground

Appearan
ce

Hover
Background
Color

The background color of the hovered time. See Color Selector. Color .
hoverBac
kground

Appearan
ce

Hovered
Event

The calendar's hovered event. int .
hoveredE
vent

Data

Hovered
Time

The calendar's hovered time. String .
hoveredT
ime

Data

Month Set the calendar's month. int .month Data

Mouseover
Text

The text that is displayed in the tooltip which pops up on mouseover of
this component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Non-
Working
Hours
Background
Color

The background color for the non-working hours of the day. See Color
Selector.

Color .
nonWorki
ngHourB
ackground

Appearan
ce

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Selected
Event

The calendar's selected event. int .
selected
Event

Data

Styles Contains the component's styles. Dataset .styles Appearan
ce

Today's
Background
Color

The color of the today's background. See Color Selector. Color .
todayBac
kground

Appearan
ce

Visible If disabled, the component will be hidden. boolean .visible Common

Week Day
Background
Color

The color of the week day's background. See Color Selector. Color .
weekDay
sBackgro
und

Appearan
ce

Week Day
Font

The font of the week day's text. Font .
weekday
Font

Appearan
ce

Week Day
Foreground
Color

The color of the week day's text. See Color Selector. Color .
weekDay
sForegro
und

Appearan
ce

Working
End Hour

The end hour of a working day. int .
workingE
ndHour

Appearan
ce

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Working
Start Hour

The start hour of a working day. int .
workingS
tartHour

Appearan
ce

Year Set the calendar's year. int .year Data

Zoom Zooms into the specified zoom time-range. boolean .
autoZoom

Appearan
ce

Zoomed
End Hour

The end hour zoomed in. int .
autoZoo
mEndHo
ur

Appearan
ce

Zoomed
Start Hour

The start hour zoomed in. int .
autoZoo
mStartHo
ur

Appearan
ce

Deprecated Properties

Data Quality The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires after the pressed and released events have fired.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Customizers

Vision Component Customizers
Style Customizer

Examples

There are no examples associated with this component.

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers#VisionComponentCustomizers-StyleCustomizer

Vision - Week View
General

Component Palette Icon:

Description

Displays a full week's worth of events on a calendar. Configuration is achieved by populating the Calendar Events dataset. See
the for details.Vision - Day View

Properties

Name Description Property
Type

Scripting Category

24 Hour
Format

Whether or not to show 24 hour or 12 hour format. boolean .
twentyFo
urHour

Appearan
ce

Border The border surrounding this component. NOptions are: No border,
Etched (Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised),
Bevel (Double), Button Border, Field Border, Line Border, and Other
Border.

Border .border Common

Calendar
Background
Color

The color of the calendar's background. Can be chosen from color
wheel, chosen from color palette, or entered as or value. See RGB HSL
Color Selector.

Color .
calendar
Backgrou
nd

Appearan
ce

Calendar
events

Contains the calendar events. Dataset .events Data

Cursor The mouse cursor to use when hovering over this component. Options
are: Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE
Resize.

int .
cursorCo
de

Common

Day Set the calendar's day. int .day Data

The border is unaffected by rotation.

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Day Outline
Color

The color of the day's outline. See Color Selector. Color .
boxOutline

Appearan
ce

Event Font The font for all calendar events. Font .
eventFont

Appearan
ce

Grid marks Set the amount of grid lines. int .
gridMarks

Appearan
ce

Hour Font The font for the hour of the day. Font .hourFont Appearan
ce

Hour
Foreground
Color

The foreground color for hours in a day. See Color Selector. Color .
hourFore
ground

Appearan
ce

Hover
Background
Color

The background color of the hovered day and time. See Color Selector. Color .
hoverBac
kground

Appearan
ce

Hovered
Day

The calendar's hovered day. String .
hoveredD
ay

Data

Hovered
Event

The calendar's hovered event. int .
hoveredE
vent

Data

Hovered
Time

The calendar's hovered time. String .
hoveredT
ime

Data

Month Set the calendar's month. int .month Data

Mouseover
Text

The text that is displayed in the tooltip which pops up on mouseover of
this component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Non-
Working
Hours
Background
Color

The background color for the non-working hours of the day. See Color
Selector.

Color .
nonWorki
ngHourB
ackground

Appearan
ce

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Selected
Background
Color

The color of the selected day's background. See Color Selector. Color .
selected
Backgrou
nd

Appearan
ce

Selected
Day

The calendar's selected day. String .
selected
Day

Data

Selected
Event

The calendar's selected event. int .
selected
Event

Data

Show Event
Time?

Whether or not to show the event time. boolean .
showEve
ntTime

Appearan
ce

Show
Weekend?

Whether or not to show Saturday and Sunday. boolean .
showWe
ekend

Appearan
ce

Styles Contains the component's styles. Dataset .styles Appearan
ce

Today's
Background
Color

The color of the today's background. See Color Selector. Color .
todayBac
kground

Appearan
ce

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Visible If disabled, the component will be hidden. boolean .visible Common

Week Day
Background
Color

The color of the week day's background. See Color Selector. Color .
weekDay
sBackgro
und

Appearan
ce

Week Day
Font

The font of the week day's text. Font .
weekday
Font

Appearan
ce

Week Day
Foreground
Color

The color of the week day's text. See Color Selector. Color .
weekDay
sForegro
und

Appearan
ce

Working
End Hour

The end hour of a working day. int .
workingE
ndHour

Appearan
ce

Working
Start Hour

The start hour of a working day. int .
workingS
tartHour

Appearan
ce

Year Set the calendar's year. int .year Data

Zoom Zooms into the specified zoom time range. boolean .
autoZoom

Appearan
ce

Zoomed
End Hour

The end hour zoomed in. int .
autoZoo
mEndHo
ur

Appearan
ce

Zoomed
Start Hour

The start hour zoomed in. int .
autoZoo
mStartHo
ur

Appearan
ce

Deprecated Properties

Data Quality The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires the pressed and released events have fired.after

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Customizers

Vision Component Customizers
Style Customizer

Examples

There are no examples associated with this component.

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers#VisionComponentCustomizers-StyleCustomizer

Vision - Month View
General

Component Palette Icon:

Description

This component displays events for an entire month. By filling in the Calendar Events dataset property, the component will
display events that occur for each day of the month. Each event can have custom text and a custom display color associated
with it.

Properties

Name Description Property
Type

Scripting Category

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel
(Double), Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Calendar
Backgrou
nd Color

The color of the calendar's background. Can be chosen from color wheel,
chosen from color palette, or entered as or value. See RGB HSL Color
Selector.

Color .
calendar
Backgrou
nd

Appearan
ce

Calendar
events

Contains the calendar events. Dataset .events Data

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Day Font The font for the number representing the day of the month. Font .dayFont Appearan
ce

The border is unaffected by rotation.

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Day
Foregrou
nd Color

The foreground color for days in this month. See Color Selector. Color .
dayOfMo
nthForegr
ound

Appearan
ce

Day
Other
Foregrou
nd Color

The foreground color for days not in this month. See Color Selector. Color .
dayOfMo
nthOther
Foregrou
nd

Appearan
ce

Day
Outline
Color

The color of the day's outline. See Color Selector. Color .
boxOutline

Appearan
ce

Event
Backgrou
nd Color

The background color of the selected event. See Color Selector. Color .
itemSelB
ackground

Appearan
ce

Event
Display
Mode

Affects how events are displayed. \\ \\Standard Mode: Displays each event
\\Highlight Mode: Highlights each day that contains events using the event
highlight background color.

int .
displayM
ode

Appearan
ce

Event
Font

The font for all calendar events. Font .
eventFont

Appearan
ce

Event
Highlight
Backgrou
nd

The background color of a day with events. Used only in highlight mode. Color .
highlight
Backgrou
nd

Appearan
ce

Header
Backgrou
nd Color

The color of the header's background. See Color Selector. Color .
monthHe
aderBack
ground

Appearan
ce

Header
Font

The font of the header's text. Font .
headerFo
nt

Appearan
ce

Header
Foregrou
nd Color

The color of the header's text. See Color Selector. Color .
monthHe
aderFore
ground

Appearan
ce

Hover
Backgrou
nd Color

The background color of the hovered day. See Color Selector. Color .
hoverBac
kground

Appearan
ce

Hovered
Day

The calendar's hovered day. String .
hoveredD
ay

Data

Month Set the calendar's month. int .month Data

Mouseov
er Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Selected
Backgrou
nd Color

The color of the selected day's background. See Color Selector. Color .
selected
Backgrou
nd

Appearan
ce

Selected
Day

The calendar's selected day. String .
selected
Day

Data

Selected
Event

The calendar's selected event. int .
selected
Event

Data

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Styles Contains the component's styles. Dataset .styles Appearan
ce

Today's
Backgrou
nd Color

The color of the today's background. See Color Selector. Color .
todayBac
kground

Appearan
ce

Visible If disabled, the component will be hidden. boolean .visible Common

Week
Day
Backgrou
nd Color

The color of the week day's background. See Color Selector. Color .
weekDay
sBackgro
und

Appearan
ce

Week
Day Font

The font of the week day's text. Font .
weekday
Font

Appearan
ce

Week
Day
Foregrou
nd Color

The color of the week day's text. See Color Selector. Color .
weekDay
sForegro
und

Appearan
ce

Year Set the calendar's year. int .year Data

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires the pressed and released events have fired.after

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Customizers

Vision Component Customizers
Style Customizer

Examples

There are no examples associated with this component.

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers#VisionComponentCustomizers-StyleCustomizer

Vision - Admin Palette

Admin Components
The following components give you administrative access to various gateway systems.

In This Section ...

Vision - User Management

General

Component Palette Icon:

User, Schedule and
Roster Management

Watch the Video

Description

The user management panel provides a built-in way to edit User Source users and roles from a Vision Client.

To make changes to the Gateway's system user source from the Designer or Client, Allow User Admin must be checked in
Gateway Settings in the Gateway Config page.

This component can be run in one of three modes:

Manage Users Mode: In this mode, the component manages all of the users contained in the user source. Users and roles
may be added, removed, and edited.

Edit Single Mode: In this mode, the component only edits a single user. Which user is being edited is controlled via the "User
Source" and "Username" properties.

Edit Current Mode: In this mode, the user who is currently logged into the project can edit themselves. Obviously, the ability to
assign roles is not available in this mode. This can be useful to allow users to alter their own password, adjust their contact
information, and update their schedules.

Warning: Be careful to only expose this component to users who should have the privileges to alter other users. Access to this
component in "Manage Users" mode will allow users to edit other users' passwords and roles.

Properties

Name Description Property
Type

Scripting Category

https://www.inductiveuniversity.com/videos/user-schedule-and-roster-management/8.0/8.0

Border The border surrounding this component. Options are: No border,
Etched (Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised),
Bevel (Double), Button Border, Field Border, Line Border, and Other
Border.

Border .border Common

Contact Info
Editing
Enabled

If true, a user's contact info will be editable. boolean .
allowCon
tactInfoE
diting

Behavior

Editing
Schedule
Available
Color

Changes the color of the available times in the schedule. See Color
Selector.

Color .
schedule
PreviewA
vailableC
olor

Appearan
ce

Editing
Schedule
Available Text
Color

Changes the text color of events on the schedule preview. See Color
Selector.

Color .
eventFor
eground

Appearan
ce

Enabled If disabled, a component cannot be used. boolean .
compone
ntEnabled

Common

Font Font of the text on this component. Font .font Appearan
ce

Mode Affects what mode the user management component runs in.

Value Description intValue

Mana
ge
Users

Allows edits to all Users and Roles in a single
source determined by the User Source property.
Default

0

Edit
Curre
nt

Allows edits to the currently logged in user
details.

1

Edit
Single

Allows edits to a specific user determined by the
User Source and Username properties.

2

int .mode Behavior

Name The name of this component. String .name Common

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Role
Assigning
Enabled

If true, a user's roles will be editable. boolean .
allowRole
Assigning

Behavior

Role
Management
Enabled

If true, role management is available. boolean .
allowRole
Manage
ment

Behavior

Row Height Alter the size of the rows in the component's tables. int .
rowHeight

Appearan
ce

Schedule
Adjustments
Enabled

If true, a user's schedule adjustments will be editable. boolean .
allowSch
eduleMo
difications

Behavior

Show Contact
Info Column

Controls whether the user table shows the contact info column or not. boolean .
columnC
ontactInfo

Appearan
ce

The border is unaffected by rotation.

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Show Name
Column

Controls whether the user table shows the name column or not. boolean .
columnN
ame

Appearan
ce

Show Roles
Column

Controls whether the user table shows the roles column or not. boolean .
columnR
oles

Appearan
ce

Show
Schedule
Column

Controls whether the user table shows the schedule column or not. boolean .
columnS
chedule

Appearan
ce

Show
Username
Column

Controls whether the user table shows the username column or not. boolean .
columnU
sername

Appearan
ce

Styles Contains the component's styles. Dataset .styles Appearan
ce

Table Color Changes the background color of the tables, User Roles and Role
Member lists. Note: When a row is selected it will revert to highlighted.

Color .
tableBac
kground

Appearan
ce

Table Header
Color

Changes the background color of the table headers. See Color
Selector.

Color .
tableHea
derBackg
round

Appearan
ce

Table Header
Text Color

Changes the text color of the table headers. See Color Selector. Color .
tableHea
derTextC
olor

Appearan
ce

Table Text
Color

Changes the text color of the tables. Note: When a row is selected, it
will revert to black. See Color Selector.

Color .
tableFore
ground

Appearan
ce

Touchscreen
Mode

Controls when this input component responds if touchscreen mode is
enabled.

int .
touchscre
enMode

Behavior

User Source The user source to manage users in. If blank, uses the project's default
user source.

String .
userProfile

Behavior

Username The name of the user being edited. Read-only except when mode is Ed
, in which case it defines the user to be edited.it Single

String .
username

Behavior

Username
Editing
Enabled

If true, usernames will be editable. boolean .
allowUse
rnameEdi
ting

Behavior

Visible If disabled, the component will be hidden. boolean .visible Common

Window Color Changes the window background color. See Color Selector. Color .
windowB
ackground

Appearan
ce

Window
Header Color

Changes the window header background color. See Color Selector. Color .
windowH
eaderBac
kground

Appearan
ce

Window
Header Save
Button
Background
Color

Changes the window header save button background color. See Color
Selector.

Color .
windowH
eaderSav
eButtonB
ackground

Appearan
ce

Window
Header Save
Button Text
Color

Changes the window header save button text color. See Color Selector. Color .
windowH
eaderSav
eButtonF
oreground

Appearan
ce

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Window
Header Text
Color

Changes the window header text color. See Color Selector. Color .
windowH
eaderFor
eground

Appearan
ce

Window Text
Color

Changes the text color of the window. See Color Selector. Color .
windowF
oreground

Appearan
ce

Deprecated Properties

Data Quality The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

 Description

Called for each user loaded into the management table. Return false to hide this user from the
management table. This code is executed in a background thread.

Parameters

 - A reference to the component that is invoking this function.Component self

User Object user - The user object itself. Call user.get('propertyName') to inpsect. Common
properties: 'username',' schedule', 'language', user.getRoles() for a list of rolenames.

Return

Boolean

Description

Called for each role loaded into the management table. Return false to hide this role from the
management table. This code is executed in a background thread.

Parameters

 - A reference to the component that is invoking this function.Component self

String role - The role name.

Return

Boolean

 Description

Called for each schedule loaded into the schedule dropdown in the edit user panel. Return false to
hide this schedule from the dropdown. This code is executed in a background thread.

Parameters

 - A reference to the component that is invoking this function.Component self

 schedule - The schedule name.String

Return

Boolean

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Description

Called when the add button is pressed in the users table

Parameters

 - A reference to the component that is invoking this function.Component self

Object saveContext - An object that can be used to reject the add by calling saveContext.rejectSave
('reason')

Return

Nothing

Description

Called when the delete button is pressed in the users table. This code is executed in the
background thread and is called once for each user selected.

Parameters

 - A reference to the component that is invoking this function.Component self

Object saveContext - An object that can be used to reject the edit by calling saveContext.rejectSave
('reason'). If more than one user is rejected, reasons will be concatenated.

Object user - The user that is trying to be deleted. Call user.get('propertyName') to inspect.
Common properties: 'username', 'schedule', 'language'. Call user.getRoles() for a list of rolenames.

Return

Nothing

 Description

Called when the save button is pressed when adding or editing a user. This code is executed in a
background thread.

Parameters

 - A reference to the component that is invoking this function.Component self

 - An object that can be used to reject the edit by calling saveContext.rejectSaveObject saveContext
('reason').

 - The user that is trying to be saved. Call user.get('propertyName') to inspect. User Object user
Common properties: 'username', 'schedule','language'. Call user.getRoles() for a list of rolenames.

Return

Nothing

Description

Called when the add button is pressed in the roles table.

Parameters

 - A reference to the component that is invoking this function.Component self

 - An object that can be used to reject the add by calling saveContext.rejectSaveObject saveContext
('reason')

Return

Nothing

Description

Called when the save button is pressed when adding or editing a role. This code is executed in a
background thread.

Parameters

 - A reference to the component that is invoking this function.Component self

 - An object that can be used to reject the edit by calling saveContext.rejectSaveObject saveContext
('reason'). If more than one role is rejected, reasons will be concatenated.

 - The role name that is being deleted.String name

Return

Nothing

Description

Called when the save button is pressed when adding or editing a role. This code is executed in a
background thread.

Parameters

 - A reference to the component that is invoking this function.Component self

 - An object that can be used to reject the edit by calling saveContect.rejectSaveObject saveContext
('reason').

 - The role name before editing. Will be None for a role being added.String oldName

 - The new name of the edited role.String newName

Return

Nothing

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component. Note that this event fires
after the pressed and released events have fired.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Customizers

Vision Component Customizers

Examples

There are no examples associated with this component.

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers

Vision - Schedule Management
General

Component Palette Icon:

User, Schedule and
Roster Management

Watch the Video

Description

This component allows for management of schedules. Schedules can be defined by specifying which days of the week and which times of day
they are active on. The times of day are defined using a string of time ranges, where the times are specified in 24-hr format with dashes
between the beginning and the end. Multiple ranges can be specified by separating them with commas. Examples:

8:00-17:00 Valid from 8am to 5pm

6:00-12:00, 12:45-14:00 Valid from 6am to noon, and then again from 12:45pm to 2pm

0:00-24:00 Always valid.

Schedules that alternate weekly or daily can be specified by using the See Color Selector. repetition settings. All repeating schedules need a
starting day. For example, you could have a schedule that repeats on a weekly basis, with 1-week on and 1-week off. This schedule would
be active for seven days starting on the starting day, and then inactive for the next seven days, then active for seven days, and so on. Note
that the days of the week and time settings are evaluated in addition to the repetition settings. This means that both settings must be true for
the schedule to be active. Also note that if you set "Repeat / Alternate" to a setting other than "Off" and you do not specify a starting day, the
schedule will never be active.

Properties

Name Description Property
Type

Scripting Category

Border The border surrounding this component. Options are: No border,
Etched (Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised),
Bevel (Double), Button Border, Field Border, Line Border, and Other
Border.

Border .border Common

Enabled If disabled, a component cannot be used. boolean .
compone
ntEnabled

Common

The border is unaffected by rotation.

https://www.inductiveuniversity.com/videos/user-schedule-and-roster-management/8.0/8.0
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Name The name of this component. String .name Common

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Schedule
Available Color

Changes the color of the available times in the schedule. Can be
chosen from color wheel, chosen from color palette, or entered as RGB
 or value. See HSL Color Selector.

Color .
schedule
PreviewA
vailableC
olor

Appearan
ce

Schedule
Available Text
Color

Changes the text color of events on the schedule preview. See Color
Selector.

Color .
eventFor
eground

Appearan
ce

Styles Contains the component's styles. Dataset .styles Appearan
ce

Table Color Changes the background color of the tables, User Roles and Role
Member lists. Note: When a row is selected it will See Color Selector.
revert to highlighted.

Color .
tableBac
kground

Appearan
ce

Table Header
Color

Changes the background color of the table headers. See Color
Selector.

Color .
tableHea
derBackg
round

Appearan
ce

Table Header
Text Color

Changes the text color of the table headers. See Color Selector. Color .
tableHea
derTextC
olor

Appearan
ce

Table Text
Color

Changes the text color of the tables. Note: When a row is selected, it
will revert to black. See Color Selector.

Color .
tableFore
ground

Appearan
ce

Touchscreen
Mode

Controls when this input component responds if touchscreen mode is
enabled.

int .
touchscre
enMode

Behavior

Visible If disabled, the component will be hidden. boolean .visible Common

Window Color Changes the window background color. See Color Selector. Color .
windowB
ackground

Appearan
ce

Window
Header Color

Changes the window header background color. See Color Selector. Color .
windowH
eaderBac
kground

Appearan
ce

Window
Header Save
Button
Background
Color

Changes the window header save button background color. See Color
Selector.

Color .
windowH
eaderSav
eButtonB
ackground

Appearan
ce

Window
Header Save
Button Text
Color

Changes the window header save button text color. See Color
Selector.

Color .
windowH
eaderSav
eButtonF
oreground

Appearan
ce

Window
Header Text
Color

Changes the window header text color. See Color Selector. Color .
windowH
eaderFor
eground

Appearan
ce

Window Text
Color

Changes the text color of the window. See Color Selector. Color .
windowF
oreground

Appearan
ce

Deprecated Properties

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Data Quality The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

Description

Called for each schedule loaded into the management table. Return false to hide this schedule from
the management table. This code is executed in a background thread.

Parameters

 - A reference to the component that is invoking this function.Component self

 - The schedule nameString schedule

Return

Boolean

Description

Called for each holiday loaded into the management table. Return false to hide this holiday from the
management table. This code is executed in a background thread.

Parameters

 A reference to the component that is invoking this function.Component -self

 - The holiday name.String holiday

Return

Boolean

Description

Called when the add button is pressed when adding a schedule. This code is executed in a
background thread.

Parameters

 - A reference to the component that is invoking this function.Component self

 - An object that can be used to reject the add by calling saveContect.rejectSaveObject saveContext
('reason').

Return

Nothing

Description

Called when the delete button is pressed for one or more schedules. This code is executed in a
background thread, once for each schedule to be deleted.

Parameters

 - A reference to the component that is invoking this function.Component self

 - An object that can be used to reject the deletion by calling saveContect.Object saveContext
rejectSave('reason').

 - The name of the schedule to be deleted.String name

Return

Nothing

Description

Called when the save button is pressed when adding or editing a schedule. This code is executed in
a background thread.

Parameters

 - A reference to the component that is invoking this function.Component self

 - An object that can be used to reject the edit by calling saveContect.rejectSaveObject saveContext
('reason').

 - The schedule name before editing. Will be None for a schedule being added.String oldName

 - The new name of the edited schedule.String newName

Return

Nothing

Description

Called when the add button is pressed when to add a holiday. This code is executed in a
background thread.

Parameters

 - A reference to the component that is invoking this function.Component self

 - An object that can be used to reject the add by calling saveContect.rejectSaveObject saveContext
('reason').

Return

Nothing

Description

Called when the delete button is pressed for one or more holidays. This code is executed in a
background thread, once for each holiday to be deleted.

Parameters

 - A reference to the component that is invoking this function.Component self

 - An object that can be used to reject the edit by calling saveContect.rejectSaveObject saveContext
('reason').

 - The name of the holiday to be deleted.String name

Return

Nothing

Description

Called when the save button is pressed when adding or editing a holiday. This code is executed in a
background thread.

Parameters

 - A reference to the component that is invoking this function.Component self

 - An object that can be used to reject the edit be calling saveContext.rejectSaveObject saveContext
('reason')

 - The holiday name before editing. Will be None for a holiday being added.String oldName

 - The new name of the edited holiday.String newName

Return

Nothing

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires after the pressed and released events have fired.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Customizers

Vision Component Customizers

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers

Examples

Here is an example of the schedule management component and its property table.

Property Name Value

Name Schedules

Enabled True

Visible True

Touchscreen Mode Single-Click

Table Header Color 71,71,255

Table Header Text Color 255,255,255

Window Header Color 71,71,255

Vision - Roster Management
General

Component Palette Icon:

User, Schedule and
Roster Management

Watch the Video

Description

The user management panel provides a built-in way to edit rosters from a client.

https://www.inductiveuniversity.com/videos/user-schedule-and-roster-management/8.0/8.0

Properties

Name Description Property
Type

Scripting Category

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel (Double),
Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Enabl
ed

If disabled, a component cannot be used. boolean .
compone
ntEnabled

Common

Name The name of this component. String .name Common

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Styles Contains the component's styles. Dataset .styles Appearan
ce

User
Source

The user source to manage users in. If blank, uses the project's default user
source.

String .
addFrom
UserSour
ce

Behavior

Visible If disabled, the component will be hidden. boolean .visible Common

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

Description

Called for each roster loaded into the management table. Return false to hide this roster from the
management table. This code is executed in a background thread.

Parameters

 A reference to the component that is invoking this function.Component self-

 - The name of the roster.String roster

Return

Boolean

The border is unaffected by rotation.

 Description

Called for each user in a user source to be shown as an available user for the roster currently being
edited. Return false to hide this user so that it cannot be added to the roster. This code is executed
in a background thread.

Parameters

 A reference to the component that is invoking this function.Component self-

String roster - The name of the roster being edited.

String userSource - The name of the user source being used to populate the list of available users.

 - TheUser Object user user object itself. Call user.get('propertyName') to inspect. Common
properties: 'username','schedule','language'. Call user.getRoles() for a list of rolenames.

Return

Boolean

 Description

Called when the save button is pressed when editing a roster. This code is executed in a
background thread.

Parameters

 A reference to the component that is invoking this function.Component -self

Object saveContext - An object that can be used to reject the edit by calling saveContext.rejectSave
('reason')

String rosterName - The name of the roster being edited.

Return

Nothing

 Description

Called when the add button is pressed. This code is executed in a background thread.

Parameters

 - A reference to the component that is invoking this function.Component self

Object createContext - An object that can be used to reject the edit by calling createContext.
rejectCreate('reason')

String rosterName - The name of the roster being created.

Return

Nothing

 Description

Called when the delete button is pressed. This code is executed in a background thread.

Parameters

 - A reference to the component that is invoking this function.Component self

Object deleteContext - An object that can be used to reject the edit by calling deleteContext.
rejectDelete('reason')

String rosterNames - A list of the roster names being deleted.

Return

Nothing

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component. Note that this event fires
after the pressed and released events have fired.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Customizers

Vision Component Customizers

Examples

There are no examples associated with this component.

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers

Vision - SFC Monitor
General

Component Palette Icon:

Description

A component to monitor Sequential Function Chart performance. In addition the component allows for the operator to control
the chart instance through the charts instance 'id' property. The chart scoped variables are available through the scope dataset
property.

Properties

Name Description Property
Type

Scripting Category

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel (Double),
Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Instanc
e ID

The UUID of the sequential function chart to monitor. String .
instanceId

Data

Instanc
e List
Visible

Shows or hides the list of SFC instances on the left. boolean .
instanceL
istVisible

Appearan
ce

Legen
d
Visible

Shows or hides the step and transition state legend. boolean .
legendVi
sible

Appearan
ce

Name The name of this component. String .name Common

Scope
Dataset

Dataset containing the variables in chart scope. Dataset .
scopeDat
aset

Data

Scope
Table
Visible

Shows or hides the chart scope inspection table. boolean .
scopeTa
bleVisible

Appearan
ce

Visible If disabled, the component will be hidden. boolean .visible Common

Zoom The zoom multiplier to display the chart's status at. float .zoom Appearan
ce

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

The border is unaffected by rotation.

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires after the pressed and released events have fired.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Customizers

Vision Component Customizers

Examples

There are no examples associated with this component.

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers

Vision - Alarming Palette

Alarming Components
The following components give you options for displaying Alarm information.

In This Section ...

Vision - Alarm Status Table
General

Component Palette Icon:

Alarm Status Table

Watch the Video

Description

The alarm status table displays the current state of the alarm system. It can be configured to show active, unacknowledged,
cleared, and acknowledged alarms. By default it shows all non-cleared/non-ack'ed alarms.

Acknowledgement is handled by selecting (checking) alarms and pressing the "Acknowledge" button. If any of the selected
alarms require acknowledge notes, then a small text area will be presented in which the operator must add notes to the
acknowledgement.

Shelving is supported by pressing the "Shelve" button when an alarm is selected. This will temporarily remove the alarm from
the entire alarm system (not just the local client). When the time is up, if the alarm is still active, it will pop back into the alarm
system. The times shown to the user are customizable by editing the values inside the "Shelving Times" dataset property. The
alarms that have been shelved can be un-shelved by pushing the shelf management button in the lower right-hand side of the
component.

If a more simplified alarm status table is needed, many of the features of the status table can be removed, for example, the
header, footer, and multi-selection checkboxes. If a very short alarm status table is needed, turn on the "Marquee Mode"
option, which will automatically scroll through any alarms if there is not enough vertical space to show all of them at once.

To change the columns that are displayed, the order of the columns, and/or the column width, put the Designer into preview
mode. Then right-click on the table header to show/hide columns. Click and drag to re-order columns, and drag the margins of
the columns to resize their width. No further action is necessary - the column configuration will remain in place after the window
is saved.

For alarms that originate from Tags that have Tag history turned on, users can see an automatic ad-hoc chart for the value of
the source Tag by pressing the chart button.

Properties

Selecting/Checking Alarms

The Table component allows you to select an individual multiple alarms, or the Select All Alarm Status alarm,
checkbox in the header bar. You can also use the Shift+Click multi select feature to select a range of alarms for
acknowledging and shelving. Check one alarm and Shift+Click another alarm several rows down. All of the alarms
between them, including the one you shift clicked, will be selected.

For information on how to configure the Alarm Status Table refer to .Alarming in Vision

https://www.inductiveuniversity.com/video/alarm-status-component/8.0
https://legacy-docs.inductiveautomation.com/display/DOC80/Alarming+in+Vision

Name Description Property
Type

Scripting

Border The border surrounding this component. Options are: No border, Etched (Lowered), Etched (Raised),
Bevel (Lowered), Bevel (Raised), Bevel (Double), Button Border, Field Border, Line Border, and Other
Border.

Border .border

Chart
Resol
ution

The resolution for the ad-hoc tag historian chart. int .
chartRes
olution

Date
Form
at

A date format pattern used to format dates in the table. If blank, the default format for the locale is used. String .
dateForm
at

Displ
ay
Path
Filter

Filter alarms by alarm display path, falling back to the source path if a custom display path isn't set.
Specify multiple paths by separating them with commas. Supports the wildcard "*".

String .
displayPa
thFilter

Durati
on
Form
at

The following feature is new in Ignition version 8.0.3
 to check out the other new featuresClick here

Formats styles for fields like Active and Ack durations: Long, Short, Compact, and Abbreviated. Duration
Format property, allows users to format the time units on the Active Duration column.

int .
durationF
ormat

Enabl
ed

If disabled, a component cannot be used. boolean .
compone
ntEnabled

Flash
Interv
al

The time interval to use for flashing row styles. int .
flashInter
val

Journ
al
Name

The name of the alarm journal to query for the chart's annotations. Leave this blank to automatically pick
the journal if there is only one.

String .
alarmJou
rnalName

Marq
uee
Mode

Turn the table into a scrolling marquee boolean .
marquee
Mode

Min
Priority

The minimum priority alarm to be displayed by this table. int .
minPriority

Multi
Select

Allow multi select. Will show/hide the checkbox column. boolean .
multiSele
ct

Name The name of this component. String .name

Notes
Area
Border

The border surrounding the notes area. Border .
notesAre
aBorder

Notes
Area
Font

The font for the notes area. Font .
notesAre
aFont

Notes
Area
Locati
on

The location of the notes display area. int .
notesAre
aLocation

Notes
Area
Size

The size of the notes area, in pixels. int .
notesAre
aSize

The border is unaffected by rotation.

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.3

Numb
er
Form
at

A number format string to control the format of the value column. String .
numberF
ormat

Provi
der
Filter

Filter alarms by Tag provider. Specify multiple providers by separating them with commas. A value of "."
denotes the default Tag provider.

String .
providerF
ilter

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality

Refre
sh
Rate

The rate at which this table will poll changes to the alarm status, in milliseconds. long .
refreshR
ate

Row
Height

The height, in pixels, for each row of the table. int .
rowHeight

Row
Styles

A dataset containing the different styles configured for different alarm states. Dataset .
rowStyles

Scroll
Delay

The time (in mSec) to wait between performing each step in a scroll int .
scrollDel
ay

Selec
ted
Alarms

A dataset containing each selected alarm. (Read-only) Dataset .
selected
Alarms

Selec
tion
Color

The color of the selection border. Can be chosen from color wheel, chosen from color palette, or entered
as or value. See RGB HSL Color Selector.

Color .
selection
Color

Selec
tion
Thick
ness

The size of the selection border. int .
selection
Thickness

Shelvi
ng
Times

This dataset holds the times that are suggested when shelving an alarm. Allowable units are "second",
"minute", or "hour".

Dataset .
shelvingT
imes

Show
Ack
Button

Show the acknowledge button on the footer panel. boolean .showAck

Show
Active
and
Acked

Show alarms that are active and acknowledged. boolean .
activeAn
dAcked

Show
Active
and
Unac
ked

Show alarms that are active and unacknowledged. boolean .
activeAn
dUnacked

Show
Chart
Button

Show the chart button on the footer panel. boolean .
showCha
rt

Show
Clear
and
Acked

Show alarms that are cleared and acknowledged. boolean .
clearAnd
Acked

Show
Clear
and
Unac
ked

Show alarms that are cleared and unacknowledged. boolean .
clearAnd
Unacked

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Show
Detail
s
Button

Show the view details button on the footer panel. boolean .
showDet
ails

Show
Footer

Show a footer with acknowledge and shelf functions below the alarms. boolean .
showFoot
erPanel

Show
Head
er
Popup

Toggles the table header's built-in column selection popup menu. boolean .
showTabl
eHeader
Popup

Show
Mana
ge
Shelf
Button

Show the manage shelf button on the footer panel. boolean .
showMan
ageShelf

Show
Shelv
e
Button

Show the shelve button on the footer panel. boolean .
showShel
ve

Show
Table
Head
er

Toggles visibility of the table's header. boolean .
showTabl
eHeader

Sort
Oldes
t First

Sort times by oldest first. boolean .
sortOldes
tFirst

Sort
Order

The default sort order for alarms in the status table. int .
sortOrder

Sourc
e
Filter

Filter alarms by alarm source path. Specify multiple paths by separating them with commas. Supports
the wildcard "*".

String .
sourceFilt
er

Stay
Delay

The time (in mSec) to wait between scrolls int .
stayDelay

Table
Back
ground

The background of the alarm table. See Color Selector. Color .
tableBac
kground

Table
Head
er
Font

The font for the table header. Font .
tableHea
derFont

Touc
hscre
en
Mode

Controls when this input component responds if touchscreen mode is enabled. int .
touchscre
enMode

Visible If disabled, the component will be hidden. boolean .visible

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Scripting

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Scripting Functions

Description

This specialized print function will paginate the onto multiple pages. table This function accepts
keyword-style invocation.

Keyword Args

boolean fitWidth - If true, the 's width will be stretched to fit across one page's width. Rows will table
still paginate normally. If false, the will paginate columns onto extra pages. (default = true)table [optio
nal]

string headerFormat - A string to use as the 's page header. The substring "{0}" will be replaced table
with the current page number. (default = None) [optional]

string footerFormat - A string to use as the 's page footer. The substring "{0}" will be replaced table
with the current page number. (default = "Page {0}") [optional]

boolean showDialog - .Whether or not the print dialog should be shown to the user. Default is true [o
ptional]

boolean landscape - Used to specify portrait (0) or landscape (1) mode. Default is portrait (0). [option
al]

Return

Boolean- True if the print job was successful.

Description

Returns a dataset of the alarms currently displayed in the Alarm Status Table component. The
columns will be: EventId, Source, DisplayPath, EventTime, State, and Priority.

Keyword Args

None

Return

Dataset - A dataset of alarms.

Extension Functions

Description

Returns a popup menu that will be displayed when the user triggers a popup menu (right click) in the
table. Use to create the popup menu.system.gui.PopupMenu()

Parameters

- A reference to the component that is invoking this function.Component self

List selectedAlarmEvents - The alarm events selected on the Alarm Status Table. For an individual
alarm Event, call to inspect. Common properties: 'name', 'source', alarmEvent.get('propertyName')
'priority'.

Return

 - the popup menu.Object

Description

Called for each event loaded into the alarm status table. Return false to hide this event from the
table. This code is executed in a background thread.

Parameters

 A reference to the component that is invoking this function.Component self-

Alarm Event alarmEvent - The alarm event itself. Call alarmEvent.get('propertyName') to inspect.
Common properties: 'name', 'source','priority'.

Return

Boolean- Returns true or false for every alarm event in the table. True will show the alarm. False will
not show the alarm.

Description

Returns a boolean that represents whether the selected alarm can be acknowledged

Parameters

 A reference to the component that is invoking this function.Component self-

 List selectedAlarmEvents - The alarm events selected on the Alarm Status Table. For an individual
alarmEvent, call alarmEvent.get('propertyName') to inspect. Common properties:
'name','source','priority'.

Return

Boolean- Returns true or false for every alarm event in the table.

Description

Returns a boolean that represents whether the selected alarm can be shelved.

Parameters

 A reference to the component that is invoking this function.Component self-

 List selectedAlarmEvents - The alarm events selected on the Alarm Status Table. For an individual
alarmEvent, call alarmEvent.get('propertyName') to inspect. Common properties: 'name', 'source',
'priority'.

Return

Boolean- Returns true or false for every alarm event in the table.

Description

Called when an alarm is double-clicked on to provide custom functionality.

Parameters

 A reference to the component that is invoking this function.Component self-

 Alarm Event alarmEvent - The alarm event that was double clicked. For an individual alarmEvent,
call alarmEvent.get('propertyName') to inspect. Common properties: 'name', 'source', 'priority'.

Return

Nothing

Description

Called when the Acknowledge button is pressed; the script runs before the ack happens. Return
False to abort the acknowledgement, return True to continue as normal.

Parameters

 A reference to the component that is invoking this function.Component self-

 List alarms - A list of the alarms to be acknowledged.

Return

Boolean- Returns true or false for every alarm event that is selected.

Event Handlers

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Customizers

Alarm Row Styles

The Alarm Status Table has a customizer.

Vision Component Customizers

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers

Examples

Code Snippet

#The following code is an example of the filter alarm expression function.
#The function results in advanced filtering for the alarm table.
#In this example the alarm table will only show alarms with a name that matches the value of
the "AreaName" property located on the container the Alarm Status Table resides in.

name = self.parent.AreaName
if name == alarmEvent.get('name'):
 return True
else:
 return False

Gallery

Alarm Status Table with a Single Alarm

Vision - Alarm Row Style Customizer

Alarm Row Styles - Alarm Status Table Alarm Row Styles - Alarm Journal
Table

Description

The Alarm Row Styles Customizer manages the way the Alarm Status Table and the Alarm Journal Table render each alarm.
The Alarm Row Styles Customizer allows you to change the styles of the alarms and the logic that governs each style. Both the
Alarm Status Table and the Alarm Journal Table evaluate each alarm and applies the logic of the expression block to decide to
implement a style. If the expression returns a logical "True" then the Alarm Row Styles Customizer applies the color formatting
options defined in the area to the right of the Expression block. If the expression returns a logical "False" then the Alarm Row
Styles Customizer evaluates the next expression associated with the next row style. The process continues until an expression
returns a logical "True." There can be many rows with different logic and styles. You can add and remove rows by selecting the
"plus" button or "delete" button.

Customizers

The Alarm Row Styles Customizer is used by both the Alarm Status Table and the Alarm Journal Table components. Each
table comes with their own predefined set of colors. The Alarm Row Styles Customizer is where you can modify an existing
style, add more styles, delete a style, and change the order. Each row style has an expression, a color, and the option to make
it blink. It The Alarm Row Styles Customizer already has some preset states and predefined styles to help you get started.
works by changing colors on each of the individual rows styles based on the state of the alarm.

Alarm Rows Styles Customizer - Property Descriptions

Property Description

Row
Styles

Each row has a unique style associated with each of the alarm states. You can add and delete row styles, and
change the order of the rows with the up or down arrow buttons.

Expressi
on

Each style has an expression. The expression allows you to do any evaluation you want using any parts of the
alarm: Priority, State, Display Path, Active Time, and Clear Time.

Standard One solid color on a row style.

Blink Two colors alternately flashing used to draw attention. Commonly used for critical alarms to draw on a row style
the operator's attention.

Foregro
und

Specifies the color of the text.

Backgro
und

Specifies the color of the row.

Font Specifies the font type, font size, and style.

Alarm Status - Row Styles
Alarm Journal - Row Styles

Examples

In these examples, the Alarm Row Styles was modified for the Alarm Status Table and the Alarm Journal Table to add another
row style for Active, Unacknowledged alarms with a priority 4, or Critical alarms.

Alarm Status Table - Alarm Row Styles

https://legacy-docs.inductiveautomation.com/display/DOC79/Alarm+Status+-+Row+Styles
https://legacy-docs.inductiveautomation.com/display/DOC79/Alarm+Journal+-+Row+Styles

Alarm Journal Table - Alarm Row Styles

Vision - Alarm Journal Table
General

Component Palette Icon:

Alarm Journal Table

Watch the Video

Description

The alarm journal table provides a built-in view to explore alarm history that has been stored in an alarm journal. If you only
have one alarm journal specified on your Gateway, then you do not need to specify the journal name. If you have more
than one specified, then you need to provide the name of the journal you'd like to query.

The journal table shows the alarm history that is found between the Start Date and End Date properties. When you first put
an alarm journal table on a window, these properties will be set to show the most recent few hours of journal history. Note
that without further configuration, the journal table will always show the few hours before it was created. To properly
configure an alarm journal table, bind its start and end date properties to something what will update, such as the Date
Range component or expressions involving the time now(). This way, you can configure it so that operators can choose the
time to display, or have dates will be update automatically to have it poll.

To change the columns that are displayed, the order of the columns, and/or the column width, put the Designer into
preview mode. Then right-click on the table header to show/hide columns. Click and drag to re-order columns, and drag
the margins of the columns to resize their width. No further action is necessary - the column configuration will remain in
place after the window is saved.

Properties

Name Description Property
Type

Scripting Category

Acked
Events

Show acked events. boolean .
includeAc
kedEvents

Filters

Active
Events

Show active events. boolean .
includeAc
tiveEvents

Filters

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel (Double),
Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Cleare
d
Events

Show cleared events. boolean .
includeCl
earedEve
nts

Filters

Additional examples of configuring the Alarm Journal Table can be found on the Alarm Journal Table Component
page.

The border is unaffected by rotation.

https://www.inductiveuniversity.com/video/alarm-journal-component/8.0

Date
Format

A date format pattern used to format dates in the table. If blank, the default
format for the locale is used.

String .
dateForm
at

Appearan
ce

Displa
y Path
Filter

Filter alarms by alarm display path, falling back to the source path if display
path isn't set. Specify multiple paths by separating them with commas.
Supports the wildcard "*".

String .
displayPa
thFilter

Filters

Enabled If disabled, a component cannot be used. boolean .
compone
ntEnabled

Common

End
Date

The ending date for the displayed history range. If left blank, will default to the
current time when the component was loaded.

Date .endDate Behavior

Is
Filtered

True if the results are filtered. (Read-only) boolean .isFiltered Behavior

Journa
l Name

The name of the alarm journal to query. String .
journalNa
me

Behavior

Max
Priority

The maximum priority to display. int .
maximum
Priority

Filters

Min
Priority

The minimum priority to display. int .
minimum
Priority

Filters

Name The name of this component. String .name Common

Notes
Area
Border

The border surrounding the notes area. Border .
notesAre
aBorder

Appearan
ce

Notes
Area
Font

The font for the notes area. Font .
notesAre
aFont

Appearan
ce

Notes
Area
Location

The location of the notes display area. int .
notesAre
aLocation

Appearan
ce

Notes
Area
Size

The size of the notes area, in pixels. int .
notesAre
aSize

Appearan
ce

Numbe
r
Format

A number format string to control the format of the value column. String .
numberF
ormat

Appearan
ce

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Read
Timeo
ut

The timeout, in milliseconds, for running the alarm history query. int .
readTime
out

Behavior

Row
Height

The height, in pixels, for each row of the table. int .
rowHeight

Appearan
ce

Row
Styles

A dataset containing the different styles configured for different alarm states. Dataset .
rowStyles

Appearan
ce

Search
String

Filter alarms by searching for a string in both source path and display path. String .
searchStr
ing

Filters

Select
ed
Alarms

A dataset containing each selected alarm. (Read-only) Dataset .
selected
Alarms

Data

Selecti
on
Color

The color of the selection border. Can be chosen from color wheel, chosen
from color palette, or entered as RGB or HSL value. See Color Selector.

Color .
selection
Color

Appearan
ce

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Selecti
on
Thickn
ess

The size of the selection border. int .
selection
Thickness

Appearan
ce

Show
Table
Header

Toggles visibility of the table's header. boolean .
showTabl
eHeader

Appearan
ce

Source
Filter

Filter alarms by alarm source path. Specify multiple paths by separating them
with commas. Supports the wildcard "*".

String .
sourceFilt
er

Filters

Start
Date

The starting date for the displayed history range. If left blank, will default to 8
hours prior to when the component was loaded.

Date .startDate Behavior

Syste
m
Events

Show system events such as startup and shutdown. boolean .
includeSy
stemEve
nts

Filters

Table
Backgr
ound

The background of the alarm table. See Color Selector. Color .
tableBac
kground

Appearan
ce

Table
Font

The font for the Alarm Journal's rows. Font .font Appearan
ce

Touch
screen
Mode

Controls when this input component responds if touchscreen mode is enabled. int .
touchscre
enMode

Behavior

Visible If disabled, the component will be hidden. boolean .visible Common

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Scripting Functions

Description

This specialized print function will paginate the table onto multiple pages.This function accepts
keyword-style invocation.

Keyword Args

boolean fitWidth - If true, the table's width will be stretched to fit across one page's width. Rows
will still paginate normally. If false, the table will paginate columns onto extra pages. (default = true)
 [optional]

String headerFormat - A string to use as the table's page header. The substring "{0}" will be
replaced with the current page number. (default = None) [optional]

String footerFormat - A string to use as the table's page footer. The substring "{0}" will be replaced
with the current page number. (default = "Page {0}") [optional]

boolean showDialog - Whether or not the print dialog should be shown to the user. Default is true. [
optional]

boolean landscape - Used to specify portrait (0) or landscape (1) mode. Default is portrait (0). [optio
nal]

Return

boolean - True if the print job was successful.

Description

Returns a dataset of the alarms currently displayed in the Alarm Journal Table component. The
columns will be: EventId, Source, DisplayPath, EventTime, State, Priority and IsSystemEvent

Keyword Args

None

Return

Dataset - A dataset of alarms.

Extension Functions

Description

Returns a popup menu that will be displayed when the user triggers a popup menu (right click) in the
table. Use to create the popup menu.system.gui.createPopupMenu()

Parameters

 - A reference to the component that is invoking this function.Component self

 - The alarm events selected on the Alarm Status Table. For an individual List selectedAlarmEvents
alarmEvent, call alarmEvent.get('propertyName') to inspect. Common properties: 'name', 'source',
'priority'.

Return

 - A popup menu that was created with JPopupMenu system.gui.createPopupMenu()

Description

Called for each event loaded into the alarm status table. Return false to hide this event from the
table. This code is executed in a background thread.

Parameters

 self - A reference to the component that is invoking this function.Component

 alarmEvent - The alarm event itself. Call alarmEvent.get('propertyName') to inspect. Alarm Event
Common properties: 'name', 'source', 'priority'.

Return

Boolean

 Description

Called when an alarm is double-clicked on to provide custom functionality. Does not return a value.

Parameters

 - A reference to the component that is invoking this function.Component self

 - The alarm event itself. Call alarmEvent.get('propertyName') to inspect. Alarm Event alarmEvent
Common properties: 'name', 'source', 'priority'.

Return

Nothing

Event Handlers

This event occurs when a component that can receive input, such as a text box, receives the input focus. This
usually occurs when a user clicks on the component or tabs over to it.

.source The component that fired this event.

.
oppositeCom
ponent

The other component involved in this focus change. That is, the component that lost focus in
order for this one to gain it, or vise versa.

This event occurs when a component that had the input focus lost it to another component.

.source The component that fired this event

.
oppositeCom
ponent

The other component involved in this focus change. That is, the component that lost focus in
order for this one to gain it, or vise versa.

https://docs.inductiveautomation.com:8443/display/DOC78/system.gui.createPopupMenu
https://docs.inductiveautomation.com:8443/display/DOC78/system.gui.createPopupMenu

An integer that indicates whether the state was changed to "Selected" (on) or "Deselected" (off). Compare this to
the event object's constants to determine what the new state is.

.
s
o
ur
ce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the KEY_LOCATION constants, the keyTyped event
always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
ro
lD
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when a key is released and the source component has the input focus. Works for all characters, including
non-printable ones, such as SHIFT and F3.

.
s
o
u
rce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the KEY_LOCATION constants in the documentation, the
keyTyped event always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
r
ol
D
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when a key is pressed and then released when source component has the input focus. Only works for
characters that can be printed on the screen.

.
s
o
u
rce

The component that fired this event.

.
k
e
y
C
o
de

The key code for this event. Used with the and events. See below for the keyPressed keyReleased
key code constants.

.
k
e
y
C
h
ar

The character that was typed. Used with the event. keyTyped

.
k
e
y
L
o
c
at
ion

Returns the location of the key that originated this key event. Some keys occur more than once on a
keyboard, e.g. the left and right shift keys. Additionally, some keys occur on the numeric keypad. This
provides a way of distinguishing such keys. See the KEY_LOCATION constants in the documentation, the
keyTyped event always has a location of KEY_LOCATION_UNKNOWN.

.
al
t
D
o
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
c
o
nt
r
ol
D
o
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
s
hi
ft
D
o
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component. Note that this event fires aft

 the pressed and released events have fired.er

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

 This event fires when the mouse leaves the space over the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

 This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a property of the source component changes. This works for standard and custom bindable
(dynamic) properties.

.source The component that fired this event.

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed.

.
property
Name

The name of the property that changed.

Customizers

The Alarm Row Styles Customizer manages the way the Alarm Journal renders each alarm.

Vision Component Customizers

Examples

There are no examples associated with this component.

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers

Vision - Containers Palette

Container Components
The following components give you the ability to group and display components.

In This Section ...

Vision - Container

General

Component
Palette Icon:

Description

The container is a very important component. All components are always inside of a container, except for the special "Root
Container" of each window (see Window Properties). A container is different than normal components in that it can contain
other components, including other containers. Uses for containers include:

Organization - Containers can be used to group components together. These components can then easily be moved,
copied, or deleted as a group. Furthermore, they will all be organized inside of their parent container in the project

 navigation tree, which makes them easier to find.
Re-usability - Containers allow a unique opportunity to create a complex component that is made up of multiple other
components. The Container's ability to have aids this greatly. For instance, if you wanted to make dynamic properties
your own custom HOA control, you can put three buttons inside of a container and configure them to all use a 'status'
property that you add to their parent Container. Now you have built an HOA control that can be re-used and treated
like its own component. The possibilities here are endless. Create a date range control that generates an SQL
WHERE clause that can be used to control Charts and Tables. Create a label/button control that can be used to
display datapoints, and pop up a parameterized window that displays meta-data (engineering units, physical location,
notes, etc.) about that datapoint. Creating re-usable controls with Containers containing multiple components is the
key to rapid application development.

 Layout - Containers are a great way to improve window aesthetics through borders and layout options.

To move a container around on a window, you need to hold the alt key while clicking and dragging.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers

Properties

Name Description Property
Type

Scripting Category

Backg
round
Color

The background color of the component. Can be chosen from color wheel,
chosen from color palette, or entered as or value. See RGB HSL Color
Selector.

Color .
backgrou
nd

Appearan
ce

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel (Double),
Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Combi
ne
Repai
nts

Set this to true for containers with many sub-components that need to redraw
frequently (flashing, rotating, animating).

boolean .
combine
Repaints

Behavior

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Font Font of text on this component. Font .font Appearan
ce

Mous
eover
Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Opaq
ue

If false, backgrounds are not drawn. If true, backgrounds are drawn. boolean .opaque Common

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Styles Contains the component's styles. Dataset .styles Appearan
ce

Texture Background texture image for this container. String .
texturePa
th

Appearan
ce

Tile
Optimi
zed

If true, this container's children should never overlap, and you'll get better
painting performance.

boolean .
optimized
DrawingE
nabled

Behavior

Visible If disabled, the component will be hidden. boolean .visible Common

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

The border is unaffected by rotation.

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires after the pressed and released events have fired.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Customizers

Vision Component Customizers
Style Customizer

Examples

Customized Container with Border

Property Name Value

Border Bevel (Double)

Background Color 255,232,204

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers#VisionComponentCustomizers-StyleCustomizer

Vision - Template Repeater
General

Component Palette Icon:

Template Repeater

Watch the Video

Description

The Template Repeater repeats instances of templates any number of times. It can arrange them vertically, horizontally, or in a "flow" layout,
which can either be top-to-bottom or left-to-right. If there are too many to fit, a scrollbar will be shown. This makes it easy to quickly create
screens that represent many similar pieces of equipment. It also can be used to create screens that are dynamic, and automatically configure
themselves based on configuration stored in a database or tag structure. When first dropped on a window, the template repeater will look like
any other empty container. To select the template to repeat, configure the repeater's Template Path property. There are two ways to set how
many times the template should repeat:

Count - The template will be repeated X times, where X is the value of "Repeat Count". The repeat count starts at zero
and increments X amount of times. Each value for X will be inserted into the custom property of the template that will
be repeated. Template repeater inserts the value of X into the custom property on the template with the same name as
the template repeater's "Index Property Name." For example, if the template has a custom property of "index" and the
template repeater's Index Property Name is also "index," then the template will be repeated X many time with the
value of X being inserted into the template's custom property called "index."

Dataset - The template will be repeated once for each row in the "Template Parameters" dataset. The template's
custom properties with the same names as the dataset's column names will assume the values of each row of the
dataset.

Properties

Name Description Property
Type

Scripting Category

Backgro
und
Color

The background color of the component. Can be chosen from color wheel,
chosen from color palette, or entered as or value. See RGB HSL Color
Selector.

Color .
backgrou
nd

Appearan
ce

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel
(Double), Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Flow
Alignme
nt

Alignment for "Flow" layout style. int .
flowAlign
ment

Appearan
ce

Flow
Direction

When the layout style is flow, this property controls if the components in the
container flow horizontally or vertically.

int .
flowDirec
tion

Appearan
ce

An Example of configuring the Template Repeater can be found on the Using the Template Repeater page.

The border is unaffected by rotation.

https://www.inductiveuniversity.com/video/template-repeater/8.0
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Using+the+Template+Repeater

Horizont
al Gap

The gap size to use for horizontal gaps. int .
horizontal
Gap

Appearan
ce

Index
Parame
ter
Name

A name of an integer parameter on the template that will be set to an index
number.

String .
indexPar
amName

Behavior

Layout
Style

Controls how the repeated template instances are laid out inside the repeater. int .
layoutStyle

Appearan
ce

Marque
e Mode

Turn the repeater into a scrolling marquee. boolean .
marquee
Mode

Behavior

Name The name of this component. String .name Common

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Repeat
Behavior

"Count" will repeat the template a number of times, assigning each template
an index number.

"Dataset" will repeat the template once per row in the template parameter's
dataset.

int .
repeatBe
havior

Behavior

Repeat
Count

The template will be repeated this many times, if the repeat behavior is set to
"Count."

int .
repeatCo
unt

Behavior

Scroll
Delay

The time (in milliseconds) to wait between performing each step in a scroll. int .
scrollDel
ay

Behavior

Stay
Delay

The time (in milliseconds) to wait between scrolls. int .
stayDelay

Behavior

Templat
e
Parame
ters

This dataset will be used to control the number of templates and the
parameters set on the templates if the repeat behavior is set to "Dataset."

Dataset .
template
Params

Behavior

Templat
e Path

The path to the template that this container will repeat. String .
template
Path

Behavior

Vertical
Gap

The gap size to use for vertical gaps. int .
verticalG
ap

Appearan
ce

Visible If disabled, the component will be hidden. boolean .visible Common

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting

Scripting Functions

Description

Returns a list of templates loaded into the Template Repeater. Properties on the components within
each instance can be references by calling getComponent().

Parameters

None

Return

List of Templates

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Customizers

Vision Component Customizers

Examples

Code Snippet: getLoadedTemplates()

#This script will call getLoadedTemplates() on a Template Repeater, and
#then print the text property of a Label component in each instance

#Store a reference to the Template Repeater component in a variable
repeater = event.source.parent.getComponent('Template Repeater')

#Store the list of templates in another variable
templateList = repeater.getLoadedTemplates()

#Iterate through the list
for template in templateList:
 #find a component named "Label" in the instance,
 #and print the value of the text property
 print template.getComponent('Label').text

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers

Vision - Template Canvas
General

Component Palette Icon:
Template Canvas

Watch the Video

Description

The template canvas is similar to the template repeater but allows for more control of the templates than the template repeater.

The Templates property on the template canvas is a dataset. Each row in this dataset represents a manifestation of a template.
It can be the same template or a different template on each row. This dataset allows for control over the size, position and
layout of the template. There are two methods of controlling the layout of each template inside the template canvas:

Absolute Positioning - The location of the template is explicitly managed through the "X" and "Y" columns of the
Templates property's dataset. Consequently the columns labeled Width and Height control the size of the template.
Layout Positioning - The template canvas uses "MiGLayout" to manage the location of the template. MigLayout is a
common albeit complicated layout methodology. It supports layouts that wrap the templates automatically as well as
docking the template to one side of the template canvas. You can learn more about MiG Layout at http://www.
miglayout.com

In addition, control over data inside each template can be achieved by adding a column with the name Parameters to the
dataset and populating this column with dictionary style key words and definitions.

Additional templates can be added to the template canvas by inserting an additional row to the Templates property's dataset.
The same applies to removing the templates but with removing the rows from the dataset.

https://www.inductiveuniversity.com/video/template-canvas/8.0
http://www.miglayout.com
http://www.miglayout.com

Properties

Name Description Property
Type

Scripting

Back
groun
d
Color

The background color of the component. Can be chosen from color wheel, chosen from color palette, or
entered as or value. See RGB HSL Color Selector.

Color .
backgrou
nd

Border The border surrounding this component. Options are: No border, Etched (Lowered), Etched (Raised),
Bevel (Lowered), Bevel (Raised), Bevel (Double), Button Border, Field Border, Line Border, and Other
Border.

Border .border

Layou
t
Const
raints

The overall layout constraints for the canvas. String .
layoutCo
nstraints

Name The name of this component. String .name

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality

Scroll
Beha
vior

Controls which direction(s) the canvas will scroll in. int .
scrollBeh
avior

Show
Loadi
ng

The following feature is new in Ignition version 8.0.6
 to check out the other new featuresClick here

If false, the loading indicator will never be shown.

boolean .
showLoa
ding

Temp
lates

A dataset containing a row per template to instantiate. Dataset .
templates

Visible If disabled, the component will be hidden. boolean .visible

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

The border is unaffected by rotation.

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.6

Scripting

Scripting Functions

Description

Returns a list of the templates that comprise the template canvas.

Parameters

Nothing

Return

List - A list of VisionTemplate definitions. Each instance in the canvas will return its definition's
name. The names of each instance can be accessed with getInstanceName(). Individual
components in each instance can accessed with getComponent().

Description

Obtains the designated template object from the template canvas.

Parameters

String name- The name of the template as defined by the "name" column of the dataset populating
the template canvas.

Return

VisionTemplate - Returns the template instance. Properties on the instance can be access by calling
.propertyName

Extension Functions

Description

This will be called once per template that is loaded. This is a good chance to do any custom
initialization or setting parameters on the template.

Parameters

 A reference to the component that is invoking this function.Component self-

 - The template. The name of the template in the dataset will be available Vision Template template
as template.instanceName

Return

Nothing

Event Handlers

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

Customizers

This component has its own customizer called the Template Canvas Customizer. The Template Canvas Customizer allows you
to create multiple instances of a template. Here is where you can configure some of the properties of the template instance that
are inside the Template Canvas. To edit a template instance, select it from the Instances list. To cancel your edit and add a
new instance instead, click the Cancel button in the bottom left.

Template Canvas Customizer - Property Description

Property Description

Instances A list of the templates currently in the Template Canvas.

Add/Edit
Instances

Section of the Template Canvas Customizer where you add new instances and edit existing instances. Select
an instance from above to edit that instance.

Name Name of the selected template instance.

Z-Index The index position along the Z axis that should be used for the instance. If left empty, then Z order will be
determined by the row index position of the instance as it sits in the Template Canvas' property. Templates

Template The template path for the selected template instance.

Absolute
Positioni
ng

Sets the position and size of the components inside the template. In order from left to right, the four boxes are X,
Y, Width, and Height.

Layout
Positioni
ng

Uses MiGLayout to manage template location. It allows you to easily determine the layout of components or
templates within a container (i.e., "span,wrap"). To learn more, go to http://www.miglayout.com

Paramet
ers

Shows a list of all the parameters that are defined in the selected template. Specify the values for each template
parameter. To make this dynamic, you must bind the property of the Template Canvas.Templates

More information on the Template Canvas Customizer can be found on the page. Component Customizers

Data Types and the Parameters Field

The "Parameters" field in the customizer accepts string values, but attempts to convert the value if the underlying template
parameter is set to a non-string type. In some cases this may require special formatting on the supplied string. The table below
provides some examples.

Templates Property

The "Templates" property, in the Property Editor, stores all the data that is entered into the customizer. New template
instances can be created directly on the "Templates" property as well. To edit or view the dataset, click the Dataset
Viewer next to the "Templates" property.

http://www.miglayout.com/
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers

Data
Type

Expected Format Format Examples

Color Colors may be entered in as either a name, or an RBG string red

0,0,255

Date Date objects may be entered as either a UNIX timestamp in milliseconds, or in the following
notation. In all cases, quotation marks should not be added.

yyyy-MM-dd HH:mm:ss.SSS
yyyy-MM-dd
MM/dd/yyyy
MM/dd/yyyy HH:mm:ss
hh:mm:ss a
hh:mm a
MM/dd/yyyy hh:mm:ss a
yyyy-MM-dd HH:mm:ss.SSS
yyyy-MM-dd HH:mm:ss
EEE MMM dd HH:mm:ss z yyyy

1591374627000

2020-03-28
06:38:00:000

Examples

Code Snippet

#This example demonstrates how to pull value information from templates that are inside the
template canvas.
#This example assumes that each template has a custom property called ContentValue

#Get all the template instances of the canvas.
templates = event.source.parent.getComponent('Template Canvas').getAllTemplates()

#The templates are a list therefore you can iterate through them.
for template in templates:

 #You can access the properties of the template. This example prints the ContentValue
custom property to the console.
 print template.ContentValue

Code Snippet - Seach by Name

#This example demonstrates how to iterate through each template in a template canvas
#looking for a named instance. Once found, print the value of a property on a component in
#that instance.

#This assumes that the canvas contains a template instance named "timerTemplate" and
#a Timer component (named Timer) is inside the instance.

#Create a reference to the Template Canvas
canvas = event.source.parent.getComponent('Template Canvas')

#Retrieve all template instances in the canvas
tempInstance = canvas.getAllTemplates()

#Iterate through each template instance
for template in tempInstance:

 #Compare the name of each instance.
 if template.getInstanceName() == "timerTemplate":

 #Print the Value property on the Timer component inside the template
 print template.getComponent("Timer").value

Code Snippet - Read User Input Example

#This script will retrieve a list of all templates in a template canvas, and record user
input.

#The code is designed to work with the a User Input example,
#but can be easily modified to work with different templates.

#Reference the template canvas component, and call the getAllTemplates() method.
#This will return a list of every instance in the canvas
templateList = event.source.parent.getComponent('Template Canvas').getAllTemplates()

#Initialize a list. User input from each text field will be stored in this variable
userInput = []

#Iterate through each template instance inside the canvas
for template in templateList:

 #add the user inputted value to the userInput list. The values are originally
returned in Unicode.
 #the Python str() function is casting the Unicode values as string values.
 userInput.append(str(template.TextField_Text))

#Show the values in a messageBox. This could be replaced with an INSERT query, or some other
action.
#str() is used again to case the list as a string. This only required to work with the
messageBox function
#since the function requires a string argument be passed in
system.gui.messageBox(str(userInput))

Related Topics ...

Vision Component Customizers

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers

Vision - Misc Palette

Misc Components
The following components give you various ways to create or animate displays.

In This Section ...

Vision - Paintable Canvas

General

Component
Palette Icon:

Description

The Canvas component is a component that can be custom "painted" using Jython scripting. By responding to the Paintable
component's repaint event, a designer can use Java2D to draw anything within the component's bounds. Whenever any
dynamic properties on the component change, the component is re-painted automatically, making it possible to create
dynamic, vector-drawn components that can represent anything.

This component is an advanced component for those who are very comfortable using scripting. It is not user-friendly. The
upside is that it is extraordinarily powerful, as your imagination is the only limit with what this component can be.

When you first drop a Canvas onto a window, you'll notice that it looks like a placeholder. If you switch the Designer Paintable
into preview mode, you'll see an icon of a pump displayed. The pump is an example that comes pre-loaded into the CPaintable
anvas. By editing the component's event scripts, you can dissect how the pump was drawn. You will notice that the script uses
Java2D. You can read more about Java2D . You will notice that as you resize the pump, it scales beautifully in preview here
mode. Java2D is a vector drawing library, enabling you to create components that scale very gracefully.

Tips:

Don't forget that you can add dynamic properties to this component, and use the styles feature. Use the values of
dynamic properties in your repaint code to create a dynamic component. The component will repaint automatically
when these values change.
You can create an interactive component by responding to mouse and keyboard events
You can store your custom components on a custom palette and use them like standard components.

http://java.sun.com/docs/books/tutorial/2d/index.html
https://legacy-docs.inductiveautomation.com/display/DOC79/Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers#VisionComponentCustomizers-StyleCustomizer
https://legacy-docs.inductiveautomation.com/display/DOC80/Creating+Vision+Components

Properties

Name Description Property
Type

Scripting Category

Backg
round
Color

The background color of the component. Can be chosen from color wheel,
chosen from color palette, or entered as or value. See RGB HSL Color
Selector.

Color .
backgrou
nd

Appearan
ce

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel (Double),
Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Focus
able

If the component is focusable, it will receive keyboard input and can detect if it
is the focus owner.

boolean .
focusable

Behavior

Font Font of text on this component. Font .font Appearan
ce

Foregr
ound
Color

The foreground color of the component. See Color Selector. Color .
foreground

Appearan
ce

Mouse
over
Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Styles Contains the component's styles. Dataset .styles Appearan
ce

Visible If disabled, the component will be hidden. boolean .visible Common

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

The border is unaffected by rotation.

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

This event occurs when a component that can receive input, such as a text box, receives the input focus. This
usually occurs when a user clicks on the component or tabs over to it.

.source The component that fired this event

.
oppositeCom
ponent

The other component involved in thie focus change. That is, the component that lost focus in
order for this one to gain it, or vise versa.

This event occurs when a component that had the input focus lost it to another component.

.source The component that fired this event

.
oppositeCom
ponent

The other component involved in thie focus change. That is, the component that lost focus in
order for this one to gain it, or vise versa.

An integer that indicates whether the state was changed to "Selected" (on) or "Deselected" (off). Compare this to
the event object's constants to determine what the new state is.

.
sou
rce

The component that fired this event

.
key
Co
de

The key code for this event. Used with the keyPressed and keyReleased events.

.
key
Ch
ar

The character that was typed. Used with the keyTyped event.

.
key
Loc
ation

Returns the location of the key that originated this key event. Some keys occur more than once on a key
board, e.g. Additionally, some keys occur on the numeric keypad. This provides a way of distinguishing
such keys. See the KEY_LOCATION constants in the

.
alt
Do
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
con
trol
Do
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shif
tDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when a key is released and the source component has the input focus. Works for all characters, including
non-printable ones, such as SHIFT and F3.

.
sou
rce

The component that fired this event

.
key
Co
de

The key code for this event. Used with the keyPressed and keyReleased events.

.
key
Ch
ar

The character that was typed. Used with the keyTyped event.

.
key
Loc
ation

Returns the location of the key that originated this key event. Some keys occur more than once on a key
board, e.g. Additionally, some keys occur on the numeric keypad. This provides a way of distinguishing
such keys. See the KEY_LOCATION constants in the

.
alt
Do
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
con
trol
Do
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shif
tDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.
sou
rce

The component that fired this event

.
key
Co
de

The key code for this event. Used with the keyPressed and keyReleased events.

.
key
Ch
ar

The character that was typed. Used with the keyTyped event.

.
key
Loc
ation

Returns the location of the key that originated this key event. Some keys occur more than once on a key
board, e.g. Additionally, some keys occur on the numeric keypad. This provides a way of distinguishing
such keys. See the KEY_LOCATION constants in the

.
alt
Do
wn

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
con
trol
Do
wn

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shif
tDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component. Note that this event fires
after the pressed and released events have fired.

.source The component that fired this event

.button The code for the button that coused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event

.button The code for the button that coused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event

.button The code for the button that coused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event

.button The code for the button that coused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

.button The code for the button that coused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event

.button The code for the button that coused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.
source

The component that fired this event

.
graph
ics

An instance of java.awt.Graphics2D that can be used to paint this component. The point (0,0) is
located at the upper left of the component.

.width The width of the paintable area of the component. This takes into account the component's border.

.
height

The height of the paintable area of the component. This takes into account the component's border.

Customizers

Vision Component Customizers
Style Customizer

Examples

There are no examples associated with this component. However examples are available in the component itself.

The component comes prescripted to render the following pump:

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers#VisionComponentCustomizers-StyleCustomizer

Vision - Line

General

Component
Palette Icon:

Description

The line component displays a straight line. It can run north-south, east-west, or diagonally. You can add arrows to either side. The line can be
dashed using any pattern you want. You can even draw the line like a sinusoidal wave!

Reporting Line Component

If you are looking for the Line component used in Reporting, refer to .Report - Line Shape

https://legacy-docs.inductiveautomation.com/display/DOC80/Report+-+Line+Shape

Properties

Name Description Property
Type

Scripting Category

Color Set the color of the line. Can be chosen from color wheel, chosen from color
palette, or entered as or value. See RGB HSL Color Selector.

Color .
foreground

Appearan
ce

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Dash
Pattern

Enter a string of comma-delimited numbers which indicate the stroke pattern
for a dashed line. For instance, "3,5" means three pixels on, five pixels off.

String .
strokePat
tern

Appearan
ce

Left
Arrow

Draw an arrow head on the left/top of the line? boolean .leftArrow Appearan
ce

Left
Arrow
Size

The size of the left arrow, if present. int .
leftArrow
Size

Appearan
ce

Line
Mode

The line mode determines where in the rectangle the line is drawn. int .lineMode Appearan
ce

Line
Style

The line style determines how the shape of the line looks. Options are: Plane,
Dashed, Sinusoidal, Sinusoidal-Dashed, Loop, and Loop-Dashed.

int .lineStyle Appearan
ce

Line
Width

Set the width of the line in pixels. int .
lineWidth

Appearan
ce

Mouseo
ver Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Right
Arrow

Draw an arrow head on the right/bottom of the line? boolean .
rightArrow

Appearan
ce

Right
Arrow
Size

The size of the right arrow, if present. int .
rightArro
wSize

Appearan
ce

Sine
Height

Sets the amplitude of the sine wave to be drawn. int .
sineHeig
ht

Appearan
ce

Sine
Length

Sets the wavelength of the sine wave to be drawn. int .
sineLength

Appearan
ce

Styles Contains the component's styles. Dataset .styles Appearan
ce

Visible If disabled, the component will be hidden. boolean .visible Common

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component. Note that this event fires
after the pressed and released events have fired.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Customizers

Vision Component Customizers
Style Customizer

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers#VisionComponentCustomizers-StyleCustomizer

Examples

Line with Sinusoidal Pattern

Property Setting

Color 0,0,255

Line Style Sinusoidal

Line with Arrow Endpoints

Property Setting

Color 217,0,0

Line Style Plain

Left Arrow True

Left Arrow Size 25

Line Width 4

Right Arrow True

Right Arrow Size 25

Vision - Pipe Segment

General

Component
Palette Icon:

Description

The pipe segment component displays a quasi-3D pipe. In its basic form it looks very much like a rectangle with a round
gradient. The difference comes in its advanced rendering of its edges and endcaps. You can configure each pipe
segment's end to mate perfectly with another pipe segment butted up against it perpendicularly. The result looks like a pipe
welded together in a 90° corner.

The control of the pipe's ends are done using 6 booleans - three per 'end'. End 1 is the top/left end, and End 2 is the bottom
/right end. You turn off each boolean if there will be another pipe butted up against that side. The following diagram
illustrates the naming conventions:

Properties

Name Description Property
Type

Scripting Category

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel (Double),
Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Cente
r Fill

The center of the fill gradient. Can be chosen from color wheel, chosen from
color palette, or entered as or value. See RGB HSL Color Selector.

Color .
mainColor

Appearan
ce

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Edge
Fill

The edge of the fill gradient. See Color Selector. Color .
secondar
yColor

Appearan
ce

End
1
Botto
m?

Draw the border at end #1's bottom? boolean .
end1Bott
om

Appearan
ce

End
1
Cap?

Draw the border at end #1's cap? boolean .end1Cap Appearan
ce

End
1
Top?

Draw the border at end #1's top? boolean .end1Top Appearan
ce

End
2
Botto
m?

Draw the border at end #2's bottom? boolean .
end2Bott
om

Appearan
ce

End
2
Cap?

Draw the border at end #2's cap? boolean .end2Cap Appearan
ce

End
2
Top?

Draw the border at end #2's top? boolean .end2Top Appearan
ce

Mous
eover
Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Outlin
e
Color

The color of the outline border. See Color Selector. Color .
outlineCo
lor

Appearan
ce

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Styles Contains the component's styles. Dataset .styles Appearan
ce

Visible If disabled, the component will be hidden. boolean .visible Common

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

The border is unaffected by rotation.

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component. Note that this event fires
after the pressed and released events have fired.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Customizers

Vision Component Customizers
Style Customizer

Examples

There are no examples associated with this component.

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers#VisionComponentCustomizers-StyleCustomizer

Vision - Pipe Joint

General

Component
Palette Icon:

Description

The pipe joint displays a fancy joint component two join two pipe segments together. By turning off the cardinal directions, this
will display a two-, three-, or four-pipe union. This component is optional, as pipes can butt up against each other and look
joined.

Properties

Name Description Property
Type

Scripting Category

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel (Double),
Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Botto
m?

Indicates if the joint has an outlet at the bottom. boolean .bottom Appearan
ce

Cente
r Fill

The center of the fill gradient. Can be chosen from color wheel, chosen from
color palette, or entered as or value. See RGB HSL Color Selector.

Color .
mainColor

Appearan
ce

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Edge
Fill

The edge of the fill gradient. See Color Selector. Color .
secondar
yColor

Appearan
ce

Left? Indicates if the koint has an outlet at the left. boolean .left Appearan
ce

Mous
eover
Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. See Color Selector. String .name Common

Outlin
e
Color

The color of the outline border. See Color Selector. Color .
outlineCo
lor

Appearan
ce

Quality The data quality code for any Tag bindings on this component. QualityCo
de

.quality Data

Right? Indicates if the joint has an outlet at the right. boolean .right Appearan
ce

Styles Contains the component's styles Dataset .styles Appearan
ce

Top? Indicated if that joint has an outlet at the top. boolean .top Appearan
ce

Visible If disabled, the component will be hidden. boolean .visible Common

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

The border is unaffected by rotation.

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires after the pressed and released events have fired.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event

.
newValue

The new value that this property changed to.

.oldValue The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
propertyN
ame

The name of the property that changed.

Customizers

Vision Component Customizers
Style Customizer

Examples

There are no examples associated with this component.

Always filter out these events for the property that you are looking for. Components
often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers#VisionComponentCustomizers-StyleCustomizer

Vision - Sound Player
General

Component
Palette Icon:

Description

The Sound Player component is an invisible component that facilitates audio playback in the client. Each Sound Player
component has one sound clip associated with it, and will play that clip on demand. There is a built in triggering system, as well
as facilities to loop the sound while the trigger is set. The sound clip needs to be a *.wav file. The clip becomes embedded
within the window that the sound player is on. Clients do not need access to a shared *.wav file.

Properties

Name Description Property
Type

Scripting Category

Loop Count If Loop Mode is "Loop N Times", this is the "N". int .
loopCount

Behavior

Loop Mode The Loop Mode determines how many times the sound is played when
triggered.

int .
loopMode

Behavior

Mouseover
Text

The text that is displayed in the tooltip which pops up on mouseover of
this component.

String .
toolTipTe
xt

Common

Mute If true, the clip will be muted during playback. boolean .mute Behavior

Name The name of this component. String .name Common

Play Mode The Play Mode determines whether the sound is played automatically
on trigger or manually.

int .
playMode

Behavior

Quality The data quality code for any Tag bindings on this component. QualityCode .quality Data

Sound Data The clip that this component will play. byte[] .
soundData

Data

Trigger The clip will be played when the trigger is true, if Play Mode is
"ON_TRIGGER"

boolean .trigger Data

Volume The volume to use for playback (from 0.0 to 1.0). double .volume Behavior

Deprecated Properties

Data
Quality

The data quality code for any Tag bindings on this component. int .
dataQuali
ty

Deprecat
ed

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires after the pressed and released events have fired.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Customizers

Vision Component Customizers

Examples

There are no examples associated with this component.

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers

Vision - Timer
General

Component
Palette Icon:

Description

The timer button is an invisible button that can be used to create repeated events in a window. This is often used for
animations or repetitive scripts within a window. When running, the timer's Value property is incremented by the Step By value,
until the value tis the Bound, at which point it repeats. It is often useful to bind other values to a timer's Value property.

For instance, if you set the timer's Bound property to 360, and bind an object's rotation to the Value property, the object will
spin in a circle when the timer is running.

How fast the timer counts is up to the Delay property, which is the time between counts in milliseconds.

Want to run a script every time the timer counts? First, make sure you don't actually want to write a project , which Timer Script
will run on some interval whenever the application is running. In contrast, a script that works via a Timer component will only
run while the window that contains the Timer is open, and the Timer is running. The way to do this is to attach an event script
to the actionPerformed event.

Properties

Name Description Property
Type

Scripting Category

Bound The value is always guaranteed to be less than this upper bound. int .max Data

Delay
(ms)

The delay in milliseconds between timer events. int .delay Behavior

Initial
Delay
(ms)

The delay in milliseconds before the first event when running is set to true. int .
initialDelay

Behavior

Name The name of this component. String .name Common

Running? Determines whether or not the timer sends timer events. boolean .running Behavior

Step by The amount added to the value each time this timer fires for use as a
counter. (should be positive)

int .step Data

Value The current value of this timer, for use as a counter. At each iteration, this
value will be set to ((value + step) MOD bound)

int .value Data

https://legacy-docs.inductiveautomation.com/display/DOC80/Client+Event+Scripts
https://legacy-docs.inductiveautomation.com/display/DOC80/Component+Events

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Customizers

This component does not have any custom properties.

Examples

Expression Binding Example

//Suppose that you have images that make up frames of animation.
//Name your images: "Frame0.png", "Frame1.png", "Frame2.png". Set the timer's Bound to be 3,
then bind the image path of animate component to the following expression:
"Frame" + {Root Container.Timer.value} + ".png"

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

Vision - Signal Generator
General

Component
Palette Icon:

Description

The signal generator is similar to the Timer component, but its value isn't simply a counter. Instead, you can choose from a
variety of familiar signals. You configure the frequency by setting the Periodproperty, which is in milliseconds. You configure
the resolution by setting the ValuesPerPeriod property.

For example, if you choose a sine wave signal with a period of 2000 milliseconds and 10 valuesPerPeriod, your sine wave will
have a frequency of 0.5 Hz, and its value will change 10 times every 2 seconds.

Properties

Name Description Property Type Scripting Category

Lower Bound The lower bound of the signal value. double .lower Data

Name The name of this component. String .name Common

Period The period of the signal in milliseconds. int .period Behavior

Running? Determines whether or not the signal is being generated. boolean .running Behavior

Signal Type The signal type (shape) of the signal value. int .signalType Behavior

Upper Bound The upper bound of the signal value. double .upper Data

Value The current value of this signal generator. double .value Data

Values/Period The number of value changes per period. int .valuesPerPeriod Behavior

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Customizers

This component does not have any custom properties.

Examples

This component does not have any examples associated with it.

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

Vision - Reporting Palette

Reporting Components
The following components require the Report Module, and give you access to generated reports and various ways to filter and display data.

In This Section ...

Vision - Report Viewer

General

Component Palette Icon:

Description

The Report Viewer component provides a way to run and view Reports in Vision windows. Parameters added during Report
creation are provided as Properties in the Viewer and can override any default values set in the Report Resource. Right
clicking on the Report Viewer brings up a menu that allows you to easily print the report or save it in various formats. The
Reporting Module comes with some additional reporting components that can be used with Vision components. To learn more,
refer to the section in the Reporting Module. To find documentation on the deprecated Report Vision Reporting Components
Viewer prior to Ignition 7.8, see the documentation.Legacy Report Viewer

https://legacy-docs.inductiveautomation.com/display/DOC80/Reporting+in+Vision
https://support.inductiveautomation.com/usermanuals/ignition/index.html?reporting_components_reportviewer.htm

Properties

Name Description Type Scripting

Back
groun
d
Color

Color that lays underneath the . Can be chosen from color wheel, chosen from color palette, or report
entered as or value. See RGB HSL Color Selector.

Color .
backgrou
nd

Border The border surrounding this component. Options are: No border, Etched (Lowered), Etched (Raised),
Bevel (Lowered), Bevel (Raised), Bevel (Double), Button Border, Field Border, Line Border, and Other
Border.

Bord
er

.border

Curre
nt
Page

Current page in the report you would like to view. Int .
currentPa
ge

EndD
ate

End date for the report. Date .EndDate

Fit
Panel The following feature is new in Ignition version 8.0.3

 to check out the other new featuresClick here

Ignore the zoom and fit the report to the component.

Bool
ean

.fitPanel

Foreg
round
Color

The foreground color the labels on the component. See Color Selector. Color .
foreground

Name The name of this component. String .name

Page
Count

Number of pages in the report. Int .
pageCou
nt

Repor
t
Loadi
ng

Returns true while the report is loading, Note that this property does NOT appear in the Property Editor,
but can easily be accessed from a Python script. Useful in scenarios where you wish to change the value
of a parameter on the Report Viewer in a script and then do some additional work once the report has
finished loading.

Bool
ean

reportLoa
ding

Repor
t Path

Path in the Project to the Report you would like to view. String .
reportPath

Show
Contr
ols

Show the bar with the page and the zoom controls. Bool
ean

.
showCon
trols

Start
Date

Start date for the report. Date .
StartDate

Sugg
ested
Filena
me

The filename that will come up by default when the user saves the to disk.report String .
suggeste
dFilename

Visible If disabled, the component will be hidden. Bool
ean

.visible

Zoom
Factor

Zoom factor for this report. Float .
zoomFac
tor

Scripting

The border is unaffected by rotation.

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.3
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Scripting Functions

Description

Uses the named printer and determine if the print dialog window should appear or not.

Parameters

String printerName - The name of the printer the report should be sent to. Will use the default printer
if left blank. [optional]

Boolean showDialog - True if the dialog window should appear, False if the dialog window should be
skipped. Will be true if left blank. [optional]

Return

Nothing

Description

Return the bytes of the generated report in the Report Viewer using PDF format.

Parameters

None

Return

Byte Array - The bytes of the report in PDF format.

Description

Return the bytes of the generated report in the Report Viewer using PNG format.

Parameters

Nothing

Return

Byte Array - The bytes of the report in PNG format.

Description

Prompts the user to save a copy of the report as a PDF. Shows a file selection window with the
extension set to PDF.

Parameters

fileName - A suggested filename to save the report asString

Return

Nothing

The following print method will only work if a report has finished loading on the Report Viewer
component

This function will return null if the trial has expired.

This function will return null if the trial has expired.

Description

Prompts the user to save a copy of the report as a PNG. Shows a file selection window with the
extension set to PNG.

Keyword Args

fileName - A suggested filename to save the report as.String

Return

Nothing

Description

Prompts the user to save a copy of the report as an XLS file. Shows a file selection window with the
extension set to XLS.

Keyword Args

fileName - A suggested filename to save the report as.String

Return

Nothing

Extension Functions

Description

Called when the Report generation process has been completed.

Keyword Args

Component self - A reference to the component invoking this method.

Byte Array pdfBytes - The PDF formatted bytes generated by the Report.

Return

Nothing

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component. Note that this event fires
after the pressed and released events have fired.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Examples

print()

#calls print on a Report Viewer component located in the same window

reportViewer = event.source.parent.getComponent('Report Viewer')
reportViewer.print()

print() with default printer, no dialog

#calls print on a Report Viewer component located in the same window
#bypasses the print dialog window and uses the default printer

reportViewer = event.source.parent.getComponent('Report Viewer')
reportViewer.print(None, False)

saveAsPDF()

#Saves the file as a PDF to a user selected location.
#The file selection window defaults to a name of "Daily Report"

reportViewer = event.source.parent.getComponent('Report Viewer')
reportViewer.saveAsPDF("Daily Report")

Utilizing reportLoading

#This example will check if the report has finished loading. If so, print the
report.

#Reference the report viewer
reportViewer = event.source.parent.getComponent('Report Viewer')

if reportViewer.reportLoading:
 system.gui.warningBox("The report is still loading. Please wait")
else:
 reportViewer.print()

Customizers

This component does not have any custom properties.

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

Vision - Row Selector

General

Component Palette Icon:

Row Selector

Watch the Video

Description

The row selector is a component that acts like a visual filter for datasets. It takes one dataset, chops it up into various
ranges based on its configuration, and lets the user choose the splices. Then it creates a virtual dataset that only contains
the rows that match the selected splices.

The most common way to splice the data is time. You could feed the row selector an input dataset that represents a large
time range, and have it break it up by Month, Day, and then Shift, for example. Then you could power a report with the
output dataset, and that would let the user dynamically create reports for any time range via an intuitive interface.

To configure the row selector, first set up the appropriate bindings for its input dataset. Then use its Customizer to alter the
levels that it uses to break up the data. In the customizer, add various filters that act upon columns in the input dataset,
sorting them by various criteria. For example, you could choose a date column, and have it break that up by quarter. Then
below that, you could have it use a discrete filter on a product code. This would let the user choose quarterly results for
each product. Each level of filter you create in the customizer becomes a level in the selection hierarchy. Note that the
output data is completely unchanged other than the fact that rows that don't match the current user selection aren't present.

This component is very handy for driving the Report Viewer, Table, and Classic Chart components, among others.

Properties

Name Description Property
Type

Scripting Category

Additional information on the Row Selector can be found on the page.Reporting in Vision

https://www.inductiveuniversity.com/videos/row-selector/8.0/8.0
https://legacy-docs.inductiveautomation.com/display/DOC80/Reporting+in+Vision

All
Data
Node
Text

Text for the All Data node, if it is displayed. String .
allDataN
odeText

Appearan
ce

Backgr
ound
Color

The background color of the component. Can be chosen from color wheel,
chosen from color palette, or entered as or value. See RGB HSL Color
Selector.

Color .
backgrou
nd

Appearan
ce

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel
(Double), Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

Cursor .cursor Common

Data In The input of the row selection tree. The filter tree changes based on this Datas
.et

Dataset .dataIn Data

Data
Out

The output of the row selection tree. Changes based on user selection in the
filter tree.

Dataset .dataOut Data

Expand
All
Data
Node

If true, the 'All Data' (root) node will be expanded and selected when the user
opens this window.

boolean .
expandAl
lDataNode

Behavior

Font Font of text on this component. Font .font Appearan
ce

Foregro
und
Color

The foreground color of the component. See Color Selector. Color .
foreground

Appearan
ce

Mouse
over
Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
tooltiptext

Common

Name The name of this component. String .name Common

Opaque If false, backgrounds are not drawn. If true, backgrounds are drawn. boolean .opaque Common

Selecti
on
Backgr
ound

The background color of the selected node. See Color Selector. Color .
selection
Backgrou
nd

Appearan
ce

Show
All
Data
Node

Should the All Data (root) node be shown or hidden? boolean .
showAllD
ataNode

Behavior

Show
Node
Size

If true, the number of rows in each node will be shown. boolean .
showNod
eSize

Behavior

Show
Root
Handles

Should root-level nodes have collapse handles? boolean .
showRoo
tHandles

Behavior

Unkno
wn
Node
Icon

Icon for any Unknown nodes (nodes where the data didn't match the filter). String .
unknownI
conPath

Appearan
ce

Unkno
wn
Node
Text

Text for any Unknown nodes (nodes where the data didn't match the filter). String .
unknown
NodeText

Appearan
ce

Visible If disabled, the component will be hidden. Boolean .visible Common

The border is unaffected by rotation.

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component. Note that this event fires
after the pressed and released events have fired.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

Customizers

The Row Selector has its own Row Selector Tree Customizer and allows users to customize the row filtering. The customizer
provides some default filters which you can use, or customized based on the dataset.

The Row Selector Tree Customizer allows you to build and configure a tree of the data in the input dataset which can then be
used to filter it. There are three main parts to the customizer. The left panel contains a list of available filters, the center panel
contains a list of filters that will be used, and the right panel will contain configurable properties for the filter currently selected in
the center panel.

In the Available Filters section on the left, a list of all of the columns of the dataset are shown. These can be expanded to show
the filters available for that column type. Some columns might not have any filters, while others can have many, it just depends

on the data type of column. These filters can then be dragged into the center panel, or highlighted and the Right Arrow
icon pressed to push the filter into the center panel where it becomes an active filter.

The Filters panel in the center contains a list of filters that are being used with each filter being followed by the name of the
column that it originated from, and is where you can decide on the order of the filters. The order is important because it is the
order in which they will be used in the component. Using the image below as an example, The component will first show a list
of years. You can select a particular year, and the output dataset will only contain rows from that year. Alternately, you can
expand a year where you will then see a list of strings that are in rows with that year. Selecting one of the strings will display all
rows with strings like the one that you selected, that are also in the same year.

The Configure Filter panel on the right contains configurable settings that differ based on the type of filter selected. All filters at
least contain an Icon Path property, which allows you to set what icon will be used with with that filter in the filter tree. Each
filter type also has a reverse sort option, allowing you to have the filters displayed in reverse order in the filter tree. The unique
properties are:

Column Name
Icon Path
Format String (if applicable)
Reverse Sort

Examples

There are no examples associated with this component. Refer to the examples in the .Common Reporting Tasks

https://legacy-docs.inductiveautomation.com/display/DOC80/Common+Reporting+Tasks

Vision - Column Selector
General

Component Palette Icon:

Column Selector

Watch the Video

Description

The column selector component is conceptually similar to the Row Selector, except that instead of filtering rows, it filters
columns from its output dataset. Each column from the input dataset is shown as a checkbox. As the user checks and un-
checks columns, the output dataset has those columns added or removed. This is very handy for driving the Table Classic and
Chart components. In addition, this component can bring in multiple datasets and output just as many filtered datasets.

Addition information on the Column Selector can be found on the page.Vision Reporting Components

https://www.inductiveuniversity.com/videos/column-selector/8.0/8.0

Properties

Name Description Property
Type

Scripting Category

Alpha
betize

If true, checkboxes will be ordered alphabetically by their text. Boolean .
alphabeti
ze

Behavior

Backg
round
Color

The background color of the component. Can be chosen from color wheel,
chosen from color palette, or entered as or value. See RGB HSL Color Selector.

Color .
backgrou
nd

Appearan
ce

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel (Double),
Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

Int .
cursorCo
de

Common

Data
In

Input dataset. This is the default when first dropping the component on the
window, the name may change based on configuration and there may be more
of these input dataset properties.

Dataset .Data_in Custom
Properties

Data
Out

Output dataset. This is the default when first dropping the component on the
window, the name may change based on configuration and there may be more
of these output dataset properties.

Dataset .Data_out Custom
Properties

Font Font of text on this component. Font .font Appearan
ce

Foreg
round
Color

The foreground color of the component. See Color Selector. Color .
foreground

Appearan
ce

Group
By Da
taset

If true, checkboxes will be grouped by their dataset. Otherwise, checkboxes will
be arranged flat.

Boolean .grouping Behavior

Horizo
ntal
Gap

The horizontal gap between checkboxes or grouping panels. Int .hGap Appearan
ce

Mous
eover
Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Norm
alize
Widths

If true, all checkboxes will be assigned the same width, which causes them to
line up in columns.

Boolean .
normalize
Widths

Appearan
ce

Vertic
al
Gap

The vertical gap between checkboxes and grouping panels. Int .vGap Appearan
ce

Visible If disabled, the component will be hidden. Boolean .visible Common

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have extension functions associated with it.

The border is unaffected by rotation.

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

Event Handlers

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component. Note that this event fires
after the pressed and released events have fired.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event.

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

Customizers

The Column Selector component has its own Column Selector Panel Customizer that allows you to configure how the Column
Selector filters columns.

The Column Selector Customizer contains two basic parts. The left side of the customizer allows you to configure how many
datasets can be brought in for filtering. Each dataset added will add two additional custom properties to the Column Selector;
an In dataset property and an Out filtered dataset property. Datasets can also be removed here, or moved up or down in the
list. If there are multiple datasets, the columns from the first dataset in the list will be displayed at the top of the Column
Selector, while the columns from the last will be at the bottom.

The right side of the customizer allows you to configure the settings for each dataset. When a dataset is highlighted on the left,
we can see some basic information about it on the right, such as the Grouping Title and a list of all of the columns in that
dataset. The Grouping Title is only used if there is more than one dataset in the Column Selector. In the component, each
dataset's columns will be contained in a border and will display the Grouping Title. This can be configured to be anything, so
that it is easier for a user to distinguish what each set of columns is for. In the Column Settings table, we see each one of the
columns in that dataset listed out. Here, the Display column allows us to alter what name that column will display on the
component, again allowing you to create names that are more meaningful to the user. Finally, the Excluded from Selection
column allows you to exclude certain columns from being filtered. Columns that have this enabled will not show up in the list of
columns on the component. This will not filter them out in the output dataset, but instead forces them to be in the output
dataset.

Examples

Refer to the example on the Vision Reporting Components page.

Vision - File Explorer
General

Component Palette Icon:

File Explorer and PDF
Viewer

Watch the Video

Description

The File Explorer component displays a filesystem tree to the user. It can be rooted at any folder, even network folders. It can
also filter the types of files that are displayed by their file extension (i.e., "pdf"). The path to the file that the user selects in the
tree is exposed in the bindable property Selected Path.

The File Explorer component is typically used in conjunction with the PDF Viewer component in order to create a PDF viewing
window. This is very useful for viewing manuals, documents, or reports from within your project. To use this component to drive
a PDF Viewer component, refer to the section on and .File Explorer PDF Viewer

https://www.inductiveuniversity.com/videos/file-explorer-and-pdf-viewer/8.0/8.0

Properties

Name Description Property
Type

Scripting Category

Backg
round
Color

The background color of the component. Can be chosen from color wheel,
chosen from color palette, or entered as or value. See RGB HSL Color
Selector.

Color .
backgrou
nd

Appearan
ce

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel (Double),
Button Border, Field Border, Line Border, and Other Border.

Border .border Common

Cursor The mouse cursor to use when hovering over this component. Options are:
Default, Crosshair, Text, Wait, Hand, Move, SW Resize, or SE Resize.

int .
cursorCo
de

Common

Enabl
ed

If disabled, the component can't be used. boolean .
compone
ntEnabled

Common

File
extens
ion
filter

Semi-colon seperated list of extensions to filter out files, such as pdf or txt.
Example "pdf;html;txt" shows pdf, html, and text documents.

String .fileFilter Behavior

Font Font of text on this component. Font .font Appearan
ce

Foregr
ound
Color

The foreground color of the component. See Color Selector. Color .
foreground

Appearan
ce

Mouse
over
Text

The text that is displayed in the tooltip which pops up on mouseover of this
component.

String .
toolTipTe
xt

Common

Name The name of this component. String .name Common

Root
Direct
ory

A directory to act as the root of the file explorer. String .rootDir Behavior

Select
ed
Path

The selected file or folder's path. String .
selected
Path

Data

Visible If disabled, the component will be hidden. boolean .visible Common

Scripting

Scripting Functions

This component does not have scripting functions associated with it.

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

The border is unaffected by rotation.

https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component. Note that this event fires
after the pressed and released events have fired.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event.

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Customizers

The File Explorer component does not have a customizer.

Examples

Refer to the examples on the pages.File Explorer and PDF Viewer

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

Vision - PDF Viewer
File Explorer and PDF Viewer

Component Palette Icon:

File Explorer and
PDF Viewer

Watch the Video

Description

The PDF Viewer component displays a PDF that exists as a file in some accessible file system, or as a URL. Note that this
component is simply for viewing existing PDFs. To create dynamic reports, or view dynamically generated reports use the Repo
rting Module.

This component is typically used in conjunction with the File Explorer component, in order to create a PDF viewing window.
Simply bind the Selected Path property in the PDF Viewer to the File Explorer's property. See the Selected Path File Explorer's

, as well as the pages for further instructions on how to put these two components documentation File Explorer and PDF Viewer
together.

https://www.inductiveuniversity.com/videos/file-explorer-and-pdf-viewer/8.0/8.0
https://legacy-docs.inductiveautomation.com/display/DOC80/Reporting+Module
https://legacy-docs.inductiveautomation.com/display/DOC80/Reporting+Module

Properties

Name Description Property
Type

Scripting Category

Border The border surrounding this component. Options are: No border, Etched
(Lowered), Etched (Raised), Bevel (Lowered), Bevel (Raised), Bevel (Double),
Button Border, Field Border, Line Border, and Other Border.

Border .border Common

File
Path

Path to the .pdf file to be displayed. String .filePath Data

Foote
r
Visible

If false, the Footer is not displayed. Boolean .
footerVisi
ble

Appearan
ce

Name The name of this component. String .name Common

Page
Fit
Mode

Mode to fit the document within the viewer. (1 = Disabled, 2 = Actual Size, 3 =
Fit Height, 4 = Fit Width)

Integer .
pageFitM
ode

Appearan
ce

Page
View
Mode

How to display in Viewer (1 = One Page, 2 = One Column, 3 = Two Page PDF
Left, 4 = Two Col Left, 5 = Two Page Right, 6 = Two Col Right)

Integer .
pageVie
wMode

Appearan
ce

Toolb
ar
Visible

Sets the top control toolbar to visible.PDF Boolean .
toolBarVi
sible

Appearan
ce

Utility
Visible

Sets the Utility Sidebar to visible. Boolean .
utilityPan
eVisible

Appearan
ce

Visible If disabled, the component will be hidden. Boolean .visible Common

PDF Viewer Toolbar

Toolbar
Buttons

Name Function

Save
As

Will save the currently loaded pdf to the local computer.

This feature was changed in Ignition version :8.0.11
This button was removed, since the Save As functionality was never intended to be included on the
component.

Print
Docu
ment

Will print the currently loaded pdf from the local computer.

Searc
h
Docu
ment

Will open up a text field that can be used to search the currently loaded pdf for a specific word or phrase.
*Note: This is located in the Utility Panel and can be accessed from there as well.

The border is unaffected by rotation.

Show
/Hide
Utility
Panel

Will show/hide the Utility panel. The Utility Panel contains the following tabs:

Search - Will search the document for a specific word or phrase.
Bookmarks - Will display all of the bookmarks for the loaded pdf and allow you to quickly jump to
them.
Thumbnails - Will display a thumbnail view of all of the pages of the loaded pdf. Clicking on one will
jump to it.
Annotations - Will create a multitude of annotations on the currently loaded pdf. After adding an
annotation, it can be selected and then configured in the Utility Panel. Annotations include
highlights, strike through, underlines, text notes, and actions like navigating to a url.
Layers - Will display the layers of the currently loaded pdf, if any.

First
Page

Will navigate back to the first page of the pdf.

Previ
ous
Page

Will navigate back one page of the pdf.

Curre
nt
Page
Num
ber

Will show the current page number out of the total number of pages, also allowing a page number to be
entered which will jump to that page immediately.

Next
Page

Will navigate forward one page of the pdf.

Last
Page

Will navigate forward to the last page of the pdf.

Zoom
Out

Will zoom out from the pdf.

Zoom A drop down list that displays the current zoom, as well as giving the ability to switch between different
preset zoom amounts.

Zoom
In

Will zoom in to the pdf.

Actua
l Size

Will revert back to a 100% zoom which is the natural size of the pdf.

Fit In
Wind
ow

Will fit the pdf to the pdf viewer window.

Fit
Width

Will fit the pdf to the width of the pdf viewer.

Rotat
e
Right

Will rotate the pdf right.

Rotat
e Left

Will rotate the pdf left.

Pan
Tool

Will pan around a page of the pdf by clicking and dragging. Works better when zoomed in.

Text
Selec
t Tool

Can be used to select text in the pdf.

Zoom
Marq
uee
Tool

Will zoom into the pdf by clicking and dragging to select an area.

Zoom
Dyna
mic
Tool

Will zoom in and out using the scroll wheel.

Selec
t Tool

Can be used to select objects on the pdf such as annotations.

Highli
ght
Annot
ation
Tool

Can be used to highlight text in the pdf. Can also be done from the Utility Panel and can be configured
there as well.

Text
Annot
ation
Tool

Can be used to place a text comment on the pdf. Can be configured in the Utility Panel.

Show
/Hide
Form
Highli
ghting

Show or hide highlighting on the form.

Singl
e
Page
View
Non-
Conti
nuous

View the pdf file one page at a time.

Singl
e
Page
View
Conti
nuous

View the pdf file one page wide with continuous scrolling.

Facin
g
Page
View
Non-
Conti
nuous

View the pdf file two pages at a time.

Facin
g
Page
View
Conti
nuous

View the pdf file two pages wide with continuous scrolling.

Scripting

Scripting Functions

Description

This function will pass in the bytes of a PDF and load them into the PDF Viewer component. Please
see for more detailsStoring Files in a Database

Parameters

string bytes - The bytes of the PDF to be displayed on the component

string name - The name of the PDF

 Return

Nothing

Since 7.8.2

Description

This function will print the PDF.

Parameters

boolean showDialog- If true, shows the user a print dialog. Default is true [optional]

Return

Nothing

Since 7.8.2

Description

This function will set the current zoom level of the PDF, adjusted to stay within the minimum /
maximum zoom range. Will zoom in on center of page.

Parameters

float zoom- Zoom factor to use. 1.0 is no zoom.

Return

Nothing

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

https://legacy-docs.inductiveautomation.com/display/DOC79/Storing+Files+in+a+Database

This event signifies a mouse click on the source component. A mouse click the combination of a mouse press
and a mouse release, both of which must have occurred over the source component. Note that this event fires
after the pressed and released events have fired.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse enters the space over the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when the mouse leaves the space over the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is pressed down on the source component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

This event fires when a mouse button is released, if that mouse button's press happened over this component.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component after a button has been pushed.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires when the mouse moves over a component, but no buttons are pushed.

.source The component that fired this event.

.button The code for the button that caused this event to fire.

.
clickCo
unt

The number of mouse clicks associated with this event.

.x The x-coordinate (with respect to the source component) of this mouse event.

.y The y-coordinate (with respect to the source component) of this mouse event.

.
popupT
rigger

Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is
operating system dependent, which is why this abstraction exists.

.
altDown

True (1) if the Alt key was held down during this event, false (0) otherwise.

.
control
Down

True (1) if the Control key was held down during this event, false (0) otherwise.

.
shiftDo
wn

True (1) if the Shift key was held down during this event, false (0) otherwise.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event.

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Customizers

The PDF Viewer component does not have a special customizer, however, it does use the Style Customizer and Custom
Properties.

Vision Component Customizers

Examples

Refer to the examples on the pages.File Explorer and PDF Viewer

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers

Vision - Web Browser Palette

Web Browser Components
The following component gives you the ability to add a web browser to your client.

In This Section ...

Vision - Web Browser Component

General

Component Palette Icon:

Web Browser

Watch the Video

Description

The comp in Designer Web Browser onent allows you to embed a full web browser inside of an Ignition Client. This component
becomes available in Designer after you download the from the Inductive Automation's website. The Web Browser module

le installs the same way as any other modules. Once this component is added onto a window, it will behave Web Browser modu
just like any other web browser when it is inside a Client.

Client machines need to meet the following minimum requirements to use this component. The component may not work
properly if the requirements are not met.

Operating System Requirements

Windows

Microsoft Windows XP (SP2), 7, 8, Vista, Server 2003 (SP1), Server 2008/2012, 32-bit and 64-bit.
Windows version 8 and 8.1 require Java 6 update 38 or greater

Oracle (Sun) JRE 1.6.x and higher, 32-bit and 64-bit.

Linux

https://inductiveuniversity.com/video/web-browser/8.0
https://legacy-docs.inductiveautomation.com/display/DOC80/Web+Browser+Module

Ubuntu 12.04+, Debian 7.7, RedHat Enterprise Linux 7, openSUSE 13.1, Fedora 20, 32-bit and 64-bit
Oracle (Sun) JRE 1.6.x and higher, 32-bit and 64-bit.

Mac OS X

Mac OS X 10.7.x - 10.10.x (Intel)
Apple or Oracle (Sun) JRE 1.6.x and higher, 32-bit and 64-bit.

Windows

Microsoft Windows 7, 8, 8.1, 10, Server 2008 R2, Server 2012, Server 2016, 32-bit and 64-bit.
Windows version 8 and 8.1 require Java 6 update 38 or greater

Oracle (Sun) JRE 1.6.x and higher or IBM JRE 1.7.x and higher, 32-bit and 64-bit.

Linux

Ubuntu 14.04+, 17.04 Desktop, Debian 8+, RedHat Enterprise Linux 7, openSUSE 13.3+, Fedora 24+,
64-bit only
Oracle (Sun) JRE 1.6.x and higher or IBM JRE 1.7.x and higher, 32-bit and 64-bit.

Mac OS X

Mac OS X 10.9.x - 10.13.x (Intel)
Apple or Oracle (Sun) JRE 1.6.x and higher, 32-bit and 64-bit.

Required Linux Libraries

Missing Libraries: 32-bit Ubuntu 12.04

Some 32-bit Linux distros are missing a needed library for running the Web Browser: .libXss.so
1

Steps that fixed it in Ubuntu 12.04:

sudo apt-get update
sudo apt-get upgrade
sudo apt-get install ia32-libs-multiarch

Missing Libraries: Ubuntu 17.04

Ubuntu 17.04 is missing a library that is required for the component to run. Running the
following command can resolve the issue:

sudo apt-get install libgconf-2-4

Required Linux Libraries

Missing Libraries: Ubuntu 17.04

Ubuntu 17.04 is missing a library that is required for the component to run. Running the following
command can resolve the issue:

sudo apt-get install libgconf-2-4

The Web Browser Component will only support the following audio and video codecs: Opus, Theora,
Vorbis, VP8, VP9, and WAV.

http://libXss.so

The underlying browser component is available in scripting through the getBrowser() method. Documentation on
the browser component is available at the JxBrowser Programmer’s Guide. The Inductive Automation support
team is unable to provide detailed advice on scripting with this component. Furthermore, they are unable to
provide troubleshooting beyond the basic functionality of the module.

Hardware Notes

ARM

Currently, the jxBrowser does not support the ARM architecture, thus the component will not work properly when
used in conjunction with the ARM architecture.

Properties

Properties

Name Description Property
Type

Scripting Category

Border The border surrounding this component. Border .border Common

Enabled If disabled, a component cannot be used. boolean .
compone
ntEnabled

Common

FTP
Proxy
Port

FTP Proxy Port sets the proxy port for FTP connections. This
setting is only used when is checked.Use Proxies

int .
ftpProxyP
ort

Data

FTP
Proxy
Server

FTP Proxy Server sets the proxy server for FTP connections.
This setting is only used when is checked. Can Use Proxies
be empty

String .
ftpProxyS
erver

Data

HTTP
Proxy
Port

HTTP Proxy Port sets the proxy port for HTTP connections.
This setting is only used when is checked.Use Proxies

int .
httpProxy
Port

Data

HTTP
Proxy
Server

HTTP Proxy Server sets the proxy server for HTTP
connections. This setting is only used when is Use Proxies
checked. Can be empty

String .
httpProxy
Server

Data

HTTPS
Proxy
Port

HTTPS Proxy Port sets the proxy port for HTTPS connections.
This setting is only used when is checked.Use Proxies

int .
httpsProx
yPort

Data

HTTPS
Proxy
Server

HTTPS Proxy Server sets the proxy server for HTTPS
connections. This setting is only used when is Use Proxies
checked. Can be empty

String .
httpsProx
yServer

Data

Mode Data source for browser. Mode controls whether Starting URL
or will be used.Starting HTML

int .mode Data

Name The name of this component. String .name Common

Popups
Allowed

This flag is used to allow popups in the web page displayed. boolean .
popupsAl
lowed

Behavior

Proxy
Excepti
ons

A comma delimited list of rules for websites that will bypass the
proxy servers. An example sting would be "*foo.com,<local>,
127.0.1". This setting is only used when is Use Proxies
checked.

String .
proxyExc
eptions

Data

The border is unaffected by rotation.

http://www.teamdev.com/downloads/jxbrowser/docs/JxBrowser-PGuide.html

Proxy
Passwo
rd

The password to use for proxy authentication. This setting is
only used when and Use Proxies Use Proxy Authentication
are checked.

String .
proxyPas
sword

Data

Proxy
Userna
me

The username to use for proxy authentication. This setting is
only used when and Use Proxies Use Proxy Authentication
are checked.

String .
proxyUse
rname

Data

SOCKS
Proxy
Port

The port number for SOCKS proxies. int .
socksPro
xyPort

SOCKS
Proxy
Server

The host name to use for SOCKS proxies. Can be empty. String .
socksPro
xyServer

Show
Navigati
on
Buttons

Show the navigation buttons at the top of the frame. boolean .
showNavi
gation

Behavior

Starting
HTML

The initial HTML displayed when the Mode is set to HTML.

Starting HTML is

<html><body> </body></html>

by default, which gives a blank page.

String .
startingHt
ml

Data

Starting
URL

The initial URL displayed when the Mode is set to URL.
Starting URL is blank by default.

String .
startingUrl

Data

Touchs
creen
Mode

Controls when this input components responds if touchscreen
mode is enabled.

int .
touchscre
enMode

Behavior

Use
Proxies

If checked, the Web Browser will try to use the proxy settings. boolean .
useProxi
es

Data

Use
Proxy
Authenti
cation

If checked, the browser will use the username and password
for proxy authentication. This setting is only used when Use
Proxies is checked.

boolean .
useProxy
Authentic
ation

Data

Visible If disabled, the component will be hidden. boolean .visible Common

Zoom
Level

The zoom level the web page is displayed in. 0.0 is normal,
positive numbers zoom in, negative numbers zoom out.

double .
zoomLev
el

Behavior

Scripting

Scripting Functions

 Description

This function will return the underlying browser object. See for more JxBrowser Programmer’s Guide
information.

Parameters

none

 Return

Object - The Browser Object

Extension Functions

This component does not have extension functions associated with it.

Event Handlers

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event.

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

Customizers

Vision Component Customizers

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

http://www.teamdev.com/downloads/jxbrowser/docs/JxBrowser-PGuide.html
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Component+Customizers

1.
2.
3.

4.

Examples

Setting Chromium Switches via JVM Arguments

The Web Browser component is based off of the , which in turn is based upon the Chromium engine. As a JxBrowser library
result, the Web Browser component can be further customized by manipulating .Chromium Switches

Implementing these switches is considered because they can drastically change the behavior of the Web Browser Caution: unsupported
component. The exception to this case is when a member of our support team requests a switch be added to help troubleshoot an issue. For
the sake of clarity, instructions on how to manipulate the switches via the Designer Launcher and Vision Client Launcher are listed below, but
we generally do not recommend users implement these switches.

If you're going to make use of a switch, then you would do so on the Designer Launcher's/Vision Client Launcher application, under the JVM
Arguments field. Below is an example on how to configure a switch for a client using the Vision Client Launcher. The same method applies for
the Designer Launcher.

Open the Vision Client Launcher.
Once open, either create a new application or on an existing application. manage the settings
Once the Settings are open, add a new entry into the JVM Arguments text area. Arguments for Chromium Switches
must have a prefix of " " followed by the argument. Below is a example where we -Dignition.chromium.switch.
set the argument " " :mute-audio

-Dignition.chromium.switch.mute-audio

Following this change, audio from the Web Browser Component will be muted once the client is launched.

https://jxbrowser.support.teamdev.com/support/solutions/articles/9000013080-chromium-switches
https://peter.sh/experiments/chromium-command-line-switches/
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Client+Launcher+Settings#VisionClientLauncherSettings-LauncherApplicationSettings

1.

2.

3.

1.

2.

3.

4.

Vision - The Window Object
General

Window Properties

Watch the Video

Description

Window

Windows are the top-level unit of design for Vision projects. A window is identified by its path, which is the name of all its
parent folders plus its name, with forward slashes (/) in between. For example, the path to a window in the top level
called MainWindow would simply be its name, whereas the path to a window named under a folder called UserOptions Option

 would be: .sWindows OptionsWindows/UserOptions

A window may display a Titlebar and/or a Border. The titlebar allows the user to drag the window around in the client, and
houses the window's close and maximize/restore buttons. The border of a window can be used to resize the window in the
client when it is floating or docked. Whether on not the titlebar and border are displayed depends on the values of the window's
titlebar and border display policy properties, and its current state. Commonly, a window will display both a titlebar and border
when it is configured as a popup. It is often desirable to remove titlebars and borders on main windows so they join seamlessly
with docked windows.

Note that the user manual describes different , technically there is only a single window object in the Vision Window Types
module: different "types" of windows are simply instances of the window object configured in different ways. See Window Types
for more information about changing types.

Root Container

Inside a window is always the Root Container. The Root Container is where you will place all of your components in the
window. This is exactly the same as a normal container component except that it cannot be deleted. When in the designer,
"resizing" the window from the main Vision workspace is really changing the size of the Root Container.

Window Opening Event Order

Window objects have several event handlers that trigger when the window opens. However, each event handler occurs at a
separate time. Because of this, it is important to understand the order that these events occur:

Opening a window - When opening a window for the first time in a designer, the following event handlers are called in order:

visionWindowOpened - Important to note the description on this event: it occurs before any bindings on the window
are evaluated.
internalFrameOpened- Again, the description notes that if the window has been cached, this will not fire on sequential
opens.
internalFrameActivated - The last event, but also repeatable while the window is opened, since this event will trigger
again if the window loses and then regains focus without being closed in between.

Closing a window - When closing a window, the following event handlers are called in order:

internalFrameClosing - This event would be ideal to "clean up" in the window, since the window is still technically open
at this point.
visionWindowClosed - Triggers when the window is closed. Functionally, this is similar to internalFrameClosed, but
happens slightly earlier.
internalFrameDeactivated - This triggers when the window is closed, or when the window loses focus, so you may
want to avoid this event if your script should only trigger when the window is closed.
internalFrameClosed - Similar to visionWindowClosed. Triggers when the Java windowing system has finished closing
the window.

Properties

https://www.inductiveuniversity.com/video/window-properties/8.0
https://legacy-docs.inductiveautomation.com/display/DOC80/Window+Types
https://legacy-docs.inductiveautomation.com/display/DOC80/Window+Types

Name Description Property
Type

Scripting Category

Borde
r
Displ
ay
Policy

Determines if the window's border is shown in various window states.

Integer Property

0 Always

1 Never

2 When Not Maximized

int .
borderDis
playPolicy

Behavior

Cach
e
Policy

By default this property is set to , which keeps a window in a memory Auto
cache for a while after it is closed, so that if it is opened again it will be quick.
The window isn't "active" while it is closed: all of its bindings and scripts are
shut down.

Setting this property to causes a fresh copy of the window to be Never
deserialized every time it is opened. This is a performance hit, but it also is a
convenient way to "clear out" the values of the window from the last time it was
opened, which can be helpful in data-entry screens.

Setting the property to will trade memory for higher performance, Always
causing the window to always remain cached after the first time it is opened.
This means the window will open very fast, but your Client will need lots of
memory if you do this to a large amount of windows.

Integer Property

0 Auto

1 Never

2 Always

int .
cachePoli
cy

Behavior

Close
able

Determines whether or not to draw the close (X) button in the upper right corner. boolean .closable Behavior

Dock
Index

Determines the order of docked windows if multiple windows are open on the
same edge. Lower numbers are on the outside (closest to the edge the window
is docked to), and higher numbers are closer to the center.

int .
dockIndex

Layout

Dock
Positi
on

Determines the position this window is docked to, or if it is floating.

Integer Property

0 Floating

3 West

4 South

2 East

1 North

int .
dockPosit
ion

Layout

Layer Sets the layer that this window is in. Default layer is 0, which is the bottom
layer. Windows in higher layers will always be shown on top of windows in
layers beneath them. A common strategy for using the layer property is to set
Main Windows and Docked windows to 0, Popups to 1 and very important
popups to 2.

int .layer Layout

Locati
on

The starting location that this window will open up at. Only applicable to floating
windows that are not set to start maximized. This value will be overridden when
an open window script specifies where to open.

Point .
startingL
ocation

Layout

Maxi
mizab
le

Determines whether or not to draw the maximize button in the upper right
corner.

boolean .
maximiza
ble

Behavior

Maxi
mum
Size

The maximum size that this window will allow itself to be resized to. Dimension .
maximum
Size

Layout

Minim
um
Size

The minimum size that this window will allow itself to be resized to. Dimension .
minimum
Size

Layout

Resiz
able

Determines whether or not to let the user resize the window. boolean .resizable Behavior

Size The dimensions of the window. This can be manipulated by selecting the
window and dragging the resize handles along the windows right and bottom
edges.

Dimension .size Layout

Start
Maxi
mized

When set to true, the window will become maximized when it is opened. boolean .
startMaxi
mzied

Behavior

Title The title to be displayed in this window's titlebar. The title is also used in the
Client's Windows menu.

String .title Appearan
ce

Titleb
ar
Displ
ay
Policy

Determines if window's titlebar is shown in various window states.

Integer Property

0 Always

1 Never

2 When Not Maximized

int .
titlebarDi
splayPoli
cy

Appearan
ce

Titleb
ar
Font

The font of the window title in the titlebar. Font .
titlebarFo
nt

Appearan
ce

Titleb
ar
Height

The height of the window's titlebar. int .
titlebarHe
ight

Appearan
ce

Scripting

Scripting Functions

 Description

Returns a reference to the Root Container in the window.

Parameters

none

 Return

Object - a reference to the Root Container, which is functionally just a .Vision - Container

 Description

Returns a reference to a component. The path paremeter allows you to specify the full path to the
component as a string.

Parameters

String path - The path to the component, using a period as a delimiter, such as "Root Container.
Group.Label".

 Return

Object - to the component specified, or None if there is a typo in the path.

Extension Functions

This component does not have any extension functions.

Event Handlers

An "internalFrame" refers to the underlying object Java windowing system that windows in the Vision module use.

Fires whenever the window is shown or focused. If you want a script to fire every time a window is opened, use
this event.

.source The window that fired this event. Use source.rootContainer to get the root container.

Fires when a window is closed.

.source The window that fired this event. Use source.rootContainer to get the root container.

Fires right before a window is closed.

.source The window that fired this event. Use source.rootContainer to get the root container.

Fires when a window loses focus.

.source The window that fired this event. Use source.rootContainer to get the root container.

Fires the first time a window is opened. Note that when windows are closed, they may be cached. If a window in
a client is cached, subsequent attempts to open the window will not trigger this event. If you disable caching (by
setting the property to) then this event will trigger every time the window is opened. Cache Policy Never
Alternatively, you could use instead to consistently trigger a script when a window is internalFrameActivated
opened.

.source The window that fired this event. Use source.rootContainer to get the root container.

Fires whenever a bindable property of the source component changes. This works for standard and custom
(dynamic) properties.

.source The component that fired this event.

.
newValue

The new value that this property changed to.

.
oldValue

The value that this property was before it changed. Note that not all components include an
accurate oldValue in their events.

.
property
Name

The name of the property that changed.

This event is fired each time the window is opened and before any bindings are evaluated.

.source The window that fired this event. Use source.rootContainer to get the root container.

This event is fired each time the window is closed.

.source The window that fired this event. Use source.rootContainer to get the root container.

Examples

For examples of windows, please see the section.Vision Windows

Remember to always filter out these events for the property that you are looking for!
Components often have many properties that change.

https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+Windows

	Vision Components
	Vision - Input Palette
	Vision - Text Field
	Vision - Numeric Text Field
	Vision - Spinner
	Vision - Formatted Text Field
	Vision - Password Field
	Vision - Text Area
	Vision - Dropdown List
	Vision - Slider
	Vision - Language Selector

	Vision - Buttons Palette
	Vision - Button
	Vision - 2 State Toggle
	Vision - Multi-State Button
	Vision - One-Shot Button
	Vision - Momentary Button
	Vision - Toggle Button
	Vision - Check Box
	Vision - Radio Button
	Vision - Tab Strip

	Vision - Display Palette
	Vision - Label
	Vision - Numeric Label
	Vision - Multi-State Indicator
	Vision - LED Display
	Vision - Moving Analog Indicator
	Vision - Image
	Vision - Progress Bar
	Vision - Cylindrical Tank
	Vision - Level Indicator
	Vision - Linear Scale
	Vision - Barcode
	Vision - Meter
	Vision - Compass
	Vision - Thermometer
	Vision - IP Camera Viewer

	Vision - Tables Palette
	Vision - Table
	Vision - Table Customizer

	Vision - Power Table
	Vision - Power Table Customizer

	Vision - List
	Vision - Tree View
	Vision - Tree View Customizer

	Vision - Comments Panel
	Vision - Tag Browse Tree

	Vision - Charts Palette
	Vision - Easy Chart
	Vision - Easy Chart Customizer

	Vision - Chart
	Vision - Chart Customizer

	Vision - Sparkline Chart
	Vision - Bar Chart
	Vision - Radar Chart
	Vision - Status Chart
	Vision - Pie Chart
	Vision - Box and Whisker Chart
	Vision - Equipment Schedule
	Vision - Gantt Chart

	Vision - Calendar Palette
	Vision - Calendar
	Vision - Popup Calendar
	Vision - Date Range
	Vision - Day View
	Vision - Week View
	Vision - Month View

	Vision - Admin Palette
	Vision - User Management
	Vision - Schedule Management
	Vision - Roster Management
	Vision - SFC Monitor

	Vision - Alarming Palette
	Vision - Alarm Status Table
	Vision - Alarm Row Style Customizer

	Vision - Alarm Journal Table

	Vision - Containers Palette
	Vision - Container
	Vision - Template Repeater
	Vision - Template Canvas

	Vision - Misc Palette
	Vision - Paintable Canvas
	Vision - Line
	Vision - Pipe Segment
	Vision - Pipe Joint
	Vision - Sound Player
	Vision - Timer
	Vision - Signal Generator

	Vision - Reporting Palette
	Vision - Report Viewer
	Vision - Row Selector
	Vision - Column Selector
	Vision - File Explorer
	Vision - PDF Viewer

	Vision - Web Browser Palette
	Vision - Web Browser Component

	Vision - The Window Object

