Y] T o P 3

1.1 Vision Designer Interface 7
1.2 VIiSION WINGOWS . . .ottt e e e e e e e e e e e 16
L 2. L WINAOW Ty PBS vt ittt et et e et e e e e e e e 24
1.2.2 POpUP WINAOWS . oottt e e e e e e e e e e e e e 27
1.2.2.1 Parameterized Popup WINAOWS 32
1.2.3 Navigation Strategies in ViSIONot e 38
1.2.3. 1 Navigation - Tabh Stript 42
1.2.3.2 NaVIQAtioN - TWO TIeE . oo ot ottt ettt e e e e e e e e e e e e 44
1.2.3.3 Navigation - TreE VIEWottt e e e e e e e 48
1.2.3.4 Navigation - Forward and Back BULIONSottt e 52
1.2.3.5 Navigation = Drill DOWNt ot ittt et e e e e e e e e 56
1.2.3.6 Navigation - MENUDAIot e e e e e e e e e 59
1.2.3.7 Navigation - Retargeting i 62
1.3 Working with Vision COMPONENTSottt ettt e e e e e e e e e e 64
1.3.1 Creating Vision COMPONENESttt it ettt et e e e et e e e e e e e e e e e e 76
1.3.2 Vision Component CUSIOMIZEIS oottt ettt e e e e e e e e e e e e e e 79
1.3.3Drawing TOOIS 90
1.3.3.1 ShaPE GROMEIIY . o\ttt ettt e e e e 95
1.3.3.2 Rl @and StroKe o 100
1.3.41mages and SVGS iN ViSIONottt e e e e 105
1.3.5Comparison Charts 111
136 HTML N ViSION .o e e e e e e e e e e 125
1.3.7 Localization in ViSION . . . oottt e e e e e e 127
1.4 Binding TYPES IN VISION . . . oot e e e e e e e 129
1.4.1 Property Bindings in ViSIONo 133
1.4.2 Tag Bindings iN ViSION ..o 135
1.4.3 Indirect Tag Bindings iN ViSION 138
1.4.4 Tag History Bindings in ViSIONt e e e e e e 142
1.4.5 Expression Binding in VISION 149
1.4.6 Named QUEry BiNAINGSottt e 151
1.4.7 DB Browse BinAINgS . ..t ottt ittt e 154
1.4.8 SQL Query Bindings iN ViSION oo e 159
1.4.9 CellUpdate BiNdiNgSottt e e e e e 163
1.4.10 FUNCHON BiNAINGS . . ot ittt e e e e e 173
1.4.11 Color Animation iN VISION oo e e e 175
1.5 ViSION TeMPIALES . . o .ottt e e e e 182
15.1Creating @ TemPIate 188
1.5.2 Template INAIreCHONot et e e e e e e e e e 195
1.5.3 Using the Template REPEALETttt ittt ettt e e e et e e e e e 201
1.5.4Using the Template CanVASttt ettt e e e e e e e e e e 209
1.6 SECUItY IN VISION . . .o e e e e e 219
1.6.1 Component and WINAOW SECUIILY oot v ittt et e et e e e e e e e e e e e e e e e et 222
1.6.2 SECUNLY IN SCHIPIING . o vttt e e e e e e e e e e e e e 224
1.7 SCHPNG N ViSION . oo e e e e e 228
1.7.1 Script BUIlders in ViSIONo 233
1.7.2 COMPONENt EVENESo e e 240
1.7.3 EXtENSION FUNCHIONSottt e e e et e e e e e e e e e e e 250
1.7.4 Custom Component Methods 256
1.7.5 Focus Manipulation 259
1.7.6 CHENt EVENE SCIIPLS . . vttt ittt e e e e e e e e e e e e e e e e e e 263
1.7.7Read a Cell from a Table 269
1.8 HiIStOrian IN ViSION .. .o 273
1.8.1Using the Vision Easy Chart 276
1.8 1.1 EASY Chart - AXES . . vttt it e ettt 281
1.8.1.2 Easy Chart - SUDPIOLSot e e e 289
1.8.1.3 Easy Chart - Pen Names and GrOUPS vt u ittt et e e et e e e e e e e e e e 293
1.8.1.4 Easy Chart - Pen Renderer 297
1.8.1.5 Easy Chart - Digital OffSett 300
1.8.1.6 Easy Chart - Calculated PENSt e e 303
1.8.1.7 Using the Tag Browse Tree for Chartingottt e e e e e 311
1.8.1.8 Indirect Easy Chart 314
1.8.1.9 Easy Chart - Database Penst 319
1.8.2Using the ClassiC Chart e e e e 322
1.8.3 Other Vision Trending Chartsot e e e e e e e e e 330
L9 VISION ClENE TAGS . . . oottt ettt e e e e e e e e e e e e 333
1.10 ViSiON ProjeCt PrOPEITIES . . . ottt it ittt e e e e e e e e e e e e e 338
1.10.1 Client Update MOOESottt et et e e e e et e e e 351
1.10.2 Setting UP AULO LOGIN . . o . ottt et e et e et e e e e e e e e e e e e e 355
1.10.3 Using TouCh SCreen MOOEo e e e e e e e 357
1.11 Common TaskS iN VISIONo et e e e s 362
1.11.1 Component ANIMAtION . ..ottt et et e e et e e e e e e e e e e 363
1.11.2 Custom INPUE TEMPIALE . . . o . oo e e e e e e e 368
1.11.3 Client Tags for INCIreCtion e 371
1.11.4 High Performance HMI TeChNIQUESot e e e s 383
1.11.5 Open Dynamic WINdOWS 0N STAMUP oottt et e et et e e e e e e e e e e e e e 386
L1268 TANK CUTAWAY . . o o ettt ettt et e 388
1.11.7 Dropdown List EXample 391

1.11.8 MUltI-MONITOr CHENES . . o oottt e e e e e e e e e 398

1.12 Local Client Fallback
1.13 Vision Client Interface

Vision

The Vision module is a tool for creating and maintaining an interactive,

accurate Human-Machine Interface (HMI) for your site. Many other .

modules, as well as platform level features, seamlessly integrate with the On thispage....

Vision module, providing a simple method of visualizing and presenting

data to your users. _
Windows

Navigation

Components

Bindings

Graphics

® Scalable Vector Graphics

Templates
Vision Client Disconnections

Windows

Vision Windows are the basic building blocks for all of your HMI screens. There are three basic window
configurations that define how a window behaves:

® Main Windows - A main window is one that is set to start maximized to take up all available

screen space (except space used by any docked windows).
® Popup Windows - A popup window is one that appears (pops up) when the user performs an

action such as clicking the mouse, pressing a function key, or touching a button (if using a

touchscreen). Popup windows usually remain on top of the current window until closed,

enabling use)rs to zu?ckly choose optigns or settingspbefore returning to the previous window. @ IN DUC T I VI
* Docked Windows - A docked window is set to a static location on the screen. Docked windows U NIV E RS I-I

are often used to hold navigation trees or status information that needs to remain on the screen
at all times.

By changing a window's properties, you can transform any window into various configurations, with each .

behaving differently based on those settings. Passing custom parameters into windows allows you to Window Types
create the window once, and then re-use your screens multiple times within the same project. You get to

choose what windows are available on startup and how your navigation is configured. The following is an

example of a Vision module screen displaying a docked window for navigation on the top of a main WatCh the Video
window covering the remaining available screen space.

CDL Overview Line State (POD) OEE by Area Skin Load Count

Line OEE (POD) % st A 1 s o

Production History = [IAL R | [|| Il [T

Navigation

A large number of navigation options exist in the Vision module. For example, docked windows can be @ IN DUC T I VI

set up with navigation trees, tab strips, or menu bars. Components such as buttons can be used to

navigate to other windows. A graphic or photograph of a map can be customized with clickable zones. U NIV E RS Ir_[
Many of the common options are available as project templates that you can take advantage of when first

creating your project. Here are some examples:

® Back/forward buttons Navigation

Watch the Video

® Navigation tab strips

{7 ovnew Y AL Y~ |

https://www.inductiveuniversity.com/videos/window-types/8.0/8.1
https://www.inductiveuniversity.com/videos/navigation-strategies/8.0/8.1

® Multi-tier navigation

~ '@ Administration
(¥ Roster Management

[Schedule

&8 User Management
~ W HMIScreens

i Overview

Components

Components are building blocks for your project. The Vision module has a variety of built-in components s
uch as displays, buttons, charts, and other elements that display information. Each component has
multiple properties that control its appearance, behavior, and data. For example, a Tank has a level,
capacity, and a liquid color, while a Label has text, font, and an image. You can enhance components

INDUCTIVE
UNIVERSI1

D

with custom properties to create additional functionality.

Wision Property Editor
= IFF s
B = =

=l

® -

E Common
Name

= Data
Value &
Capacity

=l Appearance
Tank Color &

Liquid Color &

Tank 3

220 &
100.0 €2

213,213,213 > @ 2

125122213 [@ =

Vision Property Editor
E | & A
B2 5 | = | ®]

2l

= Common
Name
Enabled &
Visible &
Border
Mouseover Text
Cursor

=l Data
Text

= A

Label 1

true
true
[Line Border

Default

Text:

Bindings

Component
Overview

LY

Watch the Video

LT

L

o]

e

G

A binding is a mechanism that allows a property on a component to change based on a a change to a
value elsewhere in Ignition. For example, with binding, the liquid level displayed in a tank graphic can be
bound to the realtime liquid level in a tank. The value of a Tag could be bound to a linear scale, a meter,
or a label on your window. The power of bindings comes from the variety of binding types.

Click on the following links for complete information about binding types:

Graphics

In addition to standard components, the Vision module supports the use of SVG, PNG and JPEG images
on Vision Windows. You can create your own images and import them into your project or use Ignition's 2

D Drawing tools to create graphics.

Properties - Property Binding, Cell Update Binding, Component Styles

Tags - Tag Binding, Indirect Tag Bindings in Vision, Tag History Binding
Expressions - Expression Binding

Databases - DB Browse Binding, SQL Query Binding, Named Query Bindings
Functions - Function Binding

INDUCTIVE
UNIVERSII

v,

You can use the built-in SVGs from Symbol Factory, which contains hundreds of ready-to-use graphics,
or use the raster image library with an Image component to get a jump start on your project.

Scalable Vector Graphics

Images (png, jpg,
gif)

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Cylindrical+Tank
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Label
https://legacy-docs.inductiveautomation.com/display/DOC81/Working+with+Vision+Components#WorkingwithVisionComponents-CustomProperties
https://legacy-docs.inductiveautomation.com/display/DOC81/Color+Animation+in+Vision#ColorAnimationinVision-StyleCustomizer
https://www.inductiveuniversity.com/videos/component-overview/8.0/8.1

Scalable Vector Graphics (SVG) have several advantages over other graphic types. Because they are .
vector graphics, they can be scaled without a loss of clarity or resolution. Additionally, you can drill into Watch the Video
an SVG to change individual parts of the image. To use an SVG in Ignition, simply drag the file directly

onto the window in which you want it to appear.

Wision Property Editor B X

R

El Common -
Name Blue pilot light 1 E| e
Visible true (=]
Mouseover Text S

E Data
Quality Sl

El Position
X 18.0 @@ v

Templates

Components and images can be combined to create Vision Templates. These are re-usable objects that @ IN DUC 'I' I VI

can be configured once and used throughout your project. Templates work under a principal of

inheritance. When a change is made to a template, that change is inherited by each instance of that U NIV E RS IrI
template. Most templates use one or more custom properties (Template Parameters) to tie data from a

window to the internals of the template.

The Cloud Templates Browser portal in the Designer gives you access to pre-built templates. Ignition
community members can also share their own templates in the Cloud Templates. AbO ut Tem p I ates

EE3

Watch the Video

SPEED.

POWER

lediLabel Hz
ledzLabel Amps.
ShowlED true

Vision Client Disconnections

If a Vision Client loses its connection to the Ignition Gateway, a Connection Lost message will be displayed immediately on your screen:

Gateway Connection Lost

Searching for active Gateway

0 Gateway Is not available | http://localhost:8088

Unable to connect to Gateway http://localhost:8088: Connection refused: connect

& Logout

The Vision Client will continuously attempt to reconnect to the Gateway. When the connection between the Vision Client and the Gateway is re-
established, your Vision Client will resume its normal operation. If the project associated with the Vision Client is somehow deleted, the Client will fail
to reconnect because its source project is missing. A project can be manually deleted or overwritten by a Gateway restore.

In This Section ...

https://www.inductiveuniversity.com/videos/images-png-jpg-gif/8.0/8.1
https://www.inductiveuniversity.com/videos/images-png-jpg-gif/8.0/8.1

Vision Designer Interface

Vision Designer Workspace

The Vision Designer Interface is where the bulk of the designer's work is done. The Vision Designer
Interface provides some built-in functionality to help you get started designing your project whether you
are logging into your project for the first time or the 50th time. From the Vision Windows & Templates
Welcome tab, you can easily create Main windows, Popup windows, Docked windows and Templates. It
even shows you the recently modified windows, so picking up where you left off the last time you logged
into your project, is right at your fingertips.

You can also check the Gateway Status from the Designer Interface and see all the Vision Clients that
are running along with the client details and stats.

When looking at a Vision specific element in the Designer, such as a window or template, the Designer is
organized with some panels that are specific to the Vision Designer Interface, such as the Property
Editor and Component Palette. Other elements of the workspace that are shared between spaces are
discussed in the General Designer Interface.

Fle Edt View Project Component Algnment Shape Tools Help
B ® Wi O~ » - o
Projctaonser aox[~ Component... & - X
o Vision Windows & Templates [l Leammore | [Gateway Status & S
a2 ==
£A) Alarm Notificaton Pipelines » Input

&% Sequential Function Charts) e
[scripting Create a New Window

» Display
® Perspective)

» Tables

NP

G Transaction Groups

@ Vision » Charts

B Named Queries » Calendar

B Reports

@ WebDev) =) B A
Main Window Popup Window Docked Window D Gy

S BN |9

» Containers
» Misc

Vision Property Editor 8- X

e 2= » @ Reporting
» & WebBrowser

Create a New Template

Component Palette

On thispage ...

® Vision Designer Workspace
® Component Palette
® \Vision Property Editor

® Filters

® Binding Icon

® Status Indication

® Dropdown Lists in Properties
® Common Properties

® Vision Menubar

File Menu

Edit Menu

View Menu
Project Menu
Component Menu
Alignment Menu
Shape Menu

® Tools Menu

INDUCTIVE
UNIVERSII

The Designer User
Interface

Watch the Video

The Vision module comes with a host of useful components out of the box, such as buttons, text areas, dropdowns, charts, many of which are
specialized for industrial controls use. The Component Palette is located on the right side of the Designer workspace. The basic workflow is to drag a
component from the component palette and drop it into a container on a window. From there, you can use the mouse to drag and resize the
component into the correct position. While the component is selected, you can use the Property Editor panel to alter the component's properties,

which changes the component's appearance and behavior.

Vision Property Editor

The Vision Property Editor is a dockable panel that appears in the Designer's central workspace, usually in the lower left corner. It displays the
properties of the selected component. If more than one component is selected, it will show all properties that the current selection set have in
common. Hovering your mouse over a property will display a tooltip that gives a description of the property, as well as its data type and scripting

name. Alternately, you can click on the Show/Hide Description Area B icon to bring up the description area which displays the same information for

the currently selected property.

You can also change how the properties are sorted in the property editor. By default, they are sorted with the Categorized E=— icon, with similar

components grouped under different categorical headers. However, they can also be sorted in alphabetical order by clicking on the Alphabetic

n.

Filters

H:
24 ico

https://legacy-docs.inductiveautomation.com/display/DOC81/General+Designer+Interface
https://www.inductiveuniversity.com/videos/the-designer-user-interface/8.1/8.1

It is common for components to have many properties, so by default the Property Editor only shows the Basic properties. These are the properties
that you'll most commonly want to set or bind for a given component. However, the property filter can be changed to show different sets of
properties. The designer will remember your selection for future sessions.

® Basic: The Name property and any very commonly used properties. Most components only show two to four properties in Basic.

® Standard: Most of the common properties that a designer would want to use. Few or none of the Expert properties are in the Standard list.

® Expert: The properties that are most commonly used with more advanced features of the component. Few or none of the Standard
properties are in the Expert list.

® All: All properties

Vision Property Editor

g2 = | = e R

=l Common & Basic
Mame "k Standard
Visible ® Expert
Border % Al

@ Most users find it best to set the property filter to All, so they can see all of the properties available to them at all times.

Binding Icon

To the right of most properties is the Binding 2 icon. Click this icon to modify the property binding that is driving that property. You can only use
this button when the window workspace is not in Preview mode. Some properties cannot be bound because their datatype is not supported by
the binding system. You can still use scripting to affect these properties.

Status Indication
The name of a property in the Property Editor conveys important information about that property:

® A blue name indicates that the property is a custom property.
® Abold name with a Link QB icon next to the property indicates that the property is bound using a property binding.
* A bold name with a Color Palette 6 icon indicates that the property is being affected by the component styles settings.

® A red bold name with a Warning £%% icon indicates that the property is double-bound. This means that two things, a property binding and
the styles settings are both trying to drive the property value. This will result in errors as the two systems fight each other to write to the

property.

Dropdown Lists in Properties

Some of the properties you will encounter on components will have a dropdown list instead of a field to type into. The property description will say it is
an integer value, and in most of these cases you can still create a binding on that property. These dropdown lists are an enumeration, meaning each
element in the dropdown has an integer value. In all cases, the first value in the list is 0, the second is 1, the third is 2, and so on. You can use this
knowledge to create a dropdown list on-screen for your operators that matches the list. In this case, you would just bind this property to the Selected
Value of the dropdown.

Common Properties

Every component has properties arranged into categories based on what it has available (i.e., Common, Behavior, Data, Appearance, Layout, etc.).
Each component has a different list of properties to effect how it behaves, but every component has the Common group of properties located at the
top of the list. These Common properties will behave the same for all components. Here's a list for each Common property and when it might be used.

Function Description

Name The name of the component. This string is used to identify your components in the Project Browser. This is especially important for
Bindings and Scripting. Binding is allowed on this property, but it is recommended to never bind this property. Binding it can break
your scripts, bindings, and cause errors.

Enabled This Boolean controls whether a component can be interacted with. Most commonly used with data entry components to allow the
user to see the value, but not change it.

Visible This Boolean controls whether the component is shown on the window. You can bind this property to show/hide the component

https://legacy-docs.inductiveautomation.com/display/DOC81/Working+with+Vision+Components#WorkingwithVisionComponents-CustomProperties

based on any logic you want (i.e., security, process step, etc.).

Border The border that surrounds the component. There is a dropdown to select from a list of common borders, and a button to the right to
manually edit a border from several different options with a second tab that shows Titled Borders. When binding this property, note
that this is a complex data type. It is a Java Border data type, not a string or an enumeration. The common ways to make this
property dynamic are to bind it with an Expression binding type or to set it through a script, but using the Expression binding is
preferred. If you are using an Expression binding, you must use the toBorder() expression function to return the correct data type. If
you are using a script, you need to make sure you use the Java Border data type. See the Java documentation for more information
on setting a border through scripting.

Mouseover = The text that is displayed when a user moves the mouse over the component. This string is commonly used to provide your operators
Text more information about an object (i.e., showing the PLC address of an on-screen value, or telling the operator exactly what will
happen when a button is pressed). HTML is allowed in this property.

Cursor The mouse pointer image to use when the operator moves the mouse over the component. This int property corresponds to one of
the options in the list. Selecting ‘default’ means the operating system decides what pointer to use.

Value Cursor

0 Default

1 Crosshair
2 Text

3 Wait

4 SW Resize
5 SE Resize

6 NW Resize
7 NE Resize
8 N Resize
9 S Resize
10 W Resize
11 E Resize
12 Hand

13 Move

Vision Menubar

There is a menubar at the top of the Designer Workspace that provides functionality when working in the Vision workspace. Each menu dropdown
reveals a host of functions related to the menu item. The other menus shared between Vision and Perspective are discussed in the General Designer
Interface.

File Edit View Project Component Alignment Shape Tools Help
B M|« A+ Y% 5 & i /4 -0-»|F -2 Q|

File Menu

See General Designer Interface.

Edit Menu

The Edit Menu is similar to other applications edit menus as it provides much of the basic copy/paste functionality. You can also access this menu by
right-clicking on an item.

https://legacy-docs.inductiveautomation.com/display/DOC81/toBorder
https://docs.oracle.com/javase/tutorial/uiswing/components/border.html
https://legacy-docs.inductiveautomation.com/display/DOC81/General+Designer+Interface
https://legacy-docs.inductiveautomation.com/display/DOC81/General+Designer+Interface
https://legacy-docs.inductiveautomation.com/display/DOC81/General+Designer+Interface

+ Undo Move/Resize 'Dropdown’

Al Rename

Yo Cut

A Copy

B Paste

B Duplicate

B Paste Immediate

¢’ Find/Replace
Select All

Select Same Type

Select Same Type In Window
Group Rename

m Delete

The following feature is new in Ignition version 8.1.24
Click here to check out the other new features

Note: You can use certain Edit Menu actions for Vision Component properties. For example, you can copy a component's exposed property by
selecting it in the Vision Property Editor and choosing "Copy" from the Edit Menu.

Function Description

Undo and Can be used to revert to the previous state, essentially removing the last change, or redoing it again after having been removed. This
Redo has a large queue that can be traversed, but does not include every change (i.e., Tag edits cannot be undone).

Cut/Copy These functions much the same as they do everywhere else. Most things in the Designer can be copied and pasted elsewhere, from

/Paste individual components on the window to entire folders of windows. The difference is that when using Paste with an object on a

/Duplicate window, it will instead create a paste action, and allow you to move the mouse and select where you want to paste it, clicking the
mouse to confirm. Cancel Paste will cancel the paste action, while paste immediate will bypass the paste action, and instead
immediately paste the object from where it was cut or copied from.

Find Brings up the Find and Replace interface to allow you to find specific objects within the project. See also: Find and Replace
/Replace

Select All Selects All siblings in the same container as the currently selected component.

Select Selects all components of the same type in the same container as the currently selected component.

Same Type

Select Selects all components of the same type as the currently selected component, regardless of what container they are in.
Same

Type in

Window

Group Renames a group of components to a prefix with a number afterwards. For example, if your prefix is Button, it will rename all selected
Rename components Button (1), incrementing the number each component.

Delete Deletes the currently selected component. This can also be done using the delete key.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.24
https://legacy-docs.inductiveautomation.com/display/DOC81/Find+and+Replace

View Menu

The View Menu allows you to manipulate how various objects look or act in the Designer.

<
o EHE

o0

Function

Emulate
Touchscre
en

Disable
Overlays

Reset
Panels

Panels
Toolbars

Welcome
Screen

Grid Size
Show Grid

Snap to
Grid

Show
Guides

Snap to
Guides

New Guide

Emulate Touchscreen

Disable Overlays

Feset Panels

Panels k
Toolbars k
Welcome Screen

Grid Size: 5

Grid Size: 10

Show Grid

Snap to Grid

Show Guides

Snap to Guides

Mew Guide...

Spotlights k

Dependencies »
Description

Simulates Touchscreen mode in the Designer to be able to test it without having to open a client.

Disables the red or gray overlays on components because of a bad Tag or binding, but only in this Designer session.

Resets panels (Project Browser, Tag Browser, etc.) to the default panel configuration.

Allows you to enable or disable certain panels within the Designer.
Allows you to enable or disable certain toolbars within the Designer.

Takes you to the welcome screen in the Designer, or reopen it if it had been closed.

Allows you to select a grid size of 5 or 10.
Toggles the grid on and off.

Changes click-and-drag behavior to snap components to grid lines. This works even when Show Grid is off.

Shows any guide lines.

Changes click-and-drag behavior to snap components to any created guidelines.

Adds a guide line to the current window.

Spotlights Puts a highlighted border around components that have the selected spotlight. Bound objects will get a green highlight, objects with
scripting will get a blue highlight, and invisible objects will get a pink highlight. If a component has multiple highlights, and both are
enabled, it will alternate the colors throughout the highlight.

Dependenc = Shows the binding dependencies (as arrows) based on the selected component or components. Show Supporters will show all
ies components that the currently selected component is bound to, Show Dependents will show all components that are bound to the
currently selected component, and Show All will show all of the bindings, regardless of the selected components.

Project Menu

The Project Menu is where many project specific settings can be changed.

i Comm Off
1} Comm Read-Only

O 1} Comm Read/Write

Project Properties
Gateway Events

Client Events

3|
&
EI. Session Events
&

Preview Mode

>
& Preview Language »

Function Description

Designer The Comm settings allow you to select the level of communication the Designer can have with the Gateway. By default, this is set to

Comms Comm Read-Only, which will make any information coming from the Gateway read only, but this can be changed to Comm Off which
will prevent Gateway communication, or Comm Read/Write, which will allow both read and write communications between the
Gateway. The default that the Designer opens at can be changed in the Project Properties. See also: Communication Modes

Properties = Opens up the Project Properties window, allowing project settings to be changed. See also: Project Properties

Event Opens up the appropriate event script window, either client or Gateway. These can also be accessed from the Project Browser. See
Scripts also: Client Event Scripts and Gateway Event Scripts.

Preview Puts the Designer into Preview Mode, allowing you to interact with it like a client. See also: Previewing the Project

Mode

Preview Determines the language that the Designer will revert to when in Preview Mode. See also Localization in Vision

Language

Component Menu

The Component Menu offers many of the same selections for the selected component that right clicking on that component would contain.

https://legacy-docs.inductiveautomation.com/display/DOC81/General+Designer+Interface#GeneralDesignerInterface-ProjectMenu
https://legacy-docs.inductiveautomation.com/display/DOC81/Project+Properties
https://legacy-docs.inductiveautomation.com/display/DOC81/Gateway+Event+Scripts
https://legacy-docs.inductiveautomation.com/display/DOC81/General+Designer+Interface#GeneralDesignerInterface-PreviewingtheProject

#L Size & Position...

A Customizers I

E¥ Scripting...
@ Security

& Translations

Function
Group
Ungroup
Convert to
Container
Lock

Layout

Size and
Position

Customizers
Scripting
Security

Translations

Description

Only available when multiple components are selected. Grouping will place the currently selected components into a group.
Ungroup will remove the grouping. See also: Working with Components

Only available when a group is selected. This option removes the group (and any custom properties that are on the group) and
places all items from that group into the object the group was in.

Only available when a group is selected. Converts the selected group to a container. See also: Container

Locks or unlocks the selected component's size and position.
Set layout constraints for the selected component.

Change the size and position of the currently selected component.

Allows you to select any of the available customizers for the currently selected component.
Brings up the scripting window for the currently selected component.
Opens up the Security Settings Panel, allowing security to be placed on the selected components.

Brings up the Translatable Terms Panel, showing any translations for the selected component.

Alignment Menu

The Alignment Menu options allow you to adjust the alignment of components relative to other components.

https://legacy-docs.inductiveautomation.com/display/DOC81/Working+with+Vision+Components#WorkingwithVisionComponents-ComponentGrouping
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Container

L
oW
L

Move to Front
Mowve to Back

Move Forward

O

Move Backward

B Align Left

= Align Right
I° AlignTop

ko Align Bottom

Align Centers Horizontal

ke 7

Align Centers Vertical
Align as Row

Align Row and Mormalize
g Alignas Stack

& Align stack and Normalize
Center Horizontally

o Center Vertically

Function Description

Move to Front = Move the selected components to the front of the z-order.
Move to Back | Move the selected components to the back of the z-order.

Move Forward = Move the selected components forward in the z-order relative to any overlapping components.

Move Move the selected components backward in the z-order relative to any overlapping components.
Backward

Align Left Align the left edges of a group of components.

Align Right Align the right edges of a group of components.

Align Top Align the top edges of a group of components.

Align Bottom Align the bottom edges of a group of components.

Align Centers
Horizontal

Align Centers
Vertical

Align Centers

Align as Row

Align as Stack

Center Horizo
ntally

Center Vertica
lly

Aligns all of the selected components horizontally on their centers.

Aligns all of the selected components vertically on their centers.

Aligns all of the selected components either vertically or horizontally on their centers.

Aligns all of the components on their centers as a row, and will add padding between them that you can select. Normalizing them

will change the size of all of the components to the first selected component.

Aligns all of the components on their centers as a stack, and will add padding between them that you can select. Normalizing them

will change the size of all of the components to the first selected component.

Centers the currently selected components horizontally.

Centers the currently selected components vertically.

Shape Menu

The Shape Menu allows for manipulation of shape or path objects.

“)} Rotate Left
¢ Rotate Right
¥4 Mirror Horizontal

== Mirror Vertical

Union
Difference
Intersection
Exclusion
My Division

2¢ ToPath

&7 Stroke To Path

Function Description
Rotate Rotates the currently selected shape 90 degrees either right or left.
Mirror Flips the component either vertically or horizontally.
Union Alters the first shape to be the combination of all selected shapes.
Difference Alters the first selected shapes by removing the last selected shape from them.
Intersection Alters the first shape to become a new shape consiting of the area they share.
Exclusion Alters the first shape to become a new shape consiting of the area they do not share.
Division Cuts the first shape into multiple shapes along the borders of other shapes.
To Path Converts a shape to a simple path object.

Stroke To Path = Converts the selected shape into a new shape defined by its stroke.

Tools Menu

The Designer comes with many tools that allow you to manage and test various resources within a project. Each of the tools have their own interface
and are accessed within the Tools menu on the menu bar of the Designer. For more information, see Designer Tools.

https://legacy-docs.inductiveautomation.com/display/DOC81/Designer+Tools

Vision Windows

Windows are the key to your HMI/SCADA application. A window is the basic building block of any Vision

project, where each window can contain any number of components that can display Tag values, run

scripts, write values to the database, and accept user input. When you publish your project, these O th

windows are loaded into the Vision Client where any number of windows can be opened at one time. n IS page

Your windows are brought to life through the property bindings and event handlers on your components.
They can be designed to fit any need, from simple screens showing basic information, to complex

diagrams outlining an entire plant floor with various controls. Despite their abilities, using windows is ° \i\/i”dOW Anatomy
relatively simple so that even new users can get started creating windows right away. The possibilities . Root Container i
are endless when designing windows for your project. Window Name and Title

® Titlebar and Border
® Creating a Window

® Project Browser

® Welcome Window

® File Menu
Realtime Status and Control A ® Organizing Windows
Example #3: Aquarium o P ® Window Right-C“Ck Menu

® Exporting Window Example
® |Importing Window Example
® Navigation Strategy

Pump5

Heating Unit
Current

Window Anatomy

While there is only one type of window object, windows have various properties that determine how they IN DUC 'I' I VI
behave within the client. When these settings are configured in specific ways, they create certain
categories or types of windows: Main Windows act like a typical HMI screen and take up all available U NIV E RS IrI

space, Popup Windows are often opened by a component in a Main Window and appear to float on top

of the Main Window, and Docked Windows stick to one side of the screen and are typically always

open. These types of windows all provide different functionality to a project which, when combined create

the basis for a Vision project that displays relevant information while remaining intuitive and user friendly. Anato my Of a

Root Container Window

Inside a window there is always a Root Container. The Root Container is where you place all Watch the Video
components in the window. It's a normal Container component except that it cannot be deleted or

resized, and is always set to fill the entire window. The root container will be the root of all components

that go onto the window.

Window Name and Title

Windows have both a Name and a Title. The name is used within the Project Browser to differentiate the windows from each other and to form part of
the path to the window. Windows can be renamed by right clicking on the window object and selecting rename or by pressing F2. Each window must
have a unique path, so windows can have the same name as long as they are not in the same folder.

The Title property is a property within the property editor and works a little differently than the name. By default, Ignition assigns the Title property the
same name as the window type that is created (i.e., Main Window, Docked Window, or Popup Window). These window titles are used for the titlebar
of a window, but are also used when viewing currently opened windows. In the Client, the Windows menubar command will display a list of all
currently opened windows, as well as allow you to switch between which one is in focus. The list of opened windows displays the title of the window,
and not the window name or path, so it is also important to have good titles for your window.

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+The+Window+Object
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+The+Window+Object
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Container
https://www.inductiveuniversity.com/video/anatomy-of-a-window/8.1

Command mm Help

Vo Close Popup
M Close All —

. Main Window
Py N
Mavigation

% © Popup

Motor Detail

N

About

Hand

Auto

I

b
b

1
1

Titlebar and Border
A window can display a Titlebar and/or a Border. A titlebar allows you to drag a window around the workspace, and contains the window's close,
maximize and restore buttons. The border of a window also lets you resize the window when it is floating or docked. Whether or not the titlebar and

border are displayed depends on the property values set for your Titlebar and Border properties. A window typically displays both a titlebar and border
when it is floating, but only a titlebar when maximized. It is often desirable to remove titlebars and borders on maximized windows.

Creating a Window

Creating windows is easy. You can create a new window by right-clicking in the Project Browser, using the Welcome Window, or using the File menu.

Project Browser

A common method is to right-click within the Windows section of the Project Browser and select one of the window types to create a window. While
you can create each type of window, it is important to remember that the only difference is the configuration of the window properties.

Project Browser a - X

Q- Filte Project Properties 4

-

» &} Vision
[& Client Events

W
I -

ain Window
b g Popups
am Testz [®] Popup Window
[Alarme ™ Docked Window

[™ Classic
i MNewFolder

[Compc
a .
2 Export. '

Welcome Window

The Welcome Window that is shown when the project is first opened has a few quick start options. One of these options is the ability to create a new
window by selecting the desired window type you want to create.

Vision Windows & Templates L[Learn more [} Gateway Status

Create a New Window

Name of the window

O = B

Main Window Popup Window Docked Window

File Menu

In the menubar of the Designer, the File menu has a New option that allows you to create a new window regardless of where you are in the project.

m Edit View Project Component Alignment Shape Tools

New »| & NewProject
& Open.. Ctri+C 0 Main Window
B Save All Ctrl+S m Popup Window
B Save. Corl+Shift+5 | mm pocked Window
B SaveAs. s - MNewTemplate
[¥] Update Project Ctrl+Shift+U [E] New Standard Group
$2 Ignition Exchange B New Block Group
2 Import.. =] New Historical Group
£ Export. _ Mew Stored Procedure Group
O Exit = New Report...

Mew View...

D

Mew Sequential Function Chart

Organizing Windows

You can create folders to organize your windows. A window's name must be unique among the windows
in its folder, but you can have the same window name in multiple folders. The window name and folder
path are very important, they are used as references by other windows. You can create as many folders
as you want and nest them as deep as you need for your project. To rearrange a window, just click and
drag the window where you want to place it.

Project Browser o - X

Q- Project Properties ./

Y

b (%) Alarm Nofification Pipelines
b 2 Sequential Function Charts
b [l scripting
b @ Perspective
b 2 Transaction Groups
— () Vision
[& Client Events
ad U Windows
m Alarms
» mm PopUps
= Yser Management
™ About
~ [Navigation
] Root Container
b M Mainwindow [£]
r [overview Window

Note: If you have a security requirement to open a different startup window depending who is logged in,
you can create a client startup script to open a dynamic set of windows. To learn more, refer to Open
Dynamic Windows on Startup.

INDUCTIVE
72 UNIVERSI1I

Open Window(s) on
Startup

Watch the Video

https://inductiveuniversity.com/videos/opening-windows-on-startup/8.1/8.1

Window Right-Click Menu

For a full list of properties that can be set on windows, refer to Vision - The Window Object. Windows also have right-click menu of options for
additional functionality.

€ Close & Commit
5 Close & Revert
2] OpenonStartup
¥ ©® "About" Window
I P Documentation...
= Scripting..
¢ Security

Al Rename

K Duplicate
Fe Cut
S Copy

F CopyPath

T Delete

4 Revert Changes
2 Export..

B Protect

! Find/Replace selected Windows

— ——

Function Description

Open Opens the selected window.

Window

Close & Commits any changes to your workspace and closes the window.

Commit

Close & Reverts any changes that were made since the window was last opened or saved.

Revert

Open on One of the most useful properties is the Open on Startup property, which when enabled will automatically open the window when the
Startup client first starts up. This makes it easy to open a static set of default windows that everyone can see after logging in to the project.

Multiple windows can be set to open on startup, though it is recommended that only a single main window is set to open on start, as o
pening multiple at once will cause them to be hidden behind one main window.

All windows that Open on Startup have a little box with a Right Arrow II‘ icon next to the window name.

About
Window

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+The+Window+Object
https://legacy-docs.inductiveautomation.com/display/DOC81/Navigation+Strategies+in+Vision#NavigationStrategiesinVision-Multiple'Main'Windows
https://legacy-docs.inductiveautomation.com/display/DOC81/Navigation+Strategies+in+Vision#NavigationStrategiesinVision-Multiple'Main'Windows

An "About" Window relays information to the user that may be important, such as instructions on how to use the project, or
information about the projects creator. To specify a window as the About window, right click on the window in the Project Browser.

Then click the About Window checkbox. The window will have a Information Bubble ﬂ icon displayed next to its name.

In the client, the window will be displayed when a user selected Help > About This Application.

Project_West_1 - Main Window

Command Windows m

A Diagnostics

0 About This Application
& About Ignition Vision

Documenta = Windows can also have notes attached to them. The notes provide a way for a windows designer to provide some documentation on
tion what the window is doing and how the various components interact with one another.

Any windows that have notes will have a small Document r icon next to the window name.

This feature was changed in Ignition version 8.1.19:

Prior to 8.1.19, this field was called Notes.

Scripting The Scripting option takes you to the Component Scripting for that window. For more information, refer to Component Events and Scri
pt Builders in Vision.

Security The Security options displays Security Settings for role-base security. For more information, refer to Security in Vision.

Rename To rename a window, select this option then enter a new name.

Duplicate Duplicates the selected window.

Cut Cuts the selected window onto the clipboard.

Copy Copies the selected window onto the clipboard.

Copy Path = Copies the path of the selected window into the clipboard.

Paste Pastes the content in the clipboard into the selected context.

Delete Deletes the current selection.

Protect Locks the individual project resource from inside the Designer.

Export Exports the window as a project resource file which can then be imported into other projects. See the following sections for examples

of Export and Import.

Exporting Window Example

In the Designer, you can export and import windows from one project to another project using external files or sending it directly to a project on the
same gateway.

1. You can export windows in two ways.
a. To export multiple windows, right click on the folder of windows. and select either the Export option or Send to Project option. The

window export works similarly to the project export, the difference being that it automatically highlights only that window to export
from the list of project resources.

https://legacy-docs.inductiveautomation.com/display/DOC81/Security+in+Vision#SecurityinVision-Role-DrivenClientSecurity
https://legacy-docs.inductiveautomation.com/display/DOC81/Project+Export+and+Import

Project Browser [L4

Q- A

~ & Vision ~
[& Client Events

IW

M Main Window

» g Popups Export Project Resources - O X
i Test2 [®] PopupWindow
M Alarms Docked Window Select Resources
™ Classic ~ [@ Vision Windows -
P Compone % NewFolder 3 O] Alarms

[[Classic Chart1

[[0 Component Animation
Export... [[J Component Animation1
[[J Component Animation2
[[] Dabatase Pens

B0 pata

[[] Database Pens2

2 [Field Tanks

[[] Machine Details

[[Machine Overview

2 O] Main Window1

2 [0 Main Window?2 v

Ju

Select All Local Mone

m Send to Project

b. To export one window, right click on an individual window and click Export, then choose the Export or Send to Project option.

2. If you choose the Export option, the Save window is displayed. You can save the windows with the existing project name (not recommended
if you are only exporting part of a project), or type a new name in the File Name field.

Cave >

Save In; Project Backups v — 2 I

]
é

';] Compressor_2019-03-21_1123.zip
';] Controller_20190228074906.zip

';] Controller1_2019-03-21_1124.zip
';] MNewProject_2019-03-20_1641.zip

File Mame: Test_2020-11-04_1637.zip

Files of Type: | Project Export(.zip) -

Save Cancel

3. Click Save to save the windows as a project export file.

Importing Window Example

Importing the individual windows can be done by right clicking File from the top menubar and selecting Import.

Browse to the folder that contains the . zi p file you want to import, and click Open.

m Edit View Project Component Alignment

[]

Mew S | O -
W Open. Ctri+C g - X
H saveall Ctrl+5 &
H Save.. Ctri+Shift+5
[* Update Project Ctrl+Shift+U
8 Ignition Exchange Open *
A Import... _ 5 —

Look In: Project Backups - 2 = S
2 Export...
¥ Compressor_2019-03-21_1123zip [RSl el R R EiER LRI

Exit ; .

O Ex d Controller_20190228074906.zip

';] Controller1_2019-03-21_1124.zip
';] MWewProject_2019-03-20_1641.zip

File Mame: Test_2020-11-04_1645.zip

Files of Type: | Project Export (.proj, .zip) v

Open Cancel

Navigation Strategy

Setting up a navigation strategy allows you to navigate between different windows in the runtime Client. While we have a few examples of the most
common navigation strategies, it is certainly not an exhaustive list as most users tend to combine multiple strategies to create a project that fits their
needs.

A typical navigation strategy for a Vision project is as follows:

® Have a Docked window or two, usually docked North and/or West.

® Have a single Main window visible at a time.

® Use swap navigation to swap between the Main windows. This ensures that only one main window is open at a time.

® Use standard open navigation to open various Popup windows as necessary.

This style of project is so common, that the default operation of the Tab Strip component expects it. When it is in its default automatic operation, it
expects that each tab represents a main window, and will automatically swap from the current screen to the desired screen. Additionally, the [Syst em
1/ Cient/User/ Current WndowTag is calculated based on this strategy: its value is the name of the current maximized window. This navigation
strategy is used in the Ignition Online Demonstration that you can download from our website.

In This Section ...

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Tab+Strip
https://inductiveautomation.com/products/ignition/demo/online

Window Types

There are three Vision window types: Main windows, Popup windows, and Docked windows. You can
create windows from the File > New menu or by right clicking on the Windows object in the Project

Browser. By changing a window's properties, you can transform any window into various configurations, s
with each behaving differently based on those settings. On thlS page
Docked ® Main Windows

® Popup Windows
® Docked Windows
® Docking Settings

@ INDUCTIVE
UNIVERSIT

Popup Window

Main Screen

Window Types

Watch the Video

G} It is important to understand that just because a certain type of window was created does not mean that it must always be that type of
window. A windows type is determined by its settings, so changing its settings to match a different window type will change that window to
a new type.

Main Windows

A Main window is one that is set to start maximized, and has its Border and Titlebar display policies set to 'When Not Maximized' or 'Never.' This will
make the window take up all available space (minus space used by any "docked" windows). This makes the window act much like a typical "HMI
screen." There can be many main windows in a project, but only one should be open at any time since they would all overlap.

Popup Windows

A popup window is a window whose Dock Position is set to Floating and is not maximized. Its Border and Titlebar display policies are typically set to
'When Not Maximized' or 'Always," so that they can be manipulated by the end-user. These windows are often opened by components in a main
window, and are meant to be on top of the screen. To this end, they should have their Layer property set to a number higher than zero so they don't
get lost behind the main window. Popups can be set to open at a specific position on the screen using window's Location property. Popup windows
can also be parameterized so they can be made once and used for multiple similar applications, dynamically changing the content on the screen
based on a parameter that gets passed in.

Docked Windows
A Docked window is one whose Dock Position is set to anything but Floating. Docked windows are @ IN DUC T I VI

locked to the edges of the Client and fill all the space on that edge (i.e., West Docked fills the left side of

the Client). It will also typically have its Border and Titlebar display policies set to Never. This makes the U NIV E RS I'I
"docked" window appear to be joined seamlessly with the current main window. These screens are

usually tall and skinny or short and wide, depending on the side they're docked to. The purpose of a

docked window is to make some information always available; typically navigation controls and overall

status information. Using docked windows can help eliminate repetitive design elements from being Docked Windows -

copied to each screen, making maintenance easier.
Order Precedence
Setting which side the window is docked on is done through the window's Dock Position property.

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+The+Window+Object
https://www.inductiveuniversity.com/video/window-types/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/Popup+Windows#PopupWindows-Layer
https://legacy-docs.inductiveautomation.com/display/DOC81/Popup+Windows#PopupWindows-Location
https://www.inductiveuniversity.com/video/docked-windows-order-precedence/8.1

Project Browser o _ X

Q- A
v & Vision *
[z Client Events
- ™ windows
m Alarms

PopUps
User Management

3 Overview Window [+]
b &2 Templates
» B MNamed Queries

Vision Property Editor o - X
=8 = =R Th -
Behavior

Appearance

H Layout

Lecation X0 i 0
Size Width: 800 Height: 600
Minimum Size Width: 0 Height: 0

Docking Settings

Having multiple docked windows means you need to decide how you want them to appear in relation to
each other. For that, Ignition has several settings.

The Dock Index is a property on the window that determines the order of docked windows if multiple
windows are docked to the same side. The window with the lowest Dock Index will appear closest to the
edge on that side, whereas the highest Dock Index will appear closest to the middle of the client.

Vision Property Editor o - X

AP

behavior "

Appearance

= Layout
Dock Position West - GO
Location X0 ¥: 0
Size Width: 800 Height: 600
Minimum Size Width: 0 Height: 0
Maximum Size Width: 214 Height: 214
Layer 0cd
Dock Index 1 &

The remaining three settings are located in the Project Properties > Vision > User Interface section:

® Axis Precedence - Project wide property that determines which sides get to extend to the edge
of the window, North and South or East and West.

®* Prevent Popup/Docking Overlap - When set to true, then floating (popup) windows will not
overlap with docked windows.

® Infinite Desktop - When set to true, then the desktop area will be expanded if windows are
dragged out of frame.

/H Project Properties - [m] x

& Project Vision // User Interface

W General

W Permissions Minimum Size

) <
m Designer it 800 &
) a
& Vision Height 600 %
B Design Client Background Color
W General
m Launching O
W Login Client Menu

B Permissions Dialog 12pt bold

W Timing
m e
Perspective Hide Windows Menu

B General Touch Screen Keyboard Width
W Permissions 75%
W TagDrop

Docking

Axis Precedence | North/South

Prevent Popup/Docking Overlap
Infinite Desktop

“ Apply Cancel

North/South Axis Preference has the top and bottom docked windows reaching the left and right edges of
the screen, while the docked windows on the left and right sides fill the remaining space.

1= & il

North Docked Window

South Docked Window

East/West Axis Preference has the left and right docked windows reaching the top and bottom edges of
the screen, while the docked windows on the top and bottom fill the remaining space.

=T

Related Topics ...

® Vision Project Properties

Popup Windows

A popup window is typically a window that “floats" on top of the main window. It can be resized and
moved around by the user, all while the main window is still open in the background. Popup windows are
great for displaying additional information about a selected item on the screen, for example a details
screen about one particular component. Popup windows are often opened by components in a main
window and are meant to be on top of the screen. They are used to view setpoints and zoom into a

specific area.

A great thing about popup windows is how they can be parameterized and be reused. One popup
window design can be reused for many components as long as the proper information is passed through.

Realtime Status and Control

Tower2

2000
1750
1500

[JPen Control
Fan Speed A

1000
750

Value

Py
o

o~ Lo _
TEBPM 7SSFM GO0PM BO2FM 804PM
[Apr26,2019]

4= 4126119 7-55 PM - 4126119 8:05 PM a1
I)
700 P 7a0eM eooeil sadem

me s

Creating a Popup Window

On thispage...

® Creating a Popup Window
® Opening a Popup Window
® Popup Window Properties
® Layer
® Location
® Parameterized Popup Windows
® Multiple Instances of a Popup
Window

INDUCTIVE
UNIVERSII

Open Popup
Window

Watch the Video

Like main windows and docked windows, popup windows are simply windows that have specific settings. In particular, popup windows are floating
windows that are not set to start maximized. When adding a new window in the Designer, selecting the popup window option creates a window with
these presets. Once you have your popup window created, you can make it as big or small as you want. You can also set properties in the Property
Editor to make it closeable, make it resizable, give it a new title, and display the title bar and border in the window.

Vision Property Editor g - X

g = | =R

-] Behavior -
Closable true G
Maximizable false (-]
Resizeable true (]
Start Maximized false (]
Cache Policy Auto v ED

-] Appearance
Title Popup
Border Display Policy When Not Maximi... « G2
Titlebar Display Poli... Always v G
Titlebar Height 20 &2
Titlebar Font Dialog, Bold, 12 -

= Layout
Dock Position Floating v &
Location X0 Y0
Size Width: 400 Height: 300

Test Project 5JP - Popup

Command Windows Help
Hand
Main Window Auto
7

Owverview Window

Motor Detuail

About

S

« Refrigeration

https://www.inductiveuniversity.com/courses/vision-windows/8.0/8.1

Opening a Popup Window

In any window, you can add a script to any component to open your popup. This is easiest to do from a component like a button on the main window
using the Navigation Script Builder. Simply select the Open action and the window that you want to open. Clicking on the button will then open the
popup window that was selected. Alternately, you can use one of the many scripting functions that open a window.

¥ Component Scripting [Button] — O x

W Event Handlers ¢ []Navigation [SetTagValue | 5QLUpdate ® SetProperty . [Script Editor
~ 3 action > _
b focus Open / Swap

L
1 ﬁ key Open Pass Parameters
b g mouse

. Parameter Name Value

b 5 mouseMotion and Center +
b propertyChange and Close This Window b4
W Custom Methods Additional Instance S

'y

Swap
Window:
Foplps/Popup hd

Forward / Back

Close
w
B security... @ Confirmation...
Event Description Event Object Properties
This eventis fired when the 'action’ of the A A
. I & source

component occurs. What this action is depends h that fired

on the type of the component. Most commaonly, h'E component that fire

this is used with buttons, where the actionis that |~ this event. b

oK Apply Cancel

Popup Window Properties

There are a few properties of the Window that are useful to popups, such as Layer and Location.

Layer

The Layer property of windows controls the z-order of the windows. Windows with a higher Layer will always be on top of windows with a lower Layer,
regardless of which window is in focus. This is useful for keeping popup windows at the forefront. By default, all windows have a Layer of 0, but we
can change this so that popups always remain on top. If popups have a layer that is the same as the main window, clicking on your main window

makes it look like the popup window disappears, but it's actually behind your main window. The Windows Menu will show you all the open windows in
your Client, with the popup still being open.

https://legacy-docs.inductiveautomation.com/display/DOC81/Script+Builders+in+Vision#ScriptBuildersinVision-NavigationScriptBuilder
https://legacy-docs.inductiveautomation.com/display/DOC81/system.nav.openWindow

Command mm Help

Close Popup

Close All —_—

Main Window

1.

MNavigation

. © Popup

Hand

W

Motor Detail Auto

|

About

>

b
b

1
1

The Layer property is located on the window object itself, in the Property Editor. Simply set it to a higher value so that the popup is always on top.

Vision Property Editor a - X

%[5 | = = el %

Behavior

Appearance

= Layout
Dock Position Floating v &2
Location X300 ¥ 300
Size Width: 400 Height: 300
Minimum Size Width: 0 Height: 0
Maximum Size Width: 400 Height: 300

=

Dock Index 0cd

Location

Popup windows can also be given a specific location to open up at, when the not being automatically centered by the script. In the Vision Property
Editor, go to Layout > Location and provide a specific X and Y position (in pixels).

Vision Property Edi tor o - X

IR E

Behavior

Appearance

= Layout
Dock Position Floating v D

o v

Size Width: 400 Height: 300
Minimum Size Width: 0 Height: 0
Maxirmum Size Width: 400 Height: 300
Layer 1 €2
Dock Index 02

Note:

When opening a popup window to a specific location, ensure the Open and Center option is unchecked so that it doesn't override the location

coordinates.

[] MNavigation £¥ Set TagValue

Mo Action

) Open/Swap

) Open

and Close This Window

Additional Instance

Parameterized Popup Windows

A parameterized popup window lets you pass information from one window to another window. You can
make a single popup window, change what it does and what it points to from a parameter(s) that gets
passed into the receiving window using Custom properties. Parameters can range from simple integers
and strings, to properties on the window that is opening the popup, and even entire UDT custom
properties.

Ele Edt View Project Component Alignment Shape Tools Hel

B[« a|nsfso-»s-e0
ot B

X G k|eaa (O @Rl E|eb ol
o, e e s, e

- o x

B=D 5 setTag e (3 5L Updatem Setpropery | St

© X &

» B Na
TagBrone 8-% 7

= Swap
acz /¥-806|lac @

Window:
Poplps/popup S

Forward Back

INDUCTIVE
72 UNIVERSI1I

Parameterized
Popup Window

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC81/Parameterized+Popup+Windows#ParameterizedPopupWindows-PassingaUDTtoaPopup
https://www.inductiveuniversity.com/videos/parameterized-popup-window/8.0/8.1

Multiple Instances of a Popup Window

By default, the client only opens a single instance of a popup window, but you can change this behavior.
For example, suppose you have four different Tanks passing all the same parameters with the only
difference being the individual Tank number. In order to see all four instances of your tanks, you need to
configure component scripting to display Additional Instances. This is done by selecting the Additional
Instance option when setting up the navigation scripting action.

Alternately, the system.nav.openWindowlInstance can be used within a more complex script instead.

[]Mavigation [SetTagValue [SQLUpdate ® SetProperty [[Script Editor

No Action
~ O open/swap

© open [Pass Parameters

Parameter Name Value

and Close This Window value Hello
2 Additional Instance

Swap

& % &

Window:
Poplps/Popup -

INDUCTIVE
72 UNIVERSII

Popup Window -
Multiple Instances

Watch the Video

Test Project

Command Windows Help

1| B Papup d_gi

Main Window
Popup

h, Motor =

—
Motor 2

Overview Window

Motor 3

Motor Detail Hand
L
c | o |
About
R

In This Section ...

https://legacy-docs.inductiveautomation.com/display/DOC81/system.nav.openWindowInstance
https://www.inductiveuniversity.com/videos/popup-window-multiple-instances/8.0/8.1

Parameterized Popup Windows

A parameterized popup window lets you pass parameters from one window into a popup window, where
the receiving popup window could then use that parameter to display relevant information. This also
allows you to maintain a single window that can be used to display similar information. For example,
suppose you have two compressors: Compressor 1 and Compressor 2. Imagine clicking on one of the
compressors on the main window and a popup displays the diagnostic information about that specific
compressor. Instead of creating a popup window for each compressor, you can create a single popup
and use indirection with the passed parameter to display a different compressor's information depending
on which was selected.

Passing Parameters to a Popup Window

To pass parameters from one window to a popup window, the receiving popup window must have custom
properties that receive the passed parameters. When the event on the parent window is called, the
parameters are passed to the receiving Popup Window's custom properties on its root container. The
component's properties on the receiving window can use the root container's custom properties to

address their bindings.

The following examples explain how to set up a popup window and main window to pass compressor
numbers to the popup window in order to display relevant information about each compressor.

Setting up the Popup Window

1. Right click on a folder in the Project Browser and select Popup Window to create a new popup.

[z Client Events

B windore "

b mm Mait [T Main Window

' mm Pop :

b gy Use [8] Popup Window
™ aboi] Docked Window
O Left, MNew Folder
] Left
M Mair
™ Navi
™ Rept $ Import...

[Tanl & Export..

b w0 Templates
b @ Named Queries
b 15 Reports

Project Browser o - X
Q Project Properties /4
= = Vision -

2. Drag a Compressor image from Symbol Factory.
3. Drag a Label component from the component palette to your window.

On thispage...

® Passing Parameters to a Popup
Window
® Setting up the Popup Window
® Setting up the Main Window
® Passing a UDT to a Popup

@ INDUCTIVE
UNIVERSIT

Parameterized
Popup Window

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+Component+Customizers#VisionComponentCustomizers-CustomProperties
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+Component+Customizers#VisionComponentCustomizers-CustomProperties
https://www.inductiveuniversity.com/videos/open-popup-window/8.0/8.1

4. Create a custom property on your popup window's root container that will receive the passed parameters. Right click on your window and
select Customizers > Custom Properties. The Custom Properties window is displayed.

5. Click the Add + icon to add a property.
6. Specify a Name for the Custom Property, such as compNum, and click OK.

Customn Properties

®
Name Type Description +

comphum | reeger ||

=]

oK Cancel

The custom property is created and displayed in blue at the bottom of the Property Editor.

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+Component+Customizers#VisionComponentCustomizers-CustomProperties

Vision Property Editor
ﬂ H
=t

R
g LA

=]

% -

- X

Visible

Border
Mouseover Text
Opague

Cursor

Behavior

Root Container

3 true
Other Border

(5

3 true
Default

=

* 2

bata

Appearance
Deprecated
El Custom Properties

compMum

0o

Caution: Do not bind these custom properties to anything, leave them unbound so you can pass values into them without any other values

to override them.

7. Let's use an expression on the Label to show what compressor number we are on.

a. Select the Label and click the binding == icon for the Text property.
b. Select Expression for the binding type.
c. Click the Insert Property Value @ icon in the Expression window and choose the compNum custom property on the root
container for the compressor popup window as shown in the image below. Click OK.
File Edit View Project Compenent Alignment Shape Tools Help
BE|esr(vss|npofo-rjsf-forxsnaaal@om@®coui|obsbhdadr!
Froject Browser a _ X P T L O T O T - T T O S T O T T O L L I
W ___ % ____ N
& 811 eompresor e
- DS’;Z‘:;:(";:{:;:;' A1 Property Binding: Root Container Label X
- 1 T
L ebel [GR | Expression
» 4 single stage compressor = =
» &m User Management | [1| N
Tag Erowser 5_x|] 4 Tag h¢
Qs ¥-a¢6 9Cc H 1 Lo Indirect Tag +2
Tag Value DataT.. Traits & 7 [Choose Property X z
Vision Property Editor a_ X “i ~ [Popup_Param_Test w
B4 == e % 1 ~ [Root Container
B A 14 B Name (String)
ommen B ® Visible (boolean)
Name Label b D m Background Color (Color)
Enabled 4 true) 'r B Styles (Dataset)
Visible [true [} 1 B Data Quality (int)
Border Other Borde = 0 &] = Quality (QualityCode)
Mouseover Text Ee 1l ¥ 43, Single stage compressor < 5
Cursor Default -G Lyl b we Label |)
S pata 1 Root Container. comphun o | ff °Pte ‘
Text Compressor =] : L Overlay Opt-Out
Quality = |8 El - [o [
El Appearance l

Expression in the Property Binding field as follows:

Script to change the compressor number

"Conpressor " + {Root Contai ner.conpNunt

9. Click OK to save the property binding.

. Now, let's update the Expression using the script below to show the word "Compressor" before the number in the label. Update the

Property Binding: Root Container.Label *

Tag Expression

Tag Binds to an expression involving any number of components'

i properties andior tags
Indirect Tag

Prope
perty Expression
.
1 "Compressor " + {Root Contamer.:mpﬂm}l ~ 1 =
Property
SQL “
+_
Mamed Query =
DB Browse z
SQL Query

& No Binding

Setting up the Main Window

1. In a Main Window (parent window) drag a Button from the component palette to your window. Type "Compressor 1" into the text property.

File Edit View Project Compeonent Alignment Shape Tools Help

M3« 4% 5 @ (%4 0-»|F -2 Q|2 X oLl
Project Browser g - X T P T TP L T T L
Q- A : s ’ _______ ,'
[& Client Events & : i
+ ™ windows T8 Compressor 1 b
~ @ Main Windows . !
« [™) Acme_Main_Window Ll & &

52

+ [] Root Container

I... B Button

™ alarms]
Bca]

2. Let's add a script to the button which opens the popup that we created earlier. We can then pass in a value to designate that this button
should be opening Compressor 1.

. Right-click on the Compressor 1 button and select Scripting.

. Under Event Handlers, select actionPerformed.

. Click the Open / Swap radio button.

. Under Window, use the dropdown list to select the path to your Popup Window (i.e.,Popup_Param_Test).

. Check the Pass Parameters check box, and click the Add icon to add a parameter.
. Click the new row under Parameter Name and a dropdown list will appear. Select the custom property compNum.

-~D® QOUT9

Note: Ignition will automatically check the Root Container of the window selected in the Window dropdown. If you do not see the ¢
ompNum parameter, it may have been created on wrong component, so check the Root Container of the Compressor Popup
window.

g. Enter "1" in the Value column because the button will be for Compressor 1.
h. Click OK to save the script.

@3 Component Scripting [Button] — O Pas
& Event Handlers ¢ [] Mavigation % SetTagvalue &= SQLUpdate [SetProperty [E Script Editor
~ @ action >)
b il focus © Open/Swap
b key O Open [Pass Parametersl
b i mouse
" Parameter Name Value
» i@ mouseMotion (4 and Center +
b i@ propertyChange and Close This Window
& Custom Methods Additional Instance &
+
Swap
Window:
Popups/Popup_Param_Test| =
Forward / Back
Close
@ Security... 9 Confirmation...
Event Description Event Object Properties
This event is fired when the 'action’ of the component & R <

3. Now, create a second compressor button. A quick way to do this is duplicate (Ctrl D) the Compressor 1 button so it inherits the script. Update
the Text property to Compressor 2.

4. Right-click on the new Button component and select Scripting. Update the parameter Value being passed in froma 1to a 2.
5. Click OK to save the script.

W s &
1 1
1 1
Compressor 1 0: Compressor 2 IW
1 1
|
. B ® T L]
&% Component Scripting [Button 1] - O X
W Event Handlers ¢ [Navigation % SetTagValue &= SQLUpdate [=] SetProperty [E Script Editor
~ @ action >
i focus) Open/Swap
O key © open [Pass Parameters
b i@ mouse
" Parameter Name = Value
» @ mouseMotion &4 and Center +
» @ propertyChange and Close This Window
& Custom Methods Additional Instance &
+
Swap
Window:
Popups/Popup_Param_Test | =

6. Test it out by putting the Designer in Preview Mode. Click one of the Compressor buttons, then navigate back and click the other
Compressor button. While these buttons are opening the same popup, they display different information because they are using the
parameter that we passed in for indirection. In this example, we just used a label, but the parameters can be used in things like indirect Tag

bindings or scripts to pull in various Tag bindings.

Compressor 2

Passing a UDT to a Popup

In addition to the basic types, parameters can be a complex UDT type. This works much the same as

passing in basic values, where the popup window has a custom property on the root container, and a
parameter is passed in when opening the window.

The difference is that the custom property on the popup window needs to be a UDT that has been
previously defined, and the value being passed in when opening the window needs to be an entire UDT
instance. This gives the popup access to every Tag within the UDT, which can be useful when making
popups that show all the details of a certain area which has a UDT.

@3 Component Seripting [Button 1] - [m] X

& EventHandlers

¢ [Navigation % SetTagValue & SQLUpdate (2] SetProperty (& Script Editor
~ '@ action

No Action

» i focus Open/Swap
b ey Open Pass Parameters
» im mouse
Parameter Name | Value
) i mouseMotion and Center @
» i propertyChange and Close This Window compNum [s\compressoruony | &

& Custom Methods
+

Additional Instance

@
g

Swap

Window:

Popups /Popup_Param_Test| v

INDUCTIVE
UNIVERSII

Parameterized

Popup Window and
UDTs

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC81/User+Defined+Types+-+UDTs
https://www.inductiveuniversity.com/videos/parameterized-popup-window-and-udts/8.0/8.1

Navigation Strategies in Vision

Navigation Strategy

Setting up a navigation strategy allows you to navigate between different windows in the runtime Client.
Ignition provides several different types of runtime navigational strategies you can choose from when
designing your project including several Vision project templates to help you get started. Before
selecting the proper navigation strategy or template for your project, there are several things to
consider. These considerations will help you determine the best navigation strategy to use for your
project and your users. Once you address these considerations, then you can choose the best
navigation strategy from the types below. This will also help you decide if you want to use a Vision
Project Template to quickly for your project.

Does your project have a lot of windows?

How complex is your project structure?

Is your project structure organized?

What types of things are you doing?

Do you want to use navigation windows or fill the screen?

Types of Navigation Strategies

To help you select the right strategy that fits your project structure, here is a brief description of each
navigation strategy that Ignition provides. Keep in mind your project structure, size, organization, and
types of things you are doing while you are reviewing these strategies so you can select the best runtime
strategy for your project.

® Tab Strip Navigation is a simple strategy used for small structures regardless of how
organized your project is. It lends itself perfectly to only having a few windows and showing all
of them on a navigation window. Having too many tabs does not work well with the Tab Strip
because of size limitations. You want your users too see all the navigation tabs immediately on
the first screen. The Tab Strip works by clicking to swap one main window for another.

Command Novgaton Windows Welp

&2 User Management.

comactinfo

Overview

User Management

‘schedule Management
Roster Management
MainWindow 1

| Folename. #of Members o+

switch User

cancel

® Two Tier Navigation is similar to the Tab Strip, but is good for small and regular size project
structures where windows are grouped. It contains a second level of tabs allowing you to
navigate around various areas of your project. This strategy has a docked window that contains
tabs that are always open to do navigation, and the main window which fills the rest of the
space.

Command Windows Help

Ignil'ion‘./ e —

3 Overview
© open popup

Welcome to the Skeleton project (Single Tier Tabbed)

This project s meant tobe-a template for a large variety of applicay iog off pai.

a single i tabbed Itfolows a1 avig: sermanual

® Tree View Navigation is excellent for large project structures. You can view the entire project
structure at a glance allowing you to navigate to any structure within the multi-tier Tree View
component.

On thispage...

® Navigation Strategy
® Types of Navigation Strategies
® Navigation Operations -
Swapping vs. Opening
® Opening
® Swapping
® Common Navigation Mistakes
® Multiple 'Main' Windows
® Swapping a Main Window
with a Docked Window

INDUCTIVE
UNIVERSII

Navigation
Strategies

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC81/Project+Templates#ProjectTemplates-VisionTemplates
https://www.inductiveuniversity.com/video/navigation-strategies/8.1

Command Navigation Windows _ Help

Name Count &
Al 9
Critical . 9
Holiday Customized R
[+ Man windows Operators Main 6
3 HMI Main
rators West Fiek
= HMI West Field Operators West Feld z
A US Map Qualty Assurance 2
B User Managment Test Roster 0
(T Roster Management Weekend shift 3

& switch User

® Back and Forward Buttons are perfect if you have a small process with ordered steps. Itis
one big main window that has Back and Forward buttons to step through each process step or
operation one right after the other.

\ﬂ Motor Amps Central Log Out

8 Ramp serviee Central Field Station)

motors/motort —)

IRTEVACV AR VAR P WEVEaS
W 5 Amps 5T © L\J"”L\\[\[‘j\n N =
W G HoA 3¢ 50 Lan b =
L
metors/motor2 g4 ur\,JJI‘
S ™
WG Amps1 53 2 n e
WG HoAT ¢ » \
* AT WWA W‘T
metors/motor3] i L : \E
I =l \ g L Al
B A2 % ol il Al n ar LAY
WG HoA2 X
£ o I
of
20129PM 20159PM 20220PM 20250PM 20329PM 20359
[Jun 24,2019]
43 6/24/19 201 PM - 6/24/19 2:03 PM @
oo TaSeM ra0em rasew zodew zasbu U 2sdew T Zasew
3 HOME

® Drill Down Navigation is ideal if you have different geographical locations, whether it's in a
local facility or facilities sprinkled around the world. The project opens with an overview that has
areas that correspond to specific locations/areas in your facility. With the Drill Down strategy,
you can select a specific area representing the facility, and the client swaps windows to display
details pertaining to that specific area.

Command _ Windows _Help

Current Time: 06/24/2019 03:12 PM Logged In: admin
et iy oiown bt] seomaonr
N O @ o @ -
=] |~ 8 s J
Locotzal Alarm Status Alarm History Alarm Analysis loous scresns

= 5

onitan - = : = |[EERRR RRNNRRAN
o T T —
. o T T e T R T =T
@ o - [

YT YT I

® Menubar is ideal for maximizing the usable screen space, while still having the ability to
navigate to any window at any time by selecting from a list of windows.

Y oo TS

Overview

TankStatus + Tank Status
UsMsp

Foster Managemers | Tank | 1
Swich User

0= u

LERERE

Tank [2

| &
I

Low

Temperature

Temperaure IR

0 — Tank 3 10 — Tank | 4

7%= | -
0= 0=

3= %=

0=

0=

Temperature [EEIE] Temperature [IEEERH

® Retargeting enables navigation between multi-project operations: a simple script can push the
user between many different projects, even on different Gateways.

Navigation Operations - Swapping vs. Opening

Any time you open a window, you have to use one of the two navigation operations: Swapping or Openi
ng. These operations can be performed on any type of window, but are usually reserved for specific
cases. Navigating between different windows typically involves some sort of scripting, but the Navigation

Script Builder makes this a simple task. Otherwise, you can use the specific scripting functions to
completely customize navigation.

& Component Scripting [Button]

- o x
 Evereandiers [T vevgeion] @ sekTagvaue (850L Updte m SetPropery L ScrpEdr
~ G action N
[D actionperformed* | A
» & focus SpenTSwap
&
" Dy Open Pass Parameters
» G mouse
& masaotion and Center Parameter Name Value +
» G propertyChange and Close This Window x
& Custom Methods Additional Instance o
+
Swap
Window:
Main Window/Window 20 | +

Forward /Back

Close

8 securiy @ Confirmation

Event Description Event Object Properties

This event s fired when the ‘action’of the component occurs.

What this action is de pends on the type of the component. @ source

Most commonly, this is used with buttons, where the action is The componen: that fired this event
thatthe button was pushed, via a mouse click or a key press.

See the component reference for details on what the action

means for other components.

OK || Apply || Cancel

Opening

Opening and by extension closing are the basic window navigation options. Opening a window opens the
window at the same size it was in the Designer, unless the Start Maximized property is true or the Dock

Position is not Floating. This is typically reserved for opening popup windows. They have a scripting
function that can open and a function that can close.

® system.nav.openWindow
® system.nav.closeWindow

Swapping
When Ignition swaps a window, it closes the current main window and then opens another window in its

place. This is typically reserved for moving between main windows, as it performs the close action

automatically. There are two different scripting functions that can be used to swap windows, depending
on what needs to be done.

® system.nav.swapWindow
® system.nav.swapTo

Common Navigation Mistakes

INDUCTIVE
UNIVERSII

Swapping vs.
Opening

Watch the Video

INDUCTIVE
UNIVERSII

Navigation
Functions

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC81/Script+Builders+in+Vision#ScriptBuildersinVision-NavigationScriptBuilder
https://legacy-docs.inductiveautomation.com/display/DOC81/Script+Builders+in+Vision#ScriptBuildersinVision-NavigationScriptBuilder
https://legacy-docs.inductiveautomation.com/display/DOC81/system.nav.openWindow
https://legacy-docs.inductiveautomation.com/display/DOC81/system.nav.closeWindow
https://legacy-docs.inductiveautomation.com/display/DOC81/system.nav.swapWindow
https://legacy-docs.inductiveautomation.com/display/DOC81/system.nav.swapTo
https://www.inductiveuniversity.com/video/swapping-vs-opening/8.1
https://inductiveuniversity.com/video/navigation-functions/8.1

Multiple 'Main' Windows

The most common mistake that will cause windows to stay open unintentionally is to implement a swapping navigation system using the system.nav.
openWindow() function on main windows instead of swapTo. When you do this, the next time the swapTo function is called, it may swap from a
window that is hidden behind the current 'Main' window and look like nothing happened. It is easy to check the client's Windows menu to see what
windows are currently open. If there are more windows listed there than you can currently see, there is a problem in your navigation logic that is failing
to close windows properly.

Swapping a Main Window with a Docked Window

Another common mistake that will cause windows to stay open unintentionally is to implement a swapping navigation system using the system.nav.
swapTo() function on windows that are docked. This will cause your docked windows to be 'swapped in' as a maximized window instead of its usual
size. When you do this, the client will not see it as a main window and next time the swapTo function is called, it may not have space on screen to

open the main window. Logging out and back in to the client (or restarting it) is the only solution to this. Identify the offending button or script that is
swapping the docked window and change it accordingly.

Related Topics ...

® Vision Project Templates

In This Section ...

https://legacy-docs.inductiveautomation.com/display/DOC81/Project+Templates#ProjectTemplates-VisionTemplates

Navigation - Tab Strip

The Tab Strip component provides a simple navigation strategy used for small project structures having
only a few windows. It allows users to see all the navigation tabs on the screen of the client. It is most
commonly used in a docked window to provide automatic window navigation. The Tab Strip allows
clicking on a tab to swap one main window for another. The Tab Strip has two navigation modes:

® Swap Windows - the Tab Strip automatically calls system.nav.swapTo() with the name of the
selected tab for easy navigation from one window to another.

® Disabled - the Tab Strip doesn't do anything when a tab is pressed. Users can customize tabs
using property bindings or by responding to the propertyChange scripting event.

A Tab Strip is an effective primary navigation strategy, particularly when you don't have many items to
choose from.

Overview

User Management

Schedule Management

Roster Management

Main Window 1

Main Window 2

Tab Strip Navigation Example

On thispage ...

® Tab Strip Navigation Example

@ INDUCTIVE
UNIVERSIT

Navigation - Tab
Strip

Watch the Video

Tab Strip navigation is simple to set up. In the following example, we'll set up a small project that has a few windows which are visible on the

navigation tabs.

1. Add a Tab Strip component to a window, typically a docked window.
2. Right-click on the Tab Strip component, choose Customizers > Tab Strip Customizer.
3

Windows as shown in the screenshot below.

. In the Tab Strip Customizer you can specify which window to open with each tab. Notice the Navigation Mode property which is set to Swap

4. To create a new tab, click Add Tab. If you have a tab already selected, clicking the Add Tab button creates a Tab with the same colors and

font as the selected tab.

@ Main Windows already created

This step assumes you already have your main windows created in your Project Browser.

a. Under Window Name dropdown list, select the window you want to open. Note, it is the full path from the window and not just the

name (i.e., Main Windows/Main Window 2).
b. Enter the Display Name for your new tab (i.e., Main Window 2).

c. With the Move Up, Move Down, and Remove Tab buttons you can move tabs up and down on the tab strip, and remove a tab if it

is no longer required.

d. You can also set the Background and Foreground colors when to show when a tab is selected and unselected.

e. When you're finished, press OK.

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Tab+Strip
https://legacy-docs.inductiveautomation.com/display/DOC81/system.nav.swapTo
https://legacy-docs.inductiveautomation.com/display/DOC81/Component+Events#ComponentEvents-PropertyEventHandlers
https://www.inductiveuniversity.com/video/navigation-tab-strip/8.1

[0 Tab Strip Customizer

Orientation
Left

Overview

Navigation Mode

Swap Windows

Window Name

Main windows/Main Window 2| | + |

| User Management

Size Mode
Indvidual
style
simple

+Add Tab
1 Move Up

Right -

Rounding Radius

Display Name
Main Window 2

Mouseover Text

Main Window 1

Text Alignment Text Offset

Text Padding Intertab Space

i Remove Tab = ©

+ Move Down

Background Color

)
Foreground Color

®
Font
Dialog

Gradient Start Color

)
Gradient End Color

)

Use Gradient

TablIcon

Edit Tab Icon

+ Apply ToAll

Background Color

)
Foreground Color

®
Font.
Dialog

Gradient Start Color

)
Gradient End Color

K

Use Gradient

TablIcon

Edit Tab Icon

oK

Cancel

5. Save your project.

6. Open your project in the Client and confirm each tab navigates to a different window.

Command Windows Help

Ignitionf./

by i & auLo

Overview

0

User Management

£ User Management

User Management

Schedule Management

Roster Management

Main Window 1

Main Window 2

Logged In: admin

E Lock Screen

M8 switch User

“F Logout

Username Name
admin Admin the ...
guest
Michael Michael R
Michael@in.. | Michael@in..
oper

Role name
Administrator
Maintenance
Operator
QA

Roles

Administrat...

Administrat...
Tank_Oper...
Operator

Contact Info

email: Mich...

of Members

Schedule
Always
Always
Always
Always
Always

2
1
3
1

ok
L |

k|

Navigation - Two Tier

Two Tier Navigation is similar to the Tab Strip navigation strategy. It's good for small and regular size

project structures where windows are grouped, and lets you organize your main windows into different

sections making navigation easy for users. It uses two levels of tabs to navigate around various areas of O h

your project. Once you select a first tier tab, a different set of tabs appear in the second tier to switch n t IS page res
between different windows.

This works a bit differently than the default Tab Strip navigation, as the first tier Tab Strip will actually not
do any window swapping, which will instead be left up to the second tier of tabs. The Two Tier approach
has a docked window that contains multiple sets of tabs. One set is used as a higher level of grouping of
windows, and is used to conditionally swap out another set of tabs based upon user selection.

® Two Tier Navigation Example

In the image below, the top tier of tabs contains the HMI Screens and Administration tabs. Clicking on HM
| Screens makes a second tier of tabs appear (the set containing Overview, Alarms, and Empty).
Clicking on the Administration tab would make a different set of sub tier tabs appear. Thus, the top tier
of tabs isn't directly responsible for any sort of window navigation. Rather, it's used to make other sets of
tabs appear.

o

3 Overview

Two Tier Navigation Example

In this example, we are using the 2-Tier Tab Nav project template which is selectable upon project creation. This comes with two tiers of tab strips and
several default tabs. We will add one tab on the first tier and two tabs on the second tier.

1. Right click on the First Tier Tabs in the Project Browser to add another tab. Select Customizers > Tab Strip Customizer.
2. To create a new tab, click Add Tab, and position it on the tab strip any where you like.
3. Enter your Window Name and Display Name. Make sure the Navigation Mode is set to Disabled since this first tab strip is not swapping to

any windows.
(70 Tab Strip Customizer X
Orientation L .
HMI Screens Administration = Reports
Top -
Navigation Mode
Disabled - Window Name Background Color Background Color
Size Mode Reports v e - e
Individual - Display Name Foreground Color Foreground Color
Simple . Mouseover Text Font Font
Dialog Dialog
=+ Add Tab i Remove Tab . .
Hover Color Gradient Start Color Gradient Start Color
4= Move Left = Move Right - 3, v o v o
Gradient End Color Gradient End Color
Text Alignment Text Offset v B
Center - : Use Gradient Use Gradient
Text Padding Intertab Space Tab Icon Tab Icon
20 5 15 Edit Tab Icon Edit Tab Icon

Rounding Radius
+ Apply To All

oK Cancel

4. Now let's create a second tier category of tabs for the Reports tab. The easiest way to do this, is copy the second tier of tabs from either the
HMI Screens or Adminstration tabs in the root container of the Navigation folder of the Project Browser. Paste it in the root container of the
Navigation folder giving it a unique name identifying what it is (i.e. Reports Tabs).

Project Browser o - X

Q- Project Properties .

- [Navigation [*] ~
+ [] Root Container
» [user Management &
= Administration Tabs G2 %
& Alarm Count Label
wet CUrENt Time &2

= First Tier Tabs &
£% Gradient Background
= HMI Screens Tabs €@ %
wet Logged In G2
b A Logo
Reports Tabs €2 %

5. Right click on the Reporting Tabs Tab Strip of the Designer and select the Customizers > Tab Strip Customizer.
6. Add Tabs like you would for a normal Tab Strip, but only add tabs fitting that category of windows. In this step, we are adding two tabs:
Report 1 and Report 2. Click OK to create the new tabs.

Note: This example assumes you already have some main windows created in your Project Browser (i.e., Report 1 and Report 2).

7. The second tier tabs can be shown or hidden depending on what tab is selected in the first tier.
a. Select a second tier Tab Strip (i.e.,Reports).

b. Go to the Property Editor, select the Visible property and set it to true, and then select its binding 2 icon.
c. Select the Expression binding and set up an expression to be true when the appropriate first tier tab is selected, as shown in the
image below. Click OK.

{Root Container.First Tier Tabs.selectedTab} = "Reports"
Property Binding: Root Container.Reports Tabs >
Tag Expression
Tag Binds to an expression involving any number of components' properties and/or
i tags
Indirect Tag
Prope
perty Expression

Expression

Property
sqQL %

1 {Root Container.First Tier Tabs.selectedTab} = "Reports" |~ =

Named Query =
DB Browse z
SQL Query

® No Binding

m Cancel
8. Save your project.

9. Open your project in the Client, click on the various tabs to see your first and second tier tabs switch between the different windows.

The following images show the first and second tier tabs for HMI Screens and Reports tabs.

The HMI Screens tab shows the Overview and Alarms windows on the second tier.

Current Time: 06/18/2020 01:28 PM Logged In: admin

12 Alarms & Lock Screen

e, ® c
Ignlflon M8 switch User
- <F Logout

|'-HMIScreens _Adminisl:ratinn -Repnrls

|' Alarms

[

/1 Alarms

Active Time Display Path Current State Priority

oi0z0, 717U speedighspeed | active, Unacknowiedged[crtcol B
rio20,7zvm_[Tanctevelziowsrs | nctive, unacknowiedged_[crtical
/102,772 P WritsblerWrteabetnteger Lo Tank evel_| Active, Unacknowiedged | crtcal
ooz rem [t | acive, Unacknowedgea [righ
oo, riow[tanicios | active, unacknowiedged_[righ
/102,71 P Turbine Number 200 ocated t vermre, CA_| Active, Unacknowiedged [igh

/102,71 P Turbine Number 150 ooted at Flsom, CA__| Actve, Unacknowiedged [Figh
71020, 721 P Turbine Number 100 ocated at Ftsom, G| Actve, Unacknowiedged_[righ
/102,71 P Turbine Number 300 ooted st Fresno | Actve, Unacknowiedged_[igh
i a7 [shasheinghel et uneineneig [

g

""11. 711 PM
6/10/20, 7:11 PM
6/18/20, 12:49 PM Sine/Sine2/Low Level Cleared Unacknuwiedged

A a8

The Reports Tab shows the Report 1 and Report 2 windows on the second tier.

Current Time: 06/18/2020 01:25 PM

Logged In: admin

E Lock Screen
M8 switch User
=f Logout

_HMIS:mens _Mminisl:ratinn |'-Reports

Pens E:]
! 300 PN
] Sined 37 s Y ﬂ%}
r Y
] Sinel 3% S00 / \\
O Sine2 3% v N J N E
T 100 e R
g ‘\\ /’. \\ ‘__'_H?‘(
. Vs 7
o™ T— ‘/H\\\ PN
\\,_/ ‘“x.___,_r-/
-100
1:15 FM 117PM 119 PM 1:21 PM 1:23 PM
[Jun 18, 2020]
‘ =, 6/18/20 1:14 PM - 6/18/20 1:24 PM ':":1__ P
e —
Lo ' tasben | eden T ey
12:00 PM 1230 PM 1:00 PM 30 PM

Navigation - Tree View

The Tree View navigation strategy is excellent for large project structures. It uses a typical navigation
strategy again with a docked west window that contains a Tree View to navigate around to various
areas. Users can double click on an item in the tree view and it will swap out one main window for
another. The list is fairly compact, and can contain folders, helping you to group similar windows just like
you would in the project browser.

Ignitio ‘./

by inductive automation

~ @ Administration
Settings

~ [HMI Screens
y Alarms
i) Empty
0 Overview

Current Time:
06/ 22/ 2020 03:00 PM

Logged In:
admin

E Lock Screen
M8 switch User

¥ Logout

Tree View Navigation Example

On thispage ...

® Tree View Navigation Example

@ INDUCTIVE
UNIVERSIT

Navigation - Tree
View

Watch the Video

In this example, we are using the Tree View Nav project template which is set up when the project is created. By default, Tree View navigation comes

with several default folders to help get you started. This simple example adds one new main window.

1. Once you create your project and set the Tree View as your navigation strategy, open the Project Browser, and expand the Main Windows

folder. Click the Navigation folder to open the skeleton project, then select the Tree property.

https://www.inductiveuniversity.com/videos/navigation-tree-view/8.0/8.1

Project Browser o - X

Q- Project Properties .
+ ™ windows =
b mm Main Windows
F mm Popups
b g User Management
(3 About @

+ [Navigation [*]
« [] Root Container

b [User Management &
& Alarm Count Label
wel Current Time €2
£5 Gradient Background
e | pgged In G2

b 45 Logo

o
2. From Property Editor, find the Items property and click on the Dataset Viewer £ icon.

Vision Property Editor o - X
Be 8 | = | = OB R -
Common -
Behavior
El Data
Selected Item 0Gco
Selected Path Main Windows/HMI M |£| €2
Quality E e

3. This brings up a dataset editor. You will see a number of columns that identify how each tree view item is displayed. Each row corresponds

to a node in the tree view. The windowPath column is the window that we want to navigate to. The path is the folder that the window will
display in the Tree View.

Note: This example assumes you already have your new window created in your Project Browser.

4. Let's add a new main window under Administration. To add a new Main Window (i.e., Reports) we first need to add a row. Click the Add
m4

Row icon == and populate the fields manually using the data from the previous row, or you can also copy the entire dataset into a notepad
where you can manually manipulate the data to add a row, and then paste it back into the dataset editor. Click OK.

1 Do not use the Tree View Customizer to edit any of your data. Use only the Dataset Editor, otherwise it will overwrite that item's
dataset.

[Dataset Editor X

windowPath path text icon background foreground tooltip | border | selectedText = selectedlcon | selectedBac. =
Main Windows/Overview = HMIScreens | Overview | Builtinvicons/16/home.png color(255,255,255,255) | color(0,0,0,255) Overview Builtinvicans... | color(250,21..

MainWindows/Alarms | HMIScreens | Alarms Builin/icons/16/warning.png | color(255,255,255,255) | color(0,0,0,255) Alarms Builtin/icons... | color(250,21. =,

MainWindows/Budget | HMIScreens | Budget Builtin/icons/16/about.png color(255,255,255,255) | color(0,0,0,255) Budget Builtinsicons... | color(250,21.., ™
MainWindows/Settings | Administration | Settings Builtinvicons/1 6/preferences... | color(255,255,255,255) | color(0,0,0,255) Settings Builtinjicons... | color(250,21

Main Windows/Reports _|_Administration | _Reports ___Builtin/icons/1 b/calculator.png |_color()| color(0,0,0,255) Reports Bultinficons.._|_color(25021.] o

E]

L]

5

Column Name: — Column Type: —

ﬂ Cancel

5. You can then add a script that will use the newly added windowPath to open the correct window when a user double clicks on a node. Right
click on the Tree View component and select Scripting.

6. Select the mouseClicked event handler, and add the following script to the Script Editor tab.

mouseClicked code

If the user performs a double click, open the appropriate w ndow
if event.clickCount ==
row = event. source. sel ectedl tem
data = event.source.data
if row!=-1:
Grab the wi ndow path value out of the tree view s itens dataset
wi ndowPat h = dat a. get Val ueAt (row, "w ndowPat h")
system nav. swapTo(w ndowPat h)

4% Component Scripting [Tree] - O X

@ Event Handlers ¢ [Navigation % SetTagValue = sQLUpdate [= Set Propen‘.yl & Script Editor |

~ @ mouse » s - . = = .

I.— IF If the user per a double click, open the appropriate window ~ | =
2if event.clickCount 2: :

mouseEntered 3 Tow = event.source.selectedItem
data = event.source.data

mouseExited
mousePressed
mouseReleased
» i@ mouseMotion
» i@ propertyChange
@ Custom Methods
+

s dataset

£ ! e out
windowPath = data.getValueAt(row,
system.nav. swapTo(windowPath)

"windowPat

[T

7. Save your project and launch the Vision Client and test out the Tree View navigation.

https://legacy-docs.inductiveautomation.com/display/DOC79/Component+Events#ComponentEvents-MouseEventHandlers

. TreeView5 - Reports —

Command Windows Help

1/ Reports
I .t.
W Administration

. = Pens
Settings W s 52 00 AN

~ @ HMI Screens / E
%, Alarms W 4 sinet 3¢ B0
D 200{ /
i) Budget O Sine2 7 ool / /
& Qverview E / /

= 100 /

11:40 AM 11:45 AM
[Jun23,2020]

6/23/20 11:39 AM - 6/23/20 11:49 AMl @, ‘ »

Current Time
06/23/2020 11:56 AM

Logged In:
admin

Lovor o
1000 Aam 1030 aM

@ Lock Screen

Switch User

Logout

Navigation - Forward and Back Buttons

Another navigation strategy in Vision is to set up Forward and Back Buttons to navigate between different

windows. This strategy is perfect for a small business process with ordered steps. It does not have a

docked window, tree view, or tabs to navigate around. It is one big main window and has buttons to H

navigate forward and back from one Main Window to the next in the list. On thlS page

® Forward and Back Buttons

Test Project
Example

Command Windows Help

& Main Window 2

4@ Main Window 1 Main Window 3 B @ IN DUCTIVI
UNIVERSII

Navigation - Back
and Forward
Buttons

Watch the Video

Forward and Back Buttons Example

In this example, we'll use the forward and back buttons on a main window to navigate between different windows in a project.

1. Inthe Project Browser, right click on the Main Windows folder and create a new Main Window. Enter a name for your window to whatever
best describes the window (i.e., Main Window 1). Add a label to the window for clarity (i.e., Main Window 1) so when you navigate through
different windows, you know precisely what window you're viewing. Repeat this step to create Main Window 2 and Main Window 3.

https://www.inductiveuniversity.com/videos/navigation-back-and-forward-buttons/8.0/8.1

Project Browser O _
Q- 2
Ef, Client Events A
am Al: O Main Window
* = P8 @ popupwindow
¢ mm Fo _
» M m: O DockedWindow
» BIM: &g New Folder
P [ov
b & o Temp B
» B Named |
Import...
b Reports o4 P
3 Weh Dey & Export.. | w
Tag Browser g _ X
Q S w' 5 '(f_'-} -i:l l:-t @v
Tag Value DataType Traits -~
F W Tags
F i System
* i Vision Client Tags .

2. From the Component Palette in Designer, drag a Button component to your Main Window 1. Label the button, Main Window 2.

3. Next we'll add a right green arrow to the Button component. With the Button component selected, click the folder to the right of the Image
Path property . This opens the Image Management Tool.

4. Open the Built-in/icons/24/ folder and select a right green arrow. Close the Image Management Tool.

5. Set the Horizontal Text Position property to Left in the Property Editor.

Vision Property Editor a8 - X P L R T - NI 1300, PR C
4 Bt mY 1
= S Y .
e P E% 1ah Main Window 1
Common
Beha\nor T .)
| PR
D | ¥ Main Window 2 IE;> 10
El Appearance I " ,,,,,,, § .
Font Dialeg, Bold, 12 | |7
Foreground Color 46,46,46 - ® =]
Background Color 250,250,251 - @ o |] Image Browser x
Fill Area? & true @ 7] O |E QW TR SR
i ” =5 | | 7]
Border Painted? & true b Il Current Folder | Builtinicons/24/
Text Main Window 2 | |] A
Image Path 'arrow_right_green.png & (2|~ J .
i
Disabled Image Path e | 7 v Ell}i @ <;:| E:>
1
Icon-Text Spacin 4 G2 |T] :
pacing i about.png add2png arrow_do.. arrow_lef.. |arrow_rig.
styles <No Data> [e
= Layout 1 ﬁ - - - -
Margin Top: Left: 0Bottom: gRight: 0| | _] @ @ digp X
Fy
I - G2 Q
Horizontal Alignment Center 3| o] arrow_Up.. business.. bosiness.. business.. business..
I Herizontal Text Position Leading - ':—:i]
Vertical Alignment Center vea||] e 2 !
g] ol B (7 e ol
Vertical Text Position Center v & =
E Deprecated o business... calculate.. calendar... cameraZ.. chartpng N
Data Quality 600 &2 : Q Tip: You can drag images and folders into this window for easy uploadi...

6. Now you need to tell the Main Window 2 button what to do when a user clicks on it. Right click on the Main Window 2 button, select Scripting
. The component scripting dialog box will open.

https://legacy-docs.inductiveautomation.com/display/DOC81/Images+and+SVGs+in+Vision#ImagesandSVGsinVision-UsingImages

L & Sy Cut Ctrl+X
A Copy Ctrl+C
W Paste Ctrl+v
@ Delete Delete
T
+]

B Lock

H. Layout... ctri+L
50 Size & Position... Ctri+P
/& Customizers >
E® Scripting... Ctrl+]

¢ Security Ctri+E
& Translations Ctri+T
M Run Diagnostics

7. Under the Event Handlers, open the action folder and select actionPerformed.
a. Click the Open / Swap and Swap radio buttons. The Swapping function builds a simple script to go back and forth between different
windows. The Swap function ensures only one main window will be open at a time.
b. From the Window dropdown box, select Main Windows/Main Window 2.

c. Click OK.
3 Companent Scripting [Buttan 1] - m} *
& Event Handlers ¢ []Mavigation [SetTagValue |[& 5QLUpdate ® SetProperty | [Script Editor
b action > .
No Action

b g focus I—O OpenfSwapII
b G key Open Fass Parameters
[3

§ mouse) Parameter Name Value L
b 53 mouseMotion
b 73 propertyChange ®
W Custom Methods g

4k

Window:
Main Window 2 -

’, Forward / Back |

’, Close ‘

B security... Ry Confirmation...

Event Description Event Object Properties
This event is fired when the "action’ of the component |~ A
occurs. What this action is depends on the type of the |~ @ source

Apply Cancel

8. Save and Publish your project.
9. Open your Client. Click on the Main Window 2 button and Main Window 1 will be swapped out with Main Window 2.

https://legacy-docs.inductiveautomation.com/display/DOC79/Component+Events#ComponentEvents-ActionEventHandlers

\a4 Main Window 1

Main Window 2 E:)

10. Repeat Steps 2 and 3 to create Main Windows 2 and 3, respectively. On Main Window 2 make sure you have a button for both Main Window
1 and Main Window 3. Set your window path for the Main Window 1 button to Main Windows/Main Window 1 (refer to step 4). For the Main

Window 3 button, set the window path to Main Windows/Main Window 3.
11. When Main Window 2 is open, the Main Window 1 and Main Window 3 buttons are displayed. Clicking either button opens the respective

window.

\a4 Main Window 2

<::I Main Window 1 Main Window 3 E:}

Navigation - Drill Down

Another popular navigation strategy is to drill down into various areas of your project using a map. The
Drill Down navigation strategy is ideal if you have different geographical locations. A good example is to
have a main window that has an image representing a plant or factory. The image can have any type of
drawing tool component, such as an rectangle, circle, etc., that overlays the image. When the user
selects one of the overlay components, the Client swaps windows with a window that displays
information that pertains to the selected area of the plant.

It is a very simple navigation strategy to set up and is popular because it lets users select different areas
on an image and drill down to access specific information about that geographic location.

KN Version_Vision est - Main Window

Command Windows Help

Drill Down Navigation Example

On thispage...

® Drill Down Navigation Example

INDUCTIVE
UNIVERSII

Navigation - Drill
Down

Watch the Video

This example demonstrates how to use a US map and configure it to get information about different geographical facilities sprinkled across the US.

1.
2.
different color circles.

3. Right click your drawing tool and select Scripting.
4. Select the mousePressed event handler, and with the Navigation tab selected.
a. Select the Open/Swap radio button.

b. From the Window drop-down box, select the window that relates to the selected area on the map.

c. Click OK.

Drag an image on to a Main Window. It can be any type of image including a photo. This example uses an image of a US Map.
Add a Drawing Tool shape such as a rectangle, circle, polygon over an area on your image to identify the location. In the example, we use

@ Component Scripting [Circle]

W Event Handlers

~ 3 mouse
{5 mouseClicked
@ mouseEntered
{i mouseExited

’% mouseReleased

b 753 mouseMotion
b 5 propertyChange
@ Custom Methods

C
4k

>
No Action

Open/ Swap
Open

and Center

and Close This Window
Additional Instance

Swap

| 2l 5QL Update

Pass Parameters

Parameter Name Value

Window:

Main Windows/CA

Forward / Back

Close

r3 Security...

Event Description

This event fires when a mouse
button is pressed down on the

Re Confirmation...

Event Object Properties
@ source

0K

W SetProperty [Script Editor

-] ped

b X+

Apply Cancel

https://www.inductiveuniversity.com/videos/navigation-drill-down/8.0/8.1
https://legacy-docs.inductiveautomation.com/display/DOC79/Component+Events#ComponentEvents-MouseEventHandlers

5. In the Project Browser, select your US Map window and set it to Open on Startup.

Project Browser g - X
Q- Filte A |
| [| ~-Oussap B AL

+ [Root §
» 45 Bl
£5 Cir

£5 Cir

Close & Commit

Close & Revert

Slel| k]l &] @

£5 Cir
25 Cir Open on Startup
& Im "About" Window

Note: This example assumes you already have your area windows created in your Project Browser.

6. On your area window, add a Button component so you can navigate back to the main window containing the overview map. (If you have
multiple area windows, copy and paste this button on to each window).
a. Open your area window.
b. Add a Button component.
c. Right click on the Button component and select Scripting.

Project Browser 9 - X L L 1, L 1200 EH L M, L, 1590,
il ® 1 Folsom. CA e
Bl |
~ g Main Windows 1 olsom.
M Alarms 3
+Mca 7 Gateway Name: Folsom
~ [Root Containar T 1P Address: 10.10.1.10
I =N S | .1 cortac 500300000
s Label 1 B
s Label 2]
i |abel 3

7. Select the mousePressed event handler, and with the Navigation tab selected:
a. Select the Open/Swap radio button.
b. From the Window drop-down box, select the window that is your overview map.

c. Click OK.
Qﬁ Component Scripting [US Map] - m} X
@ EventHandlers ¢ [INavigation [SetTagValue [SQLUpdate M SetProperty [[Script Editor
~ 3 action »]
@ actionPerformed BaAchon
b G focus © open/swap
’ g key © open .|| Pass Parameters .
~ & mouse |
' Parameter Name Value
@! mouseClicked £ and Center +
{i mouseEntered and Close This Window x
I (i mouseExited Additional Instance &
mouseReleased Swap
b 5 mouseMotion S S
b 73 propertyChange Window:
@ Custom Methods ‘ Main Windows/US Map v
+ Forward / Back
Close-
8 security... R9 Confirmation...
Event Description Event Object Properties
This event fires when a mouse A A
butten is pressed down on the i 8 SIS S d
0K Apply Cancel

8. In Preview Mode, test your window navigation by switching between windows.

https://legacy-docs.inductiveautomation.com/display/DOC79/Component+Events#ComponentEvents-MouseEventHandlers

9. Save your project.
10. Now you can try it out by opening your Client and clicking on a shape to navigate to the selected area. Prior to clicking, the Mouseover Text

displays the location information when you hover over one of the circles. Once you click on a designated area on the map, a new window will
open.

TRHN_Version_VisionTest - Main Window

Command Windows Help

11. Click on the US Map button to go back to the US Map.

TRM_Version_VisionTest - Main Window

Command Windows Help

Folsom. CA US Map

Gateway Name: Folsom
IP Address: 10.10.1.10
Support Contact: 800-800-000

Navigation - Menubar

You can set up a special menu within the Menubar that allows you to navigate throughout the project

using the scripting functions. They can be simple, like swapping to a window, or be more complex in how

they navigate around the project. The benefit of using the Menubar for navigation is that it keeps H

navigation tucked away instead of using up valuable screen space. On thIS page res

Command BUENLENLGE Windows — Help

Overview ® Menubar Navigation Example
US Map
HMI Main

BO 4

Switch User

Menubar Navigation Example

In this example, we'll set up sibling and child options on the menubar. This example assumes you have at least an Overview window created.

1. In the menubar of the Designer, click on Project then select Client Events.

File Edit View Component Alignment

H [« 4+ | it Comm Off
roject Browser ' © 1} Comm Read-Only
Q 1} Comm Read/Write
- @ Main Winc

Project Properties

B Alarms Gateway Events

[| [»-DOca

A
b [Empty @ Session Events

5 HMI M Client Events

5 Hvrw

™ Main W P Preview Mode

(5 Overvie & Preview Language >

b ™ 1S Mad

2. This opens the screen below in the Client Event Scripts space. Click on the Menubar under Client Event Scripts.

3. Select the Add Sibling IE icon to add a Menu Item. Update the Name to a new menu option (i.e., Navigation). You can also add a path to
an icon if desired.

Note: By default, there are three commands under the Command menu option: Logout, Lock Screen, and Exit.

https://legacy-docs.inductiveautomation.com/display/DOC81/Client+Event+Scripts#ClientEventScripts-MenubarScripts

Ei, Client Event Scripts

Client Event Scripts Client Menu Bar
(& startup Configure the menu bar for the Client
(2 Shutdown
- Menu Struct — «- It P rti
[& Shutdown-Intercept fu Structure ¢ tem Troperfies
F Command (= Name Icon
B keystoke - o)
O 2 Navigation Builtinficons/16/navigate_down.png I~
imer
Tooltil
[Tag Change t e
Accel M ‘ Ch
S Message &
| e
- Action Script
1 -

0K Apply Cancel

4. Click the Apply button.

5. Click the Add Child icon to add a new option under the Navigation menu.
a. Give the menu item a name that is appropriate for the window it will be navigating to (i.e., Overview).

b. Add a script that will swap to the window.

Code Snippet - Menubar navigation

system nav. swapTo(" Overvi ew')

% Client Event Scripts - O *
p
Client Event Scripts Client Menu Bar
Startul Configure the menu bar for the Client
= P 9
(2 Shutdown
= Shutdown-Intercept - Menu Structure ———— < - Item Properties
b Command E »| Name Icon
[E] Keystroke ~ Navigation - S ’ a
) , Overview Builtinficons/16/clients.png |
& Timer
Toolti
[Tag Change >
A C
B# Message & ~
L
- Action Script
1 system.nav.swapTo("Overview") =
< >
0K Apply Cancel

6. Repeat step 5 to add as many windows as needed. New groups of windows can even be nested within the parent Navigation Menu.

7. Click OK to save your new menu structure.
8. Save your project.

9. Now you can open the Client to navigate from one window to another using the menubar structure. Notice that the Navigation menu option is
located in the menubar because it was created as a sibling, where as the window added as a child is listed under the Navigation tab.

Pl ForwardBackMav1 - Main Window — O X

Command BLENGEIGEGMN Windows Help

ga Overview

wu Overview Window

Navigation - Retargeting

Retargeting is a special form of navigation which involves navigating to an entirely different project.
Retargeting is accomplished through scripting, usually as a response to a button press or

other component event. The system.util.retarget() function allows you to 'retarget' the Client to a different
project. You can have it switch to another project on the same Gateway, or another Gateway entirely,
even across a WAN. This feature makes the vision of a seamless, enterprise-wide SCADA application a
reality.

The retarget feature will attempt to transfer the current user credentials over to the new project /
Gateway. If the credentials fail on that project, the user will be prompted for a valid username and
password. Once valid authentication has been achieved, the current project is shut down and the new
project is loaded.

You can pass any information to the other project through the parameters dictionary. All entries in this
dictionary will be set in the global scripting namespace in the other project. Even if you don't specify any
parameters, the system will set the variable _RETARGET_FROM_PROJECT to the name of the current
project and _RETARGET_FROM_Gateway to the address of the current Gateway.

Retargeting can be as simple as a single line of code, just make sure you are using the project name (no
spaces allowed), and not the title. See the retarget function in the appendix for more information.

A typical retargeting strategy actually combines this strategy with one or more other navigation
strategies. A simple landing project could be made so that all users would have access to perform basic
user management functions, and then use a screen with Button components that retarget approved
users out to other projects targeting a specific area of operations. The buttons that retarget to these
projects can be hidden or shown based on the user, allowing you to build in an extra layer of security to
your projects. Additionally, each of the other projects would utilize navigation strategies that best suit
those areas.

Retargeting Navigation Example

In this example, we have two projects (Tank and Motor) that we will set up to retarget to each other.

On thispage ...

® Retargeting Navigation Example

@ INDUCTIVE
UNIVERSIT

Retargeting

Watch the Video

1. On a blank window, add a Button component, and either change the button text or add a label that informs the user that the button retargets

to a new project.
2. Right-click on the Button and select the Scripting option.
3. On the action > actionPerformed event, add the following script to the script builder.

Python - Retargeting to Another Project

Retarget to another project on the same gateway.
This script can be run fromany button in a project.
systemutil.retarget ("M/_CQher_Project")

4. Replace the My_Other_Project text with the name of the project you want to access. In this case, the script text was changed to Tank_Proje

ct for the Motor project to navigate to the Tank project when clicked.

https://legacy-docs.inductiveautomation.com/display/DOC81/system.util.retarget
https://legacy-docs.inductiveautomation.com/display/DOC81/system.util.retarget
https://inductiveuniversity.com/video/retargeting/8.1

&% Component Scripting [Button] — O *
@ Event Handlers ¢ [Navigation % SetTagValue 2= SQLUpdate [S] SetProperty [Script Editor
— : >
& action 1# Retarget to another project on the same gateway. A=
I_ 2 # This script can be run from any button in a project. >
» i focus 3 system.util.retarget("Tank_Project")
b key
» @ mouse
» @ mouseMotion
» @ propertyChange
& Custom Methods
+
< >
[#] Advanced Settings
Event Description Event Object Properties
This event is fired when the 'action’ of the ° °
oK Apply Cancel

5. Click OK.

6. Repeat steps 1-4 in the other project, the Tank project, replacing the Tank_Project script with Motor_Project. This can be repeated with
more buttons and scripts that lead to other projects.
7. Save your projects.

8. Open the Client and select the Retarget buttons to navigate between the Tank project and Motor project.

Tank Project - Main Window Motor Project - Main Window

Command Navigation ~ Windows Help Command Navigation ~ Windows Help

Water Tank Project _

RetargetotheMotorbroject b ‘ Retarget to the Water Tank Project

Working with Vision Components

The Vision Module comes with a host of built-in components that you can select from for use in your

project. One thing that you'll find when working with components is there are a few different ways to

manipulate and layout components on a window when working in the Designer. Here is a small sampling O th

of the components available in Vision. See the Vision Components Appendix page for a complete list of n IS page res
components.

® Selecting Components
® Mouse Selection
® Tree Selection
5 ® Component Properties
m—= ® Data Types
- ® Dataset Editor
50 — ® Manipulating Components
= ® Resizing
Moving
Duplicating
Rotating
Size and Position
Component Grouping
Component Layout
Relative Layout
Font Scaling
Anchored Layout

A, 40 30 go
30 70

Radio Button

Radio Button Button

Series3

Series2

Series]

Oct15 Oct16 Oct17 Oct18 Oct19 Oct20 Oct21 Oct22 Oct23 Oct24

This section introduces you to how to work with components so you can learn how to quickly select, @ IN DUC T I VI

move, resize, duplicate, and group components during the design process. U NIV E RS I"I

Component
Overview

Watch the Video

Selecting Components

There are a number of different ways to select components within a window, each of which has their own
advantages.

Mouse Selection @ INDUCTIVIE
UNIVERSI1

Using the mouse to directly click a component is the most common way. Make sure the Selection ‘L
icon on the Drawing Tools menubar is enabled, then click on a component to select it. If the component
you want to select is obscured by other components, hold down Alt and keep clicking, the selection will
step down through the z-order.

Selecting
Components

Window-Selection

You can also select components using window-selection. Click-and-drag within a container to draw

a selection rectangle. If you drag the window left-to-right, it will select all components that are completely .
contained within the rectangle. If you drag the window right-to-left, it will select all components that the Watch the Video
rectangle touches.

Lastly, you can start dragging a window selection and then hold down the Alt key to use touch
selection. This will draw a line as you drag, and any components that the line touches will

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+Components
https://www.inductiveuniversity.com/videos/component-overview/8.0/8.1
https://www.inductiveuniversity.com/videos/selecting-components/8.0/8.1

become selected. As you're using these techniques, components are given a yellow highlight border.

Tank

\ 10 U Units 80 ~J

Tree Selection

By selecting nodes in the Project Browser you can manipulate the current selection. This is a handy
way to select the current window itself, which is hard to click on since it is behind the Root container.
However, you can click to it, using Alt-click to step down through the z-order. It is also the only way to
select components that are invisible.

Project Browser o _ X
A
+ (& Vision -
[Client Events
v U Windows

™ main window [+
| | -0 overviewwindow |
+ [] Root Container
(=) Button

. Cylindrical Tank
& Meter

w4 Wulti-State Button

Component Properties

Each component has a unique set of properties that can be set and modified within the Property Editor.
A property is simply a named variable with a distinct type that affects something about the component's
behavior or appearance. You can also create your own custom properties on the component, which act
like variables that can store any information that you want on the component.

Data Types

There are a wide variety of datatypes across all of the Vision Module's components. Each property has a
distinct type, which dictate what values will be allowed. Below are the common data types.

Numeric Types

Bool | A true/false value. Modeled as 0/1 in Python. Technically, O is false and anything else is true.
ean

Short = A 16-bit signed integer. Can hold values between -32,768 to 32,767, inclusive.

Integ = A 32-bit signed integer. Can hold values between -2,147,483,648 to 2,147,483,647 inclusive.
er/int

@ INDUCTIVE
UNIVERSI]

Component
Properties

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+Designer+Interface#VisionDesignerInterface-PropertyEditor
https://www.inductiveuniversity.com/videos/component-properties/8.0/8.1

Long
Float

Doub
le

A 64-bit signed integer. Can hold values between -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 inclusive.
A 32-bit signed floating point number in IEEE 754 format.

A 64-bit signed floating point number in IEEE 754 format.

Non-Numeric Types

String
Color
Date
Data
set
Font

Bord
er

A string of characters. Uses UTF-16 format internally to represent the characters.
A color, in the RGBA color space. Colors can easily be made dynamic or animated using Property Bindings or Styles.

Represents a point it time with millisecond precision. Internally stored as the number of milliseconds that have passed since the "epoch",
Jan 1st 1970, 00:00:00 UTC.

A complex data structure that closely mimics the structure of a database table. A Dataset is a two-dimensional matrix (also known as a
table) of data organized in columns and rows. Each column has a name and a datatype.

A typeface. Each typeface has a name, size, and style.

A component border is a visual decoration around the component's edges. You can make a border dynamic by using the Style Customizer,
the toBorder() expression function, or scripting with the Java border object.

Dataset Editor

43
The Dataset Editor icon B appears next to the binding icon for the Data property. Clicking the icon brings up the Dataset Editor window where you
can view and make changes to the raw data. Note, any changes will be overwritten the next time your binding polls.

Vision Property Editor o - X
| =R = S R
> Common

Mame Table & D
> Data

Data Dataset [6R x 3C]|B5je

With the Dataset Editor, you can add and delete columns and rows, delete all rows, and copy information to or from the clipboard. When adding
columns, you have multiple formats to choose from including string, date, integer, double, float, etc.

| Dataset Editor et
Date Value1 Value2 =
/720, 4:26:17 PM 67 109
/720, 4:26:45 PM 23 25 +
5/7/20, 4:26:46 PM 15 77 | I
5/7/20, 4:26:47 PM 41 62
/720, 4:26:47 PM 18 34 &
/720, 4:26:47 PM 26 74 o
(]
Column Name: -— Column Type: ——
“ Cancel

https://legacy-docs.inductiveautomation.com/display/DOC81/Color+Animation+in+Vision#ColorAnimationinVision-StyleCustomizer
https://legacy-docs.inductiveautomation.com/display/DOC81/toBorder
https://docs.oracle.com/javase/8/docs/api/javax/swing/border/Border.html

The Dataset Editor icons actions are detailed in the table below.

Icon Action

= Add row

-

s Delete selected rows
]

+
[Ty Add a column

17 Delete selected column
b Delete all rows

5 Add to clipboard

[Paste from clipboard

Manipulating Components

Manipulating components can be done with both the mouse and the keyboard. You can move IN DUC T I VI
components around, resize them, and rotate them.
UNIVERSI1

Resizing

When you select the component you want to resize, they'll get eight resize-handles displayed around the M . | t-
edge of the selection. These handles look like double-sided arrows around the perimeter. Use the mouse ani p ulatin g
to drag them to change the size of the components in the selection. To maintain the selection's aspect Com pon ents

ratio, hold down Ctrl as you resize. To resize around the center of the current selection, hold down Shift.
These can be used at the same time.

Watch the Video

You can also resize the current selection using the keyboard. To nudge the right or bottom edge of the selection in or out, use Shift combined with the
arrow keys, which resizes by the nudge distance, which defaults to one pixel at a time. To nudge the top or left edge of the selection, use Ctrl-Shift co
mbined with arrow keys. To resize faster, hold the Alt key as well, to move the component the alt nudge distance, which defaults to ten pixels at a time.

Moving

To move the component, simply drag it anywhere within the container's bounds. You can also move whatever is currently selected by holding down Alt
while dragging, regardless of whether or not the mouse is over the current selection. This is important because it is the primary way to move

a Container component. (Normally, dragging in a container draws a selection rectangle inside that container).

While a component is selected, you may also use the keyboard's arrow keys to move a component around the nudge distance. Just like resizing with
the arrow keys, to move the alt nudge distance, use the Alt key.

Duplicating

https://www.inductiveuniversity.com/videos/manipulating-components/8.0/8.1

Components can be easily duplicated by dragging them as if you were going to move them and holding down the Ctrl key. This will drop a copy of the
component at the desired drop location. It is often useful to also hold down Shift key as you do this to ensure exact alignment. You may also use the C
trl-D shortcut to quickly duplicate a component in place.

Rotating

Shapes can be rotated directly using the selection tool. Other components cannot be rotated in this manner. To rotate a shape, first select it using the
selection tool so that you see the resize handles around it. Then simply click on it once again and you'll see the rotation handles appear. Clicking
(but not double-clicking) on selected shapes toggles back and forth between the resize handles and the rotation handles.

Once you see the rotation handles, simply start dragging one to rotate the shape or shapes. Holding down the Ctrl key will snap your rotation
movements to 15° increments. When the rotation handles are present, there is also a small red crosshair handle that starts in the middle of the
selection. This is the rotation anchor: the point that the selection will rotate around. You can drag it anywhere you'd like to rotate around a point other
than the center of the shape.

Size and Position

Components can also be positioned and resized with the Size and Position window. This window allows you to type in an exact pixel size of the
component as well as x/y coordinates that the component will be at (with the upper left point of the component moving to that point). To access the
size and position window, right-click on the component and select Size and Position.

Size & Position >
() 1)
[731 X 374]

E Cancel

Component Grouping

Shapes and components can be grouped together so that they act like a single component in @ IN DUC T I VI

the Designer. Grouping components is very similar to putting them in a Container. In fact, it is the

same thing as cutting and pasting them into a perfectly-sized container and then putting that container UNIVE RS IT
into group mode, with one exception. If the group contains only shapes and no other kinds of

components, it will be a special shape-group that has the ability to be rotated and has some other shape-

like properties.

When components or shapes are in a group, clicking on them in the Designer will select the Com pO nent
group instead of the shape. If you double-click on a group, it will become "super-selected”, which will Grou p| n g
allow you to interact with its contents until you select something outside of that group.

Groups can contain other groups, creating a nested structure. Groups themselves are also components, Watch the Video
meaning that you can add custom properties to groups, bind them, and so on.

Difference between a Container and a Group

It is helpful to use Groups and Containers to organize the components on your window. You can select
multiple components and right-click to convert them into a group, then right-click again convert that group
to a container.

https://www.inductiveuniversity.com/videos/component-grouping/8.0/8.1

o
I
:
Hand :
:
I
A
Auto :
I
l
OFF |
BT e Cut
4 Copy
B Paste
o Delete

na

Lngraup

+1 Convertto Container

B Lock

Layout works differently for groups. The layout setting for components and shapes inside a group is ig
nored. All members of a group act as if they are in relative layout with no aspect ratio restrictions. This
special group-layout mode is also active when resizing a group inside of the Designer,

whereas traditional (container) layout doesn't take effect in the Designer.

Component Layout

Layout is the concept that a component's size and position, relative to its parent container's size
and position, can be dynamic. This allows the creation of windows that resize gracefully using either Anc
hored or Relative layouts and can optionally keep the original aspect ratio.

This is a very important concept because of the web-launched deployment of Vision clients - they often
end up being launched on many different monitors with many different resolutions.

This is also important for components that have user-adjustable windows like popup windows. Imagine a
popup window that is mostly displaying a large table or chart. If you're running on a large monitor, you
may want to make the window bigger to see the table or chart easier. Of course, this is only useful if the
table or chart actually gets larger with the window.

Changing a component's layout is as simple as right-clicking on the component and opening the Layout
dialog box. You can also alter the default layout mode that gets assigned to new components. See Desig
ner/Window Editing Properties.

There are two layout modes, and they are set on a per-component basis. Both affect the

component's size and position relative to its parent container. The root container's size is dictated by the
window size. To edit the layout of a component, right-click on the component and select Layout from the
menu. the Layout Constraints window displays showing all the default settings. These default settings

@ INDUCTIVE
UNIVERSIT

Component Layout

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC81/Project+Properties#ProjectProperties-WindowEditingProperties
https://legacy-docs.inductiveautomation.com/display/DOC81/Project+Properties#ProjectProperties-WindowEditingProperties
https://www.inductiveuniversity.com/videos/component-layout/8.0/8.1

can be altered in the Project Properties.

[0 Layout Constraints x
Layout Mode
Relative Anchored

Relative Layout Options

Maintain Aspect Ratio
Center Leading Trailing

Scale Font

Layout Modes

® Relative
This mode makes a component's size and location relative to its parent's size and location.
When the parent changes size, the component changes accordingly. This creates components

that auto-scale.

® Anchored
This mode makes the edge of a component's two axes (horizontal and vertical) anchored to the

edge or edges of its parent.

Relative Layout

Relative Layout is the default mode. This is a simple and effective layout mode that keeps a component's size and position constant relative to its
parent container, even when the parent container grows or shrinks. More precisely, it remembers the component's position and size as a percentage
of its parent's bounds at the last time the window was saved. Relative Layout also has the option of scaling a component's font appropriately.

Note that Relative Layout mode respects aspect ratio. So, if the parent component is distorted, the content will not be. The extra space is distributed
evenly on both sides of the content.

Relative Layout Options

® Maintain Aspect Ratio
If selected, the component's original aspect ratio is preserved. Otherwise, it can stretch tall or wide.

® Center
When maintaining the aspect ratio, centers the component with respect to its parent.

® Leading
When maintaining the aspect ratio, aligns the component with the parent's leading edge.

® Trailing
When maintaining the aspect ratio, aligns the component with the parent's trailing edge.

® Scale Font

If selected, the component's font will scale along with its size as the relative layout adjusts the component. This will override other font size
settings. If this setting is applied to a Group, then all components in the group will use this setting.

Font Scaling

By default, font scaling is enabled on all components, but it can behave differently on some components so it's good to test it out before putting it into
production. You can change the default Component Layout settings in Project Properties under Vision > Design > Relative Layout Options.

Font Scaling on Individual Components

When individual components are dragged into a window, the following default Layout settings for each component are applied. All components on the
window default to font scaling.

Tank
Hand
Auto
Layout Constraints *

Layout Mode
D Relative Anchored
Relative Layout O ptions

Maintain Aspect Ratio
D center _ Leading ' Trailing

Scale Font

Font Scaling on Groups

When individual components are grouped together, the default Layout settings are applied to the new group component, and to each component in
the group. All the components in the group default to font scaling.

. Tank !
l .
; Hand |
| o
| I
& o3
Auto !
Layout Constraints >

Layout Mode
O Relative Anchored
Relative Layout Options

Maintain Aspect Ratio
O center _ Leading | Trailing

Scale Font

Font scaling on individual components in a group can be disabled by selecting the group, and double clicking on a single component. You will get a
red outline around the group, then you can select the individual component(s), and disable font scaling. Note: The individual component font scale
setting takes precedence within a group.

Tank

' Auto

!I___i___h

"1 Layout Constraints x

Layout Mode
O Relative | Anchored

Relative Layout Options

Maintain Aspect Ratio
O Center _ Leading | Trailing

Scale Font

When you remove the group (right-click and select Ungroup), all the individual components within that group will get reset to the default Layout
settings including font scaling, even if font scaling was set differently.

Font Scaling on Containers

You can convert a group to a container to change the way scaling works. Ignition remembers the last Layout Settings you made to each individual
component in that group prior to the conversion to a container (i.e., if any of the components had font scaling disabled, once the group is converted to
a container, those same components will still have font scaling disabled).

Anchored Layout

Anchored Layout lets you specify various "anchors" for the component. The anchors dictate how far each of the 4 edges of the component stay from
their corresponding edges in the parent container.

Anchored Layout Options

® North/South
If one of these is selected, the distance between that edge of the component and that edge of the container is preserved. If both are selected,
the component will stretch its height to maintain both distances.

®* West/East
If one of these is selected, the distance between that edge of the component and that edge of the container is preserved. If both are selected,
the component will stretch its width to maintain both distances.

® Center Vertically
When selected, both top and bottom buttons will be deselected. This option maintains the height of the component and centers it vertically in
the container.

® Center Horizontally
When selected, both left and right buttons will be deselected. This option maintains the width of the component and centers it horizontally in

the container.

[Layout Constraints x

Layout Mode

Relative Anchored

Anchored Layout Options

E Cancel

For example, if you anchor top and left, then your component will stay a constant distance from top and left edges of its parent. Since you didn't
specify an anchor for the right or bottom sides, they won't be affected by the layout.

If you anchor bottom and right instead, the components will again stay the same size. Since you didn't specify an anchor for their other edges, but they
will stay a constant distance from their parent's right and bottom edges.

Additionally, you can mix and match the various modes for the different components in a given container. To demonstrate, we can apply different
anchors to each of the shapes at once and then change the size of the layout.

* Applying the horizontal and vertical centering anchors on the square, centers it in the layout and maintains the original size.
* Applying the south and west anchors on the triangle, holds it to the lower left area of the layout.
* Applying the north, south, west, and east anchors on the circle, causes it to expand as the edges of the layout expand.

=D

Creating Vision Components

Adding Components to a Window
There are four primary methods for adding Vision components to a window:

. Select the component in the palette, and then clicking and dragging on the window.
. Drag a component's icon from a palette onto a container.

. Drag one or more Tags onto a window.

. Adding shapes using the drawing tools or SVGs.

A WOWNE

The Component Palette

There are two styles of component palette in Ignition Vision: the tabbed palette and the

collapsible palette. These palettes work in the same way, but the tabbed palette docks to the north

or south edge of the workspace, and the collapsible palette docks to the east or west edge. By default,
the collapsible palette is visible in the window workspace. To switch palettes, navigate to the View >
Panels menu, and select either Component Palette - Tabbed Palette or Component Palette

- Collapsible Palette.

Creating Components Using Click and Drag
Components can be created on the window by first selecting them in the component palette, and then
clicking and dragging on the window space. Draw a rectangle in the container to specify where the

component should be placed and what size it should be.

Lo ®y L 0 L 0 Component Palette a - X

C R

= Buttons

116% 39 T LT
El 2-State Toggle

e« Multi-State Button
%| One-Shot Button

2] Momentary Button

Creating Components by Dragging from the Palette

On thispage...

® Adding Components to a Window
® The Component Palette

® Creating Components Using
Click and Drag

® Creating Components by
Dragging from the Palette

® Creating Components Using Tags

® Creating Components Using
Shapes

® Custom Palette

@ INDUCTIVE
UNIVERSIT

Creating
Components

Watch the Video

Components can be created by dragging them from the component palette to the window. The component will be placed where they were dropped at

its default size. Once on the window, the component can be resized using its resize handles.

c B B L | Component Palette o - X
..
X E
-I Buttons
k o | Button
el 1]

Bl 2-5tate Toggle

@ Multi-State Button

Creating Components Using Tags

Components can also be created by simply dragging a Tag onto a container. Depending on the data

type of the Tag, you will get a popup menu prompting you to select an appropriate type of component for

that Tag. This technique is great for rapid application design as it does two things for you:

® The component is created at the position you dropped it.
® A variety of property bindings are created automatically.

@ INDUCTIVE
UNIVERSIT

https://legacy-docs.inductiveautomation.com/display/DOC81/General+Designer+Interface
https://www.inductiveuniversity.com/video/creating-components/8.1

Tags are used in windows to power property bindings on components. The easiest way to make some Tag Bin d In g - Drag
components that are bound to Tags is to drag and drop some Tags onto your window. an d Dro p

File Edit View Project Component Alignment Shape Tools Help

B« Ay s @ % (O0-»|F -2 Q| | Q @ WatChtheVideo

Project Browser [

Project Properties .8

| [| +-M Root Container
2] Button 1
=) Button 2

I - I R R I

B Cylindrical Tank % Display Numeric Label

e Label Contral LED Display

& Meter

\a Wult-State Bution] Templates » | Mulistate Indicator

o) TEST 1 Progress Bar
e -

e

Tag Browser a_ X
Q¢ |¥-8 0 9 |H
- HMI ~
» % AmbientHum 12.84 Float
»_ % AmbieniTeny 65.82 Float
» % DayTank Memory 40 Integer
® Flowd e 1459 Float

I I

In the example above, we dragged the DayTank Memory Tag onto the window and were given the option
of Display, Control, or Templates. Within the display components, we were given the option of displaying
the tag in a Numeric Label, LED Display, Multistate Indicator, Progress Bar, or Tank component.

The bindings depend on what kind of Tag was dropped and what kind of component was created. For
example, lets suppose you have a Float8 point that represents a setpoint, and you want to set it. Drop
the Tag onto a container and choose to control it with a Numeric Text Field. The following bindings will be
set up automatically:

® The text field's doubleValue property gets a bidirectional Tag binding to the Tag's Value propert

y.

® The text field's minimum and maximum properties get Tag bindings to the Tag's EngLow and
EngHigh properties, respectively.

® The text field's decimalFormat property gets a Tag binding to the Tag's FormatString property.

* The text field's toolTipText property gets a Tag binding to the Tag's Tooltip property.

It is important to realize that multiple property bindings are created when creating components this way.
These bindings not only using the Tag's value, but much of the Tag's metadata as well. Using the Tags
metadata in this way can greatly improve a project's maintainability. For example, if you decide that the
setpoint needs 3 decimal places of precision, you can simply alter the Tag's FormatString to be #, ##0.
000, and anywhere you used that Tag will start displaying the correct precision because of the metadata
bindings.

Creating Components Using Shapes

All of the shapes that you can draw using the shape tools are themselves components. As such, they have properties, event handlers, names, layout
constraints, and all of the other things that you'll find on other components.

T T T Component Palette o — X
. ¥
i
&= E
Al
= Buttons
Q@
z+ | Button
Fa)
"

Bl 2-S5tate Toggle

&

By Blealti Efofe Devifres

Custom Palette

Custom palettes are like expanded copy/paste clipboards. You can put customized components or groups of components into a palette for quick
access.

To create a custom palette, right-click on a tab in the tabbed palette or a header in the collapsible palette, and choose New Custom Palette. Your
custom palette will appear as the last palette. You can rename it by right clicking on the palette. Your custom palette has one special icon in it, the

Capture % icon. To add components to your palette, select them and press the capture button. This effectively does a copy, and stores the captured
components as a new item in the clipboard. You can then use that item much like a normal component, and add multiple copies of it to your windows.

https://legacy-docs.inductiveautomation.com/display/DOC81/Tags
https://www.inductiveuniversity.com/videos/tag-binding-drag-and-drop/8.0/8.1

Component Palette

o - X
S
& | = =X || O- Filte

=" ="

* Buttons N
@) Butt @ New Custom Palette r
Al Rename |
EE 2-Stal .
fi Delete

Dele |
2 Multi=stareouwrom————T 1

4
[One-Shot Button

L

You can assign your custom component a name and it will appear under the Custom Palette. Note that these are simple copies, and are not linked
back to the custom palette. Re-capturing that palette item will not update all uses of that item across your windows.

Mew Palette ltemn

ot -
Hr Column Selector
Item MName)
] File Explorer
| Custom Component |
Item Description @ PDF Viewer

v {33 Custom Palette

Icon

Custom Component
(click to choose)

| — |

Vision Component Customizers

The Vision module provides a number of customizers to configure components in ways that are more
complex or detailed for basic properties.

The two main customizers are the Component Customizer and the Style Customizer. These On thlS page e
two customizers are used repeatedly for many different components. For special purpose components
like the Easy Chart, Table, Tab Strip, and Multi-State Button, they have their own special customizers for
you to create your own custom properties.)
® Component Customizers
® Custom Properties
. . !
Component Customizers ?ty'go‘;g;ﬁ’r?;g‘fge Syle
Customizer
® Configuring Custom Properties
® Value Conflict

To use a customizer:

1. Right-click on the component.
2. Choose Customizers.
3. Select the desired Customizer.

You can also select the component and click the Customizer /' icon in the Vision Main Toolbar
located on the title bar. The following image is an example of the Customizer for the Multi-State Button

component.
|:| Multi-State Button Customizer X
Hand
Auto
¥
0 x Hand Hand
1 Background Coler Background Color
] - ® - @
4 Foreground Color Foreground Color
o N <
Border Border
No Border ~f No Border ~0f
Image Path Image Path
L L
oK Cancel

@ Expert Tip

Often, a Customizer works as a user-friendly interface to one or more expert properties. For example, the Easy Chart Customizer modifies
the contents of the pens, tagPens, calcPens, axes, and subplot dataset properties. This means you can also use property bindings and
scripting to modify the values of these expert properties at runtime, giving you the ability to dynamically perform complex manipulations of
components.

Custom Properties

In addition to the component's basic property settings, you can also create your own custom properties to
enhance and add functionality to a component. You can use the custom properties like any other IN DUC T I VI
properties, such as with data binding, scripting, and styles. Custom properties are important for passing UNIVE RS IT

parameters from one window to another, especially with a popup window. Properties on the window's
Root Container double as a window's parameters. For example, when you click on a Button component
to open a popup window, it can pass a set of values into the window. These values are then set to the
custom property on the Root Container for use on that window.

Custom Properties
To configure a custom property:

. Right-click on the component. Watch the Video
. Select Customizers > Custom Properties.

1

2

3. Click the plus + icon to add a row.

4. Enter the Name (i.e., motorNum) of the custom property and data Type. Click OK.

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Easy+Chart+Customizer
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Table+Customizer
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Tab+Strip
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Multi-State+Button
https://www.inductiveuniversity.com/video/custom-properties/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Easy+Chart+Customizer

5. In the Property Editor, scroll to the bottom of the panel to see your custom property in blue.

72 Custom Properties

X
Name Type Description +
Creeger ||

=[]

OK Cancel

Custom properties can be any of the basic property types, but can also be a UDT Definition. When
specified, the UDT option will create a property shape that matches the shape of the UDT, allowing each
member in to UDT to be represented as a separate property in the resulting custom property.

Style Customizer

Many components support the Style Customizer, which allows you to define a set of visual styles that @ IN DUC T I VI
change based on a single property. Typically, you'll have a property (often a custom property) on your

component that you want to use as a driving property. The Style Customizer enables you to define many U NIV E RS I'I
visual relationships at once, and allows you to preview them before implementing. Without the

customizer, this would have to be done to each property individually.

Component Styles

Watch the Video

Configuring the Style Customizer

Some components have styles already set up, while others do not. The default styles help users get started, but these properties can be further
modified if desired. The following example configures a Cylindrical Tank component that already has a style defined. There are four driving properties
on the component where styles can be configured: Capacity, Data Quality, Value, and Visible.

. Drag in a Cylindrical Tank from the component palette to the window.
Right-click on the Cylindrical Tank and select the Style Customizer.
. Click on Capacity > Liquid Color.

» wNP

. Click the Add Property icon.

https://legacy-docs.inductiveautomation.com/display/DOC81/User+Defined+Types+-+UDTs
https://www.inductiveuniversity.com/video/component-styles/8.1

5. Repeat this step for the Show Value and Tank Color Properties.

Style for Cylindrical Tank

Animate

Driving Property Styled Properties
Available Properties: Used Properties:
Data Qusly o percente :
vale how value
Visible valus ‘:‘ Tank Color
Value Format e
Visible v
Styles
Value Preview
1.00 O ~

Liquid Color Show Value Tank Color

+ | 0
. 0K [Cancel
6. Click the Add + icon under Styles.
7. Click the Expand icon to see the color palette for the Liquid Color.
Style for Cylindrical Tank *

Driving Property

Styled Properties

Available Properties:

Used Properties:

Data Quality Background Color 2 Liquid Celor
Value Border Show Value
visil =]
Data Quality -
Font o
Font Color ~
Styles
Value Preview
0.00 ™ ~ B
Animate
Liquid Color Show Value Tank Color
~ I ~

[|

| e
1

—— Cancel

8. Choose a color from the palette.

9. Repeat this step for the Show Value and Tank Color Properties.

10. Click OK to save your updates.

Configuring Custom Properties

Below is an example of how to use a custom property to configure the appearance of a Level Indicator component by changing the fill color based on
the alarm state of the tank's temperature.
1. Add a Level Indicator and open Custom Properties.

2. Click the Add + icon.
3. Name the new property Severity and set it to an Integer type. Click OK.

Customn Properties

ot
Name Type Description =+

Cseverty mmeger |

Eb

oK Cancel

4. Right-click on the component and choose Style Customizer.
5. Choose your Severity property as the driving property, and the Border and Filled Color properties as the styled properties.

Style for Level Indicator 1 X
Capacity Available Properties: Used Properties:
Data Quality Background Color = Border
Capacity Filled Color
Value Cursor
Visible Data Quality
Font Color
Gradient o
Value | Preview
+ | 0w |
oK Cancel

. Under Styles, click the Add + icon three times

. Create three styles for the three alarm states you want to show.

. For the first style, enter a value of -1 (not an alarm) and don't change anything else.
. For the second, enter a value of 2 (medium alarm). Set the filled color to orange.

©oo~N®

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Level+Indicator

Style for Level Indicator 1 X
Driving Property Styled Properties
Capacity Available Properties: Used Properties:
Data Quality Background Color = Border
SCIEASIN capacity Filled Color
Value Cursor
Visible Data Quality lnd|
-
Font Color
Gradient
Liguid Waves hd
Styles
Value Preview
-1 h v o
2 log ~ &
Animate
Border Filled Color
No Border v 7 $
4| log v &
||
oK Cancel

10. For the third style, enter a Value of 4 (high alarm).

a.
b.

c

d.

e
f

Click the Expand ™ icon.

Select the Animate checkbox.
m

. Click the Add == icon.

Set the StepDuration to 500 for both frames.

. For the first frame set the FilledColor to red.
. For the second frame, set the FilledColor to yellow.

Style for Level Indicator 1

X
Driving Property Styled Properties
Capacity Available Properties: Used Properties:
Data Quality Background Color - Border
SEUETHIN | capacity Filled Color
Value Cursor L
Visible Data Quality -
Font Color w
Styles
Value Previcw
-1 h i}
2 log v i
4 0% ~ 1
Animate
Step Duration (ms) Border Filled Color '=.+
500 | NoBorder ~ < I . =
No Border v /£ - - =
+
+
+ O E
oK Cancel

11. Click OK. Notice that the styled properties you chose are now bold and have the Styles o icon next to them. This is to help remind you that

those properties are being driven, so if you change their values directly, your changes will be overwritten.

Vision Property Editor
l1g] 1 =
¥ Common

MName
Visible
Border &

Mouseover Text
Cursor

b Data
~ Appearance
Font

Units

Show Value
Show Percentage
Value Format
Percent Format

Orientation

Filled Color &

Background Color

g - X

= T -
Level Indicator 1 & G
[true (5]
Mo Border v &
s 2
Default - GO
Dialeg, Plain, 12 -
7 e
false (o]
(3 true (=5
##0 7 e
70 £ e
Bottom to Top * GD
255,255,0 * &, D
250,250,251 v §, G

12. In the Property Editor, click on the Binding

e icon for the Severity custom property.

13. Bind it to the tank temperature tag's Alarms.HighestActivePriority property.

Property Binding: Root Container.Level Indicator 1
R
Tag Binds to a tag
Indirect Tag
Property * W Alarms ~
] B ActiveAckCount
Expression B ActiveUnackCount
Property B ClearUnackCount
sqQL B HasActive
B HasUnacknowledged
MNamed Query B HighestAckedMame
DE Browse B HighestAckedPriority
B HighestActiveMame
SQL Query B HighestActivePriority
B HighestUnackedName “
[default] Sine/Sine@/Alarms . HighestActivePriority -
Options
® No Binding Bidirectional Fallback Delay © = Owverlay Opt-Out

n Cancel

Now, when the alarm state for the tank's temperature changes, the color of the indicator will change based on the settings in the Style Customizer. For
instance, the indicator will flash red and yellow if the high alarm is triggered.

Vision Property Editor o o X ST TP TP PR L T T T
EANE: = A -
~ Common]
Name Level Indicator 1 P10
Visible true G2 __
Border & NoBorder =« # G2 é_'
Mouseover Text & D -
Cursor Default v |]
T Data j
value & -45.567146784 &2 | 3]
Capacity 100.0 €2 ﬂz
Quality Good & G| | -
F Appearance N
~* Deprecated 3]
Data Quality 192 €2 E—_
* Custom Properties]
Severity 46 |

Below is another example to demonstrate the possibilities of customization by using Custom Properties
and the Styles feature together to transform the Label component to appear more like the Multi-State
Indicator. The Label coOmponent initially displays just a string, however you change the foreground color,
background color, and border to make it even more functional.

1. Right-click on the Label component and choose Custom Properties.

2. Click the Add icon.
3. Name the new property State and set it to an Integer type. Click OK.

@ Customn Properties

s
Name Type Description -

Sate property o ..

=

0K Cancel

4. Bind that property to a discrete state Tag coming out of a PLC.
5. Next use the State property to drive its Styles configuration to make the component look different and display different text based on the
value being 0, 1, or 2, like a Multi-State Indicator does. The Used Properties for this configuration include Background Color, Foreground

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Label
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Multi-State+Indicator
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Multi-State+Indicator
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Label

Color, and Text.

Style for Label

X
Driving Property Styled Properties
Data Quality ~| || Available Properties: Used Properties:
Border A Background Color
Cursor Foreground Celor
Data Quality Text
Disabled Image Path
Crahlad h
Styles
Value Preview
0 oft v @
1 Hand ~ @
Animate
Background Color Foreground Color Text
v & NS o, Hand E
2 Ma... v &
+ | O W
OK Cancel

6. Click OK when all style selections are complete to apply them.

Vision Property Editor g - X N L I L
g |m = 2 %]
= Common]
Name Label e | |
Enabled true G __
Visible true o é_
Border [Line Border * Ojea| |
Mouseover Text e |]
Cursor Default v G2 __
B Data é_
Text Hand e |]
Quality Good | |4 £ &
= Appearance 7 & Hand =Y
Font Dialog, Bold, 20 A d a— i)
Fill Background true | |T]
Foreground Celor 255,140,0 - $ = :
Background Color 255,255,71 + @ J
Image Path w D 7]
Disabled Image Path | | 7]
Icon-Text Spacing 4 G :
Rotation 0° i = {J <= custom... @] |]
[syles RO S
= Layout iy
Horizontal Alignment Center v & |]
Horizontal Text Position Trailing v G :
Vertical Alignment Center * D
Vertical Text Position Center v &
E Deprecated
Data Quality 192 &2
El Custom Properties
<
state 1 | Left Nav [T us Map [HMI Main [
== Label "Label" (75,268) [118x32]

Value Conflict

You can bind a property that is already being used by a style, but a warning icon will appear on the property to indicate there is a conflict between the
binding on the property and the style on the component. As a general practice, only the style or binding should write to the property, not both.

Vision Property Editor
E_

g - X

=8 = =R R~

E Commeon
MName

Enabled

Visible

Border &
Mouseover Text
Cursor

EH Data
State

Text &

Quality
El Appearance
Font

Image Path

Styles

Foreground Color A

Background Color &

Disabled Image Path
Icon-Text Spacing

Multi-State Indicator £ G

(3 true (5]
(3 true (5]
Ol Line Border « [Jj&d
e

Default > GO
0ne2

Off e

Error_TypeConversion 2 G2

Dialog, Bold, 12 v

A6,46,46
25500 [@ <=

e GO

W G
4 G2
Dataset [SR x 7C] G e

Drawing Tools

Drawing Tools Overview

Vision comes with its own set of drawing tools so you can draw your own vector graphics on a window.
Using the drawing tools you can create your own shapes such as lines, rectangles, and circles. These
shapes are components with their own set of properties. Shapes or graphics such as lines, rectangles,
and circles can be created using the 2D drawing tools in Vision. All SVG (Scalable Vector Graphics)
images are importable in Vision and are made up of these basic shapes.

Using Drawing Tools

By default, the drawing toolbar is always located on the right side, but you can drag it to anywhere on

your window that you prefer. At the very top of the toolbar is a Selection ‘“ tool that allows you to
select various components on a window. You can use the Selection tool to change the component's size
and position as well as to configure the component. Below the Selection tool are all the tools that draw
graphics. Click on the tool's icon to make it the active tool, then click in the Designer and drag to place
the tool in your workspace. Once you draw a graphic, and want to drag a different graphic tool on to your
window, click on the Selection tool. When a drawing tool is active, a toolbar will appear in the top
menubar that has specific settings and actions for that tool.

Types of Drawing Tools

There are multiple drawing tools that each fulfill a different purpose. Some, like the selection tool simply
allow you to select different components, while others like the rectangle tool allow you to create shapes.
When you create a shape it has a default Fill Paint color of white. After a shape is created, you can
change its Fill Paint color, Stroke color, and Stroke Style properties. All shapes can be treated as paths
and be used with composite geometry functions to alter or create other shapes.

Flo Bt Vew Proect Component Algwmen: Stape Toos Help
Buler s ulenpfo-rlsreo
[T SO | e T

mlE
Il"|:|

w.-| O Welcome [overviewwindow T Test x_

Selection Tool

On thispage ...

® Drawing Tools Overview
® Using Drawing Tools

® Types of Drawing Tools

Selection Tool

Rectangle Tool

Circle Tool

Polygon Tool

Arrow Tool

Pencil Tool

Line Tool

Path Tool

Gradient Tool

Eyedropper Tool

® Shape Size, Position, and Angle

@ INDUCTIVE
UNIVERSIT

Drawing Tools
Overview

Watch the Video

The Selection ‘- tool is active by default. When this tool is active, you can select shapes and components. Selected components can be moved,
resized, and rotated. For more on using the Selection tool to manipulate components and shapes, see Manipulating Components.

https://www.inductiveuniversity.com/video/drawing-tools-overview/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/Working+with+Vision+Components#WorkingwithVisionComponents-ManipulatingComponents

Rectangle Tool

File Edit Vview Project Component Alignment Shape Tools Help
; . = " G =g v e g = s . S5 &
BB« % 8§ #® HE0-» /-0 HXKEL Q@aQa - FO8 & DI bbb kdrfkka
Project Browser [4 Lt I | P I I |- W e 8| 1) non ol o non [Component Palette 0 — X pe—
= An
Q A v = oEEQ
| | ~-H Root Container Al . i Al &
29 Arrow B o Numeric Text Field o
25 Circle b = Spinner N
wet Label T FAN
hbot L = H
Label 1 iy Rectangle PG = Formatted Text Field =
wet Label 2 i .
et Label 3 ol = Password Field v
Wision Property Editor (=4] [Text Area i
=8 | = =% zl ™ Dropdown List -~
]
E Common A = Slider =
Name Root Container J @
X Language Selector Z
Visible true €2 7 Pencil - Freehand
Border OtherBol v [Jj e 3_ Circle = Buttons
Mouseover Text 7 = Button
Opaque true =] b
EH 2-State Toggle
Cursor Default v G J
5 Behavior - s Multi-State Button
. . 0
Combine Repai... false (=]] (%] One-Shot Button
imi (5]] —
Tile Optimized false] (5 Momentary Button
E Data Line
Quality] Polygon @ Toggle Button
5]
= Appearance 1] v #- Check Box
Font Dialog, Plain, 12 - = e I
. el e & oo lv 1} Welcome [™] Overview Window Test x *~ Radio Button v
BB Container'Root Container” (387,20)(100% (166 / 1024 mb g

The Rectangle [;] tool creates and edits rectangle shapes. To create a rectangle, select the tool and then click and drag inside a window to create a
new rectangle. Hold down Ctrl to make it a perfect square, and the Shift key to make it grow from the center point. Once a rectangle is created, you
can use the square handles to change the rectangle's height and width. This is important because it is the only way to resize a rotated rectangle and
let it remain a rectangle. If you resize a non-orthogonally rotated rectangle using the Selection tool, it will skew and become a parallelogram. If you
double-click on the rectangle so the tool is active, you can change the rectangle's width and height using the tool-specific handles. From the toolbar,

you can also change the rectangle's location (in pixels) on the window using the X and Y axes.

There are also small circle handles on the rectangle that allow you to alter the rectangle's corner rounding radius. Simply drag the circle down the side
of the selected rectangle to make it a rounded rectangle. Hold down Ctrl to drag each rounding handle independently if you want non-symmetric

corner rounding. You can use the Make Straight _I button in the rectangle's toolbar to return a rounded rectangle back to a standard, straight-corner

rectangle.

T Component Palette A _ X
: T
S &= B Q
¥ -Ig
: o0 Numeric Text Field o
|
: = Spinner .
———————————— -0 A
=
Rectangle Formatted Text Fiel| -
Circle Tool

The Circle Q tool creates and edits circles and ellipses. It is used in much the same way as the rectangle tool. While it is the active tool, you can
click and drag inside a window to create a new ellipse. Hold down Ctrl to make it a perfect circle, and the Shift key to make it grow from the center
point. When an ellipse is selected, use the width and height handles to alter the shape. You can also use the ellipse toolbar at the top of the Designer

to change the width and the height as well as the X and Y axes.

Polygon Tool

The Polygon A tool is used to create polygons and stars. Use the polygon toolbar at the top that becomes visible when this tool is active to alter the
settings of the shape that is created when you drag to create a polygon. This tool can be used to make any polygon with three corners (a triangle) or
more. On the Polygon menu you can specify the number of corners for the polygon. Once created, you can use the center square handle to move the
polygon around, and the diamond handles to alter the size and angle of the polygon. Hold down Ctrl to keep the polygon's rotation an even multiple of
15°. For a star shape, specify the number of corners (points) and select the Star check box. A second handle that is between each corner will appear
on the polygon allowing you to make a star shape.

® O @ Corners:|7 —— Star

Polygon Star (7 point)

Arrow Tool

The Arrow -4> tool is used to create single or double-sided arrow shapes. When it is active, simply drag to create a new arrow. Use the checkbox on
the arrow toolbar to choose a single or double-sided arrow. To alter the arrow, use the diamond handles to change the two ends of the arrow, and the
circle handles to change the size of the shaft and the arrow head. When changing the arrow's direction, you may hold down Ctrl to snap the arrow to
15° increments.

Pencil Tool

"
The Pencil ,f tool is used to draw freehand lines and shapes. When this tool is active, you can draw directly on a window by holding down the
mouse button. Release the mouse button to end the path. If you stop drawing inside the small square that is placed at the shape's origin, then you
will create a closed path, otherwise, you'll create an open path (line).

On the pencil toolbar, there are options for simplification and smoothing, as well as a toggle between creating straight line segments or curved line
segments. The simplification parameter is a size in pixels that will be used to decrease the number of points used when creating the line. Points will be
in general as far apart as this setting. If you find the line isn't accurate enough, decrease this setting. If you choose to create curved segments, then
the segments between points will be Bézier curves instead of straight lines. The smoothing function controls how curvy these segments are allowed to
get.

Line Tool

' . . _ INDUCTIVE
The Line tool can be used to draw lines, arbitrary polygons, or curved paths. Unlike all of the
other tools, you don't drag to create new paths with the line tool. Instead, you click for each vertex you'd U NIV E RS Ir_[
like to add to your path.

To draw a straight line, simply click once where you want the line to start, and double-click where you
want the line to end. To make a multi-vertex path, click for each vertex and then double-click, press DraWi n g a |_ | ne
enter, or make a vertex inside the origin box to end the path.

As you draw the line, "locked-in" sections are drawn in green and the next segment is drawn in red. Hold ;
down Ctrl at any time to snap the next segment to 15° increments. WatCh the Vldeo

On the line toolbar, you can choose between three different type of line settings:
® straight-line segments

® perpendicular-line segments
® curve-line segments

https://www.inductiveuniversity.com/video/drawing-a-line/8.1

Help

#xeomlaaallg[ss]

PR I L/ PN . - 8 _ X

r dicular line segments. -
¥ T —

A G

3 Numeric Text Field

] °

™ Spinner a

— = Formatted Text Fielt -

Line Teol = password Field 7

[Text Area P

Perpendicular-line segment is just like a straight-line segment except that each segment is restricted to
either horizontal or vertical.

The curve-line segment will create a Bézier curve path by attempting to draw a smooth curve between
the previous two vertices and the new vertex.

Path Tool

o
All shapes and paths can be edited directly by using the Path @ tool. This tool lets you directly
modify the nodes in the path, adding new nodes, removing nodes, and toggling segments between
straight or curved. For more information, see Shape Geometry.

Gradient Tool

The Gradient Etool is used to affect the orientation and length of any gradient paints. They work hand-
in-hand with the Fill Paint property. Gradients smoothly blend any number of colors that can be
positioned along a straight line or form an ellipse across the shape. A Linear gradient uses a horizontal
line drawn across the width of the shape by default. By switching to the gradient tool, the horizontal line
can be changed to move in any direction by dragging the handles. The Radial gradient uses a 45° angle
drawn over the shape which starts at the center and moves out. Just like the Linear gradient, the Radial
gradient can also be changed by dragging the handles around.

Eyedropper Tool

With the Eyedropper y tool you can set a selected shape(s) and/or component(s) foreground
/background or strokeffill colors by pulling the colors from somewhere else in the window. Select the
component you want to change, and then activate the eyedropper tool. When this tool is active, left-click
to set the selection's fill or background color, and right-click to set the selection's stroke or foreground
color.

Remember to turn off the Eyedropper tool when you're finished by clicking the Selection tool, otherwise,
you will continue to change colors on your component each time you do a mouse click. This tool works
on most components as well as shapes. For example, right clicking will set the font color on a Button
component, or left-clicking will set the background color.

@ INDUCTIVI
2%y UNIVERSIT

L

Editing Shape Paths

Watch the Video

INDUCTIVI
W72 UNIVERSII

Gradients

Watch the Video

INDUCTIVE
“ve72- UNIVERSI1

Eyedropper Tool

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC81/Shape+Geometry#ShapeGeometry-B�ziercurve
https://www.inductiveuniversity.com/videos/editing-shape-paths/8.0/8.1
https://www.inductiveuniversity.com/videos/gradients/8.0/8.1
https://www.inductiveuniversity.com/videos/eyedropper-tool/8.0/8.1

Shape Size, Position, and Angle

Shapes are different from other components in that they have properties that determine their size and position that can easily be bound. These
properties are called X, Y, Height, and Width. The values of these properties are always relative to the shape's parent container's width and height,
even in a running Client where that container may be a wildly different size due to the layout mechanism.

For example, let's say that you have a shape that is located at x=100, y=100, and was 125 by 125 inside a container that is 500 by 500. If you want to
animate that shape so that it moves back and forth across the screen, you'd set up a binding so that X changed from 0 to 375. (You want X to max out
at 375 so that the right-edge of the 125px wide shape aligns with the right edge of the 500px container). Now, at runtime, that container might be 1000
by 1000 on a user's large monitor. By binding X to go between 0 and 375, the true X value of your shape (whose width will now be 250px due to

the relative layout system), will correctly move between 0 and 1750, giving you the same effect that you planned for in the Designer.

Another ability unique to shapes is the ability to be rotated. Simply click on a selected shape and the resize controls become rotate controls. There's
even an Angle property that can be edited directly or bound to something dynamic like a Tag.

Note:

Use caution when binding the rotation. When you change a shape's rotation, its position also changes. The position of any shape is the top-leftmost
corner of the rectangle that completely encloses the shape. Because of this effect, if you wish to both dynamically rotate and move a component,
special care must be taken since rotation alters the position.

If you want to both dynamically rotate and move a component, special care must be taken since rotation alters the position. You don't want your
position binding and the rotation binding fighting over the position of the component. The way to both rotate and move a shape is as follows:

. Bind the rotation on your shape as you wish.

. Create a shape (for example, a rectangle) that completely encloses (in other words, it's bigger than) your shape at any rotation angle.
. Set that rectangle’s visible property to false.

. Select your shape and the rectangle and group them.

. Bind the position on the resulting group.

O WNE

Now the rotation and position of a shape are animated.

In This Section ...

Shape Geometry

Shape Paths

Once you draw shapes using the drawing tools in Vision, it's possible to alter and edit shapes after On th|S page s
they've been created. By default, all shapes r‘]:ave a white fill color. Editing the paths of your vector

graphic shapes is done by using the Path @ tool. Simply select any shape or line while the Path tool
is active to start editing. If the shape is already a path, you can switch to the Path tool by double-

L]
clicking on the shape. Shape Paths

® Editing a Shape Path

® Filling a Shape
You can convert any shape into a general path by selecting the To Path 3:3 function under the Shape m ¢ Bézier Curve
enu. Shapes will also implicitly turn into paths if they are altered in a way not supported by the underlying ® Making Bézier Curves
shape. For example, if you stretch a rotated rectangle, thereby skewing it into a parallelogram, it will ® Creating and Editing Shapes
become a path automatically. Using Constructive Area
Geometry
L. ® Union
Editing a Shape Path e Difference
® [ntersection
Each point on the path is represented by a diamond-shaped handle when the path editor is active. These ® Exclusion
handles can be dragged to move them around. They can also be selected by clicking on them or ® Division

dragging a selection rectangle to select multiple points. This allows groups of points to be
altered simultaneously.

o
To change a line segment between open, straight, and curved, select the Path @* tool and use the
toolbar functions that become visible. Points can also be added and removed using the functions on the @

Path Editor toolbar. IN DUC T I VI
2| 2 o [xeooaas 2 v 48303 T 5t [%k | UNIVERSII

1 HOQ 1 1 1 1 |EQQ 1 1 1 1 |iaq 1

1 Ll 709, Ll

-

Shape Geometry

OIS

Watch the Video

>

&

9,

Filling a Shape

Filled shapes have two fill settings that control whether or not holes in the shape should be filled. To

remove the fill entirely, simply set the Fill Paint property in the Property Editor to No Paint IZI .

https://www.inductiveuniversity.com/videos/shape-geometry/8.0/8.1

Vision Property Editor o - X
= | & a
B A = | = Rl W -

Common
* Data
=l Appearance
Fill Paint 7 e

Stroke Paint Solid Color e
. A = L 1]] =
Stroke Style
Styles <No Data> Wheel Palette RGB HSL
Position .

* Deprecated

export import

Hex 00D9D9

When editing paths directly, it is often useful to zoom in on the path. Don't forget that you can zoom in on a location by holding down Ctrl an
d using your mouse wheel to zoom in on a particular area without having to zoom in and then scroll. Also, if you press your mouse wheel in,
you can pan around your window.

Bézier Curve

A Bézier curve, also sometimes called a quadratic curve, is a type of curved line used in vector graphics IN DUC T I VI
that connects two points, allowing you to create smooth vector graphic shapes. A Bézier curve is \ ’
configured using four points: the two end-points and two control points. The curve starts along the line "l: . {.’.‘ U NIV E RS I'I

between the an endpoint and the first control point, and then curves to smoothly meet the line between
the second control point and the next endpoint.

Bezier Curves

Watch the Video

Making Bézier Curves

https://www.inductiveuniversity.com/videos/bezier-curves/8.0/8.1

Curves are made using the Line tool.

»

1. In the Designer, select the Line 2 tool icon on the toolbar on the right side of your window. When the Line tool is active, a toolbar will
appear in the top menubar. There are three different type of line settings: straight-line segments, perpendicular-line segments, and curved-
line segments.

2. Select the curve-line segment on the menubar. Click on the window to begin drawing your image. Each time you want to make a curve, click
on the screen. The curve-line segment will draw a smooth curve between points creating a smooth vector graphic shape.

File Edit View Project Component Alignment Shape Tools Help

B o[6w aloo-» f-e?e:n:::!:h:%exex@.

'roject Browser B _ X LT L T O T R T . R . LI
Q A4

» M overview Window [~
- [Test
~ [] Root Container
29 Arrow
2% Circle
25 path
25 Path 1] V4

L seaho i

2% Polygon -

500,

O o7

22

3. The line tool can make lines as well as shapes. To complete the line, simply click a second time on your final location. To make the line into a
shape, click on the starting point as your final location.

o
4. Using the Path @ tool in the drawing toolbar, you can see a vector graphic shape showing where the points meet and the smooth curves
between each point. If you want to edit or alter the shape after you create it, use the Path tool and drag the circles or diamonds to change the
shape.

Creating and Editing Shapes Using Constructive Area Geometry

Editing paths directly can be a bit awkward. Using Constructive Area Geometry is usually an easier and @ IN DUC T I VI

more intuitive way to get the shape that you want. These functions are accessed from the Shape menu
and operate when two (or more) shapes are selected. U N I V E RS I'I

Shape

“) Rotate Left Editing Shape Paths

¢ Rotate Right Watch the Video
¥4 Mirror Horizontal

== Mirror Vertical

4 Union

4 Difference
45y Intersection
£y Exclusion

My Division

& Stroke To Path

https://legacy-docs.inductiveautomation.com/display/DOC81/Drawing+Tools#DrawingTools-LineTool
https://www.inductiveuniversity.com/videos/editing-shape-paths/8.0/8.1

L) selection Order Matters

The order that you select the shapes is important for many of these functions. Typically, the
first shape you select is the shape you want to retain, and the second shape is the shape that
you want to use as an "operator" on that first shape.

Union

The Union . function combines two or more paths into one. The resulting shape will cover the area that any of the shapes covered initially. The
example shows how the union of a circle, rectangle, and triangle can be "unioned" together to create a basic pump symbol. Creating the symbol using
this method took a few seconds, whereas attempting to draw this shape by hand using paths would be quite frustrating.

 J

The Difference b function can be thought of as using one shape as a "hole-punch” to remove a section of another shape. The example shows how
a zigzag shape drawn with the line tool can be used to punch a cutaway out of a basic tank shape. The level indicator is added behind the resulting
shape to show how the area where the zigzag shape was is no longer part of the tank shape.

Difference

Intersection

The result of an Intersection @ function will be the area only where where two shapes overlap. The example shows how the "top" of the tank in the
difference example was easily made using two ellipses.

e —

Exclusion

The Exclusion b function, sometimes called X-OR, creates a shape that occupies the area covered by exactly one of the source shapes, but not

1/\
N

Division

The Division {-‘) function divides or cuts one shape up along the outline of another shape. This works the same as a difference for the first shape
selected, and an intersection for the second.

Fill and Stroke

All shapes have three properties that affect how they look: Fill Paint, Stroke Paint, and Stroke Style.

® Fill Paint: Determines the interior color of the shape. 2
® Stroke Paint: Represents the color of the shape's outline. On thIS page
® Stroke Style: Determines the thickness, corners, and dash properties of the shape's outline.

. . ® Fill Paint
Fill Paint * Editing Paints

® Paint Types
. . ® Gradients
Editing Paints * Gradient Paint Bounds
® Gradient Cycles
® Setting a Gradient
® Stroke Style

Both the Fill and Stroke paints can be a variety of different types of paints. To edit a shape's fill or
stroke paint, you can either use the paint dropdown in the Property Editor table by clicking on the Edit

icon or open up the dedicated Fill and Stroke panel from the View menu.

Paint Types

The top of the paint editor is a selection area that allows you to choose between the five different types of @ IN DUC T I VI
paints.
UNIVERSII

1 2 3 1 5

Watch the Video

1. No Paint E when used as a fill paint, then the interior of the shape will be transparent. If used
as the stroke paint, then the paint's outline will not be drawn.

2. Solid Color Paint . is equivalent to the Color type used elsewhere throughout the
component library. A solid color is any color, including an alpha (transparency) level.

3. Linear gradient [l smoothly blends any number of colors along a straight line across the
shape. Each color is called a Stop. Each stop is represented as a drag-able control on a
horizontal preview of the gradient in the gradient editor. You can click on a stop to select it and
change its color or drag it to reposition it. You can right-click on it to remove it. You can right-
click on the preview strip to add new stops and change the gradient's cycle mode.

4. Radial gradient n are similar to linear paints except that the colors emanate from a point
creating an ellipse of each hue. Radial paints are configured in the same way as linear paints.

5. Pattern paint E uses a repeating pixel-pattern with two different colors. You can pick a pattern
from the dropdown or create your own using the built-in pattern editor.

Gradients

Gradient Paint Bounds @ INDUCTIVE
UNIVERSI1

The two gradient paints, Linear and Radial, are more than a list of colored stops, they also need to be
placed relative to the shape. The same gradient may look wildly different depending on how it is placed
against the shape. By default, a Linear gradient will run horizontally across the width of the entire shape,

but this is readily changed. By switching to the Gradient K& Tool located on the drawing tools toolbar, Gradients
you can drag handles around to change the orientation of the gradient. You can even make the gradient
larger or smaller depending on how big you want it to be.

Watch the Video

https://www.inductiveuniversity.com/video/fill-and-stroke/8.1
https://www.inductiveuniversity.com/video/gradients/8.1

™
P i

Gradient Cycles

The two gradient paints (Linear and Radial) both have a cycle mode that you can change by right-
clicking within the preview strip.

The cycle modes are illustrated below: No Cycle, Reflect, and Repeat.

I B R E

1 2 3

. No Cycle - The first and last stops are repeated forever after the edge of the gradient bounds.
. Reflect - Beyond the bounds of the gradient, it will be reflected and drawn in reverse, and then

reflected again, creating a smooth repetition.

. Repeat - Beyond the bounds of the gradient, it will be repeated forever.

Setting a Gradient

1.

abwiN

In the Designer, select your component.

t

. In the Property Editor under Appearance, click the Edit s icon.

. Select either the Linear or Radial gradient.

. You will see two stops: white and black. Click on each Stop and choose a different color.

. If you want to add an additional stop, right click on the color bar and select Add stop. You can

also add / remove Stops, and select your desired cycle: No Cycle, Reflect or Repeat.

Froject Browser 8 _ X [N 0, .

Q Al
~ [T Main Window2 ~
~ [Root Container

| [[Torohgonr [HIE
Vision Property Editor a - x| 3
o]

(LA S =N~

¥ Common
Name Polygon 1
Visible true
Mouseover Text
Cursor Default

} Data
~ Appearance

Fill Paint Linear Gradient .

Stroke Paint Solid Color - A = 0 o]
Stroke Style ——
L]
— Heme —
~ Position Add Stop
X 20.137186| Wheel Palette RGB HSL
© MNoCycle
Y 150.553802
Reflect
Width 168.9415740
Repeat
Height 155.6807861

Angle -30.1866761
~ Deprecated
Data Quality 6

export import

Hex FFRCO0

T

6. Close the Color Selector by clicking the X in the upper right corner.

7. With your component still selected on your window, and click the Gradient E tool in the

toolbar. You'll notice a line on your component. Now, you can drag the line's handles to change
the orientation and lengthen or shorten the gradient.

https://legacy-docs.inductiveautomation.com/display/DOC81/Color+Selector+Reference

8. Here are a few examples of what you can do with gradients:
Radial - No cycle
Linear - Reflective

Linear - with a 3rd Stop
Linear - Repeat

--D-

Stroke Style

Qoo

A shape's stroke paint is only half the story. The Stroke Style is also an important component of how an outline is drawn. Primarily the style controls
the thickness of the line drawn, but it also can be used to create a dashed line. The setting for thickness is specified in pixels, and creating a dashed
line is as easy as picking the style from the list. The effect of the thickness and dash pattern settings is fairly self-explanatory, but the other

stroke settings are a bit more subtle. You can notice their effect more readily on thick lines.

You can access the Stroke Style in the Property Editor under Appearance.

Project Browser (=LY S R TR TP T LT O N TR o B .
Q Al
+ [7] Main Window3 Al 1]
+ [] Root Container] % & &
[[[Ewarow (ML '
B "y |
| 1% LY 1
Vision Property Editor g _ X | A !
- —] AT Y
12 1 = = V- i BN |
] : - + 1
» Common T % @
- *
P Data b | v N |
_ | * oy
T Appearance 7] ! * "
ll Pai Solid Col /e | | S
Fill Paint olid Lolor I:I K | ! -7 i
. . - ! - 1
Stroke Paint Solid Color - s)] . Ve .:,
. - I TR
Stroke Style +----------|*{‘C—D| 1 f
Styles <No Data=> | width Dash Pattern
~ Position | 375~ | ~
X 43.74000167
Cap Style S TPTTT I T
A 73.8399963:
e nasssoszzt | 8] R | 1| poorrrrrrrrrny
Height 182.1600036¢ Join Style e
Angle 63.3010804: F 'F — mEmEmEmEmEm=-———
N
~* Deprecated o
Data Quality §(Miter Limit Dash Offset
20 : —

Cap style is a setting that controls what happens at the end of a line segment. You can either have the line simply be terminated with no decoration
(#1), round-off the end with a semi-circle (#2), or cap the end with a square (#3).

IxErees 1
CEIXIXD 2
EEEEXEEN 3

Join style is a setting that affects how a line is drawn where two segments meet (a corner). The default setting is called a miter join (#1), where the
stroke is extended into a point to make 90-degree angle. The other options are rounded corners (#2) or beveled edge corners (#3).

=171 7

Miter Limit style joins can become a problem for very sharp angles. With a sufficiently sharp angle, the miter decoration can become extremely long.
To control this, there is a miter length setting to limit the length of a miter decoration. The illustration below shows the same miter join with two different
miter length settings. The first drawing illustrates the length of the miter join.

Images and SVGs in Vision

Using SVGs

Ignition can import SVGs (Scalable Vector Graphic) into a Vision window. Once imported, SVGs can be
modified and styled. To use an SVG in your project, simply drag the SVG file directly onto the window
you want the SVG to appear on. The SVG becomes a new polygon component on the window.

Sometimes the way the SVG imports may result in the SVG appearing very small, in which case you can
manually expand the SVG to your desired size.

Note: Some elements, attributes, and properties in an SVG are not supported. The Vision module uses
the Apache Batik library to handle SVGs, so a list of supported elements, attributes, and properties can
be found on Apache Batik's website.

SVGs as Grouped Components

All SVG images are made up of a group or groups of several (and often many!) paths. These paths are
Ignition's Drawing Tools, and are the basic building blocks of all SVGs in Ignition. You can select each
path individually from the Project Browser, or by double-clicking on an SVG then single clicking on an
object inside it.

File Edit View Project Component Alignment Shape Tools Help
B M|« 4% &8 @ | R4 O-»|F-f Q|0 ¥ &

Project Browser 5 _ X 100 20

wel LoggedIn
~ % Logo

~ s Group
b 4 Group

I = £p Path
£p Path2
£ Path 3
£y path4

Coloring an SVG

With SVGs, one useful HMI technique is to color the SVG (Scalable Vector Graphic) to show the state of
whatever the SVG represents. Whether you are bringing in a vector graphic from the Symbol Factory or
importing an SVG from your computer, you can easily color the SVG to suit your needs. There are two
ways of coloring an SVG: coloring an individual piece of the SVG, or placing a tint over the whole SVG.

Coloring SVG Parts

Individual pieces of the SVG can be pulled out and colored, by finding the path that corresponds with the
part of the SVG that you want colored and applying a color to it. This can be done for a single piece of
the SVG, or multiple different pieces. These colors can even be made dynamic by setting up a binding on
the Fill Color. Since the property is expecting a value with a data type of Color, you can either set up an
expression binding which uses the color() function to create a color object, or use Ignition's built in Numbe
r to Color Translator, which will automatically be made available to you when selecting a binding that will
typically return a value, such as a Tag or Property binding.

Coloring SVG Example
In this example, we selected an individual piece in a push button symbol and added a color to that area.

1. Place a push button image or any image from Symbol Factory onto the window.
2. Right-click on the image and select Ungroup.

On thispage...

® Using SVGs
® SVGs as Grouped
Components
® Coloring an SVG
® Coloring SVG Parts
® Coloring SVG Example
SVG Tinting
® Tinting Example
® Using Images
® Using the Image Management
Tool

@ INDUCTIVE
UNIVERSIT

Scalable Vector
Graphics (SVGs)

Watch the Video

@ INDUCTIVE
UNIVERSIT

Color SVG
Dynamically

Watch the Video

https://xmlgraphics.apache.org/batik/status.html
https://docs.inductiveautomation.com/display/DOC80/Drawing+Tools
https://inductiveuniversity.com/video/scalable-vector-graphics/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/color
https://legacy-docs.inductiveautomation.com/display/DOC81/Color+Animation+in+Vision#ColorAnimationinVision-TheNumbertoColorTranslator
https://legacy-docs.inductiveautomation.com/display/DOC81/Color+Animation+in+Vision#ColorAnimationinVision-TheNumbertoColorTranslator
https://www.inductiveuniversity.com/video/color-svg-dynamically/8.1

File Edit View Project Component Alignment Shape Tools Help

o - .) e | . ..
Hm|"‘“’“ﬁ"+iﬂﬂl1l O-»|FA-68 Q|n ¥ &H 4| 4
Project Browser o _ X PR T T O L L T - A e £
Q- Al wu
-1 I
m Alarms ~ |
b !
P mm PopUps |
= User Management T
~ ™ About @ T |
=[] Root Container ol : Ctri+X

|

[| | | - Pilotlighti (of)]

™ Navigation [*]]

L. Copy Ctri+C

]
™ Mainwindow [P]
™ overview Window [+] B m Delete Delete
M Test 2 L.
o ke =1
b ® Templates
» B Named Queries Ijﬂ Ungroup I
» Reports 1] +]

3. Right-click in the center of the image and select Ungroup again.
4. Click on the larger inner circle in the image, then select the Fill Paint color you want. We chose red #D90000.

Project Browser a - X I T P P L
Q- A N
£5 Path 3 Al
£5 Path 4 7
T Foeans MR
Vision Property Editor o - X l;l'
- _]
12| 1} S =2 (T -]
* Common]
} Data 7]
* Appearance 5_
G CICTE pRlu
Stroke Paint Solid Color H
- | [K (] £
Stroke Style
Styles <No Data> Wheel Palette RGE HSL
~ Position .
X 52.5028192
¥ 78.0112915
Width 068.2413482
Height B68.2415771
Angle
~ Deprecated
Data Quality B }
export import
Hex D90000
=

5. To get color in the "highlight" section of the graphic, click on the highlight. The Fill Paint for this section is a Radial Gradient.
6. Click on the Edit s’ icon to change the colors in the gradient.

7. Click on the left side stop and select white. Click on the right side stop and select red.

Froject Browser g o_ X T T T I L L A
Q- A7
£5 Path]
£5 Path 1 o[I 7
Vision Property Editor o - X EI]'
o
12| 1} = =2 | T J
» Common]
P Data]
~ Appearance 7]
mmadlal Gradient n s 2| |7
Stroke Paint Mone]
E!i 1 [[1] (#] =
Stroke Style
Styles <No Data= U
* Paosition e
X 583757508 Wheel Palette RGB HSL
¥ 84.072326 []
Width 38.3250492
Height 36.3543205
Angle [
~ Deprecated
Data Quality B
export import
Hex | DONNNON

=

8. To regroup all the parts of the SVG, drag a box around them with your mouse. Then right-click and select Group.

File Edit View Project Component Alignment Shape Tools Help

Mo e+ @ [%o) [O-r|F- Q= X5 %|a
Project Browser g _ X R T T L T T T T O T O L
a- A

+ [] Root Container ~
Ib— 4 Group_Backplate
Ib— 4y Group_BackplateBevel
Ii— 4y Group_Bannet_Assembly Cut Ctri+X
»— 4 Group_Bannet Mut v Copy Ctrl+C
Vision Property Editor o - X
3= H ¥ » 7 -
B8 = = |-] 0 Delete Delete
7
El Common - |% Group I
Name Ellipse Elea| |+ =

Alternately, you can create a style using the Style Customizer to change the color of an SVG path based on a driving property on that path. This is
typically done by setting up a custom property to use as the driving property, and then binding the custom property to the property or Tag that will
drive the color change.

https://legacy-docs.inductiveautomation.com/display/DOC81/Color+Animation+in+Vision#ColorAnimationinVision-StyleCustomizer

SVG Tinting
Because an SVG is typically composed of many smaller shapes, it is difficult to color the entire object, as @ IN DUC T I VI

it would require changing the color on every shape within the SVG. So instead of changing the color of

the entire SVG, we can make a new shape that is the same shape and size as the SVG, and make it U NIV E RS I'I
opaque, so that its color acts like a tint on top of the SVG. A clever way to do this is to duplicate the SVG,

union together the new SVG, so that all shapes combine into one shape, and then change the color.

Tint SVG

Watch the Video

Tinting Example

Let's say you chose one of the many grayscale symbols, such as the 3-D Valve symbol from the Valves category, and you want to tint the valve green
when the valve is open, red when the valve has a fault, and keep it gray when the valve is closed. For this example, you'll also need to have a Tag
called ValveStatus, that is 0 for closed, 1 for open, and 2 for faulted.

. Drag the symbol onto the screen.
. Duplicate the symbol by selecting it and choosing Duplicate from the Edit menu, or pressing CTRL-D.
. Now, select the duplicate symbol, which will be above the original.

~ WNP

. Click the Union icon in the toolbar or find the Union item under the Shape menu. This will combine the duplicate SVG into a single
shape.

File Edit Wiew Project Component Alignment m Tools Help
B B« + Y & @ |1 1 O ' Rotate Left

Project Browser o - X i ¢ Rotate Right
Al ¥4 Mirror Horizontal
~ [] Root Container A0 T Mirror Vertical
e T N
™ Mavigation [T] H
™ Main Window [£ P o o
™ overview Window [*] ol [
H
Vision Property Editor a - X |]
4 Ly
= H 'y ¥ -
BE(% | = B Bl M- B
Z o]
=] Common ba .
Name Unien 1 i Stroke To Path
Visible true | |]
5. Remove the outline by setting the Stroke Paint property to No Paint E .
6. Click on the Binding & icon next to the Fill Paint property.
7. Select the Tag binding type.
8. Navigate to the Tag you want to use. For this example, we used a Valve_Status Tag.
9. In the Number-to-Color Translation, double click the color next to the Value 0 and select white.
10. Click the Add New Translation icon. Set the Value 1 at 40% opaque green.
11. Click the Add New Translation icon. Set the Value 2 at 40% opaque red.

https://www.inductiveuniversity.com/video/tint-svg/8.1

Property Binding: Reot Container.Unicn
N
Tag Binds to a tag
Indirect Tag
Property » % Setpoint
» % Temperature
Expression » % Valve_Cooling
Property » % Valve_Heating
sqL ~ % Valve_Status
W Enabled
Named Query ® OpcltemPath
DB Browse W OpcServer
SQL Query [default]Tank/@1/Valve_Status
Number-to-Color Translation
Value >= Color ==
_DII |
2 Color
Reset to Default Low Fallback Color: _
Options
©® NoBinding Bidirectional Fallback Delay Overlay Opt-Out
Bl -

o

Palette

Blink -

RGE HSL

>4

Al eS| 03

Hex 00D90066

. Click OK to save the binding.

. On the window, place another copy of the original symbol.

. Select the colored symbol and select Alignment > Move to Front.
. Next place the colored symbol on top of the original.

. Select them both, then select Component > Group.

I

Using Images
Images can be very useful for displaying important information, such as giving visual representations of
real world objects. There are a few ways that images can be brought into a Vision project. The first is by

pulling images from The Image Management Tool, where the images are stored in the Gateway. The
other way is to grab images using a filepath.

Using the Image Management Tool

Bringing in images using the Image Management Tool is easy.

1. Place an Image component on the Window.

2. In the Vision Property Editor, scroll down to Data and click on the Folder Search '-.Q icon next

to the Image Path property. This will bring up the Image Management Tool.

In summary, we made a flat shape that had the exact same outline as the symbol, and used semi-transparent fills to achieve a tint effect for the
underlying symbol.

INDUCTIVE
UNIVERSII

[
iy

:l\
e's

Images (png, jpg,
gif)

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC81/Image+Management+Tool
https://www.inductiveuniversity.com/video/images-png-jpg-gif/8.1

3. In the Image Management Tool, find the image you want, and double click to select it.

INDUCTIVE

D

File Edit WView Project Component Alignment Shape Toels Help
Moe (s u|safeofo-r|s-20|nxenlaaals UNIVERSI'I
., | Vision Property Editor g - X Lt M P P
Fleels| = o etfw- 1l ¢ @
|[& common 10 H
¥ Behavior i :
g ||¥ pata B e -
£ n i Adding Icons to
Disabled Image Path I S S 1]
] Labels and Buttons
= Appearance] Image Browser
Styles <No Data> @es| 4
B 1mage Manipulation & = o = R S i
Stretch Mode No Stretch wes|] Current Felder Builtin/Heating/ WatCh the Vldeo
Stretch Width w0 e
Stretch Height 100 eal, 1 a—n. el ﬂ ﬁ
Color Swap Filter false esf' @] e '
Swap From 000 -GE-:[[>] Heating .. Heating.. Heating.. Heating

The path to the image is now displayed in the components Image Path property. Images can be
displayed in the image component, but they can also be used in components like labels and buttons.

File Edit Vview Project Component Alignment Shape Tools Help
B3« % 8 8 ® H0-P|(F-FP Q| "2 XEHHEHaaea
.| Vision Property Editor g - X
g | w = el %
|[5 common
& Behavior
5 El Data
? age Patt Builtin/Heating/Heating 1.png | a &2
Disabled Image Path X
Quality
Hl Appearance
Styles <No Data> [Eed

Note: You can add any images you want to the Image Management Tool, which are stored on the
Gateway.

Instead of using images in the Image Management Tool in Image Path
properties of components, you can use the file path to a local image. This
is done by prefixing the file path with fi | e: // /. An example Image Path
would look like this:using Local Images

file:///C:./Users/Public/Pictures/Sanple Pictures/Chrysanthemum jpg

It is important to understand that this will only work if the image is accessible from where the client is
running. So if you access an image from the Designer on the local machine, clients that launch
elsewhere may not have the image stored in the same location. For this reason, we recommend storing
the images in a location that everyone can reach, such as a shared drive.

Note: When working with images found online, make sure to follow all applicable copyright laws.

Related Topics ...

® Symbol Factory
® Image Management Tool

https://legacy-docs.inductiveautomation.com/display/DOC81/Image+Management+Tool
https://inductiveuniversity.com/video/adding-icons-to-labels-and-buttons/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/Symbol+Factory
https://legacy-docs.inductiveautomation.com/display/DOC81/Image+Management+Tool

Comparison Charts

Overview

This page provides an overview of the various comparison charts in Ignition, or charts that allow you to
compare difference sets of data. Comparison charts differ from trending charts in that they tend to utilize
a timestamp to visualize records over a period of time. Several types of comparison charts and how they
are used are described on this page.

Bar Chart

The Bar Chart is an easy-to-use chart that is driven by the Data property, and expects a specific format.
The first column in the Data property defines the names of the categories, and each additional column
defines the groupings for each item in the series (depending on the Extract Order).

Note that additional datasets may not be added to the Bar Chart, so all values must be aggregated into
the Data property via SQL Binding, or scripting. If multiple datasets are desired, then the Classic Chart
configured with a bar renderer should be used instead.

Using the Bar Chart

Typically, data is pulled into the chart from a database using either a Named Query or SQL Query
binding on the Data property. This data is typically category based, which typically means there is no
timestamp. Generally, if values are split up by time, it is into large chunks of time, such as showing
energy usage by month.

Energy (mw)
P [(Y]
= n =

wn

Jan Feb Mar Apr May

B MNorth Area B South Area

______ 3 e

Initial Dataset

When a Bar Chart is first created, the component will contain a dataset that looks like the following:

On thispage...

® QOverview
® Bar Chart
® Using the Bar Chart
® |nitial Dataset
® Extract Order
® Chart
® Using the Chart
® |nitial Dataset
® Radar Chart
® Using the Radar Chart
® |nitial Dataset
® Min and Max
® Pie Chart
® Using the Pie Chart
® |nitial Dataset
® Extract Order
® Box and Whisker Chart
® Box Anatomy
® Using the Box and Whisker
Chart
® |nitial Dataset

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Bar+Chart

Dataset Viewer >
Label MNorth Area South Area @
|an 15 35
Feb 21 36 @
Mar 17 23
Apr 11 39 @
May 16 32

IE

Column Name: -— Column Type: ——
ﬂ Cancel

" #NAMVES"

"Label","North Area", "South Area"
" #TYPES"

tstrt, ettt

" #ROWS", " 5"

"Jan", " 15", " 35"

" Feb", " 21", " 36"

“Mar", 17", " 23"

"Apr","11","39"

" May", " 16", " 32"

Extract Order

The Extract Order property on the chart determines how data series are defined. By default, the property is set to By Row, which means each row is
a series, and each column (except the first) is a category. Based on the initial dataset, datapoints are grouped by area (column) and then grouped by
each month (row). If we set the Extract Order property to By Column, then we see that each data point is grouped by the month (row), and then
grouped by each area (column). Note that the underlying data has not changed, but rather how it is rendered.

- ¢ A& ¢ -

1 40 1 1 40 1

| | | |

| | | |

| 35 4 | | 35 |

1 1 1 1

1 1 1 1

I 30 - I I 30 - I

| | | |

| | | |

I E 251 I I E 251 I

1 E 1 1 E 1

= 20 : Lz 20 :

| E | | E |
A TY AL AT -

| | | |

| | | |

| 10 4 | | 10 4 |

1 1 1 1

1 1 1 1

I 51 1 1 51 |

| | | |

ol T I

I lan Feb Mar Apr May I I Morth Area I

| | | |

: W North Area W South Area : : M [an W Feb W Mar Apr 0 May :
" 8 0T LI B 8 T L
Chart

The Chart component, also known as the Classic Chart can be used to create many different types of charts by rendering the data in different ways.
This means that depending on the type of data you have, you may use the Chart component in very different ways.

By default the chart is set up to be used as a time series chart, with default data that shows this behavior. However with the right data, the chart can
also display an XY coordinate plot or a categorical plot.

Value

Apr 24 Apr 26 Apr 28 Apr 30 May
Date

— Process Temp — Output Temp

Using the Chart

The default settings on the Chart allow it to be used as a time series chart. Simply alter the dataset in the Data property with new time series data to
display it in the chart. You can also alter the renderer in the Dataset Properties to any of the XY renderers to change the way the data is displayed.

To use the chart as an XY coordinate plot, data should be loaded with a two column dataset, where one column is the Y coordinate, and another is the
corresponding X coordinate. The chart will also need to be set up with a new X axis, since the default axis is a date axis.

To use the Chart as a categorical plot, a few things need to change from the defaults. The Data property will need to be loaded with some categorical
data. Categorical data will have one column of the dataset be categories of information in the form of a string. The chart will also need to be set up

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Chart

with a new categorical X axis, as well as a category renderer in the Chart Customizer. Lastly, the Chart Type will need to be a Category Chart. When
the chart is a Category Chart type, the Extract Order property can be changed to alter how the data is pulled out and displayed in the chart. It works
very similarly to the Bar Charts Extract Order seen above.

Initial Dataset

Each new Chart randomly generates a new dataset. This Data property will use the default timeseries behavior of the chart, with a t_stamp column for
the domain, and two other columns (Process Temp and Output Temp) as values at the specified times.

" #NAMES"

"t_stamp", "Process Tenp", "Qutput Tenp"
" #TYPES"

"date","1","I"

" #ROWS", " 200"

"2018-04-30 00: 07: 15", " 64", " 35"
"2018-04-30 01:07:15","60", " 35"
"2018-04-30 02:07:15","56", " 36"
"2018-04-30 03:07:15","52","31"
"2018-04-30 04:07:15","53","26"
"2018-04-30 05:07:15","57","28"
"2018-04-30 06:07:15","60", " 27"
"2018-04-30 07:07:15","57","26"
"2018-04-30 08:07:15","59","31"
"2018-04-30 09:07:15","57","36"
"2018-04-30 10:07:15","55","39"
"2018-04-30 11:07:15","52","41"
"2018-04-30 12:07:15","56", "40"
"2018-04-30 13:07:15","51", "41"
"2018-04-30 14:07:15","52","36"
"2018-04-30 15:07:15","53","32"
"2018-04-30 16:07:15","57","30"
"2018-04-30 17:07:15","52","32"
"2018-04-30 18:07:15","57","32"
"2018-04-30 19:07:15","55","29"
"2018-04-30 20:07:15","53","30"
"2018-04-30 21:07:15","54","31"
"2018-04-30 22:07:15","50", " 29"
"2018-04-30 23:07: 15", "54","25"
"2018-05-01 00: 07: 15", "49","21"
"2018-05-01 01:07:15","53","21"
"2018-05-01 02:07:15","50", " 16"
"2018-05-01 03:07:15","51","19"
"2018-05-01 04:07:15","49","23"
"2018-05-01 05:07:15","48","25"
"2018-05-01 06:07:15","51","20"
"2018-05-01 07:07:15","55","18"
"2018-05-01 08:07:15","50", "22"
"2018-05-01 09:07:15","49","26"
"2018-05-01 10: 07: 15", "53", " 22"
"2018-05-01 11:07:15","50","27"
"2018-05-01 12:07:15","46","26"
"2018-05-01 13:07:15","48","27"
"2018-05-01 14:07:15","52","26"
"2018-05-01 15:07:15","51","24"
"2018-05-01 16:07: 15", "55", " 24"
"2018-05-01 17:07:15","58","23"
"2018-05-01 18:07:15","61","22"
"2018-05-01 19:07:15","60", " 27"
"2018-05-01 20:07:15","59","32"
"2018-05-01 21:07:15","60", "33"
"2018-05-01 22:07:15","56", " 38"
"2018-05-01 23:07:15","51", " 35"
"2018-05-02 00: 07: 15", " 47", " 34"
"2018-05-02 01:07:15","45","32"
"2018-05-02 02:07: 15", "46","27"
"2018-05-02 03:07:15","43","31"
"2018-05-02 04:07:15","39","33"
"2018-05-02 05:07:15","39","30"
"2018-05-02 06:07:15","40", " 26"
"2018-05-02 07:07:15","41","27"

"2018-05-02
"2018-05-02
"2018-05-02
"2018-05-02
"2018-05-02
"2018-05-02
"2018-05-02
"2018-05-02
"2018-05-02
"2018-05-02
"2018-05-02
"2018-05-02
"2018-05-02
"2018-05-02
"2018-05-02
"2018-05-02
"2018-05-03
"2018-05-03
"2018-05-03
"2018-05-03
"2018-05-03
"2018-05-03
"2018-05-03
"2018-05-03
"2018-05-03
"2018-05-03
"2018-05-03
"2018-05-03
"2018-05-03
"2018-05-03
"2018-05-03
"2018-05-03
"2018-05-03
"2018-05-03
"2018-05-03
"2018-05-03
"2018-05-03
"2018-05-03
"2018-05-03
"2018-05-03
"2018-05-04
"2018-05-04
"2018- 05- 04
"2018-05-04
"2018-05-04
"2018- 05- 04
"2018-05-04
"2018-05-04
"2018-05-04
"2018-05-04
"2018- 05- 04
"2018-05-04
"2018-05-04
"2018- 05- 04
"2018-05-04
"2018-05-04
"2018-05-04
"2018-05-04
"2018- 05- 04
"2018-05-04
"2018-05-04
"2018- 05- 04
"2018-05-04
"2018-05-04
"2018-05-05
"2018-05-05
"2018- 05- 05
"2018-05-05
"2018-05-05
"2018- 05- 05
"2018-05-05

08:
09:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
00:
01:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
00:
01:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
00:
01:
02:
03:
04:
05:
06:

07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:

15", "46"," 29"
15","43", " 25"
15", "47", " 24"
15","49","19"
15", "45", " 19"
15", "42"," 20"
15", "43"," 20"
15", "43", " 23"
15","39", " 25"
15", "37","22"
15","33","22"
15","31"," 21"
15","35","22"
15", " 34", " 21"
15","30", " 22"
15", " 34", " 27"
15", "35", " 27"
15","36", " 32"
15", " 39", "32"
15","39","33"
15", "41"," 38"
15", " 40", " 35"
15","36", " 39"
15","38","41"
15","33","41"
15","30", " 38"
15","30", "42"
15","33","38"
15","37","42"
15","33","37"
15","29"," 38"
15", " 24", " 37"
15", " 24", " 42"
15", "21", " 45"
15", " 24", " 44"
15","28", " 49"
15", " 24", " 45"
15", " 24", " 49"
15","19", " 51"
15", " 24", " 48"
15","19", " 45"
15","16", " 44"
15","20", " 40"
15","25"," 38"
15","29", " 40"
15", "27"," 36"
15", "24"," 36"
15","29", "41"
15", " 34", " 45"
15", " 37", " 47"
15", " 40", " 48"
15", "42", " 52"
15", " 45", "57"
15", " 46", " 58"
15", "51", " 59"
15", " 46", " 56"
15", "46", " 59"
15", "47", " 56"
15","43"," 56"
15", "46", " 53"
15","49", " 55"
15", "51","51"
15", "46","51"
15", "50", " 50"
15", "52", " 50"
15", "51","51"
15", "49", "51"
15", "46", " 55"
15","51", " 54"
15", " 56", " 52"
15","61", " 54"

"2018-05-05
"2018-05-05
"2018- 05- 05
"2018-05-05
"2018-05-05
"2018- 05- 05
"2018-05-05
"2018-05-05
"2018-05-05
"2018-05-05
"2018- 05- 05
"2018-05-05
"2018-05-05
"2018- 05- 05
"2018-05-05
"2018-05-05
"2018-05-05
"2018-05-06
"2018- 05- 06
"2018-05-06
"2018-05-06
"2018- 05- 06
"2018-05-06
"2018-05-06
"2018-05-06
"2018-05-06
"2018- 05- 06
"2018-05-06
"2018-05-06
"2018- 05- 06
"2018-05-06
"2018-05-06
"2018-05-06
"2018-05-06
"2018- 05- 06
"2018-05-06
"2018-05-06
"2018- 05- 06
"2018-05-06
"2018-05-06
"2018-05-06
"2018-05-07
"2018- 05- 07
"2018-05-07
"2018-05-07
"2018- 05- 07
"2018-05-07
"2018-05-07
"2018-05-07
"2018-05-07
"2018- 05- 07
"2018-05-07
"2018-05-07
"2018- 05- 07
"2018-05-07
"2018-05-07
"2018-05-07
"2018-05-07
"2018- 05- 07
"2018-05-07
"2018-05-07
"2018- 05- 07
"2018-05-07
"2018-05-07
"2018-05-07
"2018-05-08
"2018-05-08
"2018-05-08
"2018-05-08
"2018-05-08
"2018-05-08

07:
08:
09:
10:
11:

12

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
00:
01:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:

12

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
00:
01:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:

12

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
00:
01:
02:
03:
04:
05:

07:
07:
07:
07:
07:
1 07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
1 07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
1 07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:

15","62", " 52"
15", "57", " 47"
15", " 54", " 47"
15","59", " 46"
15","56", "44"
15", " 58", " 46"
15","62", " 44"
15", " 64", "41"
15","62", " 45"
15","66", " 42"
15", "61", " 37"
15","63", " 38"
15","61", " 38"
15", " 64", " 40"
15", " 64", " 44"
15","60", "40"
15", " 64", " 44"
15","63", "45"
15", "61", " 47"
15","61"," 52"
15","61", " 48"
15", "61", " 47"
15","60", "46"
15","58","44"
15","56", " 43"
15","61", " 45"
15", " 66", "49"
15","68","51"
15","63", " 54"
15"," 66", " 58"
15","69", " 63"
15","69","63"
15","67", " 58"
15","71", " 54"
15", " 74", " 50"
15","79", " 49"
15","75","51"
15", " 80", "49"
15","79", " 50"
15","82", " 50"
15","80", " 53"
15","85", " 54"
15","87", " 49"
15","87","51"
15","84", " 56"
15","82","60"
15","81","57"
15","83", " 55"
15","83", " 55"
15","81","52"
15", " 77", " 49"
15"," 75", " 46"
15","79", " 45"
15", "82"," 47"
15","81","48"
15","82","53"
15","81", " 48"
15","81","43"
15", " 85", "40"
15","90", " 37"
15"," 94", " 34"
15"," 90", " 38"
15","89", "40"
15"," 85", "45"
15","81", " 48"
15","83","43"
15","78","42"
15","73", " 40"
15","72"," 44"
15", " 71", " 42"
15"," 75", " 44"

"2018-05-08 06: 07:15","71", " 46"
"2018-05-08 07:07:15","67","50"

Radar Chart

Radar Charts, also known as web charts, spider charts, and spider plots, are useful for displaying values that are out of spec, and several of them at
once. Each value is plotted on a separate axis with the middle of the axis representing the ideal value. The chart draws a line between the different
values, which create a shape that changes as those values change. Inside the chart, there is a polygon that represents what the chart would look like
if all of its values were in their ideal range. A good use of radar charts is to display realtime information in such a way that outliers can be quickly
identified. This can be an efficient way to convey if a process is running on-spec or off-spec at a glance. So the Radar Chart lets you quickly see
where the values are in comparison to where they should ideally be.

Using the Radar Chart

The Radar Chart can be used to show realtime values by dragging and dropping Tags from the Tag Browser on to the chart. Doing so will create a Ce
Il Update binding on the Data property that is tied to the Value, EngLow, and EngHigh properties on the Tag. Adding additional Tags will add
additional spokes to the chart. Alternatively, a Named Query or a SQL Query binding on the data property can be used to display historical values, or
aggregate previous historical values.

Initial Dataset

Each new Radar Chart randomly generates a new dataset. The Data property on the Radar Chart must have at least a Value, Min, and Max column.
Any additional columns are ignored.
To render properly, the dataset must have at least three rows. Datasets with only one or two rows will be drawn as a vertical line.

[0 Dataszet Viewer >
Value Min Max @

£0,500 21 89,500
72.625 5 91 @

08,007 25 08.007
86.972 19 86.072 @

33.674 23 06
63.141 14 86 @

57.073 20 83
58.821 14 83 x
=

Column Mame: —- Column Type: -—
E Cancel

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Radar+Chart

Min and Max

The Min and Max column, aside from determining the limits on the the chart, are also used to determine the desired value. The Desired value is
drawn as the midpoint between the Min and Max for a single row in the Dataset. Each row of the dataset has a Min and Max column. The values in
these columns are used to determine the scale of the spoke for that variable with the midpoint representing the desired value.

Below we see the white polygon in the center of the chart. This represents the midpoint between Min and Max

" #NAMES"

"Val ue","Mn", " Max"

" #TYPES"

"D',"D', "D

"#RONG", " 8"
"41.51196715968135", "18. 0", "86. 0"
"72.21343683086239","2.0", "88.0"
"98.91484924220774", " 16. 0", " 98. 91484924220774"
"23.189112936965692","1.0","78. 0"
"33.45468212322838", "23. 0", "82. 0"
"77.17126241429432","7.0","100. 0"
"53.529302336166836", "25. 0", " 79. 0"
"62.058120439146435", " 6. 0", "94. 0"

Pie Chart

A Pie Chart displays values from several categories, each category is a separate "wedge" of the chart. The total is the sum of all wedges. The key to
the Pie Chart component is the Data property, which contains the items that will be displayed as pie wedges.

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Pie+Chart

@& Apples ® Bananas © Kiwis @ Oranges
Grapefruit

% z
@ @
& i

Using the Pie Chart

Typically, data is pulled into the chart from a database using either a Named Query or SQL Query binding on the Data property. The data typically
consists of a list of name-value pairs of things that are related.

Initial Dataset

The Pie Chart component contains an initial dataset with two columns, Label and Value. As the name implies, the Label column determines the text
associated with each wedge of the pie, while the value is the weight of the wedge.

Dataset Viewer >
Label Value ﬁ
Apples 15
Bananas 56 @
Kiwis 19
Oranges 33 ﬁ
Grapefruit 7

L]

Column Mame: — Column Type: —
ﬂ Cancel

" #NAMES"

"Label ", "Val ue"
"#TYPES"
"strt,"I1"

"#RONB", " 5"

" Appl es", " 15"
" Bananas", " 56"
"Kiws","19"

"Oranges”, " 33"
"Gapefruit","7"

Extract Order

When Extract Order is set to By Row, then the data must be formatted differently. This order expects each column to be a wedge. Note that only the
first row is utilized when extracting by row: subsequent rows are ignored.

" #NAVES"

"Grapefruit", " Appl es", "Bananas", "Ki w s", " O anges"
"#TYPES"

R R I I (R B

"H#ROWS", " 1"

7", "15","56", " 19", " 33"

Box and Whisker Chart

A Box and Whisker Chart displays pertinent statistical information about sets of data. Each '‘Box and Whisker' item on the chart should represent a
large amount of data: The high, low, median, and where the middle 50% of the data falls. The dataset that is required for this chart type will be all of
your raw data, and it will calculate the box and whiskers for you.

Box Anatomy

The upper and lower bounds of each box (the colored in parts) represent the 1st and 3rd quartiles (quarters of a dataset range). This means the space
filled in by the box is 50% of your raw data.

The horizontal line inside of the box represents the median (middle) value.

The lines that stick out above and below the box (whiskers), represent the minimum and maximum values from the raw data.

T ¢ &
| Box & Whisker Chart :
1
1
| 125 - I
1 1
| 1
| 1
| 100 1 I
| 1
\ 1
1 1
oW 75 !
= !
[+] 1
@ = P
I 50 !
1 1
| 1
1 1
I 25 1)
1 1
| 1
1 1
| 0 !
I Lot A Lot B :
1
1 1
I W Granite M Limestone :
!'""""""""3 """""""" By

Using the Box and Whisker Chart

Typically, data is pulled into the chart from a database using either a Named Query or SQL Query binding on the Data property. The data typically
comes in categories separated by an optional key column, with each category containing multiple values.

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Box+and+Whisker+Chart

Initial Dataset

The first column in the Box and Whisker Chart's dataset is the Key column. The Key column determines which series the data pertains to (domain
labels). Values in the Key column are case sensitive.

The second and additional columns denote categories (legend labels). The initial dataset contains two categories: Granite and Limestone. Additional
columns in the dataset would add additional boxes to the chart.

(7)) Dataset Viewer >
Key Granite Limestone @
Lot A 58 127 |~

Lot A 43 110 @
Lot A 52 81

Lot A 86 113 @
Lot A 54 111

Lot A 6 126 @
Lot A 63 101

Lot A 87 65 x
Lot A 51 100

LotA 54 04 E]
Lot A 25 70

Lot A 26 74 r.'

Column Name: -— Column Type: ——
B |

" #NAMVES"
"Key","Ganite", "Linestone"
" #TYPES"

tstrt, ettt

" #ROWS", " 200"

"Lot A","28","108"
"Lot A","46","81"
"Lot A","103","57"
"Lot A","16","93"
"Lot A","41","91"
"Lot A","55","68"
"Lot A","23","93"
"Lot A","49",K "97"
"Lot A","36","69"
"Lot A","47","106"
"Lot A","75","86"
"Lot A","14"," 115"
"Lot A","42","70"
"Lot A","100","129"
"Lot A","16","118"
"Lot A","62","125"
"Lot A","14",6"51"
"Lot A","73","64"
"Lot A","35","55"
"Lot A","96","113"
"Lot A","50","93"
"Lot A","97","72"
"Lot A","7","80"
"Lot A","86","62"
"Lot A","87","78"
"Lot A","80","51"
"Lot A","100","94"
"Lot A","79","124"

" Lot
"Lot
" Lot
"Lot
"Lot
" Lot
" Lot
" Lot
" Lot
"Lot
" Lot
"Lot
"Lot
" Lot
" Lot
" Lot
" Lot
"Lot
" Lot
"Lot
"Lot
" Lot
" Lot
"Lot
" Lot
" Lot
" Lot
" Lot
"Lot
" Lot
" Lot
"Lot
" Lot
" Lot
" Lot
" Lot
"Lot
" Lot
" Lot
"Lot
" Lot
" Lot
" Lot
" Lot
"Lot
" Lot
" Lot
"Lot
" Lot
" Lot
" Lot
" Lot
"Lot
" Lot
"Lot
"Lot
" Lot
" Lot
" Lot
" Lot
"Lot
" Lot
"Lot
"Lot
" Lot
" Lot
" Lot
" Lot
"Lot
" Lot
"Lot

A, "39","107"
A',"16"," 119"
A", "20","60"
A", "50", " 124"
A", "37","50"
A", "36","98"
A, " 46", " TT"
A',"33"," 106"
A", " 49", " T75"
A',"84","60"
A, "AT7, 94"
A", " 44", " 93"
A, " 72", " 105"
A", "35","106"
A',"20"," 119"
A',"90","51"
A", "37","88"
A", " 75", " 103"
A", "13", " 104"
A", " 47", " 55"
A',"65", " 126"
A", "32","90"
A',"85","126"
A, "95", " TT”
A, " T74", 123"
A',"104", " 68"
A", "90"," 109"
A',"63","66"
A',"60", "90"
A", "28","65"
A',"64","69"
A',"55","62"
A',"98", " 64"
A',"69", " 100"
A", "35","110"
A", "31"," 115"
A',"51"," 106"
A',"16"," 76"
A',"91", " 93"
A, "90", " TT"
A", "93", " 64"
A',"98", " 84"
A", "61","95"
A',"65","97"
A',"67","54"
A", "80","92"
A',"104", " 123"
A',"104","112"
A, "20", " 71"
A, " 95", "99"
A", "37","98"
A',"91","51"
A',"101", " 106"
A", "68","94"
A, "9, " 96"
A, 14", 7T
A", "46", " 95"
A", "45", " 95"
A", T79", " 90"
A',"92","110"
A, "29", " 80"
A", " 42", " 80"
A',"15"," 126"
A',"68"," 77"
A',"69","98"
A", "52","119"
A, "11, T2t
A", " 14", " 122"
A',"36"," 115"
A", "41", " 66"
A',"98","73"

" Lot
"Lot
" Lot
"Lot
"Lot
" Lot
" Lot
" Lot
" Lot
"Lot
" Lot
"Lot
"Lot
" Lot
" Lot
" Lot
" Lot
"Lot
" Lot
"Lot
"Lot
" Lot
" Lot
"Lot
" Lot
" Lot
" Lot
" Lot
"Lot
" Lot
" Lot
"Lot
" Lot
" Lot
" Lot
" Lot
"Lot
" Lot
" Lot
"Lot
" Lot
" Lot
" Lot
" Lot
"Lot
" Lot
" Lot
"Lot
" Lot
" Lot
" Lot
" Lot
"Lot
" Lot
"Lot
"Lot
" Lot
" Lot
" Lot
" Lot
"Lot
" Lot
"Lot
"Lot
" Lot
" Lot
" Lot
" Lot
"Lot
" Lot
"Lot

A", "46"," 116"
B","49"," 75"
B","33","46"
B","53","32"
B","51", "58"
B","34","81"
B, "44", " 73"
B","71","43"
B","64","37"
B","58"," 77"
B","35","37"
B","76","88"
B", " 11", "42"
B", " 11", " 64"
B","28","85"
B","26","58"
B","78","43"
B","43","69"
B","66"," 32"
B", " 7", "42"
B","17"," 71"
B","59"," 68"
B","7","31"
B", "53","48"
B","20","52"
B","71","58"
B","57","85"
B","14","61"
B", " 34", " 47"
B","59"," 74"
B","78","58"
B", " 64", "81"
B"," 19", "31"
B","43","48"
B","58","38"
B","22","48"
B","20", "83"
B","36","61"
B, "40", " 69"
B", " 64", "50"
B","67"," 70"
B", " 46", "36"
B","9","51"
B","10", "41"
B", " 66", " 35"
B","46", " 44"
B","10", " 62"
B", " 13", "35"
B","74","49"
B","69", " 64"
B","15"," 68"
B","56", " 38"
B","35","69"
B","61","37"
B", " 25", "80"
B","38","89"
B","79","56"
B","6", " 64"
B", "49"," 58"
B","5", " 54"
B","6"," 35"
B","38","75"
B","6"," 77"
B","39","36"
B","27","63"
B","72","78"
B","55"," 38"
B","9","36"
B", "40", " 65"
B","57"," 76"
B", " 65", "55"

"Lot B","74","81"
"Lot B","47","85"
"Lot B","66","84"
"Lot B","10","38"
"Lot B","23","53"
"Lot B","79","80"
"Lot B","27","58"
"Lot B","71","58"
"Lot B","27","32"
"Lot B","73","43"
"Lot B","24","57"
"Lot B","27","59"
"Lot B","56","30"
"Lot B","32","55"
"Lot B","7","40"

"Lot B","20","63"
"Lot B","68","74"
"Lot B","64","57"
"Lot B","57","31"
"Lot B","54","61"
"Lot B","33","35"
"Lot B","61","73"
"Lot B","36","61"
"Lot B","26","34"
"Lot B","9","59"

"Lot B","47","60"
"Lot B","61","86"
"Lot B","45","88"
"Lot B","5","87"

"Lot B","6","36"

Related Topics ...

Bar Chart

Classic Chart

Pie Chart

Radar Chart

Box and Whisker Chart

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Bar+Chart
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Chart
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Pie+Chart
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Radar+Chart
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Box+and+Whisker+Chart

HTML in Vision

HTML stands for HyperText Markup Language. It is commonly used to style text within web pages. The
features that HTML brings to style web pages can be applied to many components within Ignition to style
the text within components.

Using HTML in Components

Many Vision components display a text string. By default, a component's text is displayed in a single font
and color and will not wrap when its content exceeds the space the component has made available to the
text. However, you can use HTML if you want to mix fonts or colors within the text or if you want
formatting such as multiple lines. HTML formatting can be used in Vision components such as buttons,
labels, and tables. It can be used in common properties such as the mouse over text property.

To specify that a component's text has HTML formatting, just put the <ht ml > element at the beginning of
the text, then use any valid HTML element in the remainder.

G} Closing the HTML element is optional. In other words, there is no need to place a </htmI> at
the end of your stylized text. Also, the HTML elements are not case sensitive.

Common HTML Elements

HTML Tags are the special characters that instruct text to become stylized differently than other text
within the same text. The following table describes the most common HTML elements that you can use
within Ignition.

HTML Name Description
Element
<html>...</html> HTML Initiates an html formatting. In most cases closing the html with <

/html> is optional.

... Bold Applies a bold style to the contents of these elements.

<u>...</u> Underline | Underlines the text contained within the elements.

<s>...</s> Strikethro | Draws a line through the text contained within the elements.
ugh

 Break Applies a line break at this specific location.

... Ordered Places the text into an ordered list. Text inside list items are ordered
List by number.

... Unordere @ Places the text into an unordered list. Text inside list items are
d List ordered by bullets.

... List Item Used to represent a list item. Should be contained in an order list

() or unordered list ().

<center> Center Centers the contents of the text. Used directly after the HTML Tag
(that is, <html><center>...)

<font color="red" Font Colors the contents red. Works with standard color names, hex
>... numbers, or RGB numbers.

Applying HTML to Components

In Vision, you can add HTML to the text property of any component such as, a label, button, or table.
These examples aren't unique to their specific components, but can be used on any component that has
a Text or Mouseover Text property.

@ A good rule of thumb for what can be html formatted is text on components that is used for
display, not for input. So while the Label components have a Text property that accepts html
formatting, the Text Field component's Text property does not accept html formatting, as a
user may type into the component.

On thispage...

® Using HTML in Components
® Common HTML Elements
® Applying HTML to Components

@ INDUCTIVE
UNIVERSIT

HTML in Ignition

Watch the Video

@ INDUCTIVE
UNIVERSIT

Multi-Line Labels
and Buttons

https://inductiveuniversity.com/video/html-in-ignition/8.1

For example, individual words or phrases within the text can be made bold:

Watch the Video

<htm >This is a bol d word

You can also create a list, such as instructions in the Mouseover Text on a component:

HTML in mouseover property

<htm >

These are the instructions:

Stop the process.
Check on this.
Renove that.

</ ol >

https://inductiveuniversity.com/video/multi-line-labels-and-buttons/8.1

Localization in Vision

Localization in the Vision module utilizes the terms in the platform's Translation system. Once terms have
been defined, translations can be enabled by either component or scripting.

Selecting a Language on Client Startup On thispage ...

Once you create a second language, the Client Login Screen will automatically display a Language
Selector where you can select your preferred language. There is Project Property setting that allows you
to Show or Hide the Language Selector at login. By default, it is set to Automatic so you will see the
Language Selector at login when two or more languages are created unless you choose to hide it.

® Selecting a Language on Client
Startup

® Using the Language Selector
Component

If a user that has a preferred language selected in their user profile settings, Ignition will login to the
Client with their preferred language automatically.

Username

@ INDUCTIVE
UNIVERSIT

Password

—— : Switching the
Current Language

espafiol

Watch the Video

Using the Language Selector Component

A single Language Selector on a window has the potential to trigger translations on all windows. There is
no binding involved in selecting a language because they are compared directly against the Translation
Manager database, so the component only needs to be placed onto a window after a second language
has been defined.

The component also offers an easy way to switch languages without forcing the user to log out first. This
way a single Language Selector component can exist on a navigation window and provide language
translations for all components on all windows.

More information on the Language Selector Component can be found in the Appendix.

[TRN - Main Window - o x

Manual
Apagado
Automatico

Motores de Freno

Command Navigation ~ Windows Help

Overview

User Management

Schedule
espaiol -
Roster Management English

Main Window 1

Logged In: admin
& Lockscreen
B8 switch User
<F Logout

https://legacy-docs.inductiveautomation.com/display/DOC81/Localization+and+Languages
https://legacy-docs.inductiveautomation.com/display/DOC81/Managing+Users+and+Roles
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Language+Selector
https://inductiveuniversity.com/video/switching-the-current-language/8.1

Related Topics ...

® Localization and Languages

https://legacy-docs.inductiveautomation.com/display/DOC81/Localization+and+Languages

Binding Types in Vision

Binding is perhaps the most important concept to understand when designing a project using the Vision
module. It is primarily through property bindings that you bring windows to life and have them display
useful things. A binding simply links one component's property to something else. On thlS page
When you initially place a component on a screen, it doesn't really do anything. Changing its properties

in the Designer will make it look or act different, but it has no connection to the real world and this is what

bindings adds. -
® Property Binding Types
Binding, as its name suggests, lets you bind a property to something else, such as ¢ Setting Up B|nd|ngs)
® Event-Based Bindings vs. Polling
* ATag Bindings
* The results of a SQL query executed against a remote database ® Polling Options
* Another component's property ¢ Copying Bindings
L]

An expression involving any of these things

For example, bind the Value property of an LED Display to an OPC Tag, and voila - the value property
will always be the value of that Tag - creating a dynamic display. Bindings can also work the other way,
using a bidirectional binding. Bind the value of a numeric text box to a Tag, and that Tag will be written to
when someone edits the value in the text box.

The power of bindings comes from the variety of different binding types that exist, and the fact that you
can bind nearly any property of a component to anything else. Want its foreground to turn red when an
alarm is above a certain severity? Bind its LED Lit property color to a Tag's Alarms.
HighestActivePriority property. Want it to only appear if a supervisor is on shift? Bind its visible property
to the result of a SQL query that joins a personnel table with a shift table. The possibilities are nearly
endless.

Property Binding Types
A property can have one of many different types of bindings. Instead of setting a label statically, the text @ IN DUC T I VI

might change based on a PLC value or on-screen selection. There are many ways to bind your
components to show values from PLCs, databases, other components, or user input. You can even bind U NIV E RS I'I
some or all of the properties on each component. You can bind component values using:

® Property simply binds one property to another. When that property changes, the new value is
pushed into the property that the binding is set up on. H H

® Tag binds a property directly to a Tag property (typically the value) which sets up a Tag Pro perty Bin d In g
subscription for that Tag, and every time the chosen Tag property changes, the binding is
evaluated, and pushes the new value into the bound property. :

® |Indirect Tag is similar to the standard Tag binding except that you can introduce any number of WatCh the VldeO
indirect parameters to build a tag path dynamically in the runtime.

® Tag History is used for Dataset type properties. It runs a query against the Tag Historian.

® Expression uses the simple expression language to calculate a value which can involve lots of @ IN DUC T I VI
dynamic data.

®* Named Query executes a Named Query that had been previously created. U NIV E RS III

® SQL Query is a polling binding type that runs a SQL Query against any of the database
connections configured in the your Gateway.

® Database Browse is equivalent to the SQL Query binding except that it helps write the queries

for you. _ o o Property Binding -
® Cell Update enables you to easily make one or more cells inside a dataset dynamic. This is .y .
useful for components that store configuration information inside datasets like the Easy Chart. Bidirectional

® Function is a generic binding type that lets you bind a dataset property to the results of a
function. It allows any of the function's parameters to be calculated dynamically via Tag and i
property bindings. Watch the Video
® Style Customizer is not one of the standard bindings, but changes properties to create
cohesive styles based on different states.

https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+Bindings+in+Vision#TagBindingsinVision-BidirectionalTagBindings
https://legacy-docs.inductiveautomation.com/display/DOC81/Expression+Language+and+Syntax
https://legacy-docs.inductiveautomation.com/display/DOC81/Color+Animation+in+Vision#ColorAnimationinVision-StyleCustomizer
https://www.inductiveuniversity.com/videos/property-binding/8.0/8.1
https://www.inductiveuniversity.com/videos/property-binding-bidirectional/8.0/8.1

{3 Property Binding: Root Container,Multi-State Indicator X

Tag Property

Tag Binds to another component's property in the same window

Indirect Tag
e Choose Property

Expression » = Dropdown % -
» ¢
B Gyiindrical Tank 8
» (2 Momentary Button
0L »- MultiState Indicator % &
Named Query » @0 Numeric TextField &
=
DB Browse > [Table 8
» [Tablet
SQL Query » [Table 2

b o= TextField %
b L Path]
(type or choose a path) -

Options
No Bindis
SlEE i) Bidirectional | | Overlay Opt-Out

K -

Setting Up Bindings

Every component that you put on the screen has various properties that change the component's appearance and behavior. To make components do
something useful, like display dynamic information or control a device register, you configure bindings on the component. It's the bindings that brings
your components to life and have them do useful things. Components can be configured to do just about anything using bindings. To set up a binding

on a property, simply click the Binding oo icon to the right of the property in the Property Editor.

In this image, bindings were set to make these random components do something. You can quickly view dependencies to determine what is linked to
what by going to View > Dependencies > Show All. As shown below, a line is drawn from the Tank to the Slider letting you know the Tank is bound
to the Slider.

File Edit Project Component Alignment Shape Tools Help

= I 3 Emulate Touchscreen P A -2 Q@ |0 5| aaae | (&0 8 &8 ¢ 9D = |4 b

Project Browser E_“ Disable O\fer|a).'5 T . I . I . I . P

Q | 2C Reset Panels
I..ﬂj Panels »

Toolbars »

1} Welcome Screen

Grid Size: 5
o] Grid Size: 10
Show Grid
Snap to Grid
) Show Guides N
Vision Property| p Snap to Guides 484
E_‘%#E) 0 25 50 75 100
= New Guide...
= Common spotlights , Tank Volume
LEIIE Dependencies I > Show None
Visible e == -
§ 10 showai |
Border Other v [Jj e
] 200 Show Supporters
Mouseover ... |
a Show Dependents
Opaque true (==} i
Cursor Default v G]
=1 Behavior]
Combine Re... false (-]
Tile Optimiz... false [>] é_
-l Data i
Quality] Temperature
ClAppearance =

Event-Based Bindings vs. Polling Bindings

While there are quite a few different binding types, they fall into two broad categories: event-based and polling. Some complex bindings can span both
categories.

Event-based bindings are evaluated when the object they are bound to changes. For example, when you bind a property to a Tag, that binding listens
to the Tag, and every time the Tag changes, it assigns the Tag's new value into the property that it is on. If you bind the value of a Cylindrical Tank to
the value of a Slider, every time the slider changes, it fires a propertyChangeEvent. The binding is listening for this event, and when it is fired, the
binding updates the tank's value. The following bindings are event-based:

Tag and Indirect Tag bindings
Property bindings

Some Expression bindings
Cell Update bindings

Polling bindings are evaluated when a window first opens, on a timer, or when they change. For example, if you bind the data property of a Table to
the results of a SQL query, that query will run on a timer, updating the Table every time it executes. The following bindings are based on polling:

® Bindings that query a database, including Named Query bindings, DB Browse bindings, SQL Query bindings, and Tag History bindings
® Some Expression bindings, like runScript() or now()
® Function bindings

Many bindings can combine elements of a polling binding and event-based binding. An expression binding may combine lots of other bindings to
calculate a final result. A query binding will often itself be dynamic, altering the query based on other bindings.

For example, you might have a dropdown on a window that lets the operator choose a type of product that is produced. Then you can use a query
binding like the following to calculate the defect rate for the given product:

SQL - Using a Component Property Reference

SELECT
SUM def ective) / COUNT(*) AS DefectRate
FROM
production_table
VHERE
product Code = '{Root Contai ner. Product Pi cker. sel ect edVal ue}'

The blue code is a property binding inside of the query binding. Every time this (event-based) binding fires, the query will run again, but will also run
on a set timer based on its polling schedule. Using bindings like this, you can create highly dynamic and interactive screens with no
scripting whatsoever.

Polling Options
The following are the options you can choose from for bindings that poll:

® Polling Off
The query will run once when the window is opened, and again whenever a reference inside of the the binding changes.
® Relative Rate
The binding will poll at the project's Base Polling Rate, which is 5 seconds by default, plus or minus the given Polling Rate.
® Absolute Rate
Using this option, you can specify an absolute rate for the binding to execute at, instead of one that is based off the relative rate.

Regardless of which option is selected, polling bindings always fire when the window the component is on opens. This allows the component an
opportunity to fetch an initial value.

Additionally, all three types will always update if the binding contains a reference to something else, such as a Tag or property value (noted with the
brace-notation "{}"), and the value of that reference changes. Typically this is seen in SQL query bindings: polling can be turned off, and the query can
reference a component value in a WHERE clause. When the referenced property value changes, the query will execute and retrieve new results.

Copying Bindings

When you copy a component, all bindings, scripts, etc. are copied along with it, but you can also copy a property binding from one property to
another. Bindings can be copied from one property to another by right clicking on a property with a binding on it and selecting Copy Binding. Then,
on another property, right click and select Paste Binding to paste the binding onto the property. This can be on the same component or a completely
different component. The only prerequisite is that both property bindings must use a compatible property type. (For example, a binding that resolves to
a string will not work on an integer property.)

https://legacy-docs.inductiveautomation.com/display/DOC81/Project+Properties#ProjectProperties-Timing

\ision Property Editor o - X

B4 = | = % -]

E Common SIENT]
Name Multi-State Button = @ | 0
Enabled 2 true ()]
Visible 2 true () :
Mouseover Text e] -
Cursor Default v G g—: :

Behavior 7 :

= Data 1) ®

m‘ oed| | 1| !
Indicator _SOPY Binding 0D g_ |
Quality | G ﬂz *

= Appearance i

Font Dialog, Bold, 12 - -

In This Section ...

Property Bindings in Vision

Property to Property Binding

A property binding is a simple type of binding. It binds one component's property to another. When that
property changes, the new value is pushed into the property that the binding is set up on.

ﬁ} Why aren't all properties listed?

You may notice that the list of properties available to bind to is smaller than the list of all
properties. While nearly all properties can be bound, only some properties can be bound to.
Only properties that fire a propertyChangeEvent may be bound to.

In the following example, we'll bind the value of a Numeric Text Field to a Slider component.

1. Place a Numeric Text Field component and a Slider component on window.
2. Select the Numeric Text Field.

3. Click the Binding & icon next to the Value (Integer) property.

Vision Property Editor a - X||]
Bl5 = =te%- 1
7]
Common b
& Behavior J
Sl Data]
Number Type Integer v & B
S T
Maximum 1000 & H 0o
Minimum coes | |7 FTUFTH
Value (Double) 0.0 €] 0 25 50 75 100
value (Long) 0e ﬁ_
Value (Float)]
Quality Good 1

4. Select the Property Binding Type. Choose the Slider's Value property.

[Property Binding: Root Container.Numeric Text Field 1

X
Tag Property
Tag Binds to another component's property in the same window
Indirect Tag
e Choose Property
) 0 Numeric Text Field 1 -
Expression
- e Slider
= ame g

soL w Visible (boolzan)
Named Query

® Minimum vValue (int)
DB Browse B Maximum Value (int)
sQL Query B Styles (Dataset)

® Data Quality (int)

B Quality (QualityCode)

Root Container.Slider.value -
i Options
Siiasnaing Bidirectional || Overlay Opt-out
Bl -
5. Click OK. Put the Designer in Preview Mode b

On thispage...

® Property to Property Binding
® Bidirectional Property Bindings

INDUCTIVE
UNIVERSII

Property Binding

Watch the Video

https://www.inductiveuniversity.com/video/property-binding/8.1

6. Move the slider. You'll see that the value from the Slider component appears in the Numeric
Text field.

45

0 25 a0 75 100

This can be useful to provide visual feedback to what a user is doing. The operator would input
something, and they would see another component adjust to match the setting they just changed. Notice
though, how if | were to change the value of the Numeric Text Field, the Slider will not update. Bindings
are one direction only by default.

Bidirectional Property Bindings

Property Bindings have the ability to become Bidirectional, meaning instead of having the binding go one

way only, it will work both ways, even with just the one binding. Take the previous example with the
Numeric Text Field and Slider again. When changing the value of the Slider, the Numeric Text Field IN DUC T I VI
would update, but updating the value of the Numeric Text Field would not update the Slider. If we reopen U NIV E RS I']

the binding on the Value (Integer) property of the Numeric Text Field, we can see in the bottom left
corner a checkbox for Bidirectional.

Property Binding -

[Property Binding: Root Container.Numeric Text Field 1 X
property Bidirectional
Tag Binds to another component's property in the same window
Indirect Tag
Choose Property .
— Watch the Vid
o umeic TasreM | : atc e Video
Expression
e Slider
& Name string)
sQL W Visible (boolean)

vamedouery | I

DB Browse

= Minimum Value (int)
B Maximum Value (int)
SQLQuery m Styles (Dotoser)
= Data Quality (int)
W Quality (QualityCode) v
Root Container.Slider.value -

Options

Sl Overlay Oprout

Bl o

Check the Bidirectional option and then save the binding. It will now be a bidirectional binding.

https://www.inductiveuniversity.com/video/property-binding-bidirectional/8.1

Tag Bindings in Vision

Binding Properties to Tags

A Tag binding is a very straight-forward binding type. It simply binds a property directly to a Tag. This
sets up a subscription for that Tag, and every time the chosen Tag changes, the binding is
evaluated, pushing the new value into the bound property. If you choose a Tag in the tree, and not a
specific property of that Tag, the Value property is assumed.

Drag and Drop

There are several ways to drag and drop Tags onto a component allowing you to create screens very
quickly. You can quickly bind a Tag by dragging it from the Tag Browser into a component or into the
component property.

Binding to a Component

Ignition automatically creates the Tag bindings to several of the component properties when you choose
to bind a Tag to a component by dragging and dropping. This is true for both creating a component by
dragging and dropping a Tag onto empty space on a window at the same time Ignition prompts you for
what type of component you want to create, and by dragging and dropping a Tag directly onto a
component that already exists on a window. In both cases, Ignition automatically creates the Tag
bindings on the component.

In addition, some of the bindings will be bidirectional or they may be expression bindings. How Ignition
handles the binding depends on the disparity between the data types of the Tag and the target
component. For example, binding a numerical Tag to a label component will result in an expression
binding that formats the number to a string.

Binding to a Component Property

Ignition automatically creates a Tag binding to the property that you dropped the Tag into in the Property
Editor, resulting in the property binding to the value of the Tag. In addition, it is possible to bind the Tag
attributes to the component's property. For example, the Tag's Engineering High Limit attribute could be
bound to the capacity property of a cylindrical tank component.

Bidirectional Tag Bindings

Tag bindings can be made bidirectional simply by checking the Bidirectional checkbox at the bottom of
the Property Binding window. A Tag can be set as a bidirectional binding, if it has a read/write
permission and if the user has the security permission to write to the Tag. The Fallback Delay

is the amount of time that the value will remain at the written value, waiting for a Tag change to come in.
If no Tag change comes in within the allotted time (specified in seconds), the property will fall-back to the
value as it was before the write. This is needed, because sometimes even if a write succeeds, another
write or ladder logic in a PLC might have written something different, even the old value, in which case
no Tag change event will be generated. As a rule of thumb, the fallback delay should be twice the Tag's
scan class rate.

Bindings to Tag Properties

On thispage ...

® Binding Properties to Tags
® Drag and Drop
® Binding to a Component
® Binding to a Component
Property
® Bidirectional Tag Bindings
® Bindings to Tag Properties

@ INDUCTIVE
UNIVERSIT

Tag Binding

Watch the Video

@ INDUCTIVE
UNIVERSIT

Tag Binding — Drag
and Drop

Watch the Video

@ INDUCTIVE
UNIVERSIT

Tag Binding -
Bidirectional

Watch the Video

Aside from binding a property to a Tag's value, you can also bind to properties on a Tag, such as Tooltip, Quality, or AlarmActiveAckCount. This is
useful when you don't need the value of the Tag, but rather the state, or some other configuration on the Tag. Here we see a boolean Memory Tag. It

has a property indicating the Tag's quality. We can easily display that quality property on a component.

https://www.inductiveuniversity.com/video/tag-binding/8.1
https://inductiveuniversity.com/video/tag-binding-drag-and-drop/8.1
https://www.inductiveuniversity.com/video/tag-binding-bidirectional/8.1

The simplest approach involves a Tag Binding. This can be achieved by dragging-and-dropping the Tag Property onto a Window, component, or

component property. For example, you can drag a Tag's Quality property to a Label component.

Tag Browser o — X ||]
Q o V-2 6 90CF B .
b il Tanks_OPC A0 1]
~ ' Test ER

* W Alarm_Active_1 OFC Bool

B Enabled colean -
B OpcltemPath ns=1:5=[Sim_5LC String .
B OpcServer iti AS.. String 4
Good string | |1
B TagGroup default String 0]

B Timestamp 2019-05-13 9:44... DateTime
B yalue Boolean]
* B Alarms String]

Display k| Label

Control >

Templates

This is similar to creating a standard Tag Binding, except we're using a property on the Tag instead of the Tag's value. The resulting Tag Binding

would be:

[defaul t] Test/Al arm Active_1.Quality

Note that the property name has been appended to the path.

Property Binding: Root Container.Label 2

b W Alarms
% Alarm_Active 2
b9 Do O

Tag Tag
Tag Binds to a tag
Indirect Tag
Property + @ TagReview
_ * i TagTypes
Expression v i Tank
Proper‘t}r L3 i TﬂnkS_DPC
- mw Test
sQL .
~ W Alarm_Active_1
MNamed Query B Enabled
DE Browse B OpcltemPath
B OpcServer
>QnQuery
B TagGroup
B Timestamp
B yalue

[default]Test/Alarm_Active_1.Quality I

Options

® NoBinding Bidirectional Fallback Delay ; = Owverlay Opt-Out

n Cancel

The Label component now displays the current value of Good for the Tag's Quality property.

Tag Browser o - X
Qo ¥-a 0 00 @
* I Tanks_OPC -
~ T Test
~ % Alarm_Active 1 OFC Boolean
B Enabled (] Boolean
B OpcltemPath ns=1:5=[5im_SLC]... String
B OpcServer Ignition OPC UAS... String
B TagGroup default String
B Timestamp 2019-05-13 94, DateTime
B value Boolean
- W Alarms String

M v 1 S 1

ll____t___,l
#Good &
P S

Indirect Tag Bindings in Vision

Binding Properties to a Dynamic Set of Tags

An Indirect Tag binding is very much like a standard Tag binding, except that you may introduce any
number of indirection parameters to build a Tag path dynamically in the runtime. These parameters are
numbered starting at one, and denoted by braces, for example, {1}. The binding will be linked to the Tag
represented by the Tag path after the indirection parameters have been replaced by the literal values
they are bound to. An indirection parameter may represent a property on any component in the same
window.

For example, instead of binding straight to a Tag's path, like

[TagProvi der] MyPl ant / East Ar ea/ Val ves/ Val ve4/ Fl owRat e

or

[TagProvi der] MyPl ant / West Ar ea/ Val ves/ Val ve2/ Fl owRat e

You can use other properties to make that path indirect. Suppose the "area" and "valve" number that
we were looking at was passed into our window via parameter passing. Then we might use
those parameters in the Tag path, like this:

[TagProvi der] MyPl ant/ {1}/ Val ves/ Val ve{ 2}/ Fl owRat e
{1} =Root Cont ai ner. Ar eaNane
{2} =Root Cont ai ner. Val veNunber

Now our binding will change which Tag it is pointing to based on the values of those Root
Container properties.

Creating an Indirect Tag Binding

When setting up an Indirect Tag Binding, there are a few tools in the binding window that help make it easier.

@ INDUCTIVE
UNIVERSIT

Indirect Tag Binding

Watch the Video

First there is the Indirect Tag Path. This field is where the Tag Path with parameters needs to be entered. Indirect Tag Bindings use numbered
parameters at places in the Tag Path where indirection is going to occur. To the right of the Indirect Tag Path field are the Tag and Property reference
helper buttons. The Tag button will enter the full Tag Path of the selected Tag into the Indirect Tag Path, while the Property button will add a new
parameter reference to the Indirect Tag Path, and bind it to the selected property. The last area is the list of references, where each row in the list
corresponds to a {1} parameter reference, and each row can be bound to property on the window. To bind a parameter reference to a property, simply
select its corresponding row, and use the property selector to the right of the References list to select a property from the window.

@ Putting some thought into your Tag structure will make using the Tags indirectly much easier!

Bidirectional Indirect Tag Binding

https://www.inductiveuniversity.com/video/indirect-tag-binding/8.1

Indirect Tag Bindings can also be made Bidirectional by clicking the Bidirectional checkbox at the bottom of the binding window. This will allow any
input from a user on that property to be written back to the Tag. To work properly, the Tag needs to have the proper security to accept writes.

Tag
Tag
Property
Expression
Property

s5QL

Named Query

DE Browse

5QL Query

® NoBinding

Property Binding: Root Container.Cylindrical Tank

Indirect Tag

Binds to a tag dynamically using indirection (a.k.a parameterization)

2 AnlIndirect Tag Binding lets you bind to a tag dynamically, where parts of the tag's X
path are defined by properties on your window. For instance, you could bind to
[source] tanks/tank{1}_SP, and then define that {1} refers to {Root
Container. TankNumber}

Indirect Tag Path

[default]Tank/@7/Level {1} B =
References
Ref. # Property Path =l

Root Container.LED Display 1.value

Options

L4 Bidirectional JFallback Delay 25— Overlay Opt-Out

n Cancel

ot

Indirect Tag Binding Example

In this example, we have some different motors, where each motor is a folder of Tags. Each motor has an amps Tag that is within the folder, so that
our Tag paths look like the following:

Mot or 1/ Anps
Mot or 2/ Anps
Mot or 3/ Anps
Mot or 4/ Anps

Instead of creating four different displays for these four different Tags, we can create a single display and make it indirect. We need two things for this
example: a component to display the value in, and a component which allows the user to select which motor they are looking at.

1. Drag an LED Display component onto the window.

2. Then drag a Spinner component onto the window. This we will use to enable the user to select which motor they are looking at.

3. There are four motor Tags, so change the Numeric Maximum property of the Spinner to 4, and the Numeric Minimum property to 1. You
may also need to change the Value (Integer) to 1.

Vision Property Editor o - X
- _
15 | IZ = =2 (T~

> Common
MName Spinner & CD
Enabled & true (5]
Visible & true (5]
Border Other Border ¥ &£ &
Mouseover Text s =

b Behavior

> Data
Mumeric Minimum 1.0 &
Mumeric Maximum 4.0 &
Value (Integer) 1 &
Value (Double) 1.0 &
Value (Date) 07/24/2020 12:55:40 ... & &
Quality Pl

4. Select the LED Display component. Click on the Binding L

5. Select the Indirect Tag type.

icon next to the Value property of the LED Display.

a. Click the Tag A g icon and select the Motor 1/Amps Tag.
b. Delete the 1" in the Tag Path, and replace it with {1}.

H

c. In the References section, select the row, and click the Insert Property Value
Spinner.
d. Click OK to save the binding.

icon. Select the Value (Integer) property of the

Property Binding: Root Container,LED Display X

Tag Indirect Tag
Tag Binds to a tag dynamically using indirection (a.k.a parameterization)
Property . .

Q AnIndirect Tag Binding lets you bind to a tag dynamically, where parts of X
Expression the tag's path are defined by properties on your window. For instance, you
Property could bind to [source] tanks/tank{1}_SP, and then define that {1} refers

to {Root Container.TankNumber}
sQL
Named Query Indirect Tag Path
DB Browse [default]Motors/Motor {1}/Amps E =l
5QL Que
QL Query References
Ref # Property Path D
1 | Root Container.Spinner.intValue
Options
® NoBinding Bidirectional Fallback Delay = Overlay Opt-Out
n Cancel

6. To test it out, put the Designer into Preview mode P' Notice how the value represented in the LED Display depends on what value is in the
Spinner. Because the Spinner has the maximum value set to 4, users won't be able to set a motor number that does not exist. Additionally,

adding new motors simply means adjusting the maximum value on the Spinner.

Tag Browser
Q o W
~ @ Motors

o - X

a8 6 90Cc @

» ¥ Motor 1 Motor UDT

+ % Motor 2 Motor UDT

W Farameters

I' ¥ Amps OPC 13 I

B Enabled]
B OpcltemPath ns=1:5=[Sim...
N OpcServer Ignition OPC ...
B Quality Good
B TagGroup default
B Timestamp 2019-05-14 ...
® value 13

» % Derived Member Derived -18

b W HOA OPC 0

b W Level OFC 11.89

» ® Motor 3 Motor UDT
» ¥ Motor 4 Motor UDT

[

e I I I

ry
-

Motor Mumber 2

n.l:n.l

Tag History Bindings in Vision

Binding Properties to the Tag Historian

The Tag Historian binding type, which is only available for Dataset type properties, runs a query against
the Tag Historian.

Selected Historical Tags

For this type of query, you must select at least one Tag path from the Available Historical Tags to
query. The Dataset returned by the query will have a timestamp column, and then a column for each path
that you select here.

Date Range

Choose either a Historical or Realtime query. Historical queries use a date range that must be bound in
from other components on the screen, typically a Date Range or a pair of Popup Calendars. Realtime
queries always pull up a range that ends with the current time, so all they need is a length.

Please note that intervals returned by Historical queries are inclusive of the End Date,
including when the End Date is set to now(). This means you may see one additional interval
than expected that only contains future dates, which get interpolated to 0 and can cause
trending issues.

For example, if you want data from 10am - 11am in 1 minute windows, you'll need to set your
query from 10am-10:59am. Querying to 11am would create an interval to contain it and that
window will often return O since there is typically no future value. Additionally, if you went on to
add the results of two queries of adjoining times, such as 10am - 11am and 11am - 12pm, the
first window of the second period would have duplicate data to the last window of the first
period.

This example uses a Historical query and two Popup Calendars for the start and end dates. The history
is presented in the Table below.

1. In the Designer, drag two Popup Calendar components and a Table component from the
Component Palette into your workspace.

2. Select the Table and right click on the Binding E2 icon for the Data property.

3. Drag a sine0, sinel, and sine2 under the Tag Path column under the Selected Historical Tags
area.

4. Under Date Range, select Historical.

5. Under Start Date Binding, click on the Property =l icon and under one of the Popup
Calenders, select Date.

6. Under the End Date Binding, click on the Property El icon and under the second Popup
Calender, select Date.

7. Click OK.
{73 Property Binding: Root Container.Chart 1 X
Tag Tag History
Tag Queries the tag history system for time-Series tag history data
Indirect Tag
Tag History © Drag and drop historical tags into the selected tagist. You can edit the selected tag paths and insert indirection X
romety parameters like "{1}"
Expression Avallable Historical Tags ¢ Selected Historical Tags
Property ~ & sine ~© > | Tagpath Column Name +
sqL ® sine0 [~1sine/sines sineo
® sinet e N I
Named Query g [~1sine/sine: sine:
~Isine/sine2 sinez
0B Browse ® sine3 - +
© sines =
SQLQuer i
& ® sines
e © sine7 4
cell Update © sines
Functions » i station1 o
! sttion2 SIndirection
$ high temp Ref.# Property Path
@ ramps
Use fully-qualified paths
Date Range Start Date Binding End Date Binding
Historical {Root C¢ pup Calendar.d © = {RootC pUP o=
Aggregation Mode Return Format_Sample Size
Min/Max v | wide v Natwral v
% Advanced
Polling Mode Poling Rate Retain Rows
© ek Off) Relative _ Absolute Rate = (Base Rate) +- 0 -%-lsec [false
o [

8. Now you can see the history of the three Sine tags along with a timestamp. You can scroll
through the information in the table to see the history that was logged. To change the date
range, click on dropdown buttons to bring up the popup calendars to change the date range.

On thispage...

® Binding Properties to the Tag
Historian
® Selected Historical Tags
® Date Range

® Sample Size and Aggregation
Mode
® Aggregation Mode
® Sample Size
® Return Format
® Advanced Options

® |ndirect Tag History Binding

INDUCTIVE
UNIVERSII

Tag Historian
Binding

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Date+Range
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Popup+Calendar
https://www.inductiveuniversity.com/video/tag-historian-binding/8.1

The tag history binding type allows you to bring back this history.

Start Date End Date
06/25/2020 12:00 AM LI 06/26/2020 12:00 AM LI
t_stamp sine0 sinel sine2
Jun 25, 2020 5:56 AM -22.13 169.82 83.14 7
Jun 25, 2020 5:56 AM -22.13 169.82 75.51
Jun 25, 2020 5:56 AM -30.98 169.82 75.51
Jun 25, 2020 5:56 AM -30.98 192.43 75.51
Jun 25, 2020 5:56 AM -30.98 192.43 66.68
Jun 25, 2020 5:56 AM -38.47 19243 66.68
Jun 25, 2020 5:56 AM -38.47 214.46 66.68|-

Sample Size and Aggregation Mode

In places where the Tag History system can be queried, a Sample Size and Aggregation Mode can be IN DUC T I VI
selected that will determine how the results will be queried out and how the raw values will be

aggregated. UNIVERSI'I

{73 Property Binding: Root Container.Chart 1 X
Tag Tag History
Tag Queries the tag history system for time-series tag history data -
Indrect Tag | ag Histo ry
) BTl e T e T B e e e e e T %
Praparty perameters ke 1y A g g r eg ates
Expression Available Historical Tags < Selected Historical Tags
Property || ~- ntroller:default A S TagPath Column Name +
sqQL -generic_ [~]_generic_/random/random¢ Tandomdoublel
~ @ random + -
N Watch the Video
DB Browse % randomboolean2 +
SQLQuery % randomdouble1 @
o % randomdouble2
er » il realistic L]
Cell Update b i sine
Functions b ramp O
» i realistic F Indirection
b sine Ref.# Property Path
» i station1 Iv]
Use ulyqualited patrs I N D |] (: "l' I VI
Realtime s Q=3 mn v N’ I RS I |'I
Duration On (Seconds) v | | Wide OnChange v
Min/Max 7
1 Closest Value Polling Rate Natural Retain Rows
© NoBinding Basic Average Rate = (Base Rafel Fixed s [false
Sum Interval .
lable — Fixed
Masimum Bl o
brsson0fsecomi - Sample Size

Watch the Video

Aggregation Mode
The Aggregation Mode dictates what happens when multiple raw values are encountered for a given time slice. The number of values within a time

slice is determined by the Sample Size properties. For more information on how time slices are populated, see the How the Tag Historian System
Works page.

Aggregation Description
Mode

Time-weighted = The values are averaged together, weighted for the amount of time they cover in the interval.
Average

Note: In scripting, Time-weighted Average is instead labeled Average. These are the same.

Min/Max The minimum and maximum values will be returned for the window. In other words, two rows will be returned. If only one value is
seen in the time slice, only one row will be returned.

Closest Value The value closest to the ending time of the interval will be returned.

Note: In scripting, Closest Value is instead labeled Last Value. These are the same.

https://www.inductiveuniversity.com/video/tag-history-aggregates/8.1
https://inductiveuniversity.com/video/table-fixed-sample-size/8.1
https://docs.inductiveautomation.com/display/DOC81/How+the+Tag+Historian+System+Works#HowtheTagHistorianSystemWorks-Processor
https://docs.inductiveautomation.com/display/DOC81/How+the+Tag+Historian+System+Works#HowtheTagHistorianSystemWorks-Processor

Basic Average @ The values are summed together and divided by the number of values.

Note: In scripting, Basic Average is instead labeled Simple Average. These are the same.

Sum The values in the time slice are summed together.

Maximum The maximum value in the time slice.

Minimum The minimum value in the time slice.

Duration On Returns the number of seconds that the value was recorded as non-zero.

Duration Off Returns the number of seconds that the value recorded as zero.

Count On Returns the number of times the Tag's value went from a zero value to non-zero.
Count Off Returns the number of times the Tag's value changed from a non-zero value to zero.
Count Returns the number of times a value was recorded

Percent Good Time-weighted percentage of good values over the date range.
Percent Bad Time-weighted percentage of bad values over the date range.

Range Returns the range between the highest and lowest value for the period.

This feature was changed in Ignition version 8.1.17:

Range mode will return "0" if the historical tag value remains static over the given Time Range.
Standard Standard Deviation - Returns the standard deviation of values, or how much spread is present in the data; low standard deviation
Deviation shows the values are close to the mean, and high standard deviation shows that the data points are spread out over a large
range of values. Only good quality values are used when calculating

Variance Returns the variance of values. Similar in concept to standard deviation. Only good quality values are used when calculating.

Sample Size

The sample size determines how many data points will be returned from the query.

On Change

An On Change query will return points as they were logged, and can be thought of as a "raw" query mode. This means that the results may not be
evenly spaced. Also, it is important to note that every changed value will result in a row, and therefore if you are querying multiple tags and once, you
may end up with more rows than you anticipated. For example, if Tag A and Tag B both change, you would end up with [[Ay, Byl,[A;, Bgl, [Aq, B4]l.

If you want to essentially retrieve raw values, while coalescing them down into fewer rows, try using the Interval sample mode, with an interval set to
your largest acceptable time between rows, and select "prevent interpolation” from the advanced settings.

Natural

A Natural query will look up the logging rate for the queried tags (when possible), and return results spaced apart at that rate. This means that the
return size will vary with the date range.

Fixed

You can use the Sample Size and Aggregation Mode on the Tag History binding type to fix the number of records that are retrieved. The Fixed
sample size will cause the binding to retrieve all records from the date range, and aggregate them evenly between a fixed number of points. This will
ensure that the number of rows will remain the same without regard to the size of the dataset. In windows where users are able to select a large range
of data, Fixed is recommended as it will prevent the property from loading an excessive number of records.

In cases where the number of points can not evenly represent the data from the date range, an extra point will be added, making the final size of the da
taset the fixed value + 1.

Selecting the Min/Max aggregation mode returns two rows of data for every row requested. Each pair represents a minimum and a maximum result
from the underlying data. Therefore, a table with a fixed length, would return double the requested amount with Min/Max aggregation mode selected.
With Min/Max aggregation mode selected, and with a fixed row length of one, the data set returns the oldest tag value of the time range

The following image shows a Tag History Binding pulling data from the last one day. The Sample Size is configured to Fixed with a value of 100, and
the Aggregation Mode is set to Basic Average. This means that the binding will query for data from the last one day, regardless of how many
records there are, and create 100 time-slices that are evenly dispersed between the start and end periods of that range. Then, a basic average of the

tag values are calculated for each time-slice. The resulting values are then returned to the property.

Available Historical Tags < 5Selected Historical Tags

b B realistic -
I-i [~]sine/sined sined
¥ sinet
sinez
¥ sinel
W sined
W sined
%

L

© * | TagPath Column Na...

.
B 4 = =

+
J

sine?
sinef "]
F B station 1
P B station 2
% high temp -

- Indirection

Ref. # Property Path

Use fully-gualified paths

Date Range Most Recent

Realtime &0 Q@ E min -

Aggregation Mode Return Format [Sample Size

Basic Average || Wide « Fixed - || 100 O =

Note the Insert Property =l icon next to Sample Size. This allows a property binding to determine the number of data points, so you could change
the size to increase or reduce the amount data points on the chart from the client.

Interval

Where as the Fixed sample size will calculate time slices based on the date range, the Interval sample size allows you to determine the size of the
time slices. This sample size will divide the date range by the interval size to determine the size of each slice. Because of this, it is recommended to
use an interval that is evenly divisible by the date range. However, in the event that the date range is dynamic or user driven, interpolation will handle
any partially built slices. Even though the binding may attempt to evenly distribute the slices, there may be an extra row that represents the current
values as they are building an interval.

The image below shows a Realtime range of 60 minutes. The Aggregation Mode is set to Time-weighted Average, and the Sample Size is set to |
nterval for 5 minutes. This means that the binding will query for data ranging from 60 minutes ago to now (or whenever the binding last executed, in
the case that polling has been turned off). That 60 minute window will be divided as evenly as possible into 5 minute time-slices, so there should
around 12 time-slices. Each time slice will aggregate its value based on the time-weighted average of all values within that slice.

The example uses a Realtime range, but a Historical range could easily be used instead.

Available Historical Tags < Selected Historical Tags
> = realistic ~|© > | TagPath Column Na.. 4
~ @ sine [~]sine/sined ned
: ~]sine/sine sine
|| ®sine0 | '
W sinel
% sine2 +
W sine3 .
W sined =
% sineé &
W sine7
W sines]
y = .
: Stat?gn 1 -l Indirection
b I station 2
¥ high temp Ref. # Property Path
Use fully-gualified paths
Date Range Most Recent
Realtime &0 © E mn ~
Aggregation Mode Return Format |Sample Size
Time-weighted Average - Wide Interval ¥ ||5 © E mn =~

Note the Insert Property =l icon next to Sample Size. This allows a property binding to determine the number of data points, so you could change
the size to increase or reduce the amount data points on the chart from the client.

Return Format

Return format dictates how the requested data will be returned. The options are "wide" (default), in which each Tag has its own column, and "tall", in
which the Tags are returned vertically in a "path, value, quality, timestamp" schema.

Advanced Options
These options affect the query results in more subtle ways.

® [gnore Bad Quality - Only data with "good" quality will be loaded from the data source.

® Prevent Interpolation - Requests that values not be interpolated, if the row would normally require it. Also instructs the system to not write
result rows that would only contain interpolated values. In other words, if the raw data does not provide any new values for a certain window,
that window will not be included in the result dataset.

® Avoid Scan Class Validation - "Scan class validation" is the mechanism by which the system determines when the Gateway was not
running, and returns bad quality data for these periods of time. By enabling this option, the scan class records will not be consulted, which
can improve performance, and will not write bad quality rows as a result of this check.

The following feature is new in Ignition version 8.1.5
Click here to check out the other new features

® Bypass Tag History Cache - A "Bypass Tag History Cache" checkbox was added on Vision Tag History bindings which allows the option for
the Tag History cache to be ignored on a per-binding basis. When the Tag History cache is enabled, query start/end dates are aligned to an
existing subcache for performance which may not contain the most recent values. This can lead to a scenario where the last datapoint
returned isn't reflective of realtime values if the Tag History binding date range includes the current time. Enabling the "Bypass Tag History
Cache" checkbox prevents this scenario.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.5

—llAdvanced

Ignore Bad Quality Prevent Interpolation Avoid Scanclass Validation Bypass Tag History Cache

@ Tags Historian information is often easiest to work with in the Easy Chart component, which handles all of these options automatically.

Indirect Tag History Binding
The Tag History Binding can be made indirect by using Indirection parameters in the Tag Paths of the @ IN DUC T I VI

Selected Historical Tags. This works similarly to the Indirect Tag Binding, which uses Indirection
References within the Tag Paths to substitute something into the path. Valid Indirection parameters U NIV E RS I'I

consist of a reference number within curly braces. Simply type the Indirection parameters into a Tag
path, selected by double-clicking. In this case, we will enter {1} as our Indirection parameter.

All valid parameters will appear in the Indirection table. For this example, the Tag Path points to the i H
Spinner component for the indirection parameters. |n.dll’.eCt Tag HIStOI‘y
Binding

Watch the Video

https://inductiveuniversity.com/video/indirect-tag-history-binding/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Easy+Chart

Property Binding: Root Container.Chart 1

Tag Tag History
Tag Queries the tag history system for time-series tag history data
Indirect Tag
Tag History Q Dragand drop historical tags into the selected tag list. You can edit the selected tag paths and insert indirection b4
Property parameters like "{1}"
Expression Available Historical Tags < Selected Historical Tags
Property ~ @ sine ~' & ? | Tag Path Column Name 1+
saL | F®sie0] [~)sine/sine | sined
% sinel ¥
Named Query ¥ sine2
DB Browse % sine3 +
sQL Query L 2 sine4 B
o W sine6
& W sine? A
Cell Update W sines
- |
Functions P statfom
b I station2 = Indirection
% high temp Ref.# Property Path =
W ramnS -
Use fully-qualified paths 1 | Root Container.Spinner.intValue
Date Range Start Date Binding End Date Binding
Historical {Root Container.Popup Calendar.date} 9 = {Root Container.Popup Calendar.date} o =
Aggregation Mode Return Fermat Sample Size
Min/Max - Wide Natural -
Advanced
Polling Mode Polling Rate Retain Rows
® No Binding Off © Relative | Absolute Rate = (Base Rate) +i- 5 ~5-sec false

“ Cancel
| I |

Expression Binding in Vision

Binding Properties to the Outcome of an Expression

An expression binding is one of the most powerful kinds of property bindings. It uses a simple expression
language to calculate a value. This expression can involve lots of dynamic data, such as other properties,
Tag values, results of Python scripts, queries, and so on. Any time information needs to be massaged,
manipulated, extracted, combined, split, and so on, expressions can get the job done.

Event Based and Polling

Expression bindings fall into the unique category of having the possibility of using both Events and
Polling to update. How an expression updates depends on what is being done in the expression.
Expression bindings will always update immediately when the window they are in is opened. When they
update again depends on if they are driven by events or polling. Typically, expressions are driven by
events. If the expression was adding multiple values together, then when one of those values changed
the expression would update, regardless of whether those values came from other properties or Tags.
However, the expression function has some unique functions that can update at a set rate such as the no
w() function. When these functions are used within the expression, the expression binding will update
based on the specified polling rate.

Using Expression Bindings

The expression language has lots of tools available that help calculate a specific value such as built-in
expression functions, multiple operators, and the ability to reference Tags. While all of these can be
manually typed into the expression, the expression binding window makes it easy to reference these
options.

Helper Icons

To the right of the expression binding window, there are four icons that can be used to reference specific
objects or functions easily.

L El Properties - Places a property reference into the expression at the cursor, pulling in that
property's value into the expression at the time of evaluation.

. » Tags - Places a Tag reference into the expression at the cursor, pulling in that Tag's value
into the expression at the time of evaluation.
+_

® = Operators - Places the operator into the expression at the cursor. Mostly used as a
reference to what operators are available for use.

. E Functions - Places the function into the expression at the cursor. Can be used as a
reference for what functions are available, as well as the parameters the function is expecting.

Property Binding: Root Container LED Display X
Tag Expression
Tag Binds to an expression involving any number of components’ properties and/or tags
Indirect Tag
Property Expression
1 {[default]Tower1/pH.value} A =
Property L 2
sqL +
Named Query 5
DB Browse
SQL Query
< > 3
e Options
® NoBinding e
o I

Expression Binding Examples

Example 1

On thispage...

® Binding Properties to the
Outcome of an Expression
® Event Based and Polling
® Using Expression Bindings
® Helper Icons
® Expression Binding Examples

@ INDUCTIVE
UNIVERSIT

Expression Binding

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC81/Expression+Language+and+Syntax
https://legacy-docs.inductiveautomation.com/display/DOC81/Expression+Language+and+Syntax
https://legacy-docs.inductiveautomation.com/display/DOC81/now
https://legacy-docs.inductiveautomation.com/display/DOC81/now
https://legacy-docs.inductiveautomation.com/display/DOC81/Expression+Functions
https://legacy-docs.inductiveautomation.com/display/DOC81/Expression+Functions
https://legacy-docs.inductiveautomation.com/display/DOC81/Expression+Language+and+Syntax
https://www.inductiveuniversity.com/videos/expression-binding/8.0/8.1

You have a button that starts a batch, but you only want to let it be pressed after the operator entered a
scale weight. An expression binding can be set up on the enabled property of the button:

{Root Cont ai ner. EntryArea. Wi ght Box. doubl eVal ue} > 0.0

Example 2

You want to display a process's current state, translating a code from the PLC to a human-
readable string. The examples below will yield the same results, but in different ways.

This first example uses nested "if* statements to produce the string. Notice that the false return for the
first "if" statement is another "if" function, and the same with the second "if" function. Since the "if"
function can only do simple if/than/else logic, this method allows us to do an if/than/else if/else.

if ({CurrentProcessState} = 0, "Not Running",
if ({CurrentProcessState} = 1, "Warmup phase - please wait",
if ({CurrentProcessState} = 2, "Running", "UNKNOANN STATE")))

This example will yield the same result as the previous example, but works differently. Instead of using
multiple functions, this example uses a single switch function to decide which string to use.

switch ({CurrentProcessState},
0,1,2,
"Not Runni ng",
"Warmup phase - please wait",
"Runni ng",
"UNKNOWN STATE")

For more examples, see Expression Overview and Syntax.

https://legacy-docs.inductiveautomation.com/display/DOC81/Expression+Language+and+Syntax#ExpressionLanguageandSyntax-AdditionalExamples

Named Query Bindings

Binding Properties to a Named Query

The Named Query binding is where you can configure a property to call a Named Query that you had On th|S page
previously created in the project. Using Named Query binding instead of a SQL Query or DB Browse
binding helps to make your project more secure due to the built-in Security Zone and User Role
restrictions.
® Binding Properties to a Named

. Query
Polling Mode * Polling Mode
® Creating Named Queries
Each Named Query binding type will use polling to determine when to update the results and run the ¢ Using Named Queries on
query again. The Polling Mode dictates how often the query will execute, and works in a similar fashion Dataset Properties
to polling on other bindings. ® Using Named Queries on Scalar
Properties

Creating Named Queries

In order to use a Named Query, first one has to be created. You might already have some that another
developer created but if not, you will have to make one by going to the Named Query section in the @

INDUCTIVE
UNIVERSII

Designer or converting a SQL query.

Named Query
Binding

Watch the Video

Using Named Queries on Dataset Properties

The majority of your Named Query bindings will most likely be on a dataset type property. When placed on a Dataset type property, only a single
Named Query needs to be specified. An explanation of the various fields on the binding are detailed below:

® Path: Here you can enter in the path to the Named Query. Click on the Search Q' icon to view a list of available Named Queries.
® Parameters: Here you can see a table of all defined Named Query parameters. You can pass in property or Tag values to the parameters by

first highlighting the parameter and then selecting either the Insert Property =l icon or the Tag A icon

® Query: The Query section shows what Named Query looks like. Note that you can't modify the query on this page.

® Polling Mode: Here you can set the Polling Mode of the Named Query binding based on the Polling Rate.

® Retain Rows: If true, any rows that you have returned within the Designer will be saved along with the window. This may slow window load
times.

https://legacy-docs.inductiveautomation.com/display/DOC81/Named+Queries
https://legacy-docs.inductiveautomation.com/display/DOC81/Named+Query+Workspace#NamedQueryWorkspace-Settings
https://legacy-docs.inductiveautomation.com/display/DOC81/Named+Query+Workspace#NamedQueryWorkspace-Settings
https://legacy-docs.inductiveautomation.com/display/DOC81/Binding+Types+in+Vision#BindingTypesinVision-PollingOptions
https://legacy-docs.inductiveautomation.com/display/DOC81/Named+Queries
https://inductiveuniversity.com/video/named-query-binding/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/Named+Query+Parameters
https://legacy-docs.inductiveautomation.com/display/DOC81/Binding+Types+in+Vision#BindingTypesinVision-PollingOptions

|4 Property Binding: Root Container.Table

Tag Named Query
Tag Pass parameters to a Named Query
Indirect Tag
Tag History SELECT Query
Path
Property at
Expression Test Query e o
Property Parameters
sqL Type Name Data Type Value E
Named Query Value myValueX String 3
Value myValueY Int4
DE Browse
5QL Query Query
Other SELECT column_a,
Cell Update column_b
) FROM my_table
Functions WHERE column_x = :myValueX

AND column_y = :myValueY

Polling Mode Polling Rate Retain Rows
& No Binding Off _ Relative Absolute Rate = (Base Rate) +/- 0 —2-sec false

Using Named Queries on Scalar Properties

When placed on a non-dataset type property (such as a String or Integer), then the Named Query binding allows for a second Named Query to be
specified in the case that the user can update the value on the property. This provides an opportunity to both return and update values in the database
from the same component.

The configuration is very similar to a Named Query binding on a dataset property. You need to specify a Named Query path, set up your Parameters,
and choose a Polling Mode. You can finish setup at this point, leaving the update query disabled so that the property will simply pull the value from the
database.

However, if you want the binding to be bidirectional, you need to specify an UPDATE query. This works similar to a SELECT query, in that you need to
select the path to the Named Query and set up any Parameters. However, it is important to make sure that the Named Query chosen for the
UPDATE query is in fact set up as an UPDATE query by setting the Query Type property on the Authoring section of the Named Query.

The following feature is new in Ignition version 8.1.27
Click here to check out the other new features

Now when you configure an UPDATE query, clicking the This button will insert { t hi s} as a Value for the selected parameter.

Related Topics ...

® Cell Update Bindings
®* Named Queries
® Named Query Parameters

https://legacy-docs.inductiveautomation.com/display/DOC81/Binding+Types+in+Vision#BindingTypesinVision-PollingOptions
https://legacy-docs.inductiveautomation.com/display/DOC81/Named+Query+Workspace#NamedQueryWorkspace-Authoring
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.27
https://legacy-docs.inductiveautomation.com/display/DOC81/Named+Queries
https://legacy-docs.inductiveautomation.com/display/DOC81/Named+Query+Parameters

DB Browse Bindings

Binding Properties to Database Tables

The DB Browse binding is technically equivalent to the SQL Query binding, except that it helps write the
queries for you. Using the Database Browse binding type, you can pick the table from a list of tables in
each database that you want to pull content from. If you have a fixed range of data you need to return,
simply select it in the table, and watch the query get generated.

In the Browse Database tree, you can choose which columns in your table should act as your keys
(these columns get put in the WHERE clause based on your selection) and which columns should be
used to sort the data (these columns are put in the ORDER BY clause).

@ This binding type also serves as a convenient jumping-off point for the more flexible SQL
Query binding. Construct the basic outline of your query in the DB Browse section, and then
select the SQL Query radio button to convert to the new binding type. Your query will be
retained and can then be modified manually.

[0 Property Binding: Root Container.Table 2 X

Tag DB Browse
Tag Binds to data from a database, allowing you to browse for the data you want
Indirect Tag
Tag History BI'QWEE Database
ey » (3 [Project Defauit] ® ~ Choose ATable -

» (8 MysqQL >
Expression p
Property t:
saL .
Named Query
DB Browse

Key Columns
5QL Query
Other
Cell Update .
Functions Polling Mode . Polling Rate " Retain Rows

Off | Relative Absolute Rate = (Base Rate) +/- 05 sec | |false

Generated SELECT Query

® No Binding N
[o [

Configuring the Binding

On thispage...

® Binding Properties to Database
Tables

® Configuring the Binding
® Key Column
® Sort Order

® Dynamic Filters

® Scalar Query Update

@ INDUCTIVE
UNIVERSIT

DB Browse Binding

Watch the Video

After selecting a table in the Browse Database tree, you can customize which columns the query is selecting by selecting one or more columns under

the table to select just the highlighted columns, or selecting the table to use the * symbol to select all columns.

Key Column

The DB Browse binding has the ability to designate key columns within the query. A key column is used within the select query's where clause, and

can be given a value. A column is denoted as a key column when it has a key symbol next to it.

[&
Clicking the Key dg icon to the right of the Browse Database tree will designate a column as a key column. Alternately, if the highlighted column is

[X
already a key column, then clicking the Key & icon will remove that column as a key column.

https://www.inductiveuniversity.com/video/db-browse-binding/8.1

Property Binding: Root Container.One-Shot Button >
Tag DB Browse
Tag Binds to data from a database, allowing you to browse for the data you want
Indirect Tag
Property Browse Database
. b (B ' - tank ie.. Tank Numb Lot_ID Not
Expression l_ﬂ [Project Default] % < tank_overvie ank_Number ot_ otes
- @ mysa - [R 1| 4% 500 .
Property k[Tank_History 2 ? | Thelotisth.. | Note thistwi
sQL > | | Tank Overview . 3 3| Lot3 3 notes, 3 n.
Named Query = 4 4| 534 540
HEH Notes (TexT)
6 6 554 560
SQL Query HH t_stamp (DATETIME) |« - e —— — v
€ » Lt »
Key Columns
tank_overview ndx=| 1 =l
Polling Mode Polling Rate
O Off _ Relative . Absolute Rate = (Base Rate) +/- 0 : sec
Generated SELECT Query
SELECT tank_overview _ndx FROM Tank_Overview IwHERE tank_overview _ndx = 1 I ~
Enable Database Writeback
® NoBinding UPDATE Tank_Overview SET tank_overview _ndx = {this} WHERE tank_overview ndx = 1 -
n Cancel
Sort Order

In the DB Browse binding, you can also sort data in ascending or descending order. Select the column that you want to sort by and click the Sort t=-

icon. Multiple columns can be used for sorting.

Dynamic Filters

DB Browse bindings also give the ability to bind a property to a key column to allow for dynamic filtering
of the returned data. Simply click the binding &2 icon next to the key column field. This allows you to
give the operators some control over the data they are seeing.

. In the Designer, drag a Table component and a Text Field component on a window.

. With the Table component selected, click the Binding & icon next to the Data property.
. Chose DB Browse under Binding Types > Database.

A WON P

. Let's pull all the data from this Table except for the id, and filter on state. Remove the Key ﬁ fro
m the id column and place it on the state column.

INDUCTIVI
W2 UNIVERSIT

DB Browse Binding
- Dynamic Filters

Watch the Video

https://www.inductiveuniversity.com/video/db-browse-binding-dynamic-filters/8.1

Property Binding: Root Container.Power Table X

Tag DB Browse
Tag Binds to data from a database, allowing you to browse for the data you want
Indirect Tag

Tag History Browse Database

Property Tank History “| @ «tankovervie.. Tank Number Lot 1D Notes tstam
~ [Tank Overview > 6 | 646 650 32019
Expression ank overview ndx (| & 17 17 | 646 650 312019
Property 1+ 18 18 a8 490 32019
sQL] i — = 19 19 | 840 690 312019
tstamp
20 20 | 646 650 312019
Named Query FE Tank Number avT) |+ e e e . A
:
Key Columns
SQLQuery
Other Lotip=|406 | =
Cell Update o
cunctions Polling Mode Polling Rate L RewmRom
O Off) Relative (_ Absolute Rate = (Base Rate) +-| 0 -%-lsec | |false
Generated SELECT Query
SELECT Lot_ID FROM Tank_Overview WHERE Lot_ID = 496
© NosBinding

o I

5. Select the Tank_Number, Lot_ID, Notes, and t_stamp columns. You can do this with
Control+Click, or by clicking and dragging in the results table in the upper right.
6. Instead of statically typing in a value like we in did in the above example, let's make it dynamic

using the Text Field. Click the Insert Property Value =l icon next to the value in the Key
Columns section, and select the Text property of the Text Field.

Choose Property =

» [] Acme_Main_Window
+ [] Root Container
B Name (5tring)
B Visible (hoolean)
B Background Color (Color)
B Styles (Dotoset)
B Data Quality (int)
B Quality (QualityCode)
(=] Button
(=] Button 1
[Table
= Text Field
B Name (String)
B Visible (hoolean)
- W Tet (String)
-. B Styles (Dotoset)
B Data Quality (int)
B Quality (QualityCode)
b [Power Table =

{4 v w»w w

Root Container.Text Field.text | =

7. Notice there is now a property reference in the Key Column as well as the Generated SELECT
Query.

7] Property Binding: Root Container.Power Table. X

T DB Browse
T3 Binds to data from database, llowing you o browse for the data you wart
Indirect Tag
Tag History Cc
W History “| g <tankovervie. Tank Number LotID Notes tstam
Prope . — 1 2 >
=Y ~ [Tank Overview b 16 | 646 650 32019 "
Expression [tank overview ndx (| & 17 17 | 646 650 3120119
Property . 18 18 | 485 490 3n0n
soL g“"‘“ Wi;;/rmxs o 19 19| 840 690 302019
stamp DATETIME
2 20 o6 650 32019
Named Query i Tank Number 07 v Z — - vy
>
Key Cotumns
saL Query
o Lot 1D = {Root Container.Tex Fieldtexy | @
Cell update .
renctions Poting Mode Poling Rate _ etanom
Off Relative) Absolute Rate = (Base Rate) +| 03 sec | | false
Generated SELECT Query
SELECT Lot_ID FROM Tank_Overview WHERE Lot ID = ' (Root Container.Text Field. text}’
© NoBinding

n Cancel

8. Click OK to confirm the binding.
9. Put the Designer into Preview mode.
10. Enter the Lot_ID that you want to view and the Table will update to display just the data for that

Lot ID.
296
Tank_ Number Lot ID MNotes t_stamp
23 296 300 2019-03-2012:36:00
24 296 300 2019-03-2012:36:00
546|
Tank_Number Lot ID Motes t_stamp
16 646 650 2019-03-2012:36:00
17 646 650 2019-03-2012:36:00
20 646 650 2019-03-2012:36:00

Scalar Query Update
Similar to the SQL Query Binding, the DB Browse Binding has the ability to become bidirectional by @ IN DUC T I VI

doing a database write back when the property being bound is a non-dataset type. In this case, the select
query should be configured to only return a single row from a single column. U NIV E RS I'I

For example, this option can provide a single value to the Text property of a Text Field component. If you
check the Enable Database Writeback checkbox, then any user input will write back to the database.
This will automatically generate an update query that will push the input value into the database from the
location where the original value was retrieved.

0 Property Sinding: ot ContainerTex Fild

= DB Browse
Tag Binds to data from a database, allowing you to browse for the data you want
Indirect Tag
) Browse Database
Expression » (3 [Project Defaul] ~| g < tankhistory.. TankNumber Temperature
~ @ wysaL > 20516 6140
Property ~ [Tank History & 20517 17 642.0
sQL [tank_history_ndx (1nT) 1 20518 18 488.0
Named Query (] tevel (LOAT) 20519 19 9100
et £ Mode 04D »
Satae B sceappurin nl
v D 20522 22 586.0
[H] Temperature (FLOAT) 20523 z 250
» [Tank Overview 20524 2 2920
» [alarm_event_data 20525 25 4000
L v <
Key Columns
Tank Number= 16 =]
Polling Mode Polling Rate
© Off Relative | Absolute Rate = (Base Rate) +- 0 -5-lsec
Generated SELECT Query
SELECT Tank_Number FROM Tank_History WHERE Tank_Number = 16
Enable Database Writeback|
© NoBinding UPDATE Tank_History SET Tank_Number = {this} WHERE Tank_Number = 16

Setpoint]
6500 A
650.0
4900
690.0
6500
7600
5000
3000
3000
4100 8

[=

SQL Query Binding
- Scalar Query and
Update

Watch the Video

https://www.inductiveuniversity.com/videos/sql-query-binding-scalar-query-and-update/8.0/8.1

SQL Query Bindings in Vision

Binding Properties to a SQL Query

The SQL Query binding is a polling binding type that will run a SQL Query against any of the database On th|S page s
connections configured in the Gateway. It is very similar to the DB Browse binding type in that both query
a database to return data. The difference is the SQL Query Binding can manually be modified. This is
useful for complex queries where you will use the more advanced functions of the SQL language that can
not be accomplished with the DB Browse binding. ® Binding Properties to a SQL
Query
® Dataset Binding
) Dynamic Filters
@ Pro Tip! o Example

. - ® Scal Updat

The query that gets generated by the DB Browse will transfer over to the SQL Query binding . Sgglg: Sﬂgz Fslll?aik

when you switch the binding type. It may be useful to build the basic query structure with DB o Stored Procedures

Browse first, then switch to SQL Query binding to modify the query to fit your needs. * Named Query Conversions
Dataset Binding
The majority of SQL Query bindings will return a dataset. These will return many rows with multiple
columns. For example, showing all customer details from a certain account, or all downtime events in the
facility. This type of SQL binding is used on properties of type dataset like the Data property on a Table @ IN DUC T I VI

component.

UNIVERSII

SQL Query Binding

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Table
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Table
https://www.inductiveuniversity.com/video/sql-query-binding/8.1

Tag

Tag

Indirect Tag
Tag History
Property
Expression
Froperty

sQL

MNamed Query
DE Browse
Other

Cell Update

Functions

® No Binding

@ Property Binding: Root Container.Power Table

5QL Query

Binds to data from a database, allowing you to write your own SQL query

SELECT Query

BELECT columns
FROM tablename
WHERE condition

«

Database Connection

Polling Mode Polling Rate Retain Rows
Off L) Relative . Absolute Rate = (Base Rate) +/- 0 5-sec false

= Convert to Named Query

Dynamic Filters

Using the curly brace {} notation, you can include the values of component properties (within the
same window) and Tag values inside your query. This is a very common technique to make your
query dynamic. The values of the property or Tag represented are simply substituted into the query

where the braces are.

Because the substitution is direct, you'll often need to add quotes to literal strings and dates to make your
query valid. If you're getting errors running your query complaining about syntax, it is important to realize

that these errors are coming from the database, not from Ignition. Try copying and pasting your query
into the Query Browser and replacing the braces with literal values.

Example

D

SQL Query Binding

INDUCTIVE
UNIVERSIT

- Dynamic Filters

Watch the Video

A common requirement is to have a query filter its results for a date range. You can use the Date Range component or a pair of Popup Calendar comp
onents to let the user choose a range of dates. Then you can use these dates in your query like this:

SQL - SQL Query Binding with Parameter References

SELECT

t_stanp, flow_rate, anps

FROM
val ve_hi story

https://www.inductiveuniversity.com/video/sql-query-binding-dynamic-filters/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Date+Range
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Popup+Calendar

VWHERE

t_stanp >= '{Root Contai ner. Dat eRange. start Dat e}’

AND

t_stanp <= '{Root Cont ai ner. Dat eRange. endDat e}'

Notice the single quotes around the braces. This is because when the query is run, the dates will be replaced with their literal evaluations. For
example, the actual query sent to the database might look like this:

SQL - SQL Query Binding with the Values Replaced

SELECT

t_stanp, flow_rate, anps
FROM

val ve_hi story
VWHERE

t_stanp >= '2010-03-20 08:00: 00
t_stanp <= '2010-03-20 13:00: 00

AND

1 Itisimportant to use single quotes and not double quotes (t_stamp = "2010-03-20 08:00:00") because these mean something different in

certain databases like Microsoft SQL Server.

Scalar Query Update

You can bind a non dataset type property to a SQL query to allow a singular value to be returned from
the database with a scalar query. Now instead of returning multiple rows and columns, the query returns
a single value from the first row of the first column. These types of SQL Query bindings can also be used
to update the database on input components like a Text Field. Essentially, we mimic the bidirectionality of
Tag and property bindings by adding in an update query to run whenever a value gets entered into the
property with the binding. In our update query, we use the special parameter {this} to denote the new
value from the bound property. If {this} is a string, it needs single quotes around it.

[0 Property Binding: Root Container.Tet Field

X

Tag SQL Query
Tao Binds to data from a database, allowing you to write your own SQL query
Indirect Tag
— SELECT Query
Expression SELECT Name FROM area WHERE ID = 1 A =
Property -
sqL v
Named Query
Database Connection Fallback Value Enabled
DE Browse
v B %
QL Query
Polling Mode Polling Rate
Off | Relative _ Absolute Rate=(Base Rate) +/- 0 ~%-sec
UPDATE Query [Enabled
UPDATE area SET NAME = '{this}' WHERE ID = ‘lI ~a
LS
This
< >
§ NosBinding £5 Convert to Named Query
Bl

Take a Text Field with a simple query on it.

SQL - Simple Select Query

SELECT Name FROM area WHERE ID = 1

This will return a single value that can populate our text field. We then enable the Update Query at the
bottom of the Property Binding window, and add in the update query.

SQL - Using Ignition's 'this' Keyword

UPDATE area SET Nane = '{this}'

WHERE ID = 1

INDUCTIVE
UNIVERSII

v,

SQL Query Binding
- Scalar Query and
Update

Watch the Video

https://www.inductiveuniversity.com/video/sql-query-binding-scalar-query-and-update/8.1

After confirming the binding, we can see that our text field contains the value from the database and will
update the database cell if we enter in a new value into the text field. This is a good way to alter very
specific cells in a database table.

Scalar Query Fallback

first column in the first row of the query results is used. If no rows were returned, the binding will cause
an error unless the Use Fallback Value option is selected. The value entered in the fallback value text
box will be used when the query returns no rows.

INDUCTIVE
UNIVERSII

If the property that is being bound is a scalar datatype (that is, not a Dataset), the value in the @

When binding a Dataset to a SQL Query, no fallback value is needed, because a Dataset will contain

Zero rows.

20 Property Binding: Root Container.Text Field x S g L 2 u ery B I n d I n g
0L query - Scalar Query and
Tag Binds to data from a database, allowing you to write your own SQL query
Fallback
Property SELECT Query
Expression SELECT columns A=

FROM tablename I
Property WHERE condition h h Vd
. Watch the Video
. ,
Named Query
Database Connection Fallback Value Enabled
DB Browse
v B @
Off Relative Absolute Rate = (Base Rate) +/- 02 sec
[~ =
»
. :
® NoBinding = convert to Named Query
o I

Stored Procedures

While queries can manually be written on a SQL Query binding, SQL Stored Procedures may also be called from a SQL Query Binding.

Note: The exact syntax is highly dependent on the type of database you are using.

For example, calling a Stored Procedure from MySQL would involve using the CALL command, while SQL Server utilizes the EXEC command.

SQL - MySQL Stored Procedure Call

CALL retrieve_daily_total
SQL - SQL Server Stored Procedure Call

EXEC retrieve_daily_total

Named Query Conversions

You can convert the SQL Query created here to a Named Query. For more information, see Named Query Conversions.

https://www.inductiveuniversity.com/video/sql-query-binding-scalar-query-and-fallback/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/SQL+Stored+Procedures
https://legacy-docs.inductiveautomation.com/display/DOC81/Named+Query+Conversions

Cell Update Bindings

Binding a Dataset Property to Realtime Values

The Cell Update binding enables you to easily make one or more cells inside a dataset dynamic. This is
particularly useful for components such as the Table to easily display realtime Tag information, or in the
Linear Scale which stores configuration information in a dataset. The Cell Update binding allows you to

bind a cell inside of a dataset to a Tag or to a property.

Cell Update Bindings work really well with the Easy Chart component, allowing you to indirectly show
Tag history on the same Easy Chart. See Indirect Easy Chart for more details.

Note: The Cell Update binding type will only appear when setting up a binding on a dataset property,
otherwise, it won't be present.

The cell update binding has a few tools that help you make certain cells dynamic.

{73 Property Binding: Raot Container.Table 1 X
Tag Cell Update
Tag Binds specific cells inside an existing dataset
Indirect Tag
TagHistory Q se the Cell Update binding to dynamically bind specific cellsinside a dataset to tag or property X
[values. Simply select the cel you want to bind, and it the "Plus” button. Rows can be specified
explicitly by their index (e.q. "15") or by referencing another column (e.q. "Name=Compressor”)
Expression
Dataset
Property
saL id cityName state companyName
Namedauery 1| sacramento california ABC Company
2 | Phoenix Arizona Acme Bird Seed
DB Brovse 3 | Demver Colorado Bolder Enterprises
SQLQuery
o Cell Bindings
Row Column Value +
=
L
£
©® NoBinding]
o I

On thispage ...

® Binding a Dataset Property to
Realtime Values

® Adding Values to the Cell
Bindings Rows
® Row Column
® Column Column
® Value Column

® Realtime Tag Values in a Table
Example

® Adding a Realtime Indicator to
the Linear Scale Example

INDUCTIVE
UNIVERSII

Cell Update Binding

Watch the Video

The top table called Dataset displays the original dataset, while the bottom Cell Bindings table displays each of the cell updates that will be
occurring. Each Cell Update binding can have multiple cell updates happening on a single dataset. To the right of the Cell Bindings table are the

buttons that are used to create the Cell Bindings:

d + Add Row - Adds a new empty row to the Cell Bindings table, which can be customized with a new Cell Binding. If a cell is selected in
the Dataset table, it will instead add a row with the Row and Column values already filled in with the appropriate values.

e [pelete Row - Removes one of the rows in the Cell Bindings table.
. E Insert Property - Inserts a property reference into the Value cell of the selected row.

. % Insert Tag - Inserts a Tag reference into the Value cell of the selected row.
i
o Copy the current selection to the clipboard.

o
o M pastes the contents of the clipboard into the current context.

Adding Values to the Cell Bindings Rows

Each row in the Cell Bindings table needs three values to work properly: a Row identifier which is used to figure out which row the cell binding is on,
a Column identifier to determine the column of the cell, and a Value which will replace the original value of the cell. These three values can pinpoint
a specific cell, and replace its value with the dynamic Tag or property value specified. The examples in this section use the dataset:

id cityName State companyName
1 Sacramento California ABC Company
2 Phoenix Arizona Acme Bird Seed

3 Denver Colorado Bolder Enterprises

https://www.inductiveuniversity.com/video/cell-update-binding/8.1

Caution: No two rows should specify the same cell, as this will throw an error.

Row Column

The Cell Bindings Row column can be filled one of two ways.

Row Index
The easiest way is by specifying the row index of the cell that you want to target for an update. It is important to remember that the row index is zero
based, so the index of the first row is always 0. There can be multiple rows, each with the same row index, as long as the Column is different. The
order of the rows in this case does not matter. As the image below show three rows, specified with a row index of 0, then 5, then 0 again.

0 Boolean Column

5 String Column

o | intColumn |

Column Value

The other way to identify the row that the intended cell belongs to, is to use the value of a different column. This is done using the syntax:

col umNane=val ue

Where the columnName is the name of the column and the value is the value that needs to match. The columnName and value are both case
sensitive, so you will need to use care when filling in these values.

1] Eooclean Column
String Column

String Column = Test1 Boolean Column _

There are three things that make using the Column Value unique. The first is that there is the possibility for duplicates to happen. Take the image
above, with both a Row index of 0 and a Column Value of 'String Column=Test 1'. Looking at the original dataset, both of those point to the same row,
and with both of them pointing to the Boolean Column, they both refer to the same cell in the dataset. This instance of duplicates will not throw an
error, but instead will work. In this case, the updates happen from top to bottom, so the 'String Column=Test 1' would be what writes to the cell last
and what ultimately gets displayed.

The second is that there is the potential for multiple possible matches to that evaluation. For example, if | had this in the Row value:

Bool ean Col um=Tr ue

This could potentially be true for multiple rows of my dataset, in which case, the binding will apply to all of them. This allows you to change multiple
cell values that should all be the same.

The final thing that makes the Column Value unique is that it itself is ultimately dynamic. The '‘Boolean Column=True' Column Value matches the rows
atindex 1, 3, 4, 7, and 9 in the original dataset. However, if any of those were to change to False through another cell update, then that row would no

longer be updated as part of this cell update. Conversely, if any of the currently False values were to change to a True, then those rows would fall
under this cell update and the appropriate cell will be updated.

Column Column

The Cell Bindings column named Column, or Column column, expects the name of a column that will match in the "Dataset" table above. These
values are case sensitive, so care should be taken when entering them manually.

Value Column
The Value column is what will get pushed into the cell that is being updated. There are three possible types of values that can be placed in here.

Static Value

A static value can be written in here. This will overwrite the existing value of the cell with whatever static value is in the cell update. This does defeat
the purpose of using the cell update though, since the static value could just be placed directly in the original dataset.

Tag or Property Reference

A Tag or Property reference can be used for the cell updates value, updating the value of the cell whenever the value of the Tag or Property changes.
The Tag or Property Selectors to the right of the Cell Bindings table can be used to add in the reference.

Note:

When adding a Tag or Property reference, be sure that the cell is only selected and that the cursor is not placed in the Value cell. The cursor in the
cell is used for typing in a static value, and trying to enter in a Tag or Property reference will not work.

This is used to enter in static text:

0 inccoumn |

This accepts Tag and Property references:

o /mckwn | |

Both Static Values and a Reference

The Value column can also accept a combination of a reference and static values. This allows you to build unique strings or numeric values within the
Value cell. The syntax used is:

nunber s1234{t agOr Proper t yRef erence}or characters

The reference value will be concatenated into the Value at the location specified. For example, if my Value was

{MenoryTags/ | nt eger Tag} 000

and the IntegerTag had a value of 5, the updated cell value would be 5000. This method of combining both a reference and a static value is great for
updating Tag paths, such as in an Easy Chart's Tag Pens dataset.

[~] Mot or s/ Mot or {Root Cont ai ner. Mot or Nunber }/ Anps

Here, the MotorNumber property on the root container is replacing the motor number inside of the Tag path. See Indirect Easy Chart for more details.

Realtime Tag Values in a Table Example

The Cell Update binding allows you to place the value of a Tag into a dataset easily. With a dataset property like the one on the Table component,
getting updating values into it requires either a SQL query, or some constantly running script. With the Cell Update binding, that isn't necessary. The
simple static table contains four rows for four different tags, where each has a value. As an alternative, you could use four numeric text fields and
labels, but the Table component looks cleaner.

Tag Name Value
Ramp0 8.58
Ramp1 120.88
Ramp2 13.14
Ramp3 6.39

Let's use the table above table to create a Cell Update binding to get the pressure readings into the table.

1. Open the property binding 2 icon on the data property.

2. Click the Cell Update binding type, and you'll see your dataset along with a Cell Bindings area.

3. Select the first value, and click the Add icon in the Cell Bindings area to add a row. You'll notice it added a row number, column name, and
blank value cell because we selected a cell from above. What you place in the blank Value cell determines what the value will be in the table.

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Table

Property Binding: Root Container.Table X

Tag Cell Update

Tag Binds specific cells inside an existing dataset

Indirect Tag

Tag History Q Use the Cell Update binding to dynamically bind specific cellsinside a datasettotagor X
Property property values. Simply select the cell you want to bind, and hit the "Plus" button.
i Rows can be specified explicitly by their index (e.g. "15") or by referencing another

Expression column (e.g. "Name=Compressor”)

Property Dataset

SqQL

Tag Name Value

NamedQuery Rampo

DE Browse Ramp1 120.88

SQL Query Ramp2 1314

Other Ramp3 6.39

Cell Update Cell Bindings

Functions Row Column Value +

] &

=
%
E |

® No Binding []

“ Cancel
|

4. Select the first Row and first Value cell in the Cell Binding area. Use the Tag ‘ icon to the right to select the Tag reference (i.e., Ramp0).
You can also manually type in your Tag reference, or place in a property reference instead.

5. Click OK.
Property Binding: Root Container.Table X
Tag Cell Update
Tag Binds specific cells inside an existing dataset
Indirect Tag
Tag History Q@ use the Cell Update binding to dynamically bind specific cellsinside a dataset to tag or X
Property property values, Simply select the cell you want te bind, and hit the "Plus” button.
Rows can be specified explicitly by their index (e.g. "15") or by referencing another
Expression column (e.g. "Name=Compressor")
Property —
sQL
Tag Name Value
ames Query Ramp0
DE Browse Ramp1 120.88
SQL Query Ramp2 13.14
Other Ramp3 6.39
Cell Update Cell Bindings
Functions Row Column Value + Choose Tag x
(defaufiRampo) B
L » % Poll Time &
= + % Pressure
E r Ramp1
S » % Ramp2
+ % Ramp3 v
e ning C [default]Ramp® -
ml Cancel | I

6. Now, you have the value of that Tag to the Value column in row 0. Repeat Step 3 for the other three Tags so that the Cell Binding area looks
like the image below, then click OK.

[Property Binding: Root Container. Table X
Tag Cell Update
Tag Binds specific cells inside an existing dataset
Indirect Tag
Tag History Q Use the Cell Update binding to dynamically bind specific cellsinside a dataset to tag or X
Property property values. Simply select the cell you want to bind, and hit the "Plus" button.
i Rows can be specified explicitly by their index (e.g. "15") or by referencing another
Expression column (e.g. "Name=Compressor")
Property Dataset
sqQL
Tag Name Value
Named Query Rampo 6.579
DB Browse Ramp1 59.276
SQL Query Ramp2 1.316
Other Ramp3 -5.614
Cell Update Cell Bindings
Functions Row Column Value +
0 Value {[defaulf]Ramp0}
1 Value {[default]Ramp1}
2 Value {[defaulf]Ramp2}
3 Value {[default]Ramp3}
& NoBinding [}
n Cancel

Table values are now updating with the value of their respective Tag.

Tag Name Value
Ramp0 2.59
Ramp1 2344
Ramp2 1.52
Ramp3 5.06

Adding a Realtime Indicator to the Linear Scale Example

The Linear Scale is a component that has a special Scale Indicators customizer that allows you to configure setpoints. You can set up the value, color,
style, and more for each of the indicators. During runtime, these values are normally static, as there is no way to set up a binding in the customizer.
However, the customizer merely configures a dataset that the component uses to create the indicators. If you look at the Indicators dataset property of
the Linear Scale, it has all of the properties that are configurable in the customizer. Changing them from the customizer will alter the dataset, and
changing the dataset values will alter what you see in the customizer. Knowing this, we can set up a Cell Update binding to manipulate the values
during runtime.

Let's add another indicator to the Linear Scale component and configure it.

1. Select the Linear Scale and right click on the Customizers > Scale Indicators.

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Linear+Scale

1 1 1 1 |1ﬂﬂ 1 1 1 1 |zuu 1 1 | 1 |3c|cI 1 1 1 1 HUU 1 |5
CYE

T 100 —
4 : - 0

- pa—
- L —

: 75 —
- | :||
- ! -
T] 1 -
0 e 50 —é
o] =

1
! % Cut
.)
1 E A Copy

1 =
- : il Paste
Up--3 =
u‘_’ 1@ Delete
] =1
7] +1
i
] B Lock
1 H Layout.. Ctrl+L
] 50 Size & Position...
E & Customizers k| /# ScaleIndicators
iy L)
] =3 Scripting... _irl+ /4 Custom Properties
] @ Security [
5 %) Translations
5] A Run Diagnostics
g

2. Click on the Add + icon to add a new indicator.

3. Click the Arrow radio button and set the following properties for the Arrow.
a. Value: 65.0
b. Length: 50.0
c. Width: 4.0

EJ Linear Scale Customizer it
E T Hne@la0 + v Tomake anindicator value dynamic, use a iy
S =—— Line @85.0 Cell Update binding on the Linear Scale's
Indicators property.
Indicator Style
Arrow ' Line . Range . Wedge
Value Extent
65.0 5.0
Length Width
50.0 .o ‘
Label
Label Angle
270.0
Color Label Color
I - I -
oK Cancel

. Click OK. This new indicator will be whatever the current value is.

. In addition to changing the value of the realtime Indicator, you can also change its color based on its value. If the value is above the high
indicator (i.e., 85), the Arrow will change to red, and if the value is below the green indicator (i.e., 15), it will change to green. To accomplish

this, set up a custom property on the Linear Scale of type color:
a. With the Linear Scale selected, right click on the Customizers > Custom Properties.

b. Click the Add + icon to add a property.
c. Enter "Color" as the Name of the property.
d. In the Type column, choose Color from the dropdown list.

https://legacy-docs.inductiveautomation.com/display/DOC81/Working+with+Vision+Components#WorkingwithVisionComponents-CustomProperties

e. Click OK to save the custom property.

Custom Properties

x
MName Type Description +

~ B Standard Types |~
B Integer
Long
Short
Float
Double
Boolean
String
[T coor |
B Date
B Dataset
b i User Defined

0K Cancel

L

A

6. Next, we'll set up a Number-to-Color Tag binding on the custom Color property. Select the Linear Scale component, then click the binding
& icon next to the Color property.

Vision Property Editor =LY R B B L TR
| 4 . e :
(N = =R TR L A
. | 100 —
E Common I =
: - -
Name Linear Scale (5] g —
Visibl V| e 7] : 75 —
isible true = —
Border Mo Border ~ [jea| 0 | -
T & s0—e
Mouseover Text e|l4 5
)
Cursor Default v & |] : =
] 1 —
=
Data : g —
[Appearance i : 0 -
g _
Deprecated S -y
El Custom Properties
Color UE

7. The values shown in the image below are based on the static setpoints that were set in the Linear Scale customizer.

https://legacy-docs.inductiveautomation.com/display/DOC81/Color+Animation+in+Vision#ColorAnimationinVision-TheNumbertoColorTranslator

Property Binding: Root Container.Linear Scale *

Tea | T2

Tag Binds to a tag
Indirect Tag
Property > i Motors ~
) » i Plant Motors
Expression -~ % Ramp
Property r % NewTag
» W Ramp0
sQL
? » % Rampl
Named Query } % Ramp2
DE Browse ¥ % Ramp3 v
SQL Query [default]Ramp/Rampl -

NMumber-to-Color Translation

Value >= Color +

0 | -
T .
Reset to Default Low Fallback Color: _

Options

® No Binding Bidirectional Fallback Delay = Overlay Cpt-Out

. Finally, set up a Cell Update binding on the Indicators dataset property of the Linear Scale. Notice below that both of the cell bindings are for
the same row, just different columns. This is fine, as long as there aren't duplicate bindings for the same cell.
. Bind the Value cell to the same Tag used in the custom property Color binding to get the value:

a. Click the Add + icon.

b. Click the Tag * icon .

c. Select the Ramp1l Tag,

d. Click OK.

. Bind the Color cell to the Color custom property we just created.

a. Click the Add + icon.

b. Click the Property El icon and select the Color property.
c. Click OK.

. Click OK.

Property Binding: Root Container.Linear Scale x

Tag Cell Update
Tag Binds specific cells inside an existing dataset
Indirect Tag
Tag History ©Q Use the Cell Update binding to dynamically bind specific cellsinside a dataset to tag or property X
Property valug;. Simply s.e\.ect the cell you want to bind, aqd hit the "Plus" button. Rows can be specified
explicitly by their index (e.g. "15") or by referencing another column (e.g. "Name=Compressor")

Expression

Dataset
Property
sqL Style Value Extent Length Width Color Label Label... Label...

Named Query Line 15 5 30 [l HEE o
Line 85 5 30 : [l v S oo
. -

DB Browse Arrow 65 = <0 . - °. 70
SQL Query
Other Cell Bindings
Cell Update Row Column Value +
Functions 2 Value {[default]Ramp1} &
{RootConiaiernear Scle Coor
5]
L2
© NoBinding]

n Cancel

Now, the Linear Scale has an Indicator that moves to show a realtime value and changes color whenever it goes outside the setpoints. The image
below shows the indicator below the setpoint, within range, and then exceeding the setpoint.

100 — 100 — 100 —
= _ = _ —
[=e— T — O —
r = T _ _
75 — 75 — 75 —
50 — 50 — 50_:
_ I_ _

5 — 25 — 5 —
E—| |E—| | 8—
e 0 — 0 —

Related Topics ...

® Function Bindings

® Property Bindings in Vision

® Tag Bindings in Vision

® |ndirect Tag Bindings in Vision

Function Bindings

Binding Properties to Prebuilt Functions

The Function Binding is a generic binding type that lets you bind a dataset property to the results of a On th|S page .
function. It allows any of the function's parameters to be calculated dynamically via Tag and property

bindings. The function that you choose determines the parameters that are available. The most common

functions are the Alarm Status, Alarm Journal, and Audit Log functions, but there may be more

depending on the modules you have installed. ® Binding Properties to Prebuilt
Functions
. ® Using Function Bindings to
Using Function Bindings to Customize Customize

While there may already be an Alarm Status Table component, it may not be able to customize to exactly
fit your needs, but the Table component still offers customization options. When you use a Function
Binding on the alarm status, you can pull that same data into a Table component, and then customize the
table exactly how you need.

The following example shows the default settings for the Function binding. Notice how each field has Tag
and property binding buttons next to them. This allows you to make this entire function dynamic by
binding either Tag or property values to the different values of the function.

. In the Designer, drag a Table component into your workspace.

. Select the binding e icon for the Data property.

. This opens the property binding window. Select the Functions binding.

. Select a Binding Function from the dropdown. In this example, we used the Alarm Status bindi
ng function and the default settings for alarm state.

AWN P

{2 Property Binding: Root Container.Table 1 X
Tag Functions
Tag A variety of extra functions that can be used as bindings
Indirect Tag
Tag History Binding Function
Property [alarm Status M
Exprassion Path Filter Display Path Filter
Property =% SILY
sQL Min Priority Max Priority
Named Query FEES +lm .
DB Browse
Active and Unacked? Active and Acked?
SQL Que
" true vlE e e IS
Other
cell update Clear and Unacked? Clear and Acked?
true > B % false -~ B %
Polling Mode Polling Rate Retain Rows
© NoBinding Off © Relative () Absolute Rate = (Base Rate) + 0 -a-sec | | false
Bl

5. Now our Table component is pulling in similar information as the Alarm Status Table, but we
have the freedom to customize the table exactly how we need using any of its available scripting
or extension functions, or its customizer. We can also add our own buttons to acknowledge or
shelve alarms using our own scripting functions. This may be more work in setting it up then the
generic Alarm Status Table component, but it allows for full control over what is being displayed
and what can be done with that information.

Eventld Source DisplayPath EventTime & State Priority
8065def6-de16-4cc7-b79... provedefaulttag:Spe... Jun 22, 2020 9:08 AM 2 4"
db d32-4290-bb9... pr Tan... Jun 22, 2020 9:08 AM 2 4
bd-4a3e-a3cf-. pr it.. Jun 22, 2020 9:08 AM 2 4
fea7dd77-c859-4db7-9e0... prov:default/tag:Sine.. Jun 29, 2020 2:45 PM 0 4
bbbea94-96b9-4a33-89¢... pr Jun 29, 2020 2:53 PM 0 4
5d417457-30e5-4eb4-96f... prov.default/tagsSine... Jun 29, 2020 2:02 PM 0 4
85bf1 b 4041 oo I Jun 29, 2020 3:10 PM 0 4.
-] Active Time Display Path Current State Priority EventId Label

o2, 200 s | speedmgnspeea | sctve unscnon. | s _|sosaet-. | g spees 1
2220500 0| Wresblenwrtsbient. | cive, nacknen. e [fsfan - | Lo Tanic |
2920320 [simrsinervigh el | cive, unscknon.| e [sv3assc | ighievel |

2220500 0 [Tanki00 [scive Unscron|igh |

- [ign— [assseni- |

e g [ssereo|
g [atsesone.|

62220590 0| urtine Nmer 300 | cive unscnon- | igh [arasses.|

,9:08 AM | High TempHigh Temp | Active, Unacknowl... | Medium | 30448cd3-3...|High Temp |8

Acknowledge || Shelve P

Color Animation in Vision

Using Color on Components

Using color on components is an important part of creating effective HMIs. While static colors can help On th|S page
identify specific features on the screen, dynamic colors can help draw the users attention to certain

areas. Making color type properties such as Fill Paint dynamic works a little bit differently than other

properties with simple types. There typically aren't Tags of type color, so the way we set up bindings on

these types of properties works a little bit differently, and we have a few options available to us. Using Color on Components

L]
® Using Expression Bindings
® The Number to Color Translator
® Style Customizer

® Style Customizer Window
You can use the expression language to calculate a color using the color() function. If you have a color ® Value Conflict
that depends on multiple properties, then using an express is recommended to evaluate correctly. This ¢ Style Customizer Example
first example returns a static color using the Fill Color property.

Using Expression Bindings

Expression

/1 binding on the Fill Color property
color(255,0,0) // static red col or

This example takes a Tag value and translates it to a color that ranges from white to blue as the Tag value increases.

Expression

/1 binding on the Fill Color property
col or (255, 255, 255- ({tag val ue}/100*255)) // fades fromwhite to blue when Tag val ue goes fromO to 100 %

If you have multiple properties or Tags, you can use the logic Expression Functions to select between a few colors.

Custom Properties

i f({Tagl}>50,
if({Tag2},
3, /] if tagl>50 and tag2 is true
1), // if tagl>50 and tag2 is false
if({Tag3},
2, /] if tagl<=50 and tag3 is true
0)) // if tagl<=50 and tag3 is false

This example takes one integer value and selects from several options.

Expression Referencing a Tag

/1 binding on the fill color property

swi tch({HOA tag},
0,1,2, // off, on, hand
col or (255,0,0), color(0,255,0), color(255,255,0), // red, green, yellow
color(0,0,0)) // black (fallback color)

The Number to Color Translator

The Number-to-Color Translation, commonly known as Color Mapping is where you map a value to a color within a binding. When selecting a binding
type where producing a color won't be possible, the Number-to-Color Translator will appear at the bottom of the binding window. This includes Property
Bindings, Tag Bindings, and Indirect Tag Bindings. The way the Number-to-Color Translator works is that for every number range there is a set color.
The binding then translates the numeric value into a color based on the mapping table. You can choose a different color for each value, and even

make it blink between two different colors. If you need to add or remove values, use the Add New Translation + icon or Delete Selected

https://legacy-docs.inductiveautomation.com/display/DOC81/color

-5
Translation I icon on the right side of the Number-to-Color Translation table. There is a Low Fallback Color option so when a value falls below
your lowest value, a default color can be set.

| Property Binding: Root Container.Small weigh belt.Group_Weigh_Box.Path 2 >
perty g q P. 9
Tag Tag
Tag Binds to a tag
Indirect Tag
Property » % Ramp0 -
_ * % Rampl

Expression B AlarmEvalEnabled
Property B Deadband
sQL B Documentation
Named Query [default]Rampl.Enabled
DE Browse

MNumber-to-Color Translation
SQL Query

Value >= Color
Reset to Default Low Fallback Color: _

Options

® NoBinding Bidirectional Fallback Delay = Overlay Opt-Out

In this example, the fill color two parts of the conveyor symbol has been bound to the Ramp1 tag, enabled value. When the Ramp is enabled (value =
1), the symbol displays parts in the normal, yellow color. When the Ramp is disabled (value = 0), the fill color on those two parts is red, indicating the
conveyor belt is not running. For more information on how this was applied to a symbol, see Images and SVGs in Vision.

~ 'mw Ramp 7]

» W Ramp0 OFPC 536.96 Double -

* % Rampl OPC 27.72 Double]
|l Enabled g i TN
B OpcltemPath ns=1;5=... String] - -

B OpcServer Ignition ... String B

B Quality Good String i

B TagGroup default String o]

B Timestamp 2019-0... DateTime]

~ ' Ramp 7]

» W Ramp0 OFPC 983.79 Double -

* % Rampl OPC disabled Double]

[® Enabled B Boolean]

B OpcltemPath ns=1;5=... String]

B OpcServer Ignition ... String B

B Quality Bad_Dis... String 3

B TagGroup default String o]

B Timestamp 2019-0... DateTime]

B value gisobled Double 7

Style Customizer

Many Vision components support the Style Customizer, which lets you define a set of visual styles that
change based on a single Driving Property. Typically, you'll have a property on your component that
you want to use as a driving property (like a discrete state), which then drives multiple visual properties,

@ INDUCTIVE
UNIVERSIT

like the font, border, and foreground color, to change to a specific style that was set up per state
beforehand. Style Customizer lets you define these relationships all at once, and lets you preview them
too! Without styles, you would have to go to every property and bind them all individually.

Style Customizer Window

The Style Customizer window has multiple parts to it.

Component Styles

Watch the Video

® Driving Property - The value of the selected property will be used to determine the style used. Only certain properties on the component can
be used as driving properties, but the most common are discrete state properties. Custom Properties can also be used here.

® Styled Properties - Here you can select which properties will be used in the styles. Any properties that are in the left panel are available to
be used in the styles, while properties in the right panel are already being used in the style. Properties can be moved between the panels by

selecting it and clicking the appropriate arrow button.

® Styles - The list of styles that will be available for this component. Each style has a Value property on the left. When the value of the Driving
Property is greater than or equal to the value of a style, that style will be applied to the component. Each style gives a preview of what it looks
like, and can be expanded to by clicking the expand icon ** to edit the properties within that style.

You will notice in the image below that the properties being used in the Styled Properties are the Background Color, Border, Foreground
Color, and Text, which corresponds to the properties we have available within each style in the Styles area. Each style can also be animated
by clicking the animation checkbox. This allows you to add different steps to the style, where each step of the style can have its own unique
style. Each step also gains a Step Duration (ms) property that is used to determine how long the step is active for, as shown in the fourth

https://www.inductiveuniversity.com/video/component-styles/8.1

row. This is typically used to create a flashing effect, where the component will flash between two different colors such as red and gray.

[T Style for Multi-State Indicator X
Data Quality Available Properties: Used Properties:
Cursor ~ Background Color
Data Quality Border
Text Disabled Image Path Foreground Color
Visible Enabled Text
Font
Horizontal Alignment
Horizontal Text Position v
Value Preview
0 v &2
1 [Auto | v
2 Manual v o
; Faut | ~ B
Animate
Step Duration (ms) = Background Color | Border Foreground Color | Text =
500 _O.I:ILine Border v # v &, Fault
1000 w &, OLine Border !'_ &, Fault
+ o K| E
oK Cancel

Value Conflict

You can bind a property that is already being used by a style, but a warning icon will appear on the property in the Property Editor. This means there
is a conflict between the binding on the property, and the style on the component. As a general practice, only the style or binding should write to the

property, not both.

Vision Property Editor o - X
Fent = |-

T Common =
Name Multi-5tate Indicator # €2
Enabled 2 true G2
Visible 2 true G2
Border & [1 Line Border v /G
Mouseover Text & GD
Cursor Default v G2

> Data
State 0o e
Text & off & GO
CQuality # e

¥ Appearance
Font Dialog, Bold, 12 -
Foreground Color & |m
Background Color & 213,213,213 v &, D
Image Path & GO
Disabled Image Path & GO
Icon-Text Spacing 4 €2
Styles Dataset [SRx 7] Bf

Style Customizer Example

The best example of the Style Customizer in action is the Multi-State Indicator, as this component uses the style customizer to work properly and
switch between different states, so it can be used as an example already built in. However, the many other components can use the Style Customizer,
so this example sets up styles for a Cylindrical Tank.

1. Add a Cylindrical Tank component to the window, and add a Tag to the Value property. (This example uses a Ramptl tag).

2. Right click on the Cylibdrical Tank and go to Customizers > Style Customizer.

3. Select a Driving Property. Here, the Value is a good choice as we can change the tank to flash when the contents get too high.
4. In the Styled Properties select the Border, Liquid Color, and Show Value.

Style for Cylindrical Tank X

Available Properties: Used Properties:
Background Color s Border

Capacity Liquid Color

Cursor Show Value

Data Quality

Font ha

Font Color

Foreground Color

5. Next, we need to set up the different styles. Click the Add + icon three times to add three styles.
6. Leave the first style set to Value 0.00, and don't change any of the other settings.
7. Set the second style to Value 45.

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Multi-State+Indicator

a. Click the Expand * icon.

b. In the Border Chooser, select the Line Border style, set the line width to 5px, and the line color to yellow. This way, it is obvious the
tank is filling up.

c. Setthe Liquid Color to blue or keep the default color.

Style for Cylindrical Tank *
Capacity Available Properties: Used Properties:
Data Quality Background Color o Border
Capacity Liquid Color
Visible Cursor Show Value
Data Quality
Font
Font Color

Foreground Color

Value Preview
0.00 o o
45.00 & ~ 1
Animate
Border Liquid Color Show Value
Line Border hd <
90.00] v &
+ | | w

0K Cancel

8. For the third style, we're going to animate it and and create two steps to alert the user that the tank is almost full. Set the third style to Value 9
0, then click the Expand ™ icon. Set the following options for the first step:

Animate checkbox - checked

Step Duration 500 ms.

Border - Line Border Orange and set the Line Width to 5px, and the line color to Orange.

Liquid Color - Orange

Show Value checkbox - checked

9. Click the Add + icon to add another step. Set the following options for the second step:
® Step Duration 1000
® Border - Line Border Red and set the Line Width to 5px, and the line color to Red.
® Liquid Color - Red
® Show Value checkbox - checked

Style for Cylindrical Tank
Capacity Available Properties: Used Properties:
Data Quality Background Color - Border
Value Capacity Liquid Color
Visible Cursor Show Value
Data Quality
Font
Font Color
Foreground Color v
Value Preview
0.00 -
45.00 [v @
90.00 n ~ o
3 Animate
Step Duration (ms) Border Liquid Color Show Value =
500 HLineBorder ~ [N &, [~
1000 M LineBorder ~ ¢ || R 5. [~
+ |0 KW
0K Cancel

10. Click OK to save the style.

11. In the Vision Property Editor, when the Value changes to >/= 90, the Tank component and border will change to reflect the style settings. The

tank colors and border will flash between red and orange.

Vision Property Editor g _ X ||]
iz 1 == 0
o

* Common ==l
MName Cylindrical Tank s e .
Visible & true (5] 7
Border & B Line Border v # @d| 4]
Mouseover Text] u:
Cursor Default - GD 4

~* Data 7
| value & 50.500747826 &3| =
Capacity 1000 | 7]
Quality Good 4 o :

~ Appearance]
Font Dialog, Plain, 12 - =
Foreground Color 46,46,46 - & = ||y

Vision Templates

Templates are a simple but a very powerful feature in Ignition that you can use with the Vision windows.
The power comes from the ability to modify only the template in one location while affecting all of the
instances used throughout the project. HMI and SCADA systems typically have a lot of repetitions in their
screens. You might use a group of the same components over and over within your project. The data
driving each set of graphics is different, but the graphics themselves are copies of each other. You can
make a single template and use instances of the template over and over again.

When using templates, you define the graphical display in one place. This place is called the master
template, but can also be called the template definition. You then use this master template many times in
your project on multiple windows, thus making a number of template instances. Any changes made to the
master template are then reflected in all of the template instances. Using templates early in your project
development for any repeating displays can save a significant amount of time later on.

Without templates, the only way to do this is to copy-and-paste the components then re-bind them each
time you want another. This is simple, and it works, but it can cause major headaches and time
consuming corrections later on because if you ever want to make a change to how they are
represented, you're stuck making the change to each copy of the group.

File Edit View Project Component Alignment Shape Teols Help

Moo vsu(anoso-r[s o@o[=xsnae
Project Browser a - X T I [W [
& 8111 Motor #

[T Reporting Al

= &7 Templates 1
& 5 Alarm Count Label 1

b g Motor 1
B Multi-State Indicator @
B Named Queries \
» Reports
(3 Web Dev ~

Tag Browser a_ X
Qo ¥-a806 90 |H

» 2 Motor UDT |
< >

Vision Property Editor a_- X

B4 = = %

El Common

Name Motor Template

Border No Border v Qe

Mouseover Text e
El Behavior

Enable Layout false (-]

Combine Repaints false e

= Appearance
Background Color 255,255,255,C - ®
Width 217
Height 227
Texture > G2

= Template Parameters

motorData (]

Template Properties

On thispage...

® Template Properties

® Template Parameters and

Internal Properties

® |ndirection and UDT Tags
® Standard Indirection
® UDT Parameter
Changing Template Path
The Drop Target Parameter
Resizing Templates
Nested Templates
Accessing Components Inside a
Template Instance

INDUCTIVIE
2,2 UNIVERSIT

Template Overview

Watch the Video

Template Properties (called Template Parameters) allow each template instance to reference different data. Because the primary use of templates are
the ease of maintaining repeated user interface elements, correct use of Template Parameters is very important. This is very similar to the concept of P

arameterized Popup Windows. In that case, any Custom property on the Root Container of the window is used as a parameter, and is passed into
the window when it is opened. With Templates, you have a property in the root of the master template that is exposed when you drop a Template

Instance on a window.

Template Parameters and Internal Properties

When you open the Custom Properties window (right-click the checkered-box of the template and select Customizers > Custom Properties), you'll
notice it is different than the Custom Properties of all other components. There are two kinds of custom properties here, as follows:

® Template Parameters

These parameters appear on each template instance, allowing each instance to be configured differently. Commonly, this is some sort of
indirection. For example, if you have a template representing motors, you might have MotorNumber as a parameter property. Then you can
use that property as an indirection variable in other bindings within the template. Parameter properties are not bindable from within the
template master design. When you use the template to create a template instance, the property becomes bindable. This ensures that the

property only has a single binding configured for it.

® Internal Properties

These properties cannot be used as parameters in your instances. They show up when designing the template master, but it does not show

https://www.inductiveuniversity.com/videos/template-overview/8.1

up on the template instances. Internal properties are bindable from within the template master design. These properties are intended to be
used for the internal workings of the template.

Indirection and UDT Tags

There are two primary ways to achieve indirection when using templates. Let's continue to use the example of a motor. Your system has many
motors in it, and your template is used to display the status of the motors and control the motor's running mode. The goal is to be able to drop
instances of the template onto your windows, and configure them in a single step to point to the correct motor's tags.

Standard Indirection

If the tags representing the datapoints of each motor are arranged in an orderly way in folders or with a consistent naming convention, you can use sta
ndard indirection to configure your template. You can add a parameter such as MotorNum to the template. Then you configure the contents of
the template using indirect tag binding, where the value of MotorNum is used for the indirection.

UDT Parameter

If your motors are represented by a User Defined Type (UDT), you can save some effort and use a property of that type directly. Make your indirection
property the same type as your custom data type. Then inside your template, you can use simple property bindings to create a link to the members of
the UDT. When you create a template instance, you can simply bind that property directly to the correct Motor tag, and all of the sub-tags of motor are
correctly mapped through the property bindings.

Changing Template Path
An instance of a template on a window has a property called Template Path. You can change @ IN DUC T I VI

this property on a window dynamically, and it can be bound to anything that produces a valid template

path. For example, if there are two tank templates in a folder called Tanks, one template is called Tank A U NIV E RS I'I
and the other is called Tank B. Each tank has a different look, but they have the same Custom

properties. Their respective template paths are Tanks/Tank A and Tanks/Tank B. The template rendered

on a window can swap between Tank A and Tank B by binding the instance's Template Path property to

any string reference that says Tanks/Tank A or Tanks/Tank B. Chan g in g Tem p late
Path

Watch the Video

The Drop Target Parameter

When you specify parameters in the Custom Properties window (right-click the checkered-box of the template and select Customizers > Custom
Properties), you can set one of the parameters as the Drop Target. This allows you to drop a tag of that type onto your template instances or onto a
window to facilitate even quicker binding. For example, let's say that you have a parameter that is an integer and you've made it the drop target. If you
drop an integer tag onto a window, your template appears in the menu dropdown list of components which is displayed. Choosing your template
creates a template instance and binds that parameter to the tag.

This also works for UDT tags. Let's say you have a custom data type called Motor and a template with a Motor-typed parameter set as the drop
target. If you drop a motor tag onto a window, it creates an instance of your template automatically. If you have more than one template configured
with Motor drop targets, you have to choose which template to use.

The following feature is new in Ignition version 8.1.34
Click here to check out the other new features

For easier management with large projects, the dropped template menu now builds nested menus for all possible template options, instead of
displaying all folder paths in a single list.

https://legacy-docs.inductiveautomation.com/display/DOC81/Template+Indirection#TemplateIndirection-IndirectBinding
https://legacy-docs.inductiveautomation.com/display/DOC81/Template+Indirection#TemplateIndirection-IndirectBinding
https://legacy-docs.inductiveautomation.com/display/DOC81/User+Defined+Types+-+UDTs
https://legacy-docs.inductiveautomation.com/display/DOC81/Template+Indirection#TemplateIndirection-UDTsinTemplates
https://www.inductiveuniversity.com/video/changing-template-path/8.1
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.34

Tag Browser o - X
+ - Q <O | Sample_Tags v i~
Tags UDT Definitions
Tag Value
~ ' Ramp
F & Ramp0 9.84
b &% Ramp? 101.63
b & Ramp2 1.97
b 2% Ramp3 A 3.22
| »—2® Ramp4 166.12
b &% Ramps 174.42
b &= Ramp6 799.47
b &% Ramp7 149,51
b =¥ Ramps 31.38

Resizing Templates

You can configure the layout of each template so it resizes properly.

By default, when you drag a template into the window from the Project Browser, the size of the instance
is exactly the same size as the master template. You can make the size larger or smaller. To go back to

B |

P TP v PR PO

i |

Display r

Control >

Templates » Standard k| Tankl

T ActiveTank Tank2
Sample/Tank

INDUCTIVE
W72 UNIVERSI1I

the same size as the master template, right-click on the instance and choose Revert to Master size.

13

Modify Template Master

Revert to Master Size

Cut Crl+X

Copy Ctri+C

m Delete Delete

Template - Resizing
and Enable Layout

Watch the Video

For every component or template instance you add to the window, you can pick a Layout option as to
how it is going to resize in the Client. Right-click on the instance, select Layout from the menu, the

Layout Constraints window displays showing all the default settings.

https://www.inductiveuniversity.com/video/template-resizing-and-enable-layout/8.1

To learn more about layout, see the Component Layout page.

ﬁ Layout Constraints >

Layout Mode

Eelative Anchored

Relative Layout Options

Maintain Aspect Ratio
Center Leading Trailing

Scale Font

If your template instance resizes in the client, then it will stretch all of the components inside it in the
same way a Component Group works. That is: it will ignore any layout settings and stretch without
maintaining aspect ratio. If you want the template instances to respect your layout settings, set the Enabl
e Layout property to true in the template definition.

Vision Property Editor g - X I L.
{ERNH S =N
~ Common]
Name Tank2 21 !
Border Other Border v # & ;
Mouseover Text s e é_
~ Behavior B
Enable Layout EETSC
Combine Repaints false e |]

Nested Templates

You can embed templates inside of other templates. The nested template behaves like a component. @ IN DUC "I' I VI

This can be useful if the project can be broken down into many similar, small parts. Instead of building a
template for a tank with a gauge, a motor with a gauge, and a compressor with a gauge, it might instead U NIV E RS Irl
be better to first build a simple gauge template that can then be added to each of three templates so that

it already is set up correctly.

Simply drag the already made template into the new template, just like you would onto a window. You H P
can easily use an indicator template made to display values from a motor template, or values from a tank Em bed d In g Vision
template, as long as you set up the indicator template with the proper indirection. This way, you only Tem p lates

have to set up the indicator once and write in a few parameters, instead of having to customize the
indicator the same way for every template that it gets added to.

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC81/Working+with+Vision+Components#WorkingwithVisionComponents-ComponentLayout
https://legacy-docs.inductiveautomation.com/display/DOC81/Working+with+Vision+Components#WorkingwithVisionComponents-ComponentGrouping
https://www.inductiveuniversity.com/videos/embedding-vision-templates/8.1

1 I1qﬂl P |2ﬂﬂ

3 —

| I T P

[=1 ;N]

Tank 0O
Pressure

The following feature is new in Ignition version 8.1.22
Click here to check out the other new features

Clicking on an open template in the Project Browser will open the template in the workspace. If the
template you want to use is already open, you can instead alt-click to drag and drop the template where
you want to use it.

Accessing Components Inside a Template Instance

When working with a Template Instance, the components inside that instance or normally hidden, and otherwise inaccessible. However, you can
access these components via scripting. It helps to think of Template Instances as multi-layer containers. In most cases, users interact with only the
Outer Layer, which contains the Template parameters, and the other default Template Instance properties. A Python script can access the Inner
Layer, which then provides access to the components within.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.22

Quter Layer

Inner Layer

Component

Component

A script can traverse to the Inner Layer from the Outer Layer with a get Conponent call.

Pseudocode - Acessing the Inner Layer

nyTenpl ate = event. source. parent. get Conponent (' MyTenpl ate')

The '0' in the first getConponent call effectively refers to an index value of a conponent, which happens

to be the Inner Layer.
nmyTenpl at e. get Conponent (0)

From the Inner Layer, a script can then call get Conponent again to access any components within. Assuming a Template with a Label component
named "Label", we could access the Text property with the following:

Pseudocode - Accessing a Component From the Outer Layer

myTenpl ate = event. source. parent. get Conponent (' MyTenpl ate')

print nyTenpl at e. get Conponent (0) . get Conponent (' Label ') .t ext

Creating a Template

Templates are a simple but very powerful feature that you can use with your Vision windows. Templates
are a built once, in one place, which is called the master template. You then create template instances
throughout your project. Each of these instances will have the same components and properties as the
master template, and will automatically update as changes are made to the master template.

Creating a template is easy. To start, right click on the Templates section of the Project Browser and
select New Template.

Basic Template

Here we create a basic template. After the template is configured, you can create multiple instances of it
throughout your project.

1. In the Project Browser, right-click Templates and select New Template.

Project Browser al - X

Q- A

M User Management
I b-4.C Templates | gops
E Named Queries | ™o MNew Template
Reports % NewFolder -

2 Export..

A checkered box is displayed in the design space where you design your template. The
checkered box means that the template is completely transparent. You can set a background if
you want.

2. Right-click on New Template and click Rename to change its name to something else, for
example "Tank".

3. Drag a Cylindrical Tank and a Label component onto the screen. Resize the components to fill
the area of the template.

4. Bind the Value of the tank to a Tag, and set up the label to be a name for the tank.

PR |1|:!|:II

Tank # 1

El“ul

5. Now that we made a template, use that template on a window. Navigate to a window, and then
click and drag our tank component onto the window. The template can be dragged onto the
window multiple times to create multiple instances of the template, or even added to other
windows.

On thispage...

® Basic Template
® Dynamic Templates
® Edit a Template
® Example - Send a Template
to a Different Project
® Template Custom Properties
® Creating the Template Instances

@ INDUCTIVE
“we#2- UNIVERSI1

Creating a Vision
Template

Watch the Video

https://www.inductiveuniversity.com/videos/creating-a-vision-template/8.1

Project Browser - X I R 17 B W W -/ W £

Q- Project Properties £ Tank #1 Tank #1

~ O Tanks " —— ——
[[~ rootconainer |
& Tank
& Tank 1 it
~ €2 Templates
€3 New Template
~ &8 Tank
M cylindrical Tank %
ot Label
7
3

£ Named Queries
Reports v

The following feature is new in Ignition version 8.1.22
Click here to check out the other new features

Clicking on an open template in the Project Browser will open the template in the workspace. If the
template you want to use is already open, you can instead alt-click to drag and drop the template where
you want to use it.

Dynamic Templates

While the basic template is a good example of what a template is, the real power of the template is its ability to be dynamic. The template can create
parameters that can accept values from the instance, and use them throughout the template. This way, instead of always displaying Tank 1 values,
we can pass in a tank value for the cylindrical tank component to use.

1. In the Tank template, right click on the gray background and go to Customizers > Custom Properties.
2. Click the plus button to add a Template Parameter. Give it a name like tankValue, and click OK. There should now be a new property on the
Tank Template object called tankValue.

Ll o, . [204 300 A00

3 —s|

Custom Properties

Template Parameters

| T B

Mame Type Description | Drop Target

[=1] 8]
f

tankValue Integer

q

Internal Properties

Mame Type Description

3. Now bind the Value property of the cylindrical tank to the tankValue property that we just made. Note that it will be 0 right now, but we will
pass in a value later.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.22

Property Binding: Tank.Cylindrical Tank X

Tag Property

Tag Binds to another compenent's property in the same
i window

Indirect Tag

Prope
P rtyr Choose Property

Expression - [Tank

= Name (string)
sqQL B Instance Name (String)

Named Query W tankValue gntegen

¢ M Cylindrical Tank %

DB Browse bowe Label € B

SQL Que

QL Query Tank. tankValue -
Options

© No Binding

Bidirectional | | Overlay Opt-Out

“ Cancel
|

4. We also want to change the label, since this template won't always be pointing at Tank 1. So we can bind the Text property of the label to Tan
k Template's Instance Name. This way, whatever we name the template instance is what the label will show.

Property Binding: Tank.Label X
Tag Property
Tag Binds to another component's property in the same
i window
Indirect Tag
Property

Choose Property
Expression
P + [] Tank

sqL |

B tankValue (Integer)

Named Que N
Query » M Cylindrical Tank & B§
DB Browse bowe Label e B
SQL Que
QL Query Tank.instanceName -
Options
© NoBinding

Bidirectional | | Overlay Opt-Out

ﬂ Cancel
I |

5. Back on our window, we want to change our two instances so that the first one is called Tank 1, and the second is called Tank 2. Notice how
the labels change when we change the name of the template. Select your second Tank, and change the Name property to Tank 2.

Vision Property Editor a - X
l1g] 1 = = |w-
~ Common .
S =
Visible true (o]
Border Other Border ~ # G2
Mouseover Text & D

6. We also want to bind the tankValue property of each instance to separate Tags. In this example, you can do this simply by selecting Tank 2

and clicking on the binding & icon for the tankValue property and selecting another Tag.
Property Binding: Root Container.Tank 2 X
I
Tag Binds to a tag
Indirect Tag
Property r % NewTag 2
_ * % Ramp0
Expression » % Ramp1
property
sqQL * % Ramp3
» % Ramp4
Mamed Query » % Ramps
DE Erowse » % Rampé
oL » % Ramp7 v
Le
QL Query [default]Ramp/Ramp2 -
Options
® No Binding Bidirectional Fallback Delay 25= Overlay Opt-Out
“ Cancel

7. We now have two instances of the same template, but they are displaying different information because we are passing different values into
each.

Project Browser =LY PO O TP L T T PO T T T . L

Q- Filte Project Properties .4 | | Tank 1 Tank 2
+ [0 Tanks -

| |~ RootContainer |
& Tank1 W
& Tank2 W
~ &7 Templates
& 0 New Template
- &2 Tank
B cylindrical Tank €2]
we Label €2
B named Queries
Reports -

S

1 qﬂml

Edit a Template

You can open a template for editing by double-clicking on it in the Project Browser, or by double-clicking any instance of that template within a
window. You design your template the same way you design windows: by adding components to it, and configuring those components using
property bindings and scripting.

There are a few differences between templates and windows from an editing perspective. Templates, unlike windows, have a transparent background
by default. This can be changed simply by editing the background color of the template. Templates also do not have the concept of the "Root
Container" - the template itself acts like a container.

Once you change the master template, all the instances of that template are updated.

Templates are a project resource. As such they can be copied, duplicated, protected and more. There are several actions available with a right click
menu.

Project Browser a - X

Q A

b Y& Transaction Groups -

+ =} Vision
[& Client Events
+ ™ wWindows
b [Main Window [
™ Table test
[Test easy
~ & o Templates

| i FankBosic oo

B Cylindric ¢ Use in Window

B LED Dis| B scripting..
Tag Browser | MNotes...
L - . 1 .
Q o = C Ei Duplicate
- Tag ! Al Rename
F m Tags
b System te Cut

F i Vision Client Tags A Copy

r im All Providers % CopyPath
=+

@ Delete
B Protect
Send to...
G Export.
Action Description
Use in Places the selected template on the current window.
Window
Scripting = Opens the Component Scripting Window where you can set scripting on this template. For more information, see Script Builders in
Vision.
Notes Opens a popup window where you can make notes about the template.

Duplicate | Duplicates the template in the Templates folder.
Rename Renames the template.

Cut Cuts the template, but leaves it on the clipboard.

Copy Makes a copy of the template on the clipboard.

Copy Copies the path to the template and places it on the clipboard.

Path

Paste Pastes a template that's currently on the clipboard.

Delete Deletes the selected template.

Protect Once a project resource protected, it cannot be changed except by someone that has the permission to unprotect it, and modify it. For

more information, see Project Security in the Designer.
Send To Sends this template to another project on this Gateway.

Export Opens export Project Resources window. where you can export this template and other resources. For more information, see Project
Export and Import.

Example - Send a Template to a Different Project

You can share Templates with other projects.
Caution: If a Template by the same name already exists in the target project, it will be overwritten.

1. To send a Template to a different project, right click on the template name and choose Send to.

- {2 Vision
[& Client Events
™ windows

~ & Templates

| 0 New Tem e

B Named Queries & Use inWindow
Reports 1 D Motes...
e J Duplicate

+
Qo ¥- 8 Rename F2

Tag
» m Tags
b i System
>
J

[
o
*
E
m Vision Client Tag [copyPath
B -
@
]

Cut Ctrl+X

Copy Ctri+C

m All Providers

Delete Delete
1 Protect
I Send to » | Project_East A
& Export.. Project_West_1

Project_West_Bldg_1

B Common ~ Project_West_Bldg_2
Name New Template Project_East_Testing_only
Border Other « [Jj & Project_West_Templates

= .
Mouseover All other projects

2. Alist of existing projects is displayed. Choose a specific project, or select All other projects if you want to send the template to all projects.

https://legacy-docs.inductiveautomation.com/display/DOC81/Project+Security+in+the+Designer
https://legacy-docs.inductiveautomation.com/display/DOC81/Project+Export+and+Import
https://legacy-docs.inductiveautomation.com/display/DOC81/Project+Export+and+Import

3. A confirmation message is displayed. Click Yes to confirm.

Confirm >

If the selected resource(s) already exist in the target project(s), they will be overwritten.

MNo

Template Custom Properties

Templates have the capability to incorporate custom properties. In this way, they are the same as any other Ignition components. The main difference
between the custom properties for an Ignition component and a template is that the template has internal properties and template parameters.

® [Internal Properties - Internal properties help facilitate the bindings within a template in the same way that a window's root container will help
facilitate bindings between components that make up the template. When a template is deployed onto a window the internal custom
properties are not exposed to the world outside the template.

®* Template Parameters - The template parameters are the template's custom properties that are exposed to the outside world. In other words,
when a template is deployed onto the root container of a window, the template parameters are available for binding with the objects on that
window or to Tags.

Creating the Template Instances

Once you've made your template, you can use it on any of the windows in your project by doing any one of the following steps:

® You can drag the template from the Project Browser into an open window just like you can drag components into the window for display.
® You can right-click on the template in the Project Browser and choose Use In Window, which will let you place the template inside a window

with another click.
® You can drag a Tag from the Tag Browser to a window and from the pop-up menu, which is displayed, you can choose a template. This only

works if the template has a configured Template Parameter that been enabled as a drop target.

The following feature is new in Ignition version 8.1.22
Click here to check out the other new features

® You can alt-click on an open template in the Project Browser and drag it into an open window just like you can drag components into the
window for display.

The template instance can then be moved and resized like any other component.

Related Topics ... User Defined Types - UDTs

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+Templates#VisionTemplates-TheDropTargetParameter
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.22
https://legacy-docs.inductiveautomation.com/display/DOC81/User+Defined+Types+-+UDTs

Template Indirection

Indirection in Templates

You can create templates that point indirectly to a set of Tags based on a simple parameter. This is very On th|S page s
helpful when you have a large number of UDTs with the same type of Tags that only differ in one
parameter. For example, lets say you have 100 Tank UDTs that all have the same kind and number of
Tags. The only thing that is different is the Tank number.

® [ndirection in Templates
If each Tag inside the UDT has a Tag path that looks like this: ® |ndirect Binding

® UDTs in Templates

Tanks/ Tank 1/ Vol une

You can create a Template Parameter on the Custom Properties that can help make the template
indirect. There are two main ways of doing this. The first method is to pass in an indirection value so that |
ndirect Tag bindings can be set up within the template. In this case, we would want to pass in a tank
number, which can be substituted in for the tank number in the Tag Path. The second method is to pass
in a reference to the entire UDT, essentially turning that UDT reference into a property that we can use
within the template.

Indirect Binding

This example demonstrates how to set up a parameter to be used in an Indirect Tag binding. @ IN DUC 'I‘ I VI
Create a Template Parameter UNIVERSIT

1. Create a new template, and call it Tank.
2. Right click on the background of the template and select Customizers > Custom Properties.

3. Add a Template Parameter called tankNumber of type Integer. Tem plate - Indirect
Binding
|4 Custom Properties X
Template Parameters Watch the Vldeo
Name Type Description Drop Target | <
tankNumber | Integer -
m
Internal Properties
Name Type Description +
[

OK Cancel

Bind Values Indirectly

Next, add some components to our template, using the Template Parameter tankNumber that we
created earlier to bind them to certain values indirectly. In this example, we will be binding the Tank's
Volume property to a simulated Ramp tag.

1. Add a Label component at the top of the template with a simple expression binding to display
which tank is being shown in the template using the tankNumber property:

Expression - Indirect Label

"Tank " + {Tank.tankNumber}

https://www.inductiveuniversity.com/video/template-indirect-binding/8.1

@ Property Binding: Tank.Label X

Tag Expression

Tag Binds to an expression invelving any number of components'

properties and/or tags
Indirect Tag

Property
Expression
1"Tank " + {Tank.tankNumber} ~
Property
sQL

L 2|

Named Query

M

DE Browse

SQL Query

® No Binding

n Cancel

2. Add a Cylindrical Tank component that has an Indirect Tag binding on the Volume property,
using the tankNumber property for indirection.
a. Click the Tag icon to insert a Tag Path under Indirect Tag Path. In this example, we
used [def aul t] Ranp/ Ranpl
b. Replace the number at the end of your Tag Path with a parameter reference:

Indirect Tag Path

[def aul t] Ranp/ Ranp{ 1}

c. Define the reference, so that {1} is replaced in each instance's Tag Path with the
Template's tankNumber property.

I3 Property Binding: Tank.Cylindrical Tank X

Indirect Tag

Binds to a tag dynamically using indirection (a.k.a parameterization)

Indirect Tag
Prupert.y ©Q AnIndirect Tag Binding lets you bind to a tag dynamically, X
Expression where parts of the tag's path are defined by properties on
Property Feoorcavaie ank {11 59 avl e defe tat (1 rfers
sqL to {Root Container.TankNumber}
Named Query
DB Browse Indirect Tag Path
SQL Query [default]Ramp/Ramp{1} %=

References

Ref. # Property Path
1 | Tank.tankNumber

Options

® No Binding Bidirectional Fallback Delay = Overlay Opt-Out

n Cancsl

3. Drag a few instances of the Template onto a window.

4. Enter a different value into our tankNumber for each template. All of the templates will now
display different Tag values from one another. In the below screenshot, Tank 1 is displaying the
Tag value of Ramp 1, Tank 2 is displaying the value of Ramp 2, and so on.

Project Browser =L ¢ Lo M B B
_______________ &
Q Al ‘" g
~ [Root Centainer A1 Tank 1
& Tank 1 1
[e
& Tank 3 T
& Tank4 i
- &2 Templates]
~ &0 Tank 1 4
Vision Property Editor - S
IE 1 E3E 4 A 3
o
~ Common]
Name Tank2 se|]
Visible true e 1
Border Other Border v # & |7}
Mouseover Text s |
~ Behavior]
Template Path Tank v @ 4
~ Appearance -
Background Color 255255255 [o = Y
Styles <No Data> Bes| |]
~ Template Properties
| _tanknumber 2le2| |]

UDTs in Templates

When adding custom parameters to a template definition, the type of the property can be set to a User
Defined Type (UDT). This creates a complex property with several child properties, where each sub
property represents a tag in the UDT. These properties can be bound to within the template. An instance
of a UDT can be passed into a Template Instance just like any other Tag would.

When using a UDT as a parameter in a template, be mindful that the Template Canvas and Template
Repeaters components can not make use of UDT parameter types on embedded templates: when using
either component, Indirect Binding on standard data types is the preferred approach.

1. Create a new template, and call it Tank2.
2. Right-click on the background of the template, and select Customizers > Custom Property.

INDUCTIVE
UNIVERSII

Template — UDT
Parameter

Watch the Video

3. Add a Template Parameter called tankUDT, but this time, we want the type to be a UDT (hamed "Tank_UDT") that we have already created.

https://legacy-docs.inductiveautomation.com/display/DOC81/User+Defined+Types+-+UDTs
https://legacy-docs.inductiveautomation.com/display/DOC81/User+Defined+Types+-+UDTs
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Template+Canvas
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Template+Repeater
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Template+Repeater
https://www.inductiveuniversity.com/video/template-udt-parameter/8.1

Custom Properties >

Template Parameters

MName Type Description Drop Target +

b W Standard Types |~
v @ User Defined
~ W Tags

% Area
2 Motor
% Motor UDT
% Motor UseM
% Sensor
% Sensor_Old
% Sensor_Olde
% TankUDT

ST ranwor 8

< » A

=[]

Internal P

MName Description +

=]

oK Cancel

4. Next, add some components to our template: Label, Cylindrical Tank, and Slider. Be sure to utilize the Template Parameter tankUDT.

a. Add a Label component at the top of the template to show the name of the tank. Using a property binding, bind the label to the Tag
Name property of the UDT property tankUDT in the Meta folder. This will pull the name of the UDT instance in as the title of the
template. Don't worry if it makes your label blank, as there is nothing in that custom property yet.

Expression - Indirect Label

{Tank. t ankUDT: : Met a. TagNane}

b. Add a Slider component and bind it to the sliderValue property within the tankUDT property.

200, 300, 1200

Property Binding: Tank2.5lider

Tag Property

Tag Binds to another component's property in the same window
Indirect Tag

Property Choose Property

Expression ~ O Tankz

B Name (String)

B Instance Name (String)
sqQL = B tankUDT (UDTProperty)
Named Query | E" Meta
DB Browse B Tank Level (Integer)
SQL Query » M Cylindrical Tank & B§

b e Label € B§
) e Slider €0 % B
Tank2.tankUDT: :slidervalue

Options

No Bindi - .
S 2 Bidirectional

Overlay Opt-Out

c. Add a Cylindrical Tank component and bind it to the Slider component's Value property.

Property Binding: Tank2.Cylindrical Tank >
Tag Property
Tag Binds to another component's property in the same window
Indirect Tag
Property Choose Property
Expression v E Tank2 :
B Name (String)
B Instance Name (String)
sqQL b B tankUDT (UDTProperty)
Named Query » M Cylindrical Tank & B3
b wo Label €@ B
DB Browse ~ o= Slider €2 % B
SQL Query B Name (String)
B Visible ibnofer:rni
Tank2.Slider.value -
Options
Mo Bindi - .
® NoBinding [eidirectional Owerlay Opt-Out
ﬂ Cancel
e —|

. Next, add an instance of the Tank2 template onto a window. In this example, we added three instances.

. Bind the tankUDT property to each of the UDT instances. In the image below, we selected the Tank 3 instance and bound the tankUDT tem
plate property to the Tank 3 Tag. The Tag bindings to the UDTs can even be made indirect to allow the passed UDT to be changed at
runtime.

0 25 50 75 100

Broject Br T _ % [[ES(] [ELE [
oject Browser o Lo L L Lo e e
Q- Filter Al Tank 1 Tank 2 3 Tank 3

~ [Tank Farm Al — i
~ [Root Container] 2
b Tank1 % 1 3
& Tank2 W T !
3 @
I ESETEC | - '
'
& Tanks W - '
[Tanks [] 3
+ &9 Templates S| — — | —)

'

] 0 25 50 75 100 0 255 7510 + 0 I 0 T 10

Wi Pr¢ Editor =L 2
ision Property Edi - =] X 3 *----- 3 -

1 EE= O
7 Property Binding: Root Container.Tank 3
~ Common 4
Name Tank3 s e] _ Tag
v| | 5]
Visible & true 3 = Binds to a tag
Border Other Border v # @2 0]
= Indirect Tag
Mouseover Text -] —
- - Property » I Station 2
~ Behavior - ~ @ Tank Farm
Template Path Tank2 v ||] Expression b % Tank1
T
~ Appearance [Property » % Tank2
3 nk 3
Background Color 255,255,255, . €2 | 4 sQL
g - @ Q » @ Tankd
Styles LLDleER> B e] Named Query [default]Tank Farm/Tank 3
* Template Properties DB Browse
= 1B i
Tank UDT Lo i SOl Query Options
idirectional Fallback Delay §
b Bid| | Fallback Del 25
1 © NoBinding
]
0
o

<

x

Qverlay Opt-Out

n Cancel

1} Welcome TankFarm X &0 Tank2

Related Topics ...

® Using the Template Repeater
® Using the Template Canvas

Using the Template Repeater

The Template Repeater component lets you easily create multiple instances of a master template for
display on the HMI. Each instance shown in the Template Repeater has the same look, feel, and
functionality of the master template. The instances can be arranged vertically, horizontally, or in a "flow"
layout, which can either be top-to-bottom or left-to-right. If there are too many instances to fit, a scrollbar
is added to the display. The Template Repeater also gives you the ability to pass parameters to each
instance of the template, making the templates dynamic.

The Template Repeater can create multiple template instances in two different ways, which will also
affect how it passes parameters to those instances. The first is Count mode, which will allow you to
specify how many times the Template Repeater will repeat a template. It will then use the index number
of each template as a parameter that it will pass into the template. The second method is Dataset mode,
where each row of a dataset will be a new template instance and each column will be a parameter that
will be passed into the template. This is useful if you have multiple parameters that need to be passed
into a template. See the Vision - Template Repeater page for a more detailed description of this property
and how it works. We will go over both methods of using the repeater below.

Creating a Template

Before we use the Template Repeater, we need to first have a template that we need multiple copies

of. We used Ramp Tags in the Generic Simulator device built into Ignition. The template will have a label

at the top with the ramp name, and it will display the ramp number value. To do this, our template needs
to have two parameters. One called RampNumber, which will be used to display the ramp number and
also used for in an indirect Tag binding. The second parameter called RampName, which is passed in a
string name that is the name of the ramp that | made up. The steps for making this template are listed
below, or you can skip ahead to the next section if you are familiar enough with making templates.

On thispage ...

® Creating a Template

® Using the Template Repeater
with Count Mode

® Using the Template Repeater
with Dataset Mode

@ INDUCTIVE
UNIVERSIT

Template Repeater

Watch the Video

1. In the Templates section of our Project Browser, create a new template. | named mine, Ramp_Example. See the Templates section for a

more detailed description on what templates are and how to use them.

2. We are going to want to pass in a value to the template, so we need to create a Template Parameter.

a. Right click on the Root Container, select Customizers > Custom Properties and add a Template Parameter called RampNumber,

and make it an Integer type.
b. Add a second Template Parameter called RampName, and make it a String type.

[0 Custom Properties

Template Parameters

RampMame String
RampMumber | Integer

Name Type Description Drop Target

Internal Properties

Name Type Description

0K Cancel

=[]

=[]

3. Next, add some components to our Template.

a. Add two Numeric Labels and one Label. | also added two extra label components, and manually typed in some static text into their T

ext property. In one label, we entered "Ramp Number" and in the other, "Ramp Value".

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Template+Repeater
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Template+Repeater
https://www.inductiveuniversity.com/video/template-repeater/8.1

b. Resize the components so that they are easy enough to read. Place the blank Label component at the top of the Template, and

place each Label that we wrote text into next to a Numeric Label.

~ &° Templates

st Label

el Label 1

wet Label 2

“sa Numeric Label
“ws Numeric Label 1

Vision Property Editor

s

o - X

File Edit View Project Component Alignment Shape Tools Help
BE« (%9 @ sfolo 0-»r|s-@0|x x5
Project Browser g - X T L P

Q- Filte RE Label

{ Ramp Number [d
[9

Ramp Value

[b

2 = | = 2l |-
= Common
Name Ramp_Example
Border Other Border + [&2
Mouseover Text cD
Behavior
Appearance
= Template Parameters
RampMName
RampMumber 0

4. Next, set up some bindings on our Template.
a. Using a property binding, bind the Text property of the blank Label component at the top of the Template to the RampName Templat
e Parameter.

Vision Property Editor =L TP L L
[EART, == n- =t
1 *
~ Common []
Name Label # e Ramp Number [
Enabled 3 o G
nable B true 1 Ramp Value
Wisible 4 true eo| (o]
P Binding: R Ex leLabel s
Border Other Border v £ | roperty Sinding: fomp_ExampleLabe
(=]]
Mouseover Text 4 1 e Property
Cursor Default b= 7] Tag Binds to another component's property in the same window
~ Data gr
| | st
ose Propel
Quality Good #oo||] | Property
Expression -0 Ramp_Example
} Appearance] P B Name (String)
* Layout a_ B Instance Name (String)
» Deprecated T sQL
] B RampNumber (Integer)
Named Que
i b Label @2 BS
DE Browse b Label 1
T SQL Query b e Label 2
= b Las Numeric Label € B§
] b [ws Numeric Label 1 %
0 Ramp_Example . RampName -
o s Options
No Binding
g, Bidirectional Overlay Opt-Out
] n Cancel
1 1

b. Using a property binding, bind the Value property of the Numeric Label next to the "Ramp Number" label to the RampNumber Temp
late Parameter.

Property Binding: Ramp_Example.Mumeric Label et
Tag Property
Tag Binds to another component's property
_ in the same window
Indirect Tag
Prope
perty Choose Property
Expression
P + [] Ramp_Example A
= Name tring
s5QL B Instance Name (5tring)
B RampMName (Strin
MWamed Query g (9)
DE Browse b Label €2
SQL Query b e Label 1
ke Label 2
b Cad Numeric Label -
Ramp_Example. RampNumber -
Options
No Bindin L
® g (2 Bidirectional Owverlay Opt-Out
ﬂ Cancel

c. Using an indirect Tag binding, bind the Value property of the Numeric Label next to the "Ramp Value" label. We bound it to a Ramp
Tag that is in our Tag Browser, using the RampNumber Template Parameter as the indirect reference for the number in the name
of the Tag. It should look similar to the image below.

Note: Remember to remove the number portion of the tag name and replace it with {1}. For example, [defaultjRamp/Ramp0
becomes [defaultiRamp/Ramp{1}.

Property Binding: Ramp_Example.Mumeric Label 1 X

Tag Indirect Tag
Tag Binds to a tag dynamically using indirection (a.k.a parameterization)
Property . _ . .

Q AnIndirect Tag Binding lets you bind to a tag dynamically, where *
Expression parts of the tag's path are defined by properties on your window. For
Property instance, you could bind to [source] tanks/tank{1}_SP, and then

define that {1} refers to {Root Container.TankNumber}
sqQL
Named Query Indirect Tag Path
DB Browse [default]Ramp/Ramp{1} =
sqQL
QL Query References
Ref. # Property Path
1 | Ramp_Example.Ramphumber
Options

® NoBinding Bidirectional Fallback Delay = Overlay Opt-Out

n Cancel

5. The template is now finished and ready to use. See the image below for an idea of what mine looks like. Yours should look similar. Notice
the two Template Parameters, as well as the placement of the components. The label at the top that can't be seen because there is no text in
it.

Vision Property Editor g - X L ._!1“”. L

4 o= = R .

Common : Ramp Number Ij

Behavior

H Appearance __ Ramp Value Ij

B Template Parameters
RampMame

RampMNumber 0

Using the Template Repeater with Count Mode
Now let's take a look at how to use the Template we just made in a Template Repeater.
1. On anew window, drag a Template Repeater component. Resize it so that it is taller than it is long.

2. With the Template Repeater selected, find the Template Path property, and find the name of the template that we just created in the drop
down menu.

Vision Property Editor o - X [P P I |
= H o = 4
ae | 2 =2 % 1
I
= Common 1
Name Template Repeater e||71 |
= I
Visible £ true e || !
1]
Border No Border vQies| | |
1 I
=l Behavior 4
1 I
w D .
Template Path |Ftamp_ExampIe |
Repeat Behavior B Form Input “lea| |7 !
= I
Repeat Count B Ramp_Example e| 2]
B Tank -
Marguee Mode e |1
1 Del W Tank2 ,
Scroll Dela 2| | 4
y B zAlarm Count Label |
Stay Delay B zMotor Template 01 “1:
Template Parameters |e2 a_ ,
" a
Index Parameter Name Pk 1
=1 I

3. With the Template Repeater still selected, find the Index Parameter Name property. Enter in ‘RampNumber’, which was the name of one of

our Template Parameters from our Template.
4. Ensure that the Repeat Behavior property of the Template Repeater is set to Count.
5. In the Repeat Count property of the Template Repeater, set the value to '5'.

Vision Property Editor a - X
[z 1 == Y-
~ Behavior -
Template Path Ramp_Example v G2
Repeat Behavior Count v D
Repeat Count 5 G
Marguee Mode false GD
Scroll Delay 50 &2
Stay Delay 2,500 &2
Template Parameters =No Data= B e
Index Parameter Name RampMumber & CD

6. You should see your Template repeated five times within the Template Repeater. Our Ramp Number value in the Template corresponds to
the index value of the Template, 0 through 4 because it is 0 based. You will see that the value in our Ramp Value component corresponds to
the value of one of our Ramp Tags.

Project Browser g - X PR T T L T O T LI
R | =]
Q. A r i
. 1
~ [Template Repeater Al : i
~ [] Root Container b :
I. — Template Repeater " | Ramp Number l: i
ot —_ N 1 1
1
N 1
Q o -8 & | i
1
» i Plant Motors ! |
~ W Ramp : |
» % RampD OFC | Ramp Number |:| :
» % Ramp2 OFC 0.37 : amp Value !
» % Ramp3 OPC 975 I |
» % Ramp4 OPC 201.23 J1T |
_|{ ! 1
1 |
Vision Property Editor o - X g_) |
= -
15| 12 = =¥ - i RampNumber [2 !
1
~ Common i SIS !
Name Template Rep i !
Visible true | i
N 1
Border No Border i 1
. . sarp Number [T |
* Behavior) i
» Data i Ramp Value -9.7 !
» Appearance = i
» Deprecated T : i
| 1
1 l
: sarp Number [|
I !
i |
|
2 T]

Your Repeater is complete. You can modify the Repeat Count to change how many times the Template gets repeated.

Using the Template Repeater with Dataset Mode

In our previous example, although we were able to successfully pass in the index parameter into our Template, we were not passing anything into the
RampName Template Parameter and because of this, the blank label at the top of our Template remained blank. This is because Count mode only
allows a single index parameter to be passed in. However, since we want to pass in two parameters, we can instead use Dataset mode. In addition,
because we are going to be defining a dataset to pass in parameters, we don't have to use a 0 indexed parameter, and can instead use whatever
values we want. We will use the same Template and Template Repeater from before.

1. Onthe Template Repeater, set the Repeat Behavior to Dataset. All of the Templates that were previously in will temporarily disappear.

Vision Property Editor g - X L My B
(ERNE 2= N Ao e 1 &
1
¥ Common] : :
- 1
Name Template Repeater] I i
1 !
Visible true el Ramp Number l: !
> 1 1 1
Border No Border v /e |1 ! Ramp Value lj !
~ Behavior 2 i
Template Path Ramp_Example ve |7 i
1
Repeat Behavior |Dataset ved| |7 . i
- 1
Repeat Count Count e | |2 ! Ramp Number lj i
L |
o[
Scroll Delay 50€2| | i

2. Click the Dataset Viewer @ icon on the Template Parameters property of the Template Repeater. You should see a new popup that

allows you to build a dataset.

Project Browser a2 - X P T T P L T - I RO SO T . T [
a- 1S . I 3
~ [3 Template Repeater A 1 i B
~ [] Root Container 1 !
[| = remplaterepeaer [V :
Vision Property Editor g - X é— ! i
HE %= - 1
¥ Common 1
MName Template Repeater] __ Dataset Ecitor X
Visible [true =} é_
Border No Border v/ | e
~ Behavior 1 @
Template Path Ramp_Example v & |]
Repeat Behavior Dataset v D a_
Repeat Count 5 G2 u: .
Marquee Mode false e | | 4 b
Scroll Delay 50 €| |] i
Stay Delay 2,500 € g_ Column Name: - Column Type: -—
B e) o I
Index Parameter Name RampNumber # D | | 1 S T
» Data _'L ¢ &

3. First, we'll add two columns to our dataset.

b
a. Click the Add Column Il icon. Set the Name as 'RampNumber’ in Position '0’, and enter 'Integer’ as the Type. Click Add
Column.

=
b. Click the Add Column Il icon. Set the Name as 'RampName' in Position '1', and enter 'String' as the Type. Click Add Colum.

Note: Make sure the name of each column exactly matches the names of the Template Parameters (RampNumber and
RampName). They are case sensitive.

Dataset Editor *
RampNumber 4
i
Name RampMName (] Position |1
Type |Date
Integer
Long
Short
Float
Double
Boolean
Add Column

m
4. Next let's add some rows by clicking the Add Row = icon. Click it five times to add five rows.
5. Add in some values for the RampNumber column. Since we are defining all of the values, we don't have to start with a RampNumber of '0'.
In fact, we don't even need to have them be in sequence! We do need to make sure that the numbers each correspond to one of our Ramps,
so enter in a value '0' through '9' for the RampNumber column for each row. In this example, we used 2, 5, 7, 3, 8 in that order.

6. Next, add some values for the RampName. These can be whatever you want, since we are going to be giving unique names to each of our
Ramps. When finished, the dataset should look something like the image below. Click the OK button to save your dataset.

")) Dataset Editor X
RampNumber RampName =
2 | Loading Ramp
4 | Rear Ramp +
7 | WestRamp 1 i
3 | Small Ramp
8 | WestRamp 2 Q
]
Column Mame: —- Column Type: -—
ﬂ Cancel

7. Notice how we now have our five templates back, and they are using the parameters that we are passing in from the dataset we just created.
The Templates are receiving the parameters in the order that you made them in the dataset. We can also see that each Template instance
corresponds to a specific ramp.

Project Browser (=14 O O O L O O 2L ORGSO MO, WO 1R OO O WO | €1 OO 1 O WO R O | O RN W O 11,
% _____
Q A g '
I
~ [Template Repeater 13 1 Loading Ramp 8
~ [] Root Container S
| | = Template Repeater v ' RampNumber [2 !
i !
— o] —
:
ac|¥-806 - 1 :
—_ " \
» i Machine 100 1 Rear Ramp (7] Dataset Editor x
» i Motor Plant 1t o
» i Motors i 3 Ramp Number E p RampName =
» i Plant Motors 1o
» % Ramp0 OPC 1.94 bl ! 4 | Rear Ramp =
» % Rampt O7C . b 7 | WestRamp 1
¥ % Rampz OFC 144 o West Ramp 1 .// 3 | Small Ramp
R 3 8 WestRamp2
» % Ramp3 OPC 238 He @
> % Rampa 0% 2oz | 1% RampNumber [7 .
» % Ramps OFC 77.13 -/ Ramp Value)
» % Ramp OFC 550,52 i i
» % Ramp7 OFC 664.31 8 Cols N Coll Ll
e Ul olumn Name: — Column Type: —
L ¥ Ramps 60.75 M small Ramp
bl
. =
Vision Praperty Editor g% : Ramp Number [3
1. I
: = =¥ - '
DECIEEIR - !
r— I
Border NoBorder v #° & Enl '
AN !
Behavior i West Ramp 2 '
Template Path Ramp_Example ~ @[] | !
1.
Repeat Behavior Dataset v ' RampNumber [g |
j I
Repeat Count 5Gd =) Ramp Value 8
I
Marquee Mode false =1 (N)
scroll Delay soco il | 1% k: ™

Dataset mode is great when you need to pass in multiple parameters, or if you have a single parameter that is not zero based. In addition to manually
specifying values like we did in this example, you can instead set up a binding on the Template Parameters property to something like a database
table. This allows you to easily modify the templates that are being displayed in the window simply by modifying the database table.

Related Topics ...

® Using the Template Canvas

Using the Template Canvas

The Template Canvas component works much like the Template Repeater in that it can easily create
multiple copies of a master template. What makes the Template Canvas unique is that it can display
instances of multiple master templates, and set their layout in any way you want. The Template Canvas
has a customizer that can help put the templates together within it, but the customizer is just driven by a
Templates dataset property on the Template Canvas. The Template Canvas can be made dynamic by
setting up a binding on the Templates property, such as a query that pulls in an entirely new dataset of
information, or even a cell update binding, which updates individual cells of the dataset. With that, you
can load new templates into the canvas at runtime, or even move the templates around.

The Template Canvas has two layout systems:

® Absolute Positioning, where each template instance has an absolute position within the
Template Canvas

® Layout Positioning, which uses the MiG Layout system to place the instances within a grid like

system.

Creating a Template

Before we get started with the Template Canvas, we first need to have a template. Here we are going to

make a simple Form Input template, that consists of a Label and a Text Field. The template will need two
parameters. A Label_Text parameter which is what will get displayed in the label, and a TextField_Text
which we can use to pass user input outside of the template by making it bidirectional. This template is a

great way of quickly making user input forms, by using a template for each piece of info that needs to be
collected. The steps for making the template are listed below, or you can skip ahead to using the
Template Repeater in the next section.

On thispage ...

Creating a Template

Absolute Positioning

Layout Positioning (MiG Layout)
Read User Input

INDUCTIVE
UNIVERSII

Template Canvas

Watch the Video

1. In the Templates section of our Project Browser, create a new template called Form Input. We are going to want to pass in values to and

from the template, so we need to create Template Parameters.

2. Right-click in the Form Template workspace, and select Customizers > Custom Properties. Add a Template Parameter called Label_Text,

and make it a String type.

3. Add a second Template Parameter called TextField_Text, and make it a String type, and click OK to save your template parameters.
4. Next, drag a Text Field component and a Label component onto the Template.
5. On the Label component, set the Horizontal Alignment property to Trailing.
Project Browser " - X f f 1 1 1100, L L 1299, | 300 1400 500
Label Text Field
A
- €5 Templates 1 [Custom Properties b o
&7 Alarm Count Label] — -
I \'_E: Form Iﬂpll! e emplate Parameters
et Label 71 Name Type Description Drop Target +
—— Text Field b Label_Text String -
'_g Motor Template 1 TextField_Text String u
w Tonk 3
b & Tank2 1 Internal Properties
) g E:r:ithumeg N é_ Name Type Description +
Tag Browser g - X aj [l
Q| ¥-a 6900 @ i
Tag Value Dat... Traits ~ gK Cancal

6. Finally, we want to set up some bindings on our Template.

a. Using a property binding, bind the Text property of the Label component to the Label_Text Template Parameter.
b. Using a property binding, bind the Text property of the Text Field component to the TextField_Text Template Parameter, and

make it Bidirectional.

https://www.inductiveuniversity.com/video/template-canvas/8.1

File Edit View Project Component Alignment Shape Tools Help
BE|« [a/nfo/o O-»|[r-2@|xx @ aa %08
Vision Property Editor o - X oo 100 T 222 422 540
3 Labéh! Text
= = 2R ‘
El Common] Property Binding: Form Input. Text Field X
Name Text Field e ||]
Enabled 3 true e | |Tag Property
Visible 4 true (] é_ Tag Binds to another component's property in the same window
Border OtherBorder ~ [Jjed| o | indirectTag
Mouseover Text | 4 | Property Choose Property
Cursor Text ve| I Expression ~ Orormnput
T 7] B Name (String)
+ 0
5 ehavier] B Instance Name (String)
Data .
= sQL B Label_Text (String)
. Named Query
Quality Good e |] b wer Label €D B
T o] | DB Browse b oz Text Field €2 B
; i SQL Quel
Font Dialog, Plain, 12 | QL Query Form Input.TextField Text -
(=15
Foreground Color 40,460,460 - @ 1 Options
=5 No Bindi
Background 255,255,255 ~ @c3|| | © NoBinding Overlay Opt-Out
Non-Editable Backgro... 241,241,241 > @ 2| 4
]
Styles <No Data> [gea| 7] n Cancel
= Layout

7. Set the Size and Position for the components by right-clicking on each component. Set the Label component to Position: (68, 1) and Size:
[32x20]. Set the Text Field component to Position: (104, 2) and Size: [130x20]. Next, set the Form Input template to Size: [237, 24].

Size & Position ot

[237 (X 24]

8. Once you have the properties added and components bound, type a value into each Template Parameter to confirm the bindings are working.
a. Label_Text: Label
b. TextField_Text: Text

Yision - Controller - Ignition Designer

File Edit WView Project Component Alignment Shape Tools Help

B« 8 R[g/#[0-»|F - 0| X = % la
Project Browser g - X I P T T L R T e o
_ Label Text
Q.- Filte A
~ &7 Templates A
| ~-&lmpuwform |
wet Label D
0 Text Field
& ° Ramp_Example v
Vision Property Editor g - X

IERNE = -

¥ Common
Name Input Form s
Border Other Border + # G2
Mouseover Text k-]
}» Behavior

} Appearance
~ Template Parameters
Label_Text Label rd

TextField Text Text rd

I:DH Inpy

1} Welcome [T Template Canvas

2% Template "Input Form"

Absolute Positioning

First, we can set up our Template Canvas using Absolute Positioning, which is a little simpler to understand as each template has a width and height
as well as an x and y position.

1. Drag a Template Canvas component to a window and open the Template Canvas Customizer. The customizer provides an easy interface
to setting up our templates.

_‘_u__u__u__u_:';_l‘_ﬂu_l__l__l_'l 290, o 0 BYYy 0 Component Palette o - X
: i “gﬂ Cut | Ctri+X & | = % || Q temp
7 i 4 Copy Crrl+C = Containers
__ i W Paste oy = Template Repeater
é'“i @ Delete Delete 3 Template Canvas
1 [=*
1 %
T P
? "— ————— B Lock
] o Layout. Ctri+L
8 3 Size & Position... ctrl+p
__ /# Customizers > I /4 Template Canvas Customizer Curl+U I
é— E¥ Scripting... Cerl+] | /& Custom Properties Ctrl+2
7 O Security ctri+E | il
] & Translations Ctrl+T
d__ M RunDiagnostics

2. Enter in the following values for the first instance:
a. Name: First Name
b. Template: Form Input

c. Absolute Positioning: 0, 0, 200, 20
d. Parameters: Label_Text = First Name (leave TextField_Text blank)

3. Click the Add button to add the instance. The instance will then be visible in the preview section of the window. Values for the components
are still using the default values for the Label_Text and TextField_Text. This is intentional. The new values will appear once you hit OK and

close the canvas customizer.

Note: Labels have Absolute Positioning properties: X, Y, width, and height labels. A Z-index field indicates where a given template instance

should appear in the z-order within the template canvas (top or bottom).

[Template Canvas Customizer

Lzbel Test

Instances

T

i

Add/Edit Instance

Name Z-Index

First Name

Template
Form Input
Absolute Positioning

X ol|y 0 | width | 200 | Height| 20

Layout Positioning

Parameters

Label Text First Name

TextField Text

Apply Cancel

Note: Take notice of of the yellow outline around the instance and how First Name is highlighted at the top of the customizer. This means
that the instance is selected, and the customizer is in edit mode. This allows you to make changes to the selected instance. To exit edit
mode and add a new instance, click on the Cancel button in the lower left of the window. Clicking on the Cancel button in the lower right

will cancel out of the customizer.

Let's add another instance. Click on the Add + icon in the Instance area to clear the Add/Edit Instance fields from the prior entry, and

enter the following:
a. Name: Last Name
b. Template: Form Input

c. Absolute Positioning: 0, 20, 200, 20
d. Parameters: Label_Text = Last Name (leave TextField_Text blank)

5. Once entered, click the Add + icon again. You'll see that you have two instances visible in the preview section of the window. Once both
instances are configured, click the OK button.

Termplate Canvas Customizer

“Instances Lzbel | Test
First Name + Lzbel | Tet
i
m
+
I
- Add/Edit Instance
Name I-Index
Last Name]
Template
Form Input “

) Absolute Positioning

X 0| Y| 20| Width 200 | Height| 20

Layout Positioning

Parameters

Label_Text Last Name

TextField_Text

Apply Cancel

6. Now, both instances appear in the Template Canvas.

Project Browser g - X TR P T TP L T I - I T
Q- Filte Al
+ [™ Template Canvas o
+ [] Root Container] lr___________t ___________ Il
|]| =2 Template Canvas] | First Name :
™ Template Repeater | [T | Last Name i
= il 1
by ; 1
Vigion Property Editor =L I ™ =
| 1
1 =% I (% - T :
- | y
} Common ! :
» Behavior 2] e &]
~ Data ©]

Quality -

7. If a new instance needs to be added, it can be added through the Template Canvas Customizer. However, the Template Canvas also has a'T
emplates' property. This property stores all of the data that was entered into the customizer into a dataset, so new instances can be
configured directly on the Templates property. View the dataset by clicking the Dataset Viewer button next to the Templates property.
Furthermore, template instance configurations could be stored in a database table, and the Template Canvas could fetch the data with a SQL

Query binding on the Templates property.

Dataset Editor *
name template parameters x y width height layout z =
First Name Form Input {"Label_Text":"First Name","TextField_Text""" 0 0 200 20 | nfa 0
Last Name Form Input {"Label_Text":"Last Name","TextField_Text"""} 0 20 200 20 | nfa 0 w

L]
@
]
Column Name: - Column Type: —-
[=

Layout Positioning (MiG Layout)

Instead of having to manually enter a size and position for each instance, we can make use of Layout Positioning to have the Template Canvas
determine the best position for each instance, while also making suggestions as to where each instance is placed in relation to another. The layout
positioning uses a grid-methodology to instance placement. Each instance, unless otherwise specified, is considered a single "cell" in the grid.

Caution: Don't Mix Absolute and Layout Positioning
We do not recommend using both Absolute and Layout Positioning for instances on the same Template Canvas. Select either Absolute or Layout

Positioning for your instances. Layout Positioning will determine the best position for each instance in your canvas, where Absolute Positioning
allows you to manually specify the width, height, x and y positions for each instance.

Continuing from the example above, the First Name and Last Name instances are using Absolute Positioning. Let's tell the First Name instance to use
Layout Positioning and enter the 'wrap' parameter. This means the next cell in the grid should be placed on the next row.

1. With the Template Canvas component selected, open the the Template Canvas Customizer again, and make the following modification to

the First Name instance.
a. Click the radio button for the Layout Positioning property and enter 'wrap' the field.

2. Click Apply, and the First Name instance will appear to overlap with the Last Name instance. This is because the grid only accounts for
instances using the Layout Positioning.

Template Canvas Customizer

Instances
Label Text
Lebel| lext
Fsame [—
Last Name
m
+
Add/Edit Instance
Mame Z-Index
First Name (V] 0
Template
Form Input -

Absolute Positioning

X 0|y 0 | Width | 200 | Height| 20

() Layout Positioning

wrap

Parameters

Label_Text First Name

TextField_Text

Apply Cancel

3. Next, we can configure the Last Name with Layout Positioning as well. Make the following changes to the Last Name.
a. Click Layout Positioning radio button and enter 'wrap' in the field below.

4. Once the changes have been applied, click OK. You'll notice in the preview section of the window that both instances are now in line.

Open the Templates property by checking the Dataset View button. Notice that the x, y, width, and height columns are no longer used, but

5.
the layout columns for First Name and Last Name now have a value of 'wrap'.

Dataset Editor X
name template parameters x y width height layout z =

First Name Form Input {"Label_Text":"First Name","TextField_Text"""} 0 0 Wrap 0
Last Name Form Input {"Label_Text":"Last Name" "TextField_Text":""} 1] 0 wrap 0 "
L]
1Y
]

Column Name: - Column Type: -—-

(o =

6. Like the previous example, new rows can be added directly to this dataset. Furthermore, the 'wrap' value means the next template instance
will begin on a new line. Add three new instances for Street Address, City and Account Name. Use either the Template Canvas Customizer

or simply add new rows in the dataset viewer with the values:

name template parameters X y width height layout z

Street Form Input 0 0 wrap 0
Address {"Label _Text":"Street Address","

Text Fiel d_Text":""}

City Form Input] . o 0 wrap .
{"Label _Text":"City","TextField_Text":""}

Account Form Input 0 0 wrap 0
Name {"Label _Text":"Account Name","
Text Fiel d_Text":""}
Lol LT L [ELizin L [T LT L it Ll
[E R]
T First Name I
] I
: Last Name :
1
o Street Address)
&, >
il City :
0] v
' AccountName 3
JI '
3 '
@ h.
7
7] | name template x ¥ width height | layout z =
First Name Form Input ":"First Name”,"TextField_Text":"" 0 0 wrap 0
1| LastName Form Input ast Name","TextField_Text""] o wrap 0 p
1| Street Address Form Input ""Street Address”,"TextField Text":""} 0 1] wrap 0 L
3] | City Form Input " City","TextField_Text":""} 0 0 wrap 0
g— Account Name Form Input {"Label_Text""Account Name","TextField_Text":""} 0 0 wrap 0 a
] E |
] L]
]
g_ Column Name: -— Column Type: -—
i OK Cancel

Read User Input

The last step is to read the user input. Put the Designer into Preview Mode and add some values for each text field component. Once finished, switch
the Designer back to Design Mode, and add a Button component to the window (not the template canvas)

Add a script to the Button component using the Code Snippet below - Read User Input Example. Place the code on the actionPerformed event of
your component by double clicking on the Button component and opening the Script Editor tab.

Reference the tenplate canvas conponent, and call the getAll Tenpl ates() nethod.
This will return a list of every instance in the canvas
tenpl ateLi st = event. source. parent. get Conponent (' Tenpl ate Canvas').get Al | Tenpl ates()

Initialize a list. User input fromeach text field will be stored in this variable
user | nput = []

Iterate through each tenplate instance inside the canvas
for tenplate in tenplatelist:

add the user inputted value to the userlnput |ist. The values are originally returned in Unicode.
the Python str() function is casting the Unicode values as string val ues.
user | nput . append(str(tenpl ate. Text Fi el d_Text))

Show the values in a nessageBox. This could be replaced with an | NSERT query, or sone other action.

str() is used again to case the list as a string. This only required to work with the messageBox function
since the function requires a string argunment be passed in

system gui . nressageBox(str(userlnput))

When running the script, each value should appear in the message box. If you're not getting a value in the message box, make sure the Text Field
property is bound to the TextField_Text template parameter as mentioned in the Creating a Template section, Step 6b.

This example can easily be expanded to do something more meaningful with the input, like store to a database table.

First Name Tim
Last Mame Smith
Street Address Dover 5t
City | Utah
Account | 123456

Information >

o ['Tim', 'Smith', 'Dover 5t', 'Utah', '123456']

Security in Vision

Security in Vision is managed through one of two authentication strategies, either the Classic
Authentication strategy or Identity Providers (IdP) strategy. Classic Authentication Strategy involves a
concept known as a User Source, which is a configuration that contains multiple roles and users. IdPs
allow users to authenticate against a trusted third party. Refer to Security for more information on these
authentication strategies.

Selecting an Authentication Strategy

The strategy used by any given project is determined by the Authentication Strategy, found under Project
Properties. See Vision Project Properties for more information.

Client Authentication Strategies

Users are given access based off of the Authentication Strategy the project is set to.

Classic Strategy

When using the classic strategy, a User Source needs to be assigned to the project. Users and roles are
taken from the assigned User Source.

A Praject Properties - [m] X
Project Project / General
N
Permissions Tag Settings
Designer Default Provider default vz
Vision Client Poll Rate 250 -5
Design Database Settings
General Default Database MySQL - =
Launching Security Settings
Login Identity Provider | Sefect one... -l
Permissions Always ask the 1dP to re-authenticate users by default
Timing User Source [geraur -]z
User Interface
Required Client Roles -]

Perspective

General Auditing Settings

) Enable Auditing

Permissions
Audit Profile

Tag Drop

Kl | o

When utilizing this strategy, the Required Client Roles field can be used to limit access to the entire
Vision Client based on a roles requirement.

Identity Provider Strategy

When using the identity provider strategy, an Identity Provider needs to be assigned to the project.
Users are taken from the assigned IdP.

/A Project Properties - [m) X
Project B Project / General
~

Permissions Tag Settings
Designer Default Provider default v o
(e Client Poll Rate 250 [-4
Design Database Settings
General Default Database | Selectone... ~|e
Launching Security Settings
Login Identity Provider | Okta_SAML vz
P -
srmissions Always ask the IdP to re-authenticate users by default
Timing

J User Source default r|e
User Interface

Required Client Roles [-]
Perspective
seneral Auditing Settings
Enable Auditing
Permissions
Audit Profile
Tag Drop ~
o I

Vision's access control model is based on roles and security zones. Thus, the Aut hent i cat ed
/Rol es. .. and SecurityZones/ ... security levels in the IdP are converted into roles and zones,

On thispage...

® Selecting an Authentication
Strategy

® Client Authentication Strategies
® Classic Strategy
® |dentity Provider Strategy

® Vision Client Permissions

® Role-Driven Client Security

® |ncorporating Scripting into
Security

https://docs.inductiveautomation.com/display/DOC81/Classic+Authentication+Strategy
https://docs.inductiveautomation.com/display/DOC81/Classic+Authentication+Strategy
https://docs.inductiveautomation.com/display/DOC81/Identity+Provider+Authentication+Strategy
https://docs.inductiveautomation.com/display/DOC81/Security
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+Project+Properties#VisionProjectProperties-VisionLoginProperties
https://legacy-docs.inductiveautomation.com/display/DOC81/Security+Levels

respectively. As a result, IdPs need to have user attribute mapping configured for a given IdP before
Vision can utilize role based access.

Vision Client Permissions

Every project's clients are governed by a set of permissions to control what is allowed to originate from the client. For example: access to construct
queries against the database, or the ability to edit Users and Roles in your authentication profile. To maintain a secure system, these are all set to
disabled by default, but you can enable them for everyone, for specific users, or even for specific users that are logged into certain zones. See
descriptions of these categories and how to change them on the Project Permissions page.

Role-Driven Client Security

On the simplest level, security settings can be applied to individual windows or components. Users with different roles can all view the same project
from the client, but the functionality and readability can change based on the roles assigned to each user. Generally, higher level access provides full
functionality to all contents of a project, and lower level access is restricted to generalized read-only privileges.

Below, we see the Security Settings panel in action. This panel is the interface that applies Ignition's built-in security settings. Security settings can be
applied to a single component, multiple components simultaneously, or even a whole window. Users who should be allowed full access can be
selected, and restrictions can be applied for users that should not have full access.

Security Settings [4

Inherit Permissions

Restrictions

Access Denied Overlay
Disable

Disable Events

Hide

Exempt Roles

Administrator
Driver

[

® Refresh

Incorporating Scripting into Security

The component-based security settings are fairly simplistic: the user either has the required roles, or a restriction is applied. In situations where
consideration for access should go beyond a simple role check, security-based scripting can provide a larger degree of granularity. Information about
the logged-in user, such as user-name or roles, can be detected by scripting, allowing for the creation of a robust security system.

https://legacy-docs.inductiveautomation.com/display/DOC81/User+Attribute+Mapping
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+Project+Properties#VisionProjectProperties-VisionPermissionsProperties

%3 Component Scripting [LED Display] — O F

& EventHandlers ¢ [Mavigation W SetTagValue = SQLUpdate [= SetProperty [E Script Editor
~ @ mouse »

I.— 1roles = system.security.getRoles() Al =

21if u'Administrator’' in roles:

muuseEn.tered 3 window = system.nav.openWindow('Administration') A
mouseExited 4 system.nav.centerWindow(window)

mousePressed 5 else:

mouseReleased 6 system.gui.errorBox('Insufficient security privileges.')

F B mouseMotion

b propertyChange

W Custom Methods
+

In This Section ...

Component and Window Security

Role-based security inside of Vision works on multiple levels: component, group, container, and window
levels. Each of these levels also have special categories of security that help with tuning security to
various design considerations.

On thispage ...

Each window and component can define its own security settings. These settings determine who can see
and/or use the component. It's good business practice to have a well thought out security policy for your

project.

Changing Security Settings on a Component

® Changing Security Settings on a

Component

By default, each component inherits the security that is on its parent which initially gives anyone with
access to the project the ability to use the components. This can be changed on a per component basis
by right clicking on the component and selecting Security. This brings up the Security Settings panel.

Inherit Permissions

Restrictions

Access Denied Overlay
Disable

Disable Events

Hide

Exempt Roles

Administrator
Driver

The Inherit Permissions checkbox signifies that the component is inheriting the security settings of the parent.

® Exempt Roles

Security Settings B X INDUCTIVI
: UNIVERSI1

Component and
Window Security

Watch the Video

In the Restrictions section on the right, choose the restrictions that will be placed on the component if the user does not have the selected role.
Multiple restrictions can be selected to combine their effects.

Restriction

Access
Denied
Overlay

Disable

Disable
Events

Hide

Used Description
On

Components| Shows an overlay on top of the component when the user doesn't have security clearance.

Components ' Sets the Enabled property to false on the component when the window opens up.

Caution: If you choose to disable a component, make sure that it is a component that actually does something
different when it is disabled. For example, buttons and input boxes can't be used when they are disabled, but
disabling a Label component has no effect.

Component | Prevents event scripts from running when the user doesn't have security clearance.
s, Root
Container

Component | Sets the Visible property to false on the component when the window opens up.
s, Root
Container

Image

Access Denied

Disabled

Hand

AuUto

N/A

https://inductiveuniversity.com/video/component-and-window-security/8.1

Hidden

Do Not Open | The Only used on the window object itself, will prevent the window from opening if the user doesn't have one of the N/A
Window specified roles.
Object

Exempt Roles

Unchecking the Inherit Permissions checkbox enables the role checkboxes under Exempt Roles. Each role that is selected will have access to the
component. So if the Administrator role was checked, then all users with the Administrator role will be able to use the component, while users without
the role would have Restrictions to the component. A user only needs to have one of the selected roles to be able to use the component, not all of
them.

Note: If the roles you created do not appear, it is probably because the Designer was open before those roles were created. To update the list of
roles, right-click in the Exempt Roles section and select Refresh.

Security Settings [4
Inherit Permissions

Restrictions

Access Denied Overlay
Disable

Disable Events

Hide

Exempt Roles

Administrator
Driver

® Refresh

Security in Scripting

While the Vision system has many options for securing individual components and clients, it is possible
to have requirements that go further than the options that are available. With scripting, you can create
any type of security that you may need. This is mainly done through the use of the system.security.
getRoles function, as well as the other system.security functions. The getRoles function gets a list of the
users roles, which you can check for specific roles within your script. You can then write code for what
would happen if the user has the role and if they don't have the role.

Additionally, while the typical security set up only requires the user to have one of the required roles, in

scripting you can ensure that the user has any combination of roles.

Securing Event Handlers

Security can be added to any of the event handlers in Ignition. This works on both components as well as
on event handlers within the Scripting window. While the typical security settings for a window only give
you the option of not opening it if the user does not meet the required roles, you can instead do
something else like opening a different window.

Script Builder Security Example

On thispage ...

® Securing Event Handlers
® Script Builder Security
Example
® Security in Client Event Scripts
® Setting Client to Read Only

@ INDUCTIVE
UNIVERSIT

Securing Event
Handlers

Watch the Video

Each one of the script builders also has the ability to add security to them. The following is an example of setting up security on a Button component.

1. Drag a Button component onto a window.
2. Right click on the component, and choose Scripting.

https://legacy-docs.inductiveautomation.com/display/DOC81/system.security.getRoles
https://legacy-docs.inductiveautomation.com/display/DOC81/system.security.getRoles
https://legacy-docs.inductiveautomation.com/display/DOC81/system.security
https://inductiveuniversity.com/video/securing-event-handlers/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/Script+Builders+in+Vision#ScriptBuildersinVision-SecurityQualifier

% @

4 Button ¢

L

Yo Cut Ctrl+X
A Copy Ctri+C
W Paste Ctri+v
o Delete Delete
+]

B Lock

H. Layout... Crri+L
= Size & Position... Ctrl+P
/& Customizers >
E¥ Scripting... Ctrl+]
@ Security Ctri+E
& Translations Ctrl+T
A Run Diagnostics

3. Under the Navigation tab, click the Open/Swap radio button.

4. From the Window dropdown list, choose a window for this navigation.

5. Click the Security button in the Action Qualifiers section. Click the Required Roles checkbox.
6. Select the roles that are required for this navigation. Click Close.

Component Scripting [Button] - O X
@ EventHandlers [Navigation W SetTagValue &2 SQLUpdate [E] SetProperty [E Script Editor
~ @ action .
IS e """
b I focus ~© Open / swap
b key © open ~__ Pass Parameters
A= mouse and Center Parameter Name Value +
» i@ mouseMotion
» i propertyChange | and Close This Window (i}
@ Custom Methods _ | Additional Instance &
+
Swap
Window:
Test b4
< ’, Forward / Back
() Close
% -
Action Qualifiers
Require Security Role(s): | | Require Confirmation Dialog:
Event Description Event Object Properties
This event is fired when the ‘action’ of the (s
; et @ source
compenent eccurs. What this action is depends on
Ent The component that fired this

the type of the compoenent. Most commonly, this is .

used with buttons, where the action is that the g

button was pushed, via a mouse click or a key press.

See the component reference for details onwhat

tha artinn masne far athar camnnnantc pe:

OK Apply Cancel

7. Next, click on the Script Editor tab. You'll see the script that is generated by the options you chose in the Navigation tab.

|il Compenent Scripting [Butten] —

[] Navigation W SetTagValue & SQL Update

[= SetProperty [E Script Editor

] s

This script wos generated automatically by the navigotion
script builder. You may modify this script, but if you do,

wor e

» i focus # you will not be able to use the navigation builder to update
» i key -; # this script without overwriting your changes.
» W mouse 6 if u'Administrator' in system.security.getRoles():
» il mouseMotion 7 window = system.nav.openWindow(' Test')
» il propertyChange 8 system.nav.centeriindow(window)
W Custom Methods g else: . g oo p o :
. 1@ system.gui.errorBox('Insufficient security privileges.')
11

+l Advanced Settings

Event Description Event Object Properties

This event is fired when the 'action’ of the fe

component eccurs. What this action is depends on
the type of the compenent. Most commonly, this is

@ source

; o event.
used with buttons, where the action is that the
button was pushed, via a mouse click or a key press.
See the component reference for details onwhat
tha artinn maans far nthar camnnnants o
oK Apply

The component that fired this

Cancel

8. Click OK to save the scripting. Now you added security to the Button component.

Security in Client Event Scripts

The Client Event Scripts can also be used to set up security within the project. While any of the Client
Events can be used for different security purposes, the most common is the Startup Script. This allows
you to create a customized, secure environment right as the Client is started. A Script here can do
certain things based on the roles of the user such as open certain windows, write to client Tags to enable
or disable certain things within a project, or even retarget to an entirely new project.

Setting Client to Read Only

There are times when it is best to open a Client in a Read-Only mode to eliminate the possibility that a
Client will affect a device or database. The Client event startup script that sets the Client mode to Read-
Only is an easy way to accomplish this. Similar to the buttons in the Designer, this function can be used
to set Disconnected, Read-Only, and Read/Write modes in any script in Ignition that runs in a Client. This
function can be called in any Client scoped script, but is most commonly used in the Startup script.

This example creates a Client event script that sets the Connection Mode to Read-Only.

1. From the Designer, go to Project Browser > Client Event Scripts.
The Client Event Scripts window is displayed.

2. In the Startup script area, enter the following: system uti | . set Connecti onMbde(2) where
2 means Read-Only.

INDUCTIVE
UNIVERSIT

Setting Client Read-

Only

Watch the Video

https://inductiveuniversity.com/video/setting-client-read-only/8.1

[Z Client Event Scripts -] X

Client Event Scripts Client Startup Script

Project startup script that runs in each Client

(= Shutdown

(& shutdown-Intercept 1 system.util.setConnectionMode(2) |
[E) keystroke
© Timer

[Tag Change
[¥] Menubar
B2 Message

“ Apply Cancel

3. Click OK. The startup script will run the next time a user logs into the Client, resulting in the
Client being Read-Only.

Scripting in Vision

A lot of the scripting that happens in Vision is either located on components and windows, or it
manipulates component and window values. Many times, you can easily add the path to another
component or property from your script. It is important to understand how the component hierarchy of a
window works as well as how to properly access components and properties in a script anywhere in a
project

Component Hierarchy

Every window in a project has a hierarchy to it, with components and containers arranged in a tree
structure, with a single parent up at the top, and many children down at the bottom. While small windows
with only a few components can have a simple hierarchy, windows with many containers can get more
complex. Since the components are arranged like a tree, this means that we can only move up and down
through the tree structure and not sideways. To get from one component to a sibling component, we
must first navigate up towards the common parent, and then back down to the desired child. Let's take a
look at an example of how this works. Here we have a simple window, with just a few components:

® Root Container
O Edit Table Container
= Enter Data Button
= Text Field
o Alarm Label
© Data Table
© Header Label

On thispage ...

® Component Hierarchy

® Accessing Component
Properties

® Accessing a Component
® From an Event Handler
® From an Extension Function
® From a Client Event Script
® From a Project Script

® Accessing Components on Other
Windows

® Complex Property Types

Project Browser g _ X P L [ER T o R I o L P T 190, oy 19
4 Root Container H
£ — r
A 1 \ Edit Tables Header Label Data Table
v & Vision F
[Z Client Events] Note Value Status
~ ™ Windows] TestRow12 74.24 ok =
i Alarms (1]_ Test Row 19 37.27 ok
b i Field Tanks 0] |TestRow 19 44.19/ok
+ im PopUps 7 [TestRow5 23.34/0k
+ [MainWindow [B 1 Festrow1s sa620k
~ [Root Container] est Row o210
I.. v-H Edit Table Container 5 TestRow 18 18.24|ok
(@) Enter Data Button 2] TestRow 1 44,330k
o Text Field ™ [Testrow 18 2.12|0k
»t Alarm Label 1 TestRow? 20.41 ok
w1 Header Label Test Row 19 98.11/0k
ETable ®] Test Row 6 50.81|ok
[overview Window [7] est Row i
™ Test o TestRow 15 29.88|ok v
b &7 Templates]
: &% !
» B Named Queries i | Text Field Enter Data |
» Reports v) / Button !
Vision Property Edor 8 =X 1] * I * _
B Q y
8 | = | =t | R - ly : J"\ ~
1] [E/ 2 % Edit Table Container Alarm Label
| =] Common al NN

Flipping the tree around can give a better understanding of why we can only move up and down through the tree structure, and how getting to a
component can be very different depending on where you start. Let's say we want to go to the Text Field so that we can grab its value.

Start From Path to Text Field

Edit Table Container
1. Down to Text Field

Enter Data Button
1. Up to Edit Table Container
2. Down to Text Field

Data Table

. Up to Root Container

. Down to Edit Table Container
3. Down to Text Field

N -

To move up or down within the hierarchy, there are two special commands we can use on component objects: parent and getComponent(). The pare
nt property allows us to grab a reference to whatever is directly above the component in the hierarchy, which in most cases is the root container. We
could then access any component on the root container by using getComponent("Component Name") and then placing the name of the component
we want to access within the parenthesis.

Pseudocode - Component Hierarchy

This pseudo code shows how to grab the parent of a conponent
component . par ent

This pseudo code shows how to grab a child of a conponent
conponent . get Conponent (" Text Field")

Both parent and getComponent() can be used as many times as necessary to reach the desired component, drilling up or down through layers of
containers or or grouped components. Once you have a component reference, you can then access any one of that component's attributes by using
the name of the property, just like when accessing a property on the source component.

Exception to the pattern of using .parent

There is one exception to the pattern of using . par ent to go up the hierarchy and using . get Conponent (nane) to go down. The parent of a root
container is not the window, and a reference to the window does not have a . get Conponent (nane) function. To get a reference to a

window, simply use system.gui.getParentWindow with any component's event object as the parameter. Once you have a reference to a window,
you can use its . r oot Cont ai ner property to get to the root of the component hierarchy, and from here you can follow the rules laid out above.

Accessing Component Properties

To access a property within the component, we simply need to use the scripting name of the property.
The scripting name can be found in the description of each property, either by enabling the description IN DUC T I VI
field or hovering over the property until the mouseover text appears. The scripting names for every UNIVE RS IT

property on every component can also be found in the appendix. For a text field, the scripting name of
the text property is just text, so we would need to call that on the text field which has the text property we
want to access.

Accessing
Pseudocode - Component Properties Component
This pseudo code will access the text property of a conponent and assign Propertles
it to value.
val ue = conponent. t ext Watch the Video

Accessing a Component

Now that we have an understanding of how the component hierarchy works, we can apply that knowledge to accessing a component from anywhere
within the project. While moving up and down within the hierarchy remains the same, accessing our initial component can differ depending on where
we start our script from.

From an Event Handler

Event Handlers get a special event object that has special properties depending on the type of event. Regardless of the event, all event objects have
a source property, which gives the component that fired the event. When accessing a component from an event handler, we can first use event .
sour ce to get a component on the window to start at. From there, we can use parent or getComponent() as needed to get to the component we need
to access.

Python - Accessing a Component from an Event Handler

This woul d access the text property of a Text Field conponent.
print event.source. parent. get Conponent (' Text Field').text

When accessing a component from an event on the window, there will be a different path to the component than normal. If you already have a window
object, you can use the function getComponentForPath(). This allows you to enter in the path to the component as a string (similar to expression
bindings), and will end up looking something like this:

Python - Accessing a Component from an Event on a Window

https://legacy-docs.inductiveautomation.com/display/DOC81/system.gui.getParentWindow
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+Components
https://inductiveuniversity.com/video/accessing-component-properties/8.1

syst em gui . get Par ent W ndow(event) . get Conponent For Pat h(' Root Contai ner. Text Field').text

You can also get the Root Container directly using the getRootContainer() function. This link of code works the same as the one above:

Python - Accessing a Component from an Event on a Window

syst em gui . get Par ent W ndow(event). get Root Cont ai ner () . get Conponent (' Text Field').text

From an Extension Function

Extension Functions get a special self object which is actually a direct reference to the component that the extension function is on. This provides a
direct reference point from which to access other components within the component hierarchy.

Python - Accessing a Property of a Component from an Extension Function

This would access the text property of the conponent running the extension function script.
print self.text

This would access the text property of the conponent named 'Text Field if it is in the same container.

print self.parent.get Conponent (' Text Field).text

From a Client Event Script

Client Event Scripts are special because they don't start with a direct reference to anything on a particular window. So, we have to use another means
of finding a starting point on the window. The system.gui.getWindow() function allows us to get a reference to a window which we can use to navigate
to the root container with . get Root Cont ai ner (), and then to any component on that window. However, this will only work if the window is
currently opened. If the window is closed, it will throw an error, which can be handled with normal exception handling.

Python - Accessing a Component from a Client Event Script

Start the try block in case the window is not open.

try:
Grab the window reference and assign it to the variabl e w ndow.

wi ndow = system gui . get Wndow(" Q her W ndow")

Use the window reference to get the text property off of a text field.
print w ndow. get Root Cont ai ner (). get Conponent (" Text Field").text

Handl e the exception by opening an informative error.

except Val ueError:
system gui . error Box("The wi ndow i s not open!", "Error")

From a Project Script

Project Library are unique in that how they access components can vary depending on where the Script Module is being called from and what is being
passed to it. If the script module is being called from an event handler or an extension function, it is possible to pass in the event or self objects and
use them within the script module.

Python - Accessing a Component from a Project Script

This code would go in a project script. We are defining our function that takes an event object
and uses it to find the value of the text property on the text field in the same container.

def func(event):
print event.source. parent.get Conponent (' Text Field).text

Python - Calling a Function from the actionPerformed Button

On the action perforned of a button on our wi ndow, we could then use this to call our function.

nyTest Scri pt. func(event)

https://legacy-docs.inductiveautomation.com/display/DOC81/system.gui.getWindow
https://legacy-docs.inductiveautomation.com/display/DOC81/Project+Library

Project Browser o - X

project.myTestScript

- 8 1def func{event):
+ [& Scripting - 2 print event.source.parent.getComponent(' Text Field').text
[Gateway Events
- & Project Library
- g Project
|| DB myrestsaript |

[El NewsScript

However, this may not always be the case. In these instances, it is possible to instead use the same method that Client Event Scripts use and grab
the window object instead.

Accessing Components on Other Windows

You can also grab properties from components on other open windows from anywhere in the project IN DUC T I VI
using the same method used in Client Event Scripts. This allows you to grab properties on a main

window from an event handler on a popup window. U NIV E RS Irl

Note: : :
ot Finding
Remember, you can only grab a property from another window if the other window is open. Com pon ents on

Other Windows

Watch the Video

Complex Property Types

Some component properties have more complex property values. For example, Font properties typically have a type of "Font".

v Appearance
Font Dialog, Bold, 12 b

In most cases these property types are simply using some built-in Java AWT types. These can be manipulated from scripting in Ignition by importing
the appropriate library.

fromjava.awt inport Font

event. sour ce. parent. get Conponent (' Text Field').font = Font(' D al og', Font.BOLD, 50)

See the AWT javadocs for more information.

Related Topics ...

® Project Library

https://inductiveuniversity.com/video/finding-components-on-other-windows/8.1
https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/java/awt/package-summary.html
https://legacy-docs.inductiveautomation.com/display/DOC81/Project+Library

In This Section ...

Script Builders in Vision

When creating an Event Handler on a component, you can use one of the handy Script Builders instead
of writing your own script. In the Component Scripting window, the Script Builders are accessible as

tabs along the top. Each tab represents a different kind of action that users can associate with an event.
The last tab, Script Editor, lets you write your own event handler. You can also use the Script Editor tab
to view a script that was generated by one of the builders, which is a good way to get started learning
how to write your own event handlers. Each script builder example on this page shows the actual script in
the Script Editor, just simply click the link under each example.

 Event Handiers [Navigation % SetTagValie 1 SQLUpdate [SetProperty [Script Edior
- @ action ~
actionPerformed SNoAction
| — Open/Swap
> W key
I.5= |ml I"“'SE_ ParameterName | Value
mouseEntered
mouseExited
mousePressed
mouseReleased
) & mouseMotion i

i propertyChange
& Custom Methods
+

<) Forward / Back:

Close

Event Deseription Event Object Properties
This eventsigniiesamouse |~ B
» source
click on the source component,
The component that fired this event.
A mouse clickthe combination
» button
of a mouse press and a mouse
The code for the button that caused this evento fire.
release, both of which must
 clickCount
v The number of mouse clicks associated withthis v

have occurred over the source

camnanant Nata that this

ok || apply || cancel

On thispage ...

® Navigation Script Builder
® Open/Swap
® Forward / Back
® Closing Windows
Set Tag Value Script Builder
SQL Update Script Builder
Set Property Script Builder
Script Editor
® Advanced Settings
® Action Qualifiers

® Security Qualifier

® Confirmation Qualifier

INDUCTIVE
UNIVERSII

Vision Event
Scripts Overview

Watch the Video

Note: Only one Script Builder can be used at a time. If you previously picked another action using a different Script Builder, it will get overwritten by
enabling another Script Builder. If you need to do more than one action at a time, use the Script Editor to combine scripts, or create your own script.

Navigation Script Builder

The Navigation Script Builder has various functions that deal with opening and closing windows.

Open / Swap

Opening is a very straight-forward operation, it simply opens the specified window at the same size it was in the Designer. Simply click on the Open /
Swap button, and select a Window from the dropdown list that you want to open. There are options to center that window within the Client, and to
close the window that the event was fired from. The opened window can also be opened as an additional instance, meaning there can be multiple
copies of the same window. This is useful when opening dynamic popups, so that a couple of popups can be opened, each with different values.

https://www.inductiveuniversity.com/videos/vision-event-scripts-overview/8.0/8.1

[7) Component Scripting [Button] — a >

™ Event Handlers W SetTagValue == 5QLUpdate [5 SetProperty [Script Editor

T action .

| actionperformed "

b i focus Open/ Swap

b B key O open Pass Parameters

@ mouse
4 and Center Parameter Name Value

mouseClicked

and Close This Window

mouseEntered
mouseExited Additional Instance
mousePressed
Swap
mouseReleased .
» B mouseMotion Window:
b i propertyChange window b

Swapping is the practice of opening another window in the same size, location, and state as the current window, and closing the current window. This
gives the appearance of one window simply swapping into another, seamlessly. The Navigation Builder uses the swapWindow version of

swapping, but most "by hand" script authors will use the swapTo version. This last version relies on the fact that the windows being swapped are both
maximized windows. See the navigation strategy section for more information.

You can also pass parameters to the opened or swapped-to window. Check the Pass Parameters box, and click the Add + icon to add a row,
where each row is another passed parameter. The names of these parameters must match names of custom properties on the root container of the

target window. The values can either be literals or values of other properties from the source window. Use the Binding icon 24 navigate to the
properties that you want to pass. It will construct the path to the property on the window. To pass parameters in a navigation window, follow the steps
below.

1. Check the Pass Parameters box, and click the Add + icon to add a row.
2. Choose a custom property from the "Parameter Name" dropdown list. This will be filled with custom properties on the root container of the
selected window. You can also type a name in directly.

3. Highlight the empty cell in the Value column of the parameter table, click the Binding icon
enter the value and press OK.
4. Press OK to commit the change.

C—:l‘ select the component property you want to

@ Component Scri — O x

@ Event Handlers % SetTagValue == SQLUpdate [SetProperty [E Script Editor

~ @ action -

| actonperformed* M

» i focus © Open/swap

b key O open 3 Pass Parameters

_—

[T molse and Center Parameter Name Value -+
mouseClicked
GISEERE and Close This Window tankNum {$\tankNum} i
mouseExited Additional Instance e
mousePressed

Swap

mouseReleased)

» B mouseMotion Wircdow:

» i propertyChange window e

To learn more about passing parameters, refer to the parameterized windows section for more information.

The following Navigation builder script was generated by the Script Editor. If you compare the settings in the Navigation tab with the
documented code in the Script Editor, you'll notice the Tank popup window will be opened and centered in the window, and the value of the
"tankNum" parameter passed.

https://docs.inductiveautomation.com/display/DOC79/Parameterized+Popup+Window

\':_l Component Scripting [Button]

@ Event Handlers
~ & action

N E
+ I focus »
b key
b mouse
b @ mouseMotion 6 paraml = event.source.parent.tankNum
b i propertyChange 7
@ Custom Methods 8window = system.nav.openWindow('Popups/Tank', {'tankMum' : paraml})
+ 9 system.nav.centerWindow(window)

1@

paraml = event. source. parent.tankNum

wi ndow = system nav. openW ndow(' Popups/ Tank', {'tankNum : parani})
syst em nav. cent er W ndow wi ndow)

Forward / Back
The Forward / Back actions give you a simple way of implementing browser-style forward/back buttons in your client. You must be swapping between

windows for this to work, because these functions rely on calls to syst em nav. swapTo in order to keep track of what the sequence of
recent windows has been.

Closing Windows

The Closing windows action allow for an easy way to have an event handler close the window that it is a part of, or any other window.

Set Tag Value Script Builder

The Set Tag Value Script Builder responds to an event by setting the value of a Tag. You can set the Tag to either a literal value directly typed in, but
we recommend using the chain link Tag L icon to have the event handler use the value of another property from the same window.

Use the steps below to create a Set Tag Value.

1. Under the Set Tag Value tab, click the Set Tag Value radio button.
2. Click the Tag » icon and choose a Tag from the Tag browser list to write to (i.e., WriteableInteger1).
3. Inthe To this Value field, enter a number (i.e., 100) or click the Property =l icon to to browse for a component property to use as the set-

to value.
4. Press OK to commit the change.

[Component Scripting [Button] - O X
W Event Handlers ¢ [] Navigation | % SetTagValue | 2 SQL Update [Z] SetProperty [E Script Editor
~ @ action »)
I No Action
b i focus Set Tag Value
' : key Setthistag: | [default]_Generic_/Writeable/WriteableIntegeri E
b mouse
b i mouseMotion To this value: | 100 =
} i propertyChange
W Custom Methods
+

The Set Tag Value script shown below was generated by the Script Editor. Compare the settings in the Set Tag Value tab with the
documented code in the Script Editor and you'll see the Tag is set to "Writeablelntegerl" and the Tag value is set to "100."

Ed Compenent Scripting [Button] - [m} X

@ Event Handlers ¢ [Navigation W% SetTagValue = sQLUpdate [5 Set Proper[yl & Script Editor |

~ @ action > .
Ly by the t 2t siRE!

o+ N tad .

b focus [N
b key
» I mouse 5
» I mouseMotion 6value = 188
» @ propertyChange 7 system. tag.writeBlocking([' [defa
W Custom Methods # g d |
. e syst.

val ue = 100
systemtag. witeBlocking(['[default]_Generic_/Witeable/Witeablelntegerl], [value])

The square brackets around [tagpath] and [value] create a list containing
those itens, because the systemtag.witeBl ocking function requires you to
specify those argunents as a |ist.

SQL Update Script Builder

The SQL Update Script Builder helps you build an update query using a database browsing interface. Choose a database and table in your target
database, and the update query will be built for you. The key query will help identify a specific row to update, and can be made dynamic using Update
Query and Update Value text boxes.

1. Under the SQL Update tab, click the Update Query radio button.
2. Select a database and choose a table in your database. Select an event value in the table on the right.
3. This example has the id as the Key Column, so we entered 'id =2.
4. We selected the Humidity for 'id 2'.
5. To change the value in the database, we entered the new value in the Updated Value field to replace the previous value when the action is
executed.
6. Press OK to commit the change.
@ Component Scripting [Butten] -] X
@ Event Handlers < [Navigation % Set TagValue [E] Set Property [5, Script Editor
~ @ action >
| sctonveromeds P
b focus Update Query
b key Browse Database
b B mouse ~ H data A oo | id Humidity Pressure Temperature
b I mouseMotion id (INT) O > 2 80.0 100.0 15.4652 |~
» i propertyChange | 3 801402 100.0 20.1074
W Custom Methods Location (VARCHAR) 2 50,8002 100.0 33.0643
+ Pressure (FLOAT) 5 1000 100.0 11,956
Lstamp (DATETIME) M - osanio snnn R
< > <
Key Columns
id=2 | =
UPDATE data SET Humidity = ? WHERE id = 2
Update value: | 95 I | =

The following SQL Update script was generated by the Script Editor. If you compare the settings in the SQL Update tab with the documented
code in the Script Editor, you'll see your database, table, and column name, including the row id of the searched value. You'll also see the
new update value that will replace the existing value when the action is executed.

(%) Component Scripting [Buttan] - o IS
@ Event Handlers < [Navigation % SetTagValue 2= SQLUpdate [SetProperty | B Script Editor
= @ action > § .
i . - . ically - upe =
i\ focus L'

i key

i mouseMotion
i propertyChange

@ Custom Methods
+

if system.gui.confirm{u'Are you sure?', 'Confirm'):
queryValue = '95'

»
»
b i mouse
»
»

(S-SR T R I,
+

system.db. runUpdateQuery("UPDATE data SET Humidity = %s WHERE id = 2" % (queryvValue), 'MysQL')

if systemgui.confirmu Are you sure? , 'Confirm):
queryVal ue = ' 95’

syst em db. runUpdat eQuer y(" UPDATE data SET Hunmidity = % WHERE id = 2" % (queryValue), 'MySQ')

Set Property Script Builder

The Set Property Script Builder will respond to an event by altering a property in the window. You must choose the property to alter and choose the
value that you wish to assign to it. The new value can be a literal value or the value of any other property on the window.

. Drag a Label component to your window to set the property to.
. Select the Button component and open the Scripting window, and select actionPerformed.
. In the Set Property tab click the Set Component Property radio button.

B

. On the Set this property click on the Property icon to browse for the Label component's Text property, and click OK.

(4] N WN P

. Type something into the To this value: field (i.e., Hello World!), or click the Property icon =l to browse for a component property to use as
the set-to value.
6. Press OK to commit the change.

|1l Compenent Scripting [Butten] - m] X

W Event Handlers ¢ [] Mavigation % SetTagValue &= sQLUpdate | = SetProperty | B Script Editor
= @ action >)
No Action

b focus Set Component Property
b key

b B mouse
»

2

Setthis property: | {$\.Label.text} =

@ mouseMotion To this value: Hello World! =
W propertyChange

W Custom Methods
+

This Set Property script was generated by the Script Editor. Compare the settings in the Set Property tab with the documented code in the
Script Editor and you'll see the value string "Hello World!" will be written to the Label component when the action executes.

[{| Compenent Scripting [Button] - m] X

W Event Handlers ¢ [Mavigaton % SetTagValue &= SQLUpdate (= SetProperty | & Script Editor
~ '@ action » § = -
= - | 2 et ~E

b m focus >
bl key
b @ mouse
b mouseMotion 6value = u'Hello World!"
b I propertyChange 7 event . source. parent.getComponent('Label’).text = value
W Custom Methods 8
+ 9

value = u' Hello Wrld!"
event . sour ce. par ent. get Conponent (' Label ').text = val ue

Script Editor

The Script Editor allows you to add more complexity to existing scripts, combine scripts, and even write your own custom scripts. For example, if you
need to perform two or more actions at once, (i.e., set a Tag and navigate to another window), you can update the script by combining the two actions
in the Script Editor. The Script Editor even gives you the flexibility to create your own code for any action you want to perform on an event handler.

As seen elsewhere on this page, the other builders ultimately generate a script that can be modified from the Script Editor Builder.

Advanced Settings

® Scoping Dropdown - Allows you to specify the scoping of the script. The scoping of event handlers in older versions of Ignition work
differently that modern versions. This settings was added as a way to provide backwards compatibility when upgrading. All new scripts
should ideally leave the scope set to Standard Scoping, as there is no reason for new scripts to use the Legacy Scoping option.

® Invoke Later - Provides an opportunity to allow the script to run after other events have finished processing. Most scripts will leave this

setting disabled, however if can be useful in some scenarios:
© Controlling the focus order in a window, since requesting focus from a component in the middle of an event being processed can

cause undesirable results.
© When writing a script on a window's visionWindowOpened event, you may wish to have your script run after processing.

Action Qualifiers

All of the Script Builders allow you to put Security and/or Confirmation qualifiers onto an event handler. These Action Qualifiers are optional.

Security Qualifier

The Security Qualifier lets you restrict the event handler from running if the current user does not have one of the required roles highlighted in the
Security qualifier dialog box. The roles listed will be all of the roles within the project's default user source. To set up the required roles for an event
handler, select one or use CTRL+click to select multiple roles. Once the roles are selected, they will be highlighted. To deselect roles, use CRTL+click
again. The action will only be executed if the Required Roles checkbox is enabled. Click Close.

Action Qualifiers

Require Security Role(s): Require Confirmation Dialog:
Administrator &
Manager
Operator
Event Description Event Object Properties
This event is fired when the 'action’ of the ¥ 5
: Ll & source
component occurs. What this action is depends on :
R The component that fired this
the type of the component. Most commonly, thisis |, 5 .
[« AN =T a)

oK Apply Cancel

Confirmation Qualifier

The Confirmation Qualifier prompts the user with a popup dialog box confirming you want to perform the action. The action will only be executed if the
Require Confirmation checkbox is enabled. There is a default message, and if you prefer, you can delete it and enter your own message. Click Close.

Action Qualifiers "
Require Security Role(s): v Require Confirmation Dialog:

Are you sure?

Event Description Event Object Properties
This event is fired when the "action’ of the s i
! T @ source
component occurs. What this action is depends on ,
i The component that fired this
the type of the component. Most commonly, thisis | r o
avary

oK Apply Cancel

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+The+Window+Object

Related Topics ...

® Parameterized Popup Windows
* DB Browse Bindings

Component Events

Event Handlers

When running a script on a component, we typically don't want it to be constantly running, but instead
want the script to trigger when the user does something on screen such as clicks with the mouse. That
something the user does is called an Event and can range from a mouse click or a keypress to a window
opening or a component property change. When certain events happen, they trigger event handlers,
which use a script to handle what happens when the event occurs.

This page lists out all of the event handlers that are on Ignition's Vision module. Any third party modules
may add new components which may potentially have new event handlers.

Event Object

Every event handler contains an event object, which allows you to interact with the component and the
entire window hierarchy within your script. While each event object has different properties depending on
what event handler it resides in, each event object contains a source property, which is a reference to
the component that fired the event. Using event . sour ce not only gives us access to all of the
properties available on that particular component, such as the text property of a text field,

Pseudocode - Event Handler Source Component Properties

Here we start with the event object,
conponent that fired the event,

and then use the name of the property to access its val ue.
we accessed the text property.

text = event.source.text

then use source to go to the

In this case,

but it also provides us with a way to navigate to other components within the hierarchy. For example,
here we have a script on a button that references a text field.

Pseudocode - Event Handler Other Components

Here again we start with event.source to get to the conponent that fired
the event, but now we use

parent to go up to the root container,
back down to a different conponent.

text = event.source. parent.get Conponent ("Text Field")

and t hen get Conponent to navigate

On thispage ...

Event Handlers

Action Event Handlers
Property Event Handlers
Mouse Event Handlers
MouseMotion Event Handlers
Key Event Handlers

Focus Event Handlers
VisionWindow Event Handlers
InternalFrame Event Handlers
Cell Event Handlers

Item Event Handlers

Paint Event Handlers

INDUCTIVE
UNIVERSII

Vision Event
Scripts Overview

Watch the Video

Note: Even when components are disabled, most scripting events can still occur. For example, a mouse click can still happen on a disabled

component, which is why it is recommended to use the action performed event when placing a script on a button.

The Action category of event handlers pertains to components being "used" from the client, such as a button being pressed or a checkbox component

being selected. You can access event handlers through the Scripting option.

Action Event Handlers

Events
Events Description
actionPer | This event is fired when the 'action' of the component occurs. What this action is depends on the type of the component. Most
formed commonly, this is used with buttons, where the action is that the button was pushed, via a mouse click or a key press. See the

component reference for details on what the action means for other components.

It is recommended to use this event over mouseClicked whenever possible.

Event Object Properties

https://www.inductiveuniversity.com/videos/vision-event-scripts-overview/8.0/8.0/8.1

Properties Description
source The component that fired this event.

In this example, let's use a Button component to print "Hello World!" on the the console each time the Button is pressed.

1. Drag a Button component to the your Designer workspace.
2. Select your Button and right-click on Scripting.
3. Copy the code in the code block and paste it in the Script Editor tab. Press OK.

Python - Button Action Performed

print "Hello World!'"

.;, $ __ | ¥ Component Scripting [Button] — a X

@ Button &

~ @ action >

1# On the

I_ 2print "Hello World!
» i focus *
b W key
b i mouse
b B mouseMotion
» @ propertyChange
W Custom Methods

+

@ EventHandlers ¢ [Navigation % SetTagValue &= SQLUpdate [=] Se(Proper’tyI = cr\ptEdltorI

1, this will print H ! to the console|~ | @

4, Save your project, and put the Designer in Preview Mode.
5. From the top menubar click on Tools > Console. Press the button and you'll see "Hello World" printed each time the button is pressed.

Output Console I 4
B e

Hello World!
Hello World!
Hello World!
Hello World!

Property Event Handlers

Property event handlers typically trigger based on the property of a component.
Events

Events Description

propertyChange = Fires whenever a bindable property of the source component changes. This works for standard and custom (dynamic) properties.

Event Object Properties

Properties Description

source The component that fired this event.
newValue The new value that this property changed to.
oldvalue The value that this property was before it changed. Note that not all components include an accurate oldValue in their events.

propertyName The name of the property that changed.

Note: Remember to always filter out these events for the property that you are looking for! Components often have many
properties that change,

Python - Printing the Changing Property

On the propertyChange of a conponent, this script will print out the nane of the property that is changing.
print event.propertyNane

Python - Looking for a Specific Property

1t is common to use propertyNanme to | ook for specific properties to change. This is a great way to
restrict how often your scripts execute
if event.propertyNane == "text':

print 'The Text property changed'

Mouse Event Handlers

The mouse events all correspond to the clicking and movement of the mouse. They are triggered in the client by an operator interacting with a mouse.
Touchscreen monitors will trigger these events when a user touches the screen, but not all touchscreens will fire the mouseEntered and mouseExited
events.

Events

Events Description
mouseCli = This event signifies a mouse click on the source component. A mouse click is the combination of a mouse press and a mouse release,

cked both of which must have occurred over the source component.

Note: This event fires after the pressed and released events have fired.

mouseEnt | This event fires when the mouse enters the space over the source component.
ered

mouseExi | This event fires when the mouse leaves the space over the source component.
ted

mousePre = This event fires when the mouse presses down on the source component.
ssed

mouseRel | This event fires when a mouse button is released, if that mouse button's press happened over this component.
eased

Event Object Properties

Properties Description

source The component that fired this event.

button The code for the mouse button that caused this event to fire. The following is a list of constants that can be used in the event to
determine which mouse button was pressed.

® event. BUTTONL (typically the primary, or left, mouse button)

® event. BUTTON2 (typically the middle mouse button)

® event. BUTTONS (typically the secondary, or right, mouse button).
clickCount The number of mouse clicks associated with this event.

X The x-coordinate (with respect to the source component) of this mouse event.

y The y-coordinate (with respect to the source component) of this mouse event.

popupTrigger = Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is operating system dependent, which is
why this abstraction exists.

altDown True (1) if the Alt key was held down during this event, false (0) otherwise.
controlDown = True (1) if the Control key was held down during this event, false (0) otherwise.

shiftbown True (1) if the Shift key was held down during this event, false (0) otherwise.

Python - Printing on a Mouse Enter

On the nouseEntered event of a conponent, this script will only fire if the nmobuse enters the bounds of the
conponent .
print "The nouse is inside the conponent space!"

MouseMotion Event Handlers

The mouseMotion events deal with the motion of the mouse over a component. Not all touchscreen monitors will fire these events.

Caution:

mouseMotion events will not trigger when the project is viewed from a mobile project as these gestures are used by the browser/device to zoom or
pan.

Events

Events Description

mouseDragged | Fires when the mouse moves over a component while a mouse button is being held.

mouseMoved Fires when the mouse moves over a component, but no buttons are being held.

Event Object Properties

Properties Descriptions

source The component that fired this event.

button The code for the mouse button that caused this event to fire. The following is a list of constants that can be used in the event to
determine which mouse button was pressed.

® event. BUTTONL (typically the primary, or left, mouse button)
® event. BUTTONZ (typically the middle mouse button)
® event. BUTTONS (typically the secondary, or right, mouse button).

clickCount The number of mouse clicks associated with this event.
X The x-coordinate (with respect to the source component) of this mouse event.
y The y-coordinate (with respect to the source component) of this mouse event.

popupTrigger = Returns True (1) if this mouse event is a popup trigger. What constitutes a popup trigger is operating system dependent, which is
why this abstraction exists.

altDown True (1) if the Alt key was held down during this event, false (0) otherwise.
controlDown = True (1) if the Control key was held down during this event, false (0) otherwise.

shiftDown True (1) if the Shift key was held down during this event, false (0) otherwise

Python - Printing on a Mouse Movement

From the nouseMdtion event on a conponent, this will print each tinme the nouse noves when it is over the
conponent .
print "The nouse is noving over the conponent!”

Key Event Handlers

The key events all have to do with the user pressing a key on the keyboard.
Events

Events Description

keyPressed Fires when a key is pressed and the source component has the input focus. Works for all characters, including non-printable ones,
such as SHIFT and F3.

keyReleas = Fires when a key is released and the source component has the input focus. Works for all characters, including non-printable ones,
ed such as SHIFT and F3.

keyTyped | Fires when a key is pressed and then released when source component has the input focus. Only works for characters that can be
printed on the screen.

Event Object Properties

Properties Description
source The component that fired this event.

keyCode The key code for this event. Used with the keyPressed and keyReleased events. Uses the standard Java key codes, see below for
more information.

keyChar The character that was typed. Used with the keyTyped event.

keyLocation | Returns the location of the key that originated this key event. Some keys occur more than once on a keyboard, e.g. the left and right
shift keys. Additionally, some keys occur on the numeric keypad. This provides a way of distinguishing such keys. The keyTyped
event always has a location of KEY_LOCATION_UNKNOWN. Uses the standard Java key locations, see below for more
information.

altDown True (1) if the Alt key was held down during this event, false (0) otherwise.

controlDown | True (1) if the Control key was held down during this event, false (0) otherwise.

shiftbown True (1) if the Shift key was held down during this event, false (0) otherwise.

Python - Printing the Key Released

On the keyRel eased event of a conponent, this will print out the key code of the key that was hit on the
keyboard,

but only on release of the key, and only when the conponent has focus.

print event.keyCode

Java Keys

The key event handlers use the Java KeyEvent class, which has unique identifiers for both keys and locations on the keyboard to help differentiate
which key is actually being pressed on the keyboard. The numeric codes for each unique location and character can be called from the event object
using a constant. For example, the letter "a" has the constant name VK_A. This can then be used to compare against the keyCode value like this:

Python - Checking Specific Key Codes

if event.keyCode == event. VK A
print "The key press was a"

We listed the locations and some common codes below, but the full list of codes can be accessed by going to https://docs.oracle.com/javase/8/docs
[apil/java/awt/event/KeyEvent.html.

Note: Some Operating Systems reserve certain keys for certain function, and will capture the key press or release before it gets sent to the Client.
For example, many Operating Systems use the TAB key to shift focus to the next field

https://docs.oracle.com/javase/8/docs/api/java/awt/event/KeyEvent.html
https://docs.oracle.com/javase/8/docs/api/java/awt/event/KeyEvent.html

Key Code Constants Key Location Constants

VK_0-VK 9 | VK END | VK _PAGE_ | VK_DOWN VK_CONTR KEY_LOCATION_LE | KEY_LOCATION_RI | KEY_LOCATION_N
up oL FT GHT UMPAD
VK_A-VK_Z | VK_ENTER VK_RIGHT WT\T PAGE_DO | VK_LEFT KEY_LOCATION_ST | KEY LOCATION_UN
ANDARD KNOWN
VK_F1-VK_F | VK_HOME VK_SHIFT | VK_UP VK_TAB
24
VK_ALT VK_INSE ' VK_SPACE @ VK_ESCAPE
RT

Focus Event Handlers
Focus events deal with focus moving between different components on a window. Opening windows, using tab to move around the screen, or clicking

on components will trigger these events. Note that not all components can hold focus.

Events

Events Description

focusGai = This event occurs when a component that can receive input, such as a text box, receives the input focus. This usually occurs when a
ned user clicks on the component or tabs over to it.

focusLost = This event occurs when a component that had the input focus lost it to another component.

Event Object Properties

Properties Description

source The component that fired this event.

oppositeCompone = The other component involved in this focus change. That is, the component that lost focus in order for this one to gain it, or
nt vise versa.

Python - Printing on Focus Gained
On the focusGai ned event of a few different conponents, this script can print out when the conmponent has

gai ned focus.
print "The conponent nane now has focus!"

VisionWindow Event Handlers

The visionWindow events are specific to windows and not available elsewhere. Right click on the window name in the Project Browser and select
Scripting to get access to these events. These events are triggered by a window opening or closing.

I n o [Ein . n POy o 18 [I [Eacn i

Project Browser g - X L.

A
~ ™ Windows &
} @ Popups
b [Alarms
[Dabatase Pens T
50%
M pata iz
™ Database Pens2

& Script Editor

3 Main window1 | | Event Handlers ¢ [Navigation % SetTagValue 2= SQLUpdate [=] SetProperty

} il internalFrame . : ! - - :
1 system.gui.getParentiWindow(event) . getComponentForPath('Root Container.Text Field').requestFocusInWindow()

Tag Browser - propertychange
Q o - 8 = @ visionWindow
Tag : "
» i Tags visionWindowClosed B

BEE=ETEETEEN 8 component scn'pﬁngl[ﬁeld Tanks] | -]
] Root Containg

Events

Events Description

visionWindowOpened = This event is fired each time the window is opened and before any bindings are evaluated.

visionWindowClosed @ This event is fired each time the window is closed.

Event Object Properties

Properties Description

source The vision window that fired this event.

Python - Grabbing Focus on Window Opened in Two Different Ways

From a vi si onW ndowOpened event on a wi ndow, you can request the focus of conmponents in the w ndow, to
start the focus on a conponent other than the upper left npst conponent.

Here we grab the reference to the conponent using the property selector on the upper right side of the
script editor.
system gui . get Par ent W ndow event) . get Conponent For Pat h(' Root Cont ai ner. Text Field').requestFocusl nW ndow()

Here we can manually enter in the path to the conponent using our know edge of the conponent hierarchy and
the get Root Container function. Both of these functions work in the sane way.
syst em gui . get Par ent W ndow(event) . get Root Cont ai ner (). get Conponent (" Text Fi el d").request Focusl nW ndow()

InternalFrame Event Handlers

The internalFrame events are fired by windows: windows are known as "internal frames" in the underlying Java windowing system that the Vision
component uses. Note that the source of these events is the window itself, just like the visionWindow events above.

Events

Events Descriptions

internalFrameActi | Fires whenever the window is shown or focused. If you want a script to fire every time a window is opened, use this event.
vated

internalFrameClo | Fires when a window is closed.
sed

internalFrameClo | Fires right before a window is closed.
sing

internalFrameDe = Fires when a window loses focus.
activated

internalFrameOp | Fires the first time a window is opened. Note that when windows are closed and cached, next time they are opened this event
ened will not be fired. Use internalFrameActivated instead.

Event Object Properties

Properties Description

source The window that fired this event. Use source.rootContainer to get the root container.

Python - Printing on Frame Activation

Fromthe internal FraneActivated event on a window, this will fire each time the window is focused, so
clicking between two different windows will trigger it.
print "This windowis nowin focus!"

Cell Event Handlers

The cell event is unique in that it only appears on the Table component. It will trigger when something within a cell changes, and once for each cell
changed.

Events

Events Description

cellEdited = This event is fired when one of the cells in a table component has been modified.

Event Object Properties

Properties Description

source The table component that fired this event.
oldVvalue The old value in the cell that changed.
newValue The new value in the cell that changed.

row The row of the dataset this cell represents.
column The column of the dataset this cell represents.

Pseudocode - Updating a Database Table

Fromthe cell Edited event of a table conponent, this script can update our database table with any new
data that is entered in the table

CGet the id of the row we edited and the headers

id = event.source. data. get Val ueAt (event.row, 'id")

headers = system dat aset. get Col unmHeader s(event . sour ce. dat a)

Build our Update query.

query = "UPDATE User SET % = ? WHERE id = ?" % (headers[event. colum])

args = [event.newval ue, id]

Run the query with the specified argunents.
syst em db. runPrepUpdat e(query, args)

Iltem Event Handlers

The item event is unique in that it only appears on components that can be "on" or "off", such as with Radio Buttons, Check Boxes, and Toggle Buttons.
Events

Events Description

itemStateChang @ This event fires when the state of the component changed. This event is the best way to respond to the state of that component
ed changing.

Event Object Properties

Properties Description
source The component that fired this event.

stateChange = An integer that indicates whether the state was changed to "Selected" (on) or "Deselected" (off). Compare this to the event object's
constants to determine what the new state is.

SELECTED @ The constant that the stateChange property will be equal to if this event represents a selection.

DESELECT | The constant that the stateChange property will be equal to if this event represents a de-selection.
ED

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Table
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Radio+Button
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Check+Box
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Toggle+Button

Python - Printing on a Radio Button Selection

On the itenfttateChanged event of a radio button, this will print when this specific radio button is
sel ect ed.
if event.stateChange == event. SELECTED:

print "This radio button is selected!"

Paint Event Handlers

The paint event is only found on the Paintable Canvas component, and is used to customize how the component gets painted. This event requires a
heavy knowledge of programming using the Java 2D drawing tools, but there is code for a pump shape each time you add a new Paintable Canvas to
a window.

Events

Events Description

repaint This event will fire whenever the component needs to repaint itself. It will repaint when any of its custom properties change, or when .
repai nt () is called on it. When a Paintable Canvas is first dragged onto the screen, the repaint event handler will be filled with an
example that draws out a pump.

Event Object Properties

Properties Description

source The Paintable Canvas component that fired this event.

graphics An instance of java.awt.Graphics2D that can be used to paint this component. The point (0,0) is located at the upper left of the
component.

width The width of the paintable area of the component. This takes into account the component's border.

height The height of the paintable area of the component. This takes into account the component's border.

Python - Painting a Circle

On the repaint event of a paintable canvas conponent, this will create a circle with a gradi ent background
color of orange and white.

fromjava.awm inport Color
fromjava.awt inport G adientPaint
fromjava.am.geominport Ellipse2D

g = event.graphics

Body
innerBody = Ellipse2D. Fl oat(8,8,72,72)

Scal e graphics to actual conponent size
dX = (event.w dth-1)/100.0

dY = (event. height-1)/100.0

g. scal e(dX, dY)

Pai nt body
. set Pai nt (G adi ent Pai nt (0, 40, Col or. WHI TE, 0, 100, Col or. ORANGE, 1))
.fill(innerBody)
. set Col or (Col or . ORANGE)
. draw(i nner Body)

Q Q Q Q H*

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Paintable+Canvas

Extension Functions

What Are Extension Functions

Extension Functions are found on the component scripting window of certain components, and they allow
for more advanced customization of the component using scripting. These functions are generally more
advanced and require a better understanding of Python. Unlike Event Handlers, Extension Functions are
not driven by a specific event, but are instead called by the component itself for a specific purpose when
appropriate. This may be when the component first loads in the window, or whenever the function
receives new input.

From an object-oriented point of view, Extension Functions create a custom "subclass" of the base
component type. Your subclass can then override and implement parts of the functionality of the
component itself, in Python. Following Python object-oriented methodology, each extension function's
first argument is called sel f . That is because these are methods that belong to the component's class
itself, instance methods. The value of sel f will always be the component itself. Notice that this is
different than Event Handler scripts where you are given an event object in your scope and the
component that fired the event is under event . sour ce . When you write an Extension Function, there
isno event object so the componentis given to you as the sel f object instead.

Each component Extension Function comes with its own documentation built-into the function's default
implementation using a standard Python "doc-string". You will find that you are unable to edit the
function's signature or docstring. Changing the method's signature (arguments or function name) would
prevent the component from calling it correctly. Changing the docstring could be misleading or confusing
as you'd lose the documentation for how your implementation of the function should work.

The following feature is new in Ignition version 8.1.13
Click here to check out the other new features

The Extension Function Script Builder now includes Insert Tag » and Insert Property Reference =l
helper buttons that allow you to easily insert correctly formatted references within your scripts.

& & Choose Property X

W Event Handlers [enabled & User Management @
i mouse = Name (string
i mouseMotion
i propertyChange
& Extension Functions
f+ fikerUser

def onCre:

Called u visible (

Argung u Font (Fos
s 0
s

F+ filterRole

7+ filterschedule

* onDeleteUser

£

/+ onSaveUser

/¥ onCreateRole B Username Editing Enabled (b
/+ onDeleteRole N = Role Assigning Enabled (boolean)

f onsaveRole B Contact Info Editing Enabled (boolean)
I ;
i

ESoamvouswn

B Role Management Enabled (boolean)

ustom Methods B Schedule Adjustments Enabled (boolean)
® Show Username Column (b

B Show Name Column (bo0)
® Show Contact Info Column (boolean)
B Show Roles Column (boolean)
B Show Schedule Column (boolean) o
Root Container.Group.User Management.name -

< 5

| o

Using Extension Functions

On thispage ...

® What Are Extension Functions
® Using Extension Functions
® Example - User Management
Component
® Example - Table Component
® Example - Power Table
Component
® Example - Ad Hoc Charting

INDUCTIVE
UNIVERSII

Component
Extension
Functions

Watch the Video

Using an Extension Function works much like using an Event Handler. First select and Enable the Extension Function within the component scripting

window, and then add in a script. The script will then automatically run when called.

Note: When indenting in an Extension Function, you must use tabs for indentation. Extension functions are "pre-written" using tab indentation, so

any lines added must also use tab indentation.

Example - User Management Component

The User Management component has many Extension Functions that provide a way to customize how the component works. The filterUser() e
xtension function is useful for filtering out users you don't want to see in the user source, preventing users from editing that user in the client. We can
add a simple scriptto the filterUser () Extension Function that will hide the user from the list if they have the Administrator role.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.13
https://inductiveuniversity.com/video/component-extension-functions/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+User+Management

1. Drag a User Management component in to your Designer workspace, and right-click on Scripting.
2. Under the Extension Functions folder select filterUser and click Enabled.
3. Copy the code from the code block below and add it to bottom of the script and click OK.

Check to see if the user has the Adnministrator role.
if "Administrator"” in user.getRoles():
Return 0 to hide themif they do.
return 0
el se:
Otherwi se, show the user in the table.
return 1
4% Component Scripting [User Management] - O X
@ Event Handlers [Enabled
b i mouse ~ Description
i@ mouseMotion
) i propertyChange Called for each user loaded into the management table. Return false to hide this user from the

% Extension Functions management table. This code is executed in a background thread.

~ Parameters

fv filterRole
Jfx filterschedule self A reference to the component that is invoking this function.
J¥ onCreateUser o . .
< : . .
f onDeletelser - The user object itself. Call user.get(proper‘tyName]tomspeq. Commeon properties:
. ‘username’, 'schedule’, 'language’. Call user.getRoles() for a list of rolenames.
J¥ onSaveUser
fv onCreateRole
> er
f* onDeleteRole =
f* onSaveRole 1 def filterUser(self, user):
% Custom Methods 2 # Check to see if the user has the Administrator role.
3 if "Administrator” in user.getRoles():
* 4 i # Return @ to hide them if they do.
5 : return @
6 else:
7 # Otherwise, show the user in the table.
3 return ll

0K Apply Cancel
4. By enabling this script, we now only see the users without the Administrator role in the list of users.
Username Name Roles Contact Info Schedule
operator Greg Peters Operator, Supervisor email: operator@ai.com Always
|ane |ane Dobson Operator email: operator@induc... | Always
Sara Sara Jones Supervisor email: supervisor@ind... Always
Role name # of Members

Administrator
Operator
Supervisor

Upper Management

[N

Example - Table Component

The Table component exposes an Extension Function called get Backgr oundAt () . By implementing this function, you can control the background
color of each cell of the table component using scripting. Starting with a Table component with some test data, then then add the following script to the
get Backgr oundAt () Extension Function.

Here is our sample data. We want to have a clearer indication of what companies have fewer than 30 installations. So, we'll write a script to make
those rows have a light grey background color.

Installations id cityName State companyName
34 1 Sacramento California ABC Company
62 2 Phoenix Arizona Acme Bird Seed
14 3 Denver Colorado High Rocks Enterprises
87 4 Omaha Nebraska Corners Inc.
13 5 San Francisco California Haight Jewelry
99 6 San Antonio Texas Ten Gallon Foods
15 7 Chico California XYZ Brewing
74 8 Portland Oregon City Book
23 9 lowa City lowa Best Syrups Inc
15 10 = San Rafael California Retro Redwoods
1. Right-click on the Table component and choose Scripting.
2. Choose the get Backgr oundAt * extension function.
3. Select the Enabled check box.
4. Copy the code from the code block below and add it to bottom of the script and click OK.
%% Component Scripting [Table] - [m} x
W Event Handlers [Enabled
b cel ~ Description
b il focus
b key Called for each cell, returns the appropriate background color. Do not block, sleep, or execute any 1/0; called on painting
» i mouse thread.
} @ propertyChange

2 : ~ Parameters
W Extension Functions

if self.data.getValueAt(row, "Installations™) < 3@:
If the value is less than 30, we return a light grey color.
return system.gui.color(*lightgrey”)
else:
Otherwise, we return g white color.
return system.gui.color("white"]|

self A reference to the component that is invoking this function.

fv getForegroundAt

getDisplayTextAt row The row index of the cell

W Custom Methods o col The column index of the cell

+
isSelected A boclean representing if this cell is currently selected
value The value in the table's dataset at index [row,col]
defaultColor The color the table would have chosen if this function was not implemented

Script

1 def getBackgroundAt(self, row, col, isSelected, value, defaultColor): ~lE
2 # For each cell, we check the value of the cell in the same row but in Installations. *
3

@

o~

oK Apply Cancel

Python - Table Row Color

For each cell, we check the value of the cell in the same row but in Installations.
if self.data.getValueAt(row, "Installations") < 30:

1f the value is less than 30, we return a light grey color.

return system gui.color("lightgrey")
el se:

Oherwise, we return a white color.

return system gui.col or("white")

5. We should see the script run automatically, and the background color of the table will change.

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Table

: Installations id & cityName State companyName :

I 34 1 Sacramento California ABC Company |

i 62 2/Phoenix Arizona Acme Bird Seed E

! 1

i 87 4/0maha Nebraska Corners Inc. E
& 13 5 San Francisco California Haight Jewelry @

] 99 &/San Antonio Texas Ten Gallon Foods |

] 15 7 Chico California XYZ Brewing |

: 74 8 Portland Oregon City Books |

: 23 9 Iowa City Iowa Best Syrups Inc :

: 15 10 San Rafael Califernia Retro Redwood
BT § T hy

Example - Power Table Component

The Power Table component has several extension functions on it that change the way the table looks or behaves. One in particular, called onPopupT
rigger (), makes it easy to implement a right-click popup menu as it is called each time a user right-clicks on a cell of the table. It can be used in
conjunction with the syst em gui . cr eat ePopupMenu function to create your own custom popup menu, as shown in the following example.

1. Drag a Power Table component on to your Designer workspace and set the Test Data property to 'true’ so you have some data to test on.
2. With the Power Table selected, click Scripting, and then click on the onPopupTrigger extension function.
3. Select the Enabled checkbox.
4. The onPopupTrigger extension function will have a pre-built example commented out in the extension function. Uncomment the lines of
code to see it in action.
3 Companent Scripting [Power Table] - m] x
@ Event Handlers Enabled
b mouse - Description
b i mouseMotion
b @ propertyChange Called when the user right-clicks on a table cell. This would be the appropriate time to create and display a popup
@ Extension Functions men.
jf* configureCell
Jx configureEditor Faramelers
Jv configureHeaderstyle self A reference to the component that is invoking this function.
f* initialize
fv isCellEditable rowlndex Index of the row, starting at 0, relative to the underlying dataset
I onCellEdited ¢ colindex Index of the column starting at 0, relative to the underlying dataset
£
S fonMaseRle colName Name of the column in the underlying dataset
fr onMouseRelease
v onMouseClick ? wvalue The value at the location clicked on
I J* onDoubleClick event The MouseEvent object that caused this popup trigger event
Jx onRowsDropped Script
@ Custom Methods =
+ 1 def onPopupTrigger(self, rowIndex, colIndex, colName, value, event): ~|E
2 import system 'S
3 def sayHello(ewt, cellvalue-value):
4 H import system
5 : system.gui.messageBox('Hello, you clicked on ¥s'#cellValue)
6 menu = system.gui.createPopupMenu({'Hello':sayHello})
7 menu‘shcm(event)l &)
0K Apply Cancel

Python - Power Table Popup Trigger

inport system
def sayHello(evt, cell Val ue=val ue):
inport system
system gui . nressageBox(' Hel | o, you clicked on %' %el | Val ue)
menu = system gui.creat ePopupMenu({' Hel | o' : sayHel | o})
menu. show event)

5. Right-click on a cell in the table and a "Hello" menu option will have a message box appear that has the value of the cell that was right-
clicked.

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Power+Table

Int Column Float Column String Colu... Boolean Col.. = Date Column

a3u uol L& ARL] JL”lé-q'IéUl‘j... P
17 03 D6299490 jun 24, 2019 ...

29 065 AEB6189F jun 24, 2019 ...

24 0.86 jun 24, 2019 .

43 06 5o6BSEE7 | N0 jun 24, 2019 ...

95 0.8 02DCE58D Jun 24, 2019 ...

a7 0.15 F74BEDFY Information =
34 065 EFS6D7F3

o Hello, you clicked on ABFOAFIB

Example - Ad Hoc Charting

The Easy Chart component has an Extension Function to allow scripting when a Tag is dropped onto it (see Using the Tag Browse Tree for Charting).
There is a lot of customization possible in the Designer, but any client side changes to the Tag Pens dataset must be done here. Generally, people
want to change what axis and subplot a pen goes into based on some other information. Below is a simple example that uses the Tag's name to
determine this. For this example to work, you need to have two subplots and a second axis named "HOA".

motors/motor1 [l
B L4 Amps 32 60 ﬁﬁww &
HOA |
u A sn-Jf A TR -
motors/motor2 LAY ___\—F‘w ' i
W2 Amps 1 32 g ¥ lWJ“J 1LY
. HOFL] 2@ g 30 ’_\JL_L L
motors/motor3 30
W L Amps 2 3
BB HoAa2 52 104 |
4 Lur IF'JM'_HN
Hanfl -
& l '
o Auto
(¥4
Off
9:48:29 AM 9-48-59 AM 9:49:29 AM 9:49:59
[Jun 24,2019]
4 CY 6/24/19 9:48 AM - 6/24/19 9:49 AM &, (3
| T—— |
g L

Python - Drop Tags on Easy Chart

Alter chart configuration when dropping pens
sanple data for the Tag Pens property:
#"NAVE", " TAG_PATH', " AGCREGATI ON_MODE", " AXI S", " SUBPLOT", "ENABLED", "COLOR", " DASH_PATTERN', "RENDER_STYLE", "

LI NE_WEI GHT", " SHAPE", " FI LL_SHAPE", "LABELS", " GROUP_NAME", "Dl G TAL", " OVERRI DE_AUTOCOLOR", " HI DDEN', "
USER_SELECTABLE", " SORT_ORDER"', " USER_REMOVABLE"

#"HOA", "[~] Mot or s/ Mot or 1/ HOA", "M nMax", "HOA", " 2", "true", "col or (85, 255, 85, 255) ", "","1","1.0","0", "true","
false","","false","fal se","fal se","true",,"true"

get old pen data and append new info
ol dDat a = system dat aset .t oPyDat aSet (sel f.tagPens)
get new info
for full TagPath in paths:
get nanmes for everything in the tag path
| ast Sl ashl ndex = full TagPath.rfind("/")
cl oseBracket I ndex = full TagPath.find("]")
tagNane = full TagPat h[| ast Sl ashl ndex+1:]
tagPath = ful | TagPat h[cl oseBracket | ndex+1:]
groupName = ful | TagPat h[cl oseBr acket | ndex+1: | ast Sl ashl ndex]

find which tags are naned "hoa" and put themin the HOA subplot.

if tagNane.|lower() == "hoa":
axis = "HQA"
subplot = 2
color = "col or (255, 85, 85, 255)" #red
digital = "true"
el se:
axis = "Default Axis"
subplot =1
color = "col or (85, 85, 255, 255) " #bl ue
digital = "fal se"

append to the old pen data
newDat a = system dat aset. addRow(ol dDat a, [tagNane,tagPath, "M nMax", axi s, subpl ot,"true", color,"","1","
1.0","0","true","fal se", groupNane, digital,"fal se","false","true","","true"])

push new pens back to the tagPens property
sel f.tagPens = newDat a

Custom Component Methods

Custom Methods

Custom Methods function much like Project Library in that you write a script and call it from somewhere On th|S page
else. However, Custom Methods are written on a component instead of a separate scripting section, and

are also automatically passed the value of sel f, just like an Extension Function. The sel f object

provides the script with easy access to everything within the window. In addition to sel f , Parameters

can be added that you can use to pass in other objects into your Custom Method. ® Custom Methods

® Sample Custom Methods
& Component Srpting [Lsbl - o x ® Custom Methods with
4;:?;::Enawers Name Parameters
» i mouseMotion newhiethod °
B reopertyCianoe Parameters
& Custom Methods ©

Script
g P

def newdethod(self)

o

1
2
3 Arguments
4 self: A reference to the component instance this method is invoked on
H
6
7

UNIVERSII

oK || Apply || Cancel

Component
Custom Methods

Note: When indenting in a Custom Component Method, you must use tabs for indentation. Custom
Methods are "pre-written" using tab indentation, so any lines added must also use tab indentation.

Watch the Video

The following feature is new in Ignition version 8.1.13
Click here to check out the other new features

The Custom Method Script Builder now includes Insert Tag L and Insert Property Reference EI h
elper buttons that allow you to easily insert correctly formatted references within your scripts.

@

& Event Handlers Name & Choose Tag x
| |» & mouse

» i@ mouseMotion

» @ propertyChange Parameters

W Custom Methods

newMethod s Tags
» @ Systern

» @ Vision Client Tags
» @ AllProviders

+
<« | 1def newMethod(self) 1

St
Argunents >

self: A ref thod is invoked on

|

‘ sce
|

|

| 3

| 4

5 is automa oking this method
s

7

(type or choose a path) v

oK

Apply || Cancel

Custom Methods can then be called from the same component or from other components. Custom Methods are called just like any other method on a
component: . met hodNane() . So if | had a custom method on a text field, and | wanted to call it from the actionPerformed event on a button in the
same container, | would use:

Python - Custom Method

The name of the customnethod in this instance is nyCustom\et hod.
event. sour ce. par ent. get Conponent (" Text Fi el d"). nyCustonVet hod()

Templates are another good use for custom methods. By adding a custom method directly to a template, all the components that make up the
template can call the custom method from the template itself. Another advantage of templates is, in the event you want to share your template with
another project, your custom methods (scripts) would not have to be exported separately like they would as if they were in a Script Library. When you
export the template, the custom methods are included in the export automatically.

Sample Custom Methods

A great use for Custom Methods is checking for valid input on a form with a lot of text fields. Instead of checking every text field within a script on a
button press, we can instead build a value check script on each text field that is unique to that Text Field's specific type of input. This keeps each
script organized on the appropriate Text Field component. Take this sample code that can go into a custom method on a text field which checks for a
valid email address using :

https://legacy-docs.inductiveautomation.com/display/DOC81/Project+Library
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.13
https://inductiveuniversity.com/video/component-custom-methods/8.1

Python - Text Field Input Validation

First, we need to inport the Regular Expression library
import re

W need to grab the value of the text field.
text = self.text

Here, we put together our regular expression for enmil addresses.
val i dAddress = re.conpile(r"(”[a-zA-Z0-9_. +-]+@a-zA-Z0-9-]1+\.[a-zA-Z0-9-.1+$)")

Check the text against the regul ar expression.
If the text does not fit in with the regular expression, it returns a value of None, which we use to show
an error box.
if validAddress. match(text) is None:
system gui . errorBox("Pl ease enter a vaild email address!", "Email Not Valid")

A similar script can be repeated for each Text Field component, but modified to fit the expected input. Then, the another script can be on a button that
simply calls each of the Text Field's Custom Methods.

Python - Validate Input on Button Press

event. sour ce. parent. get Conponent ("Enai | Fi el d"). validl nput Check()

Custom Methods with Parameters

It is also possible to add parameters to Custom Methods. For example, we can configure a Custom Method like this one on a Button component that
accepts two parameters (I ef t and ri ght). If a value for ri ght is not provided, it will assume a default value of 7:

Parameter with a Default Value

def greaterThan(self, left, right=7):
sel f.getSibling("Toggl eSwi tch").props.selected = left > right

We can then configure a script on the same Button that invokes the gr eat er Than Custom Method and performs an action. In the following
examples, the | ef t and ri ght parameters are defined by the values of two Numeric Entry Field components on the same View as our Button.

Examples with Multiple Parameters

def runAction(self, event):
The following usage onmits the “right” kwarg, so “right® will equal the default value of 7
If the value of the "left” Nunmeric Entry field is greater than 7, the script will performan action
sel f.greaterThan(l eft=sel f.getSi bling("NunmericEntryField").props.val ue)

The foll owi ng usage supplies both kwargs
sel f.greaterThan(l eft=sel f.get Si bling("NunericEntryField").props.value, right=self.getSibling
("NurericEntryFi el d_0"). props. val ue)

The foll owi ng usage supplies positional args
sel f. greaterThan(sel f.getSibling("NumericEntryField").props.value, self.getSibling
("Nuneri cEntryField_0"). props. val ue)

The fol | owi ng usage supplies only one positional arg, which will be used for “left’
Since only one positional arg was provided, “right’ will equal the default value of 7
sel f.greaterThan(sel f. getSibling("NurmericEntryField").props.val ue)

Focus Manipulation

Focus Order

How components are laid out on a window determines the focus order. When tabbing through On th|S page .
components on a window, the focus moves from left to right, then top to bottom. Focus will then cycle

back to the first component. When determining order, the top left corner of the component is used. To

see for yourself, drag several components into your window. Go to Preview Mode, and tab through the

components. ® Focus Order

® Requesting Focus in the Window

e P g - X ' e ® The getComponetForPath
Al Function
3 Popup_Param_Test A1 A Controlling Focus Between
- O rest i] Components in a Window
Il] First e About Invoke Later
[Text Field 1 b second ® Text Areas and Focus Requests
0 Text Feld 2 B

b &2 Templates
» B Named Queries]
» B Reports 4 |

Third

Requesting Focus in the Window

You can programmatically request that focus be given to a component by calling the function r equest Focus! nW ndow() on that function. This
function is called on a component and will pull the focus to that component so it is selected and ready to use. It is best used with an input component,
such as a Text Field, so the user can immediately begin typing into the component. You can use it on the i nt er nal Fr aneAct i vat ed event to bring
focus to the component right when the window opens.

%% Component Scripting [Test] - O *

W Event Handlers ¢ [Navigation % SetTagValue == SQLUpdate [Z] SetProperty | [Script Editor

~ @ internalFrame > : : - : :
I 1system.gui.getParentWindow(event) .getComponentForPath('Root Container. Text Field').requestFocusInWindow() |~ =

internalFrameClosed LS
internalFrameClosing
internalFrameDeactivated
internalFrameOpened

b i propertyChange

b i visionWindow

W Custom Methods

+

The getComponetForPath Function
The example above references the function getComponentForPath. This function can be called from a window object, and allows you to specify the

full path to a component inside of the window as a single string, using the following format:

Pseudocode - Get Component For Path

get Conponent For Pat h(' Root Cont ai ner. Component Nane')

=

When referencing a component from a window event handler, such as internalFrameActivated, clicking the Property Reference icon will use the
getComponentForPath function. While this function is useful, you never have to use the getComponentForPath function. Instead you can use the
component paths that are seen from event handlers on other components. Below is a comparison of using both getComponentForPath, as well as the
more traditional

Pseudocode - Component Hierarchy from a Window

Both lines belowwill return a reference to the root container in the window that this script originates
from

print system gui.getParent Wndow(event). get Conponent For Pat h(' Root Cont ai ner')
print system gui.get Parent Wndow(event). get Root Cont ai ner ()

These lines will both reference the text property on a Label that is nested in a Goup on the w ndow.

print system gui.getParent Wndow event) . get Conponent For Pat h(' Root Cont ai ner. Group. Label ') .t ext
print system gui.getParent Wndow(event) . get Root Cont ai ner (). get Conponent (' Group'). get Conponent (' Label ') . text

Python - Requesting Focus on Frame Activation

system gui . get Par ent W ndow event) . get Conponent For Pat h(' Root Cont ai ner. Text Field').requestFocusl nW ndow()

Controlling Focus Between Components in a Window

In some cases, you may wish to control which component gains focus when the user clicks on a different component, or tabs away, instead of using
the default focus order. You can call r equest Focus| nW ndow() from the focusLost event to control which component should gain focus next.

%% Component Scripting [Text Field] — O oy
& Event Handlers ¢ [Navigation % SetTagValue == SQLUpdate [=] SetProperty | B Script Editor
- mw focus >

focusGained 1levent.source.parent.getComponent(' Text Field').requestFocusInWindow() |~ =

- foustost* >

key

mouse

mousehotion

propertyChange

@ Custom Methods
+

v w w w

However, calling r equest Focusl nW ndow() may cause some irregular behavior as shown below. Notice below how the "second" and "third" Text
Fields both have a text cursor in the component, but the "first" text field has focus. This is because r equest Focusl nW ndow() is being called on the
focusLost event, which runs when one of our components loses focus. This means that while focus is being pulled to one component (the "second"
Text Field), our script changes focus again to a different component.

Project Browser (=LY R T TP R L T R N T
Q Al
™ Popup_Param_Test A1 :
v [Test B] |F|r5t|

+ [] Root Container

[| [Fevedred @ [ECEEEC -
[=1 Text Field 1 H

0 Text Field 2] Third —
b &° Templates “| |]

The solution to the problem above is to have the r equest Focusl nW ndow() call occur as the last part of the event trigger. This can be
accomplished in one of two ways: using Invoke Later under Advanced Settings, or the invokeLater() system function.

About Invoke Later

The concept of invoking some code later leads to a broader discussion on event handling and timing, which deviates from the purpose of this page:
focus manipulation. The concept of "Invoke Later" simply means to wait for the current event to finish processing before running our focusLost script.
In the scenario above, clicking from one component to another (or tabbing to a different component) natively calls a focus change event. A script on
the focusLost event handler that uses requestFocusIinWindow will also cause a focus change event, except it does so mid-execution of the native
focus change event.

The main issue then is that focus is being moved to two components simultaneously from within the same event stack. The solution then is to have
them occur in sequential order instead, with our custom focusLost script occurring last, hence using Invoke Later.

Running a script with one of the invoke later approaches mentioned here is not required on most scripts in Ignition, but it is common when the script is
attempting to set or interact with focus on a window. On a related matter, invoking a script later is not the same as adding a delay mid execution.

To resolve the focus manipulation issue mentioned above, we can take one of two approaches:

Script Editor Advanced Settings

The simplest approach would be to use the Invoke Later option under Advanced Settings in the Script Editor.

%% Component Scripting [Text Field] - O et

@ EventHandlers ¢ [] Navigation W SetTagValue =2 SQLUpdate [SetProperty | & Script Editor

73 focus ' 1 t t.getC t('Text Field' tF InWind
focusGained event.source.parent.getComponent (' Tex ie) . requestFocusInWindow() =

 focustost* »
key

Mouse

mouseMotion

propertyChange

ustom Methods

IR EN

b
b
b
b
)

+ N

<
-l Advanced Settings

Standard Scoping -

P

Event Description Event Object Properties

This event occurs when a component that ~
had the input focus lost it to another w . f_f""r“- e

OK Apply Cancel

Using the invokeLater System Function

Alternatively, we could address this by using system.util.invokeLater to request focus at the end of the event.

Python - Requesting Focus Later

Create a function for invokeLater that requests focus.

def focus():
event . sour ce. par ent . get Conponent (' Text Field').request Focusl nW ndow()

Call the function once the event has executed.
systemutil.invokelLater (focus)

Text Areas and Focus Requests

Text Area components are slightly more complex when it comes to focus requests. Calling r equest Focusl nW ndow() directly on the component
will not allow the user to immediately start typing into the component. However, we can accomplish this by calling get Vi ewport (), and then calling g

et Vi ew() first as shown in the code below.

https://legacy-docs.inductiveautomation.com/display/DOC81/system.util.invokeLater
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Text+Area

Python - Requesting Focus from a Text Area

Create a reference to the Text Area. This step coul d be skipped and conbined with the line below, but is

segregated in this exanple for clarity.
text Area = event.source. parent. get Conponent (' Text Area')

This line denpbnstrates how to request focus on a Text Area
t ext Area. get Vi ewport (). get View().request Focusl nW ndow()

Client Event Scripts

Client Event Scripts Overview

Client Event Scripts run on the computer running the Client. They allow you to execute Jython code in a On th|S page s
running instance of a Vision Client, as opposed to running them in the Gateway.

Note: Client Event Scripts are not intended to run while in the Designer's preview mode. It is

. o L I ® Client Event Scripts Overview
recommended that you test your Client Event Scripts in a Vision Client instead. * Startup Script
® Shutdown Script
® Shutdown-Intercept Script
; ® Preventing Client Shutdown
[Client Event Scripts - o X ® Keystroke Scripts
Client Event Scripts Client Startup Script * Client Keystroke Script
Project startup script that runs in each Client ° I(?rt]ir(f)z(;eKe stroke Windo
% indow
(& shutdown . = ® Timer Scripts
(& shutdown-Intercept ® Tag Change Scripts
[keystroke ® Menubar Scripts
& Timer ® Menubar Script Interface
(3% Tag Change ® Message Scripts
] Menubar ® Client Message Handler
¥ Message Settings
® Troubleshooting Client Scripts
E Apply Cancel

@ INDUCTIVE
UNIVERSIT

Gateway vs Client
Event Scripts

Watch the Video

Startup Script

These trigger when the user logs into the client. These scripts trigger before any windows in the project are opened, so they are ideal to use when you
need to dynamically open certain windows based on which user logged on.

Configurations for Client Event Startup Scripts are similar to Gateway Event Startup scripts. See the Gateway Event Scripts page for more information

Shutdown Script
These trigger when the user "shuts down" the client. The following interactions count as a shutdown:

Logging out of the client

The trial expiring

The project being deleted while a client is running

The client being terminated from the Gateway's web interface
Closing the client, from the client

Configurations for Client Event Shutdown Scripts are similar to Gateway Event Shutdown scripts. See the Gateway Event Scripts page for more
information

Shutdown-Intercept Script

The Shutdown-Intercept Script is unique in that it runs when a user attempts to close a client, but before the actual closing occurs. The main reason to
use a Shutdown-Intercept script is to prevent the client from closing.

https://inductiveuniversity.com/video/gateway-vs-client-event-scripts/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/Gateway+Event+Scripts#GatewayEventScripts-StartupScript
https://legacy-docs.inductiveautomation.com/display/DOC81/Gateway+Event+Scripts#GatewayEventScripts-ShutdownScript

Even though this event has a similar name to the Shutdown Script, Shutdown-Intercept will only trigger when the client is requested to close from the
client. Other interactions that trigger a Shutdown Script, such as logging out, will not trigger Shutdown-Intercept.

Preventing Client Shutdown

There is a special property on the event object inside the Shutdown-Intercept script that can be used to prevent the client from closing: simply type
"event.cancel = 1." somewhere in your code. Doing this will cancel the shutdown event and leave the client open. This allows you to set special
restrictions in regard to when the client is actually allowed to shut down, such as having a certain role, as seen in the example below:

Python - Cancel Application Exit

Check to see if the user has a certain role.

if "SuperUser" not in systemsecurity.getRoles():
If the role is not present, it will warn the user and cancel the shutdown process.
system gui . war ni ngBox("Only administrators are allowed to shutdown the client.")
event.cancel =1

Keystroke Scripts

The Keystroke Scripts let you create different events that will activate on certain key combinations,
allowing you to add keyboard shortcuts to your projects.

D

INDUCTIVE
UNIVERSII

—_——
=
Client Event Scripts Client Keystroke Scripts
| [startup SCrif Choose Keystroke X -
|
|| @ shotdonn Keystroke Scripts
[shutdown-Intercept Shift Button 1 i
[ED Keystroke Control Button 2
| -
|| Ommer " Watch the Video
|| G Tag Change
|| I menubar Pressed _ Released _ Typed
B8 Message
Char:
+ &
oK RppIY wancel

Client Keystroke Script Interface

. +Add Script - Adds a new keystroke script.
. Delete Script - Deletes the currently selected keystroke script.

. Script Settings - Opens the Choose Keystroke window, allowing you to modify the
keystroke that will trigger the script.

Choose Keystroke Window
The following areas are available on the Choose Keystroke window:

* Modifiers - Additional keys or mouse buttons that must be held to trigger your script. Modifiers
are inclusive, so multiple modifiers must all be held down when the key is typed to trigger the
script.

® Action - Similar to the Key Event Handlers, determines what action must occur to the key to
trigger the script:

© Pressed means the key was pressed,

© Released means the key was released. When used in conjunction with a modifier, this
action provides the user a means to prevent the script from happening after the key
has already been pressed: if the user releases the modifier before releasing the key,
then the script will not trigger.

© Typed means the user typed a specific character. Selecting this action enabled the Ch
ar field under the key section. This provides an easier way to trigger the script based
on non-standard ascii characters.

® Key- Which key will trigger the script. A dropdown is available when the Action is set to Pressed
or Released. A Text Field is available if the Action is set to Typed.

Special keys like the Function keys (F1) or ESC key are only available in the pressed and released
actions.

https://legacy-docs.inductiveautomation.com/display/DOC81/Component+Events#ComponentEvents-KeyEventHandlers
https://inductiveuniversity.com/video/keystroke-scripts/8.1

1 Some operating systems reserve certain keys for certain functions, and will capture the key
press or release before it gets sent to the Client. For example, many operating systems use
the TAB key to shift focus to the next field.

Timer Scripts

Run on a timer in the same fashion as their Gateway counterpart, except each instance of the project (i.e., client looking at the project containing the
timer script) has a separate instance of the timer script running. Timer scripts that insert records into a database, or write to a Tag, are better suited as
Gateway Event Scripts, since there will only ever be one running. If there are not any open clients, there will not be an instances of this script running.

Configurations for Client Event Timer Scripts are similar to Gateway Event Timer scripts. See the Gateway Event Scripts page for more information

Tag Change Scripts

Monitor one or more Tags, and trigger a script in each instance of the client on Tag change. Unlike the Gateway Tag Change Script, Client Tag
Change Scripts can monitor a Client Tag. Much like Timer Scripts, they only run in each instance of the client, so if there aren't any open clients, then
the script will never execute.

Configurations for Client Event Tag Change Scripts are similar to Gateway Event Tag Change scripts. See the Gateway Event Scripts page for more
information

Menubar Scripts

The Client Menubar Scripts create and control the options available in the menubar of the Client. As
such, these scripts are only available in the Client Scope. By default, a Client will have three menus:
Command, Windows, and Help. The Windows and Help Menu are separate, and controlled through the
project properties, but the Command menu is actually created in the Client Menubar Scripts.

Selecting Menubar displays the Menu Structure list.

%, Client Event Scripts - O =
p
Client Event Scripts Client Menu Bar
[% startup Configure the menu bar for the Client
(2] Shutdown
a Shutdown-Intercept Menu Structure < - Item Properties
- Command E > Name Icon
Keystroke .
) Logout Builtinficens/16/id_card_delete.png i
& Timer LA Lock Screen "
[Tag Change W) Exit Tooltip
:
Accelerator Mnemaonic Character
B# Message il
- None - @ L
Action Script
llsystern.security.logout{} -
< >

oK Apply Cancel

https://legacy-docs.inductiveautomation.com/display/DOC81/Gateway+Event+Scripts#GatewayEventScripts-TimerScripts
https://legacy-docs.inductiveautomation.com/display/DOC81/Gateway+Event+Scripts#GatewayEventScripts-TagChangeScripts

The structure is then mimicked in the client when the menu name is selected.

Controller - Main Window

Windows Help

% Logout

A Lock Screen

o Exit

INDUCTIVE
UNIVERSITY

Menu Bar

Watch the Video

Menubar Script Interface

The user interface on the Menubar script is divided into two sections.

Menu Structure

A tree representing the layout of the menu bar. Items at the root of the tree will appear on the menu bar in the client, and nested items will appear as
subitems in the client. In the image of the Client Event Script above, notice that the Logout, Lock Screen, and Exit items are children of the Command
item. When looking at the image of the menubar in the Client, these three items appear under the Command Item.

Because the Menu Structure ultimately impacts the order, the following buttons are available to help sort each item.

L IE Add Sibling - Adds a new sibling, or peer item, to the selected item.

* E Add Child - Adds a new child to the selected item.

o Move Up and \ Move Down - Moves the selected item up or down in the list. The order in the list determines the order that items
appear in the menu, so these buttons can be used to group meaningful items together.

e [0 pelete - Deletes the selected item, removing it from the menu.

Item Properties

Name - The text on the item in the menu.

Icon - What image should appear next to the item, if any.

Tooltip - Optional property allowing you to specify a tooltip when the user hovers the mouse cursor on top of the item.

Accelerator - Allows you to define a keyboard shortcut that will quickly select the item. Please see the Accelerator section below for more

details.

® Mnemonic Character - Allows you to define a character key that will trigger the option when the menu is open. Please see the Mnemonics
section below for more details.

® Action Script - The script that will run when the user selects the item. Every item, even those at the root and branches may have a script

defined.

Note: It is uncommon to have a script defined on a branch, as they usually act as a means to list other items.

Accelerators

An accelerator is a key or key combination that can be pressed at any time in the client to initiate that menu item's event. If an accelerator has been
configured for an item, then it will be listed on the menu in the client. Below we see our initial menu bar has been modified with the accelerator Shift+F1

https://inductiveuniversity.com/video/menubar/8.1

. Now the Lock Screen item may be called anywhere in the client by holding Shift and pressing the F1 key.

Pl Controller - Main Window

% Logout

o Exit

(A LockScreen Shift+F1

Mnemonics

The mnemonic character is a key that can be pressed when the menu is opened. This is functionally similar to an Accelerator, in that it allows the user
to select an item in the menu without clicking on it. However, mnemonics differ in that they only call an item when the menu is open, and the item is
visible on the screen.

Users can identify mnemonics by a character to the right of the command in the menu. In the image below, we see that the Logout item has an "L"
character. This means the user can now press the "L" key to select the Logout item. However, this will not work unless the menu is open, so if the user
accidentally presses the L key while the menu is closed, the script will not trigger. Notice, how each command also has a mnemonic character defined
for each command.

bl Vision - Main Window
% Logout L
A LockScreen

ol Exit :

Message Scripts

Client Message Handlers are created and called using the same mechanisms as Gateway Event Scripts.
There are two main differences that make Client Message Handlers stand out from Gateway Message
Handlers: they run in the Client, and they have different settings.

[Z Client Event Scripts - O X
Client Event Scripts Client Message Handlers g
[startup Message handler scripts that run whenever the Client receives a script message
(2 shutdown
a Shmdown_[ntercept _ < IjE'F handleMessage{payload) : -
| 2 o
[ED Keystroke 3 This message handler will be called each time a message of this
@& Timer 4 type is received.
5
L& Tag Change 6 Arguments:
] Menubar 7 payload: A dictionary that holds the objects passed to this
8 message handler. Retrieve them with a subscript, e.g.
9 myObject = payload[’argumentiame']
1e
11
4 4 5 < 5

0K Apply Cancel

https://legacy-docs.inductiveautomation.com/display/DOC81/Gateway+Event+Scripts#GatewayEventScripts-MessageScripts

@ INDUCTIVE
UNIVERSITY

Script Messaging

Watch the Video

Client Message Handler Settings

Message Handler Settings x

Name

My Message Handled

Threading Enabled

Shared - true

Client Message Handlers have the following settings:

®* Name - The name of the message handler. Each message handler must have a unique name per project.
® Threading - Determines the threading for the message handler. Contains the following options:

O Shared - The default way of running a message handler. Will execute the handler on a shared pool of threads in the order that they
are invoked. If too many message handlers are called all at once and they take long periods of time to execute, there may be delays
before each message handler gets to execute.

© Dedicated - The message handler will run on its own dedicated thread. This is useful when a message handler will take a long time
to execute, so that it does not hinder the execution of other message handlers. Threads have a bit of overhead, so this option uses
more of the Gateway's resources, but is desirable if you want the message handler to not be impeded by the execution of other
message handlers.

© EDT - This will run the message handler on the Event Dispatch Thread (EDT) which also updates the GUI. If a message handler
were to take a long time to execute, it would block the GUI from running which may lock up your client. This is helpful when your
message handler will be interacting with the GUI in some way, as the GUI will not be able to update until the message handler
finishes.

For more information on Message Handlers, such as working with the Payload argument, or calling them, please see the Gateway Event Scripts page.

Troubleshooting Client Scripts

The Console is very a important tool in Ignition for troubleshooting Client scripts. You can check to see if your script is working directly from the Client
window, or the Designer while in Preview Mode. Any client scripting errors along with printouts go to the Console. The Console will identify the script
name, error message, what line the script error is in, and a description of the problem.

To access the Console from a Client, go to the menubar and select Help > Diagnostics > Console. To access the Console from Preview Mode in
the Designer, go to the menubar Tools > Console.

Related Topics ...

® Gateway Event Scripts

https://inductiveuniversity.com/video/script-messaging/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/Gateway+Event+Scripts#GatewayEventScripts-MessageScripts
https://legacy-docs.inductiveautomation.com/display/DOC81/Gateway+Event+Scripts

Read a Cell from a Table

After data has been populated in a Table or Power Table component, it may be useful to read or extract
a particular cell from the Table, especially if users can select rows in the Table. On this page, we'll take a
look at how to retrieve information from a particular cell on a Table.

The example on this page utilizes a simple Power Table and Button component. Users select a row from
the table to extract one of the cells from the highlighted row in the Power Table and press the Sign-In

button.

Sign-In
Mechanic_ID Mechanic_Name
1 Waylon
3 Kurt
4 Lewis

Power Table Example

This example provides the code that you can use for selecting a single cell and multiple cells in a Table.

On thispage...

® Power Table Example

Retrieve a single cell requires
that we reference the Power
Table a couple of times in the
same script. Because of this,
we can create a variable that
references the table, and use
the variable later on. Be
aware that a Button and
Power Table can be in the
same container or separate
containers. If your Button and
Power Table are in separate
containers your path may
differ.Selecting a Single Cell
Selecting Multiple Cells -
Same Column

Test Your Script

Note: Before we get started, it is important to understand that a cell in a Table is actually a cell in a dataset. Data in a Table is stored in a property on
the component (the Data property), and the script needs to interact with that property.

Retrieve a single cell requires that we reference the Power Table a couple of times in the same script.
Because of this, we can create a variable that references the table, and use the variable later on. Be aware
that a Button and Power Table can be in the same container or separate containers. If your Button and

Power Table are in separate containers your path may differ.Selecting a Single Cell

1. Drag a Button and Power Table components to your Designer workspace. Assuming the Power Table has not been renamed, we can
reference the Power Table component with the line of code below as shown in the image below.

@ Component Scripting [Button] — O

~ @ action

» i focus
i\ key
B mouse

W Event Handlers

>

1event.source.parent.getComponent (' Power Table') =

»

2

» @ mouseMotion

» W propertyChange

W Custom Methods
+

*

¢ [Navigation % SetTagValue 2= SQLUpdate [Z] SetProperty | B ScriptEditor

=
L2

Python - Reference the Power Table

Grab a reference to the Power Table.
tabl e = event. source. parent. get Conponent (' Power Tabl e')

2. As mentioned above, if the Button and Power Table are in separate containers, the path will be different. Double click the Button
component to open the Scripting window, select the action > actionPerformed event handler, and click the Property Reference icon El to
generate the path to a property, but not the component.

3. Next, select a property from the Power Table in the Choose Property window and click OK.

4. Remove the ".propertyName" portion at the end of the script in the Script Editor, and click OK.

1 1 1 1 |100 1 1 1 1 |ZQQ 1 1 1 1 |300 1 1 1 1 HQQ 1 1 1 1 |5QQ 1 1 1 1 |‘jQQ 1 1 1 1 P‘QQ 1 1
1 0w s &
1 e Button ‘@
1T oF# T § ’&
. @.::"::'e':f: pting [Button] — O =
a
W Event Handlers ¢ [] Navigation % SetTagValue == SQLUpdate [SetProperty I & Script Editorl
~ @ action »
i I 1event.source.parent.getComponent('Power Table') =
> m focus %% Choose Property * %
é— bl key
] b i mouse ~ [#] Power Table S
7 b propertyChange B Enabled (boolean)
E @ Custom Methods W Visible (hoolean)
7] + B Font {Font)
o B Foreground Color (Color)
- B Background Celer (Color)
7 B Cursor (int)
il B Data (Dotoset)
- B Selected Column (int)
g_ B Selected Row (int)
] B CellSpanData (Datoset) ~
< >
Root Container.Power Table.name | =
i < ﬁ Cancel >
[im| L — —— |
] + Advanced Settings
il Event Description Event Object Properties

5. Next, we need to figure out which row contains the cell we want to read from. In our example, the user will select the row for us, so we
simply need to know which row is selected when the Button is pressed. Fortunately, the Power Table contains a Selected Row property
that can be used to determine the row that is selected. Furthermore, we can use the getValueAt() function that is built into datasets.

Python - Reference the Name of the Column

Here the "Mechani c_Nane" argunent references the nanme of the colum.
t abl e. dat a. get Val ue(t abl e. sel ect edRow, "Mechani c_Nane")

6. Alternatively, we can use an integer as the last argument to specify the index of the column our cell is located in.
Python - Reference the Index of the Column

Here the '1' references the index of the colum in the Power Table's raw dataset (Data property).
Remenber, indexes are zero-based, so this would retrieve the second colum fromthe left.
mechani cName = tabl e. dat a. get Val ueAt (t abl e. sel ect edRow, 1)

7. Lastly, we will need to account for scenarios where the user did not selected a row, otherwise, this will throw an exception. An if-statement
can be used here to check for a -1 value on the Power Table's Selected Row property, and an else-clause can be used to notify the user
that a row needs to be selected. There is a property on the Power Table named Selection Mode that allows users to select multiple rows. By
default it is set to only allow a single row to be selected. Change it to test your button.

Here is all the code that you'll need to read a single cell from a Power Table in the same container.

Python - Putting it all Together

Grab a reference to the table.
tabl e = event. source. parent. get Conponent (' Power Tabl e')

Make sure the user selected sonmething before doing the rest of the work.

https://legacy-docs.inductiveautomation.com/display/DOC81/Datasets

if table.selectedRow != -1:
mechani cName = tabl e. dat a. get Val ueAt (t abl e. sel ect edRow, "Mechani c_Nane")

Do sonmething with the nechani cNane vari abl e.
print mechani cName

el se:
print "Please Select a Row"
1 e 00 B [n o [Eltn PRI I R Lt P [in

B T &
| I
i @ Sign-In had

|
EN]
- Mechanic_ID Mechanic_Name
(1]_ 1 Waylon
o 2 Monty
] Czﬁ Component Scripting [Button 1] - m} X
] W Event Handlers ¢ [] Navigation W SetTagValue 2= SQLUpdate [SetProperty script Editor
57 ~ @ action > - R
b | ol B
] + i focus >
b b key
B } I mouse
= » @ mouseMotion
o b i propertyChange
B W Custom Methods # Grab a rIe nce to the e
1 + 9 table = event.source.parent.getComponent(Power Table')
1@

g 11 # Make sure the user f the woz
7] 12 if table.selectedRow
q
il 13
] 14 mechanicName = table.data.getValueAt(table.selectedRow, "Mechanic_Name")
] the mechanicName variable
:
M
g print "Please Select a Row!"
] < »
1 + Advanced Settings

8. To test your script, follow the steps in the Test Your Script section.

Selecting Multiple Cells - Same Column

By default, the Power Table allows for multiple rows to be selected. However, the Selected Row property only shows the row index for the first row
selected. Fortunately, the Power Table also has a built-in getSelectedRows() function that can be used to return all of the indices. We simply need to
iterate over each index.

We can still use the Power Table's Selected Row property to test if any rows are selected, but we could instead check the length of the object
returned by getSelectedRows():

Here is all the code you'll need to read multiple cells from a Table in the same container. Copy the code in the code block below and replace the code
in previous example to allow for multiple rows to be selected.

Python - Reading Multiple Cells

Grab a reference to the table.
tabl e = event. source. parent. get Conponent (' Power Tabl e')

sel ect edl ndi ces = tabl e. get Sel ect edRows()

1f the length of selectedlndices is greater than 0, then at |east one row is selected.
if len(sel ectedlndices) > 0:

for index in sel ectedlndices:

mechani cNane = tabl e. dat a. get Val ueAt (i ndex, "Mechani c_Nane")

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Power+Table#VisionPowerTable-PowerTableScripting

We can do something with the value as we iterate, or append to a list and
do sonmething with the entire list after the for-I1oop conpletes.
print mechani cName

el se:
print "Please Select a Row"

Test Your Script
Now you're ready to test your script whether you are selecting one row or multiple rows.

1. Open the Output Console and select Tools > Console in the menubar.

2. In Preview Mode, select a row in the Power Table, and click the Sign-In button. You will see the selected Mechanic_Name displayed in the
console.

3. To test selecting multiple rows, shift click a couple of rows and press the Sign-In button, and you'll see the selected Mechanic_Names
displayed in the console.

Output Console B X

Mechanic_ID Mechanic_Name B a
1 Waylon Lewls
2 Monty
3 Kurt

L

Related Topics ...

® Vision - Table
® \Vision - Power Table

https://legacy-docs.inductiveautomation.com/display/DOC81/General+Designer+Interface#GeneralDesignerInterface-ToolsMenu
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Table
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Power+Table

Historian in Vision

The Tag Historian is a powerful system that can easily be set up to store Tag data to a database to be
accessed at a later time. The Vision system has many components that are designed to easily pull the

information out of the database and display it, most commonly in chart format. On thlS page
The Easy Chart
The most popular Vision component that trends historical data would be the Easy Chart. This component : %Z (E:?:gsghgrr]tart
is simple to initially configure and contains many ways to customize the look and behavior of the chart. * The Sparkiine Chart
The Easy Chart also features a customizer that enables you to change the many different settings of the e The Status Chart
component.
Pens 100] . . [
” R Y | O | RO 1 hoh
s I L L e
B 3 sined || || ‘ A ‘ || | | [| L "
ot 11 1]] W]
IRININIRIRIE v IRy
25 1 |1 | | | | | | | | | | |
k)
3 .'"'Il'lh MR AALMA AL L "‘|"|I‘}|l1 AARATANARAT AR A |‘|"|‘|l‘ -'I M
g 'J'-.Lﬂl-fn-u-.u-JL’F-JI-.-I-.-HH { ANV ERA A
251 | ‘ | F-- - F--1--f | |
| UYL
|| f ‘ | | | \ | | |
= LY RRRER IRRm
1:38 PM 1:40 PM 1:42 PM 1:44 PM 1:46 PM
[May 24, 2019]
4 8 5/24/19 1:37 PM - 5/24/19 1:47 PM @ P
T —
g » ° 3 ¢ T g © 9 9 0 0) 0 8 8 3 0 [} 3 T T O
12:00 PM 12:30 PM 1:00 PM 1:30 PM

The Classic Chart

The Classic Chart pulls in data from the Tag History system and can display it in a variety of ways. While not as simple to get started with as the Easy
Chart, the Classic Chart provides the unique ability to trend data that isn't based on a timestamp, but instead something like a category.

https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+Historian

110
100 -
a0 -
B0 -
701
60 -

50 - I\m 'll."l\ﬁ ;'“'Jr II‘L\,"ﬁ'lll .-
SV N

Value

W

401 |
30 1 Hﬁ'.n‘w"\fﬁ | ,ﬂh ‘l\'.l“i""'tﬁl /
My

May 16 May 17 May 18 May 19 May 20 May 21 May 22 May 23 May 24
Date

— Process Temp — Output Temp

The Sparkline Chart

The Sparkline Chart is a simple chart that strives for minimalism rather than many fancy settings. Even with its simplicity, it remains a powerful tool.
For example, the Sparkline Chart works great when used in High Performance HMI environments, where muted colors and lines are used to help draw
the users attention to the places that matter.

The Status Chart

The Status Chart displays discrete data over a period of time. This provides a great way of displaying status information for various machines. It can
also accept data in both wide and tall format, making it easy to use with any type of stored historical data.

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Sparkline+Chart

LSeries3 4

Series2 4

Leries] 4

Oct15 Oct16 Oct17

Oct 18

Oct 19

Oct 20

Oct 21

Oct 22

Oct 23

Oct 24

In This Section ...

Using the Vision Easy Chart

Trends Made Easy

The Easy Chart was developed with the Tag Historian system in mind. Once an Easy Chart is created, you can drag and drop historical Tags onto the
chart. The chart will immediately retrieve the results and trend the history. Data that is not set up with Tag Historian can also be displayed on the
chart, as long as the data has timestamps associated with the values. For this type of data, database pens are created and displayed.

= & F Lk

Value

1

|

1

I

1

3:07 PM 3:09 PM 311 PM 313 PM 3115 PM 1

[May 22, 2019] :

1

1

4 & 5/28/19 3:06 PM - 5/28/19 3:16 PM @ :
e ——— T —
: i T o |
2:00 PM 2:30 PM 3:00 PM 3:30 PM !

File Edit View Project Component Alignment Shape Tools Help
HHE L e a- &80 8 8 C 9w E b o
Project Browser g - X L, o, 190
Q- Project Properties A
~ ™ windows A1 ‘I —————————————————————————————
~ @ Main Windows] ! Pen_s]
b M Acme_Main_Window b 1| Il E4 Sine0
1 Yy .
M alarms T i I B4 Sinet
[canvas_Example a || @ 2 sine2
+ [T Easy Chart Example Page 4 1| W B3 sine3
~ [Root Container '| @ B2 sinea
IHER % Easy Chart 1
1
» [HMI Main B |
™ HMI West Field z !
™ Main window 1] “:
M Motor Proiect hd |l !
Tag Browser g - X :
1
Q C | ¥-8 690 B e !
» @ Sim_Generic N :
I
7 |
% Sine0 OPC 5457 Double | ® 4
¥ Sinet 3.16 Double |D] !
¥ Sine2 6.51 Double |©] I
|
[5935 | Double |© i
64.8 Double | D o
54.57 Double |®]

Chart Modes

The Easy Chart has a Chart Modes property that changes the behavior of the chart in several ways. The three chart modes are Historical, Realtime,

and Manual. The mode is set in the Vision Property Editor in the Chart Mode Property.
Vision Property Editor o _ ¥
== f Iy 0
pE 8 | = = R W
Common -
=l Behavior
Chart Mode |Hi5torica| - &
Pen Control? Manual (o]
Pen Control Mode Historical G
Realtime
Auto Apply — G2
Historical

This mode places a Date Range Selector component at the bottom of the chart. This mode allows users to select a start and end date for the trends.
The data density is shown at the bottom of the chart: the more vibrant the color, the higher the density. This the default mode, and commonly used in
situations where users need to look at specific date ranges. It is important to remember that the chart does not poll in this mode. New values are only

added to the chart when the selection box is moved or re-sized.

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Easy+Chart
https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+Historian
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Date+Range

i

Value

307PM 309PM 31PM FA3PM 315 PM

[May 28, 2019]
4| 8 5/28/19 3:06 PM - 5/28/19 3:16 PM @ P
|
o o o @ o @ 0 0 0 0 0 [00T —0 0 0 [d» 0 0 0 T
2:00 PM 2:30 PM 3:00 PM 3:30 F"I'J
Realtime

Displays the most recent data for each pen. Users are able determine how far back in time the trend should display with the Spinner and Dropdown
components at the bottom of the chart. In this mode, the chart polls for data at the rate specified by the Poll Rate property.

In some cases, you may notice that the most recent values on tag pens tend to flat-line, and then 'snap' to a different value. This is generally due to
how often the chart polls versus how often history is being generated. If the chart polls at a 1,000ms rate, but history is only recorded at a 10,000ms

rate, then the chart will extrapolate the last recorded value for 9,000ms. After a new value is recorded, the next poll will return the latest value, and the
flat-line will change position.

100 p - n

(A
751 |"I I'nl |'I I'l AN [| ﬁ
50 4 ||II

24| I|I L ||||||'|I||I I| ;" YA

1 I
5 .l |
i}
= I 17 11 1] I
| | 4
25 '.I | Il | | | I | I| I |I II [1 | I| I| | |
I| | ,ul | | IJ| | | ',u' | I| | i | | l
| |
=50 || ll ||I | || I|| | || |I [
| I| "I Vo | I'u rl
75 I'l |II \ |I || |I | | II
| \ | \ |)
100 \ U \J L¥i I"u"J
3:30 PM 3:31 PM 3:32 PM 3:33 PM 3:34 PM
[May 28, 2019]

Last: 5= Minutes ~ i)

-

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Spinner
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Dropdown+List

Manual

Similar to the Historical mode in that trends range from two points in time. However, there is not a built-in method for users to change the data range.
Instead, some sort of binding can be applied to the chart's Start Date and End Date property. This mode is generally used in situations where only
certain date ranges should be shown, such as values recorded during the previous day, or shift.

10 A n " -

5] /| {0 I |

]

501 {

. I | | | | ' |
A oAl oA A AWM AW ALK A noANs L
ﬂ_rlI'.-'I"IlI-.-'Illlu".'.'ll'u". Ill'n".'h|'|".i'|||'|'|r’||-II|,|ﬂ".
I'-""'Il'""ul -“| 'llll-'nﬂ'.||J'|| INRYRY '-Illlln""nll.'.}'l-
VU W L VI VARV W N AR
| | |

-25 1 b | | i | i |

Value

5 L

_1 D ﬂ] \ __-. o '-.. __-" by o

219 PM 4:30 PM 2321 PM 423 PN
[May 28, 2019]

Pens

Pens on the chart, or each series of data points on the chart, can be customized to take on a number of different styles and colors. There are three
types of pens, and each pen functions in a similar manner. What makes them different is how their data is collected.

® Tag Pens - These pens are driven by the Tag history system. Data from any historical provider can be used, and Tag history from different
databases can be shown on the same chart. These are the type of pens that are created when Tags are dragged onto the chart. Since the
Tag History system is being used, an Aggregation Mode must be selected, and the Tag Path needs to be specified for each pen.

® Database Pens - These pens are driven by a SQL query, so they are ideal to use when trending Transaction Group data. However, they can
query for data in any connected SQL database, so it is possible to show historical data recorded by other systems on the Easy Chart.

® Calculated Pens - Pens that derive their data from calculations performed on other pens. Data for calculated pens is not stored directly into
a database, but rather calculated in the runtime based on data from another pen. These type of pens are great for display running totals,
control limits, or specification limits.

Easy Chart Customizer >

1., Axes Subplots Dynamic Groups

Name Tag Path Color Preview jo.

Sined [~]Sine/Sine0 e

Sine ISine/Sinef e _ *F

Sine2 [~]Sine/Sine2 >+ @ T
F

Name ¥ Column Table Color Preview p

RV Tank_MNumber Tank_History _ & T o
F .

Name Function Pen Parameter Color Preview

sine0 Sum RunningSum | Sine0 - e ——

X =2 &

oK Cancel

Pens can be added manually to the chart with the Easy Chart Customizer or added dynamically by modifying the various pens properties listed under
Chart Configuration in the Vision Property Editor. These properties contain the configuration of each type of pen and can make use of the binding
system. Because of this, pen preferences can be saved to a database table and then queried in the runtime with a SQL binding. Additional
adjustments can be made with Cell Update bindings or scripting to create a dynamic-yet-robust chart.

Vision Property Edi tar a - X
BE (% = | = R Hmo-

El Chart Configuration
DE Pens Dataset [2R x 23(C] @C—D
Tag Pens Dataset[3Rx20C] [e
Calculated Pens Dataset[1Rx21C] [e
Axes Dataset[1Rx22¢C] [g e
Subplots Dataset [1R x 3C] fgeal

Note: When you add pens to the Easy Chart, all pens will show up with a white X next to their name. This exists for creating an ad hoc chart used
with the Tag Browse Tree component. To remove the ability to delete pens, you must edit the Tag Pens dataset property. Click on the dataset viewer
icon, then in the last column "User Removable", deselect the checkbox and click OK.

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Easy+Chart+Customizer

Easy Chart Customizer

Aside from the properties on the component, the Easy Chart Customizer allows modifications to be made to the chart. Along with configuring pens, the
customizer can be used to create subplots, new axes, and dynamic groups. Once created, each pen can be assigned to any available axes or
subplots. This way different values can be shown on different plots with an axis that is specific to data at hand.

Level

W & Tank 01 Level 52
B & Tank 03 Level 5%
B & Tank 27 Level 52

- i

Temperature

o
— =3
W £3 Tank 01 Temperature 38 et
W 2 Tank 03 Temperature 53
B) Tank 27 Temperature 52
z
=
E 50
é‘ 45
@
10:28 AM 10:30 AM 10:32 AM 10:34 AM 10:36 AM
[May 29, 2019]
4 & 5/20/19 10:27 AM - 5/29/19 10:37 AM & p

o VT
10:00 AM 10:30 AM

Related Topics ...

® Easy Chart Customizer

In This Section ...

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Easy+Chart+Customizer
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Easy+Chart+Customizer

Easy Chart - Axes

Configuring Multiple Axes on an Easy Chart

The Easy Chart supports the use of multiple axes for displaying data from the Tag Historian. On th|S page .

(D This section assumes that Tags and Tag History have been configured
® Configuring Multiple Axes on an

To learn more, go to the Tag and Configuring Tag History pages. Easy Chart
The examples below use OPC Tags from the Programmable Device Simulator driver, but * Hiding Pens
Memory Tags can be used instead. * Configuring an Easy Chart using

the Symbol Axis

@ INDUCTIVE
UNIVERSIT

Easy Chart - Axes

Watch the Video

Now, let's configure multiple axes on an Easy Chart component.

1. From the Component palette, drag an Easy Chart component to your workspace.

2. Next, drag your Tags over from the Tag Browser onto your Easy Chart. For the example, we used Sine 1 and Sine 4. Sine 1 and Sine 4
have completely different value ranges. Sine 1 values range between -10 and 10. Sine 4 values range between -100 and 100. Since both
sines are on the same axis, it is hard to see the details of Sine 1 values because Sine 4 is throwing off the axis due to its wide range of

values.
Pens
masese DN |'
W 3 Sined 32 ?5|| ||| ||I ! || |'| H | “ ‘ ‘\
50 |
sl H\ i w. A
£ oA |||1 I"W'ﬁh"f h l.f')'l"l)l"”' "'Ilil'}liil*'l{leuuIl” I ""} e "
-25 ' | ‘ | f ' ‘ | ‘
\‘\ | ||‘| WARA I I
75 |I|I ‘ | | | |‘ ‘
100 i |J || |'Il I l] ” |l| | i‘ |I| |L-| I\l U
3:13 PM 3:15 PM 317 PM 3119 PM 3:21PM
[Jun10,2019]
4 CY 6/10/19 3:12 PM - 6/10/19 3:22 PM H, b
R |
200PM oza0eM " 3odeu CTaem

3. You have the option of putting Tags into different axes. You can do that in the Customizer of the Easy Chart component. Right click on the
Easy Chart component and choose Customizers > Easy Chart Customizer.

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Easy+Chart
https://inductiveuniversity.com/video/easy-chart-axes/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Easy+Chart+Customizer
https://legacy-docs.inductiveautomation.com/display/DOC81/Tags
https://legacy-docs.inductiveautomation.com/display/DOC81/Configuring+Tag+History
https://legacy-docs.inductiveautomation.com/display/DOC81/Programmable+Device+Simulator

4.

©oo~NO G

A Customizers b/ EasyChart Customizer
E¥ Scripting...

@ Security

@ Translations

A& Run Diagnostics

Click on the Axes tab. You'll notice that there is already one axis showing called Default Axis, which both Tags are sharing.

|.4| Easy Chart Customizer x
~ Pens |, Axes B Subplots B Dynamic Groups =
Name Label AutoRange Lower Bound Upper Bound +
Default Axis Value 0.0 100.0)

'

[

£ >
0K Cancel

. To add an axis, click on the Add + icon.

. The Edit Axis window is displayed. Assign the Axis a name. In this example, it's the name of the Tag that is being used.
. Enter a Label name, which is a name that you want users to see on your chart.

. Select the Type of axis from the dropdown: Numeric, Logarithmic or Symbol. This example uses the default, Numeric.
. If desired, select the Label, Tick Label and Tick Color that you want to set for your axis.

The Position property determines which side of the chart the Axis should be drawn on. By default, this property is disabled because the
Easy Chart automatically attempts to position each Axis. To manually determine the position of an Axis, locate the Auto Axis Positioning pro
perty in the Property Editor of the Easy Chart component, and set it to 'False'.

By default, the Auto Range is set to 'true' and will apply padding so the pens do not draw at the top and bottom of the axis. Instead of having
the Easy Chart automatically determine the range, Auto Range could be set to 'false’, in which case the Lower Bound and Upper Bound
properties will determine the full range of the axis.

Edit Axis X
MName Sine 4
Label Sine 4
Type MNumeric v
Position b

Axis Inverted B4 True

Auto Range 2 True

Auto Range Incl Zero | | False

Auto Range Margin 0.05
Lower Bound

Upper Bound

Auto Tick Units [True
Tick Units

Gridline Units

Mumber Format Override

10. Now, you have two axes: Default Axis and Sine 4 axis.

Easy Chart Customizer *

~ Pens | Axes B Subplots B Dynamic Groups

Name Label AutoRange Lower Bound Upper Bound +
Default Axis Value] 0.0 100.0
(sred | ¥ | oo 000 [l

m

0K Cancel

11. Once a new axis has been created, you need to assign a pen to the axis. Select the Pens tab, select the pen row you want to change, and

click the Edit 4 icon . This example uses the Sine 4 pen. In the Axis field, select the Sine 4 axis from the dropdown menu, and click OK
to save the pen.
12. Click OK again to close the Easy Chart Customizer.

Easy Chart Customizer W

~ Pens | Axes B Subplots F Dynamic Groups

Name Tag Path Color Preview Q
Sinel [~]SII’]E}'SIHEU

T —
[Edit Pen w

b - General - Style 2
Name Sined Color _ ®. |ncel
Enabled [true Style Line w/ Gaps v
Hidden false Dash Pattern
User Selectable 3 true _ _ —

) - Line Weight 1
Axis | Sine 4 - |

. Shape u -
Subplot Default Axis .
I Sine 4 I Fill Shape?
Group Name v Labels
Digital Offset false EreAie W"v‘l
-Data

Tag Path [~15ine/Sined ®
Aggregation Mode | Min/Max -

13. You'll notice that each pen is now in a different axis: Sine 1 is in the Default Axis, and Sine 4 is in the Sine 4 axis. On the right side, you can
see Sine 4 axis and its values. On the left side, you can see the Default Axis (Sine 1) axis and its values. Now, you are using a different axis
for each pen, and one pen is not going to throw off the values for the other pen.

P"'; 10 Pl T EA
] Sinel 3% ' - | /\ | I |
e 75 |/\ |] [“ |I| | | |'| |I| 5 =
5 '| |r{ | | | 50 BH
z-s"'| iy '| |||'| \\|-25
2o ||] 0 3
s | | I -
25 |||| H||" H| || M / 2
5 t|| ||\ | | (50
754 || '.| |J “ |II '| \LV ||| I| V‘V Jt7s
10 I 100
3:34 PM 3:35 PM 3:36 PM
[Jun10,2019]
4| 8 £/10/19 3:34 PM - 6/10/19 3:36 PM @@ p
[—
201PM 23iPM 3eiem 33tem awiem

Hiding Pens

You can also hide or turn off pens so they are not displayed on the Easy Chart. To only see values for the Sine 1 axis, go to Preview Mode, uncheck t
he Sine 4 pen, and click Apply. To see the values for only the Sine 4 axis, check the Sine 4 pen, uncheck the Sine 1 pen, and click Apply. Also
important to note, auto positioning on the Easy Chart will automatically move the axis should pens assigned to an axis be removed.

Sine 1 Pen Sine 4 Pen

https://legacy-docs.inductiveautomation.com/display/DOC81/General+Designer+Interface

Pens
L T T S S T A S A IO S S A AR AR S [}
W G sinel 32 hh AL S A w‘ 1 [Pens 100 . ~ . x|
LT || | | | o et o | R | R = B Isinel 5% A M N [
W | sine4 32 Ll I | I Il [. 75 AR foh Y PEY =]
| A e A N e W @ sines 53 [I [I
AR RN AR AR AR AR 0 [P [[g
s T T I [oy i
g [1] | AERNANAR! 25 [- [o
s T RERNAR RN . | “ | \ [\
T st 1 L I8 ‘|||| [I [Vo by
E \ s
RIRIR A RIATR IR AIRIRIN R IAT s e
AT | | \ | \ \ o
IRIniR | [I ol | ‘
\ Y Il | \ \) | b -
F T | 1§ | Y | T | A S | R Y R Vo | . |/
[| vy I I T [s\ \i \ v
[T (N N N R O R N N (R MM \ / \ \ \
100{ Vs AV L
3:34:29 PM 3:3450PM 3:35:29PM 3:35:50PM 3:36:29PM 3:36:59
[Jun10,2019] 3:34:29PM 3:34:59PM 3:35:29PM 3:35:59PM 3:36:29PM 3:36:50
[Jun 10,2019
e 6/10/19 3:34 PM - 6/10/19 3:36 PV & b _
= E 6/10/19 3:34 PM - 6/10/19 3:36 PM| a|r
TN TN i
| | 2:01 PM 231 P 301 PM 331 PM 401 PM T L T T
2:01PM 2:31PM 3:01PM 331 PM 401 PM

Configuring an Easy Chart using the Symbol Axis

Another feature of the Easy Chart is the use of the Symbol Axis type. Instead of showing numerical values on the axis, the Symbol Axis type can
show plain text on the axis.

The second subplot in this Easy Chart uses a Multi-State Button component to demonstrate the use of the Symbol Axis type. The Multi-State Button
component is bound to an OPC Tag, and the value of the Tag is stored in the Tag History system. Instead of showing the numerical values '0,' '1," and
'2,' you can use plain text such as 'Hand,' 'Off, and 'Auto." This is helpful to an operator who immediately knows the state of the equipment instead
of having to learn what the numeric values mean.

Pens 50 | .
MO A
HOA L[il \ #‘“l" A J'\ =
. Eig ﬂlw |I ;Ill"'.' w'fl i X '1' I :] @
[g RealisticO %% 254 W |
| Realistics 33 - IJ
=2 .
g "l'.- .'I' "
25] L A
50 a—rd NN
Hand -
Hand
]
Off & Auto
(¥
Auto off . . . | ;
10:53 AM 10:55 AM 10:57 AM 10:59 AM 11:01 AM
[Jun14, 2019]
{ '5.3.__ 6/14/1910:52 AM - 6/14/19 1102 AM ':-l_. ’
| o
7 o o o @ o g © © o ©o o § @ o © o o p o0 o-or—'¢
9:10 AM 9:40 AM 10:10 AM 10:40 AM T

. Click on your Easy Chart component, and select Customizers > Easy Chart Customizer.

. Click on the Axes tab, then click the Add + icon to add an axis.

. Enter a Name, we chose 'Axis 2'. Enter a Label, we called 'State'.

. In the Type field, select 'Symbol' from the dropdown.

. In the Symbols/Grid Bands field enter 'Auto,' 'Off,' and 'Hand' separated by commas, and no spaces. The order of the symbols when you
type them in, will be ascending order on the axis.

OhWN P

Edit Axis X
Genera
MName Axis 2
Label State
Type Symbol v
Position Left -

Label Color

Tick Color _ &,
Axis Inverted False

Range

Auto Range False

Auto Range Incl Zero

Auto Range Margin

Lower Bound 0.0
Upper Bound 100.0
Svmbols

Symbols/Grid Bands Off Auto,Hand
Grid Bands Visible M True

Grid Band Color _ -3
Grid Band Alternate Color _ &,

m Cancel

6. Click OK once to close the Edit Axis window.
7. Next we need to assign the new axis to a pen. In the Easy Chart Customizer, click on the Pens tab.

f .

8. Select the Pen that should use this new axis and click Edit

9. Using the dropdown, set the Axis property to our newly created axis.

Edit Pen ¥
- General - Style

Name HOA Color _ Q.

Enabled true Style Line w/ Gaps -

Hidden false Dash Pattern

User Selectable 4 true Line Weight [

Axis Axis 2| v

— Shape m -

Subplot "7 il shape?

Group Mame v Labels

Digital Offset false T |/ /_./“M---"'x_.___l
- Data

Tag Path [~1Writeable/WriteableBooleanl %

10. Press OK to close the Edit Pen window, and press OK again to close the Tag History Customizer.

11. Put the Designer in Preview Mode
12. Toggle the Multi-State buttons to begin logging data to your Easy Chart. Data for the Multi-State Button component is collected in the second
subplot which is using the Symbol Axis type. The first subplot is data for another Tag using the Numeric Axis type.

ns 50 r\\ | \/ E:]
B HoA 52 . *\j\f\x\f\ f
B £ Realisticd 53
B 3 Realistics 53 g E
2
\ ™
T \.-' - "._, . r.'l I", J
h* LY /
f Y
. Y
Hand
Hand
o
off o Auto
(s]
| Awo on
11115 AM 11:16 AM 11:17 AM 11:18 AM
[Jun14,2019]
‘ 'a;b 614191115 AM -6/14/1911:18 AM '% ’
9:25 AM 9:55 AM 10:25 AM 10:55 AM T

This Easy Chart example above shows the subplot feature of the Easy Chart component and how easy it is to break up the chart plot area into
multiple distinct subplots sharing the same X axis. It is a good way to display lots of data from different Tags in one Easy Chart.

Related Topics ...

® Easy Chart Customizer
® Easy Chart - Subplots

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Easy+Chart+Customizer

Easy Chart - Subplots

ﬁ} This section assumes that Tags and Tag History have been configured

To learn more, go to the Tag and Configuring Tag History pages.
The examples below use OPC PC Tags from the Programmable Device Simulator driver, but

Memory Tags can be used instead.

Subplot Overview

The subplot feature of the Easy Chart component allows you to break up the chart plot area into multiple
distinct subplots sharing the 'X' axis, but they each have their own "Y' axis. It is a good way to display
lots of data from different Tags in one Easy Chart.

By default, the Easy Chart has one subplot which is the main white area. In this example, there are three
Tags inside the chart, yet it's difficult to see the details of the data. It's possible to break up your Tags
into multiple subplots which is often useful for discrete data.

Pens 1,000

INDUCTIVE
UNIVERSI1

D

Easy Chart -
Subplots

Watch the Video

] Ramp0 33
[Ramp2 33
O Sine1l &2

Value

400
800
700
600
500
400

300 4/

200

100

| ! 1

I

H|

A0 I

I .'I'*ﬂ'|

f |'II 'Juilﬂ |II I/ 'J J | |.'II1 / I.'I / dl .'II I"II |lI I 1' |"
VLY ""fr

[=]

| f ll

VLRV

2:49 PM 2:51 PM
[Jun11,2019]

2:45 PM 2:47 PM

6/11/19 2:44 PM - 6/11/19 2:54 PM

2:53 PM

3:00 M

Configuring Easy Chart Subplots

o
3:30 PM

For each Tag in the Easy Chart example above, let's create its own subplot so the data is easier to view and analyze.

. Drag an Easy Chart component onto your window.

The Easy Chart Customizer window opens

1
2. Drag three Tags onto the chart. We used Ramp0, Ramp2, and Sinel from Programmable Device Simulator.
3

. Right click on the Easy Chart component and choose Customizers > Easy Chart Customizer.
displaying four tabs.
4. Click on the Subplots tab.

5. The Subplots tab lets you add one or more subplots to the Easy Chart. Create two more subplots by clicking the Add + icon two more

times.

6. The size of each subplot corresponds to the ratio between their "Relative Weight" settings. By default, each subplot is assigned a weight of 1,
meaning each subplot will share an equal percentage of space on the chart. In this example, we set Subplot 1 has a weight of '2', and Subpl

ots 2 and 3 have a weight of '1'. Subplot 1 is going to be 2 times larger than Subplots 2 and 3.

https://inductiveuniversity.com/video/easy-chart-subplots/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/Programmable+Device+Simulator
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Easy+Chart+Customizer
https://legacy-docs.inductiveautomation.com/display/DOC81/Tags
https://legacy-docs.inductiveautomation.com/display/DOC81/Configuring+Tag+History
https://legacy-docs.inductiveautomation.com/display/DOC81/Programmable+Device+Simulator

Easy Chart Customizer X

~ Pens [Axes B Dynamic Groups =
Q subplots allow you to break your chart up into separate plots stacked vertically, each with its own X

set of Y-axes. Their sizes will correspond to the ratio between their "Relative Weight" settings.

Plot # Relative Weight Custom Background? | Background +
2/ 8 | ~ 8
Plot 2 1 -~ | O
Plot 3 1 - &,
< >
oK Cancel

7. Now that we have subplots, we'll put each of the different pens into a different subplot. Click on the Pens tab, select the row for the

Ramp0 Pen, and click the Edit f icon. For this example, we chose the following settings:

a. Setthe Subplot to 1.
b. Set the Color to pink.
c. Setthe Style to Area.
d. Click OK.
Edit Pen X
- General - Style
e [ed o [©
Enabled B true Style Area .
Hidden false
Dash Pattern
User Selectable [true
Axis Default Axis - LT 2L bl
A Shape L] v
Subplot 1~ _
Fill Shape?
Group Name -
Labels -
Digital Offset false ,
- Data
Tag Path [~151im_Generic/Ramp/Ramp@ G
Aggregation Mode | Min/Max v

ﬂ Cancel

8. For the Ramp2 pen, we selected the following:

® Subplot: 2
® Color: Blue
® Style: Line w/Gaps

9. For the Sinel pen, we selected the following:
® Subplot: 3

® Color: Red
® Style: Digital

Easy Chart Customizer X

~ Pens [Axes B Subplots B Dynamic Groups =
MName Tag Path Color Preview Q
Ramp0 [-JRamp/Ramp0 - B
Ramp2 Cramprary: [>. —— — — | *
psmesnet |
Fa -
Name ¥ Column Table Color Preview
+
F .
Name Function Pen Parameter Color Preview +
s

oK Cancel

10. Click OK. Now, you have three distinct subplots on one Easy Chart. You are not limited to the number of subplots on one Easy Chart.

Pens 1,000

W 2 Ramp0 3% ot &
B ERamp2 32 | % 00
W £ 5ine1 33 = B
250
a
o
= a
10
=
-10
318 PM 319 PM 3:20 PM 3:21 PM 3:22 PM
[Jun11,2019]
4| 8 6/11/19 2:18 PM - 6/11/10 3:22 PM @ p
_SZI
i O e
2:00 PM 2:30 PM 3:00 PM 3:30 PM

11. You can be selective about what subplots you want to view. Go to Preview Mode, uncheck the Pens you don't want to see, and click Apply.

12. Notice how the Ramp2 pen is unchecked and is no longer displayed on the Easy Chart. To add the Ramp2 pen back to the Easy Chart,
check the Ramp2 pen, and click Apply. The Easy Chart only displays subplots that have active Tags.

Pens 1,000 EE
M £ Ramp0 33 =
.DRamp2 52 750
W £ sinet 33 El =)
™ 500
=
250
1
I
=
-10
3:20 PM 321 PM 3:22 PM 323 PM 3:24 PM
[Jun11,2019]
4| & 6/11/19 3:20 PM - 6/11/10 3:24 PM @@ p
e
2:00 PM 2:30 PM 3:00 PM 130 PM

Related Topics ...

® Easy Chart Customizer
® Easy Chart - Pen Names and Groups
® Easy Chart - Pen Renderer

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Easy+Chart+Customizer

Easy Chart - Pen Names and Groups

@ This section assumes that Tags and Tag History have been configured

To learn more, go to the Tag and Configuring Tag History pages.
The examples below use OPC Tags from the Programmable Device Simulator driver, but IN DUC T I VI

Memory Tags can be used instead. UNIVE RS IT

Pen Names and Group Overview
Easy Chart - Pen

You can organize pens on the Easy Chart by creating custom names and groups for each pen. By

default, when you drag Tags from the Tag Browser on to the Easy Chart component, the pen name is the Names and Grou pS
same as the Tag name and organized into a single group called ‘Pens." One of the great things about

pens is you can change pen names and organize pens into different groups making it easier for the .

operator to quickly analyze the data. Watch the Video

Pens (]
M (3 Ramp0 2 300 &
[] Rampl 2% 250
@ 3 Ramp2 £ H
[] Sined 3% 200
O 4 sine1 33 150
O Sine2 3% ;% . e
T w00 -~ ,_,-' 1 /,»’4
7 7 ~
50 | /// ‘ /// | -
b e P e
[
50
100

3114 PM 3116 PM 3118 PM 3:20 PM 3122 PM
[Jul21,2020]

4 2 7/21/20 3:13 PM - 7/21/20 3:23 PM & (b

Configuring Pen Names and Groups
For each Tag on the Easy Chart, let's create unique pen names and organize each pen into a group using the Easy Chart Customizer.

1. Right click on the Easy Chart component, and choose Customizers > Easy Chart Customizer.
2. On the Pens tab, we'll edit each of the individual pens and give them a different name as well as put them inside a different group.

a. Select the first pen row, click the Edit & icon, and rename the first Tag from ‘Ramp0’ to ‘RO’ as shown in the following example.
b. At the bottom of the Edit Pen window, next to Group Name, create a new group called ‘Ramps.’
c. If other groups exist, you can select one from the dropdown list or enter your own. In this example, this is the first group to be
created, so simply type ‘Ramps,’ and press OK.
3. Repeat this step for each Ramp pen assigning each pen a new name.

https://inductiveuniversity.com/video/easy-chart-pen-names-and-groups/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Easy+Chart+Customizer
https://legacy-docs.inductiveautomation.com/display/DOC81/Tags
https://legacy-docs.inductiveautomation.com/display/DOC81/Configuring+Tag+History
https://legacy-docs.inductiveautomation.com/display/DEP/Simulators

Easy Chart Custemizer

~ Pens [Axes B Subplots B Dynamic Groups

Tag History Pens

MName Tag Path Color Preview

e S R

Database Pens

Enabled L true Styl Li <]
Name = tyle ine w/ Gaps

Hidden false Dash Pattern

User Selectable [true _]

) : Line Weight

Axis Default Axis -
a“w Shape
Calculated Pen| Subplot 1 :)

Fill Shape?
WL Tl Group Name I Ramps - I Labels

R 1

amp Edit Pen P
Ramp2
Sined - General - Style

S me [® | coor I -

-

Digital Offset false Preview T~

b~ + 0O

o

m Cancel

- Data
Tag Path [~]Ramp/Ramp@ ()
Aggregation Mode | Min/Max -

ancel

4. Next, let's keep the Sine pen names the same as the Tag name, but add them to a group.

. Select the Sine0 pen row, and click the .

. Enter a new group name called 'Sines’'.

. Click OK.

. Repeat this steps a and c. to add each Sine pen to the Sines group.

oo0oT®

Easy Chart Customizer X
L. Axes B Subplots E Dynamic Groups
Tag History Pens
MName Tag Path Color Preview Q
Ramps/RO [~]Ramp/Ramp0 _ &~ |~
Ramps/R1 [~IRamp/Rampt - |t
Ramps/R2 [~]Ramp/Ramp2 - & y
cswesne |
AT ., [EditPen x
Database Pens
Name - General - Style Q
e [B
Enabled [true Style Line w/ Gaps -
; £
av _ Hidden false Dash Patiern
Calculated Penl ser Selectable [true <
Line Weight 1
Name Axis Default Axis v = +
Shape u -
Subplot = s
< ? ~ | Fillshape? >
Group Name Sines
P I v I Labels o
Digital Offset false Preview r" " ~__ |
-Data
Tag Path [~]15ine/5ined &
Aggregation Mode | Min/Max v
n Cancel

5. Once you have all your pens configured, click OK. Operators will see the Pen and Group names organized into two legends on the Easy
Chart. You can update the pen and group names on this view by double clicking on any of the fields. It's a faster way to edit this information
then having to go to the Edit icon for each pen.

Ramps E:]
W &R 3¢ 300 &
W Er 3 o
B @R 3 =
200
Sines
B&Gso 2 | o
OEst 2| &
O sz 52
-100
3:32 PM 3:34 PM 3:36 PM 3:38 PM 3:40 PM
[Jul 21,2020]
4 | a, 7/21/20 3:31 PM - 7/21/20 3:41 PM @ | b
[[
APPYY vsipM zziem zsiem 3aiem T
@ Tip for Viewing Specific Pen Values
To see specific Pen values on the Easy Chart, uncheck the Pen and click the Apply button. To see all Pen values, make sure all
Pens are checked, and hit the Apply button.

Related Topics ...

® Easy Chart Customizer
® Easy Chart - Pen Renderer

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Easy+Chart+Customizer

Easy Chart - Pen Renderer

Customizing the Pen Renderer

You can customize the renderer of each pen on the Easy Chart to change its style, shape, weight and
color. When adding Tags to an Easy Chart component, the default renderer or style of each penis a
simple line, but it can be customized for each pen.

Pens 1,000

]
W G Rampo 5% 750 &
W Eramp2 X | g
W Dsinel 3 3 0 H
250
o
7
3ol A A/ AN AN
g'\'\flr“l‘/‘/”//’///

YV YV VYV VY VvV vy

10
318 PM 319 PM 3:20 PM 3:21PM 322 PM
[Jun11,2019]

4 a 6/11/19 3:18 PM - 6/11/19 3:22 PM @ b

T T
2:00PM 230 PM 3:00 PM 330 om

@ INDUCTIVE
UNIVERSIT

Easy Chart - Pen
Renderer

Watch the Video

In this example, we will use the Pen Renderer to customize several pens. What's nice is the Easy Chart Customizer allows you to previewthe style,

shape, weight and color. If you don't like it, you can easily change it.

1. Click on the Easy Chart component, and scroll down to Customizers > Easy Chart Customizer.

2. From the Pens tab, select the pen row, and click the Edit s icon. On the right side of the Edit Pen window under Style, you can change
the line color, style, weight, and shape. The line style, by default, is ‘Line with Gaps,” which means that if you lose communication to the
PLC or don’t have data for a particular time period, you will see a gap. You can change the Style from ‘Line w/ Gaps’ to any other style type

listed in the dropdown that fits your needs and preferences.

3. Edit each style property. If you don't like the result in the Preview window, select another style. You can edit it as many times as you like.

When you're finished, press OK.

https://inductiveuniversity.com/video/easy-chart-pen-renderer/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Easy+Chart+Customizer

Easy Chart Customizer

~ Pens 1, Axes ~ Subplots Dynamic Groups

Tag History Pens

Name Tag Path Color Preview
Ramp2 [~1Sim_Generic/Ram... _

m
e I

aw | 72 Edit Pen X [

Sinel [~]15ine/Sinel

Database Penl

“ Cancel
|

4. Repeat steps 2 and 3 to customize the style for all the pens you want to change. When you're finished

5. The pens on the Easy Chart now reflect your style changes.

e+ v

|- General Style
Name o)
—| Name | Ramp0| | Color _ @ |
Enabled true Style Area - ok
Hidden false Y
Dash Pattern
User Selectable [true
aw . i Line Weight — |
Calculated Pe (YL Default Axis - s
< 3 Subplot 1 : Shape " - >
Fill Shape? true |E I
Group Name - ance
? Labels false e
Digital Offset false .
preview |
- Data
Tag Path [~151im_Generic/Ramp/Ramp® Y
Aggregation Mode | Min/Max -

, press OK.

[W

Pens
W 2 RampD 32
W Zramp2 X
B & sine1 32
300
E 200
o
= 100
314 PM 316 PM 318 PM 3:20 PM 3:22 PM
[Jul21,2020]
4| e 7/21/20 3:13 PM - 7/21/20 3:23 PM a |p
e —— R R————
Af)f)ly L B I R R L KL
1:51 PM 2:06 PM 2221 PM 2:36 PM 2:51 PM 3:06 PM 321 PM 336 PM

Related Topics ...

® Easy Chart Customizer

https://legacy-docs.inductiveautomation.com/display/DOC79/Easy+Chart+Customizer

® Easy Chart - Digital Offset

Easy Chart - Digital Offset

Digital pens often share the same subplot on the Easy Chart component. When you have multiple digital

pens on the same Easy Chart subplot, it's hard to see what the values are of each pen because they

may overlap each other. There is a digital offset pen setting that can be set which prevents the values 8

from overlapping and enables them to be seen better in the subplot. On thlS page e

The following example shows two digital pens on the same subplot: Statel and State2. The values are a
little difficult to see because they are on top of each other.

® Adding a Digital Offset

Pens D
[2 Ramp3 §3 =1 &
M [State1 32 Zg

B st 32 =]

Value

; @ INDUCTIVE
, UNIVERSI]

Easy Chart - Digital

[Feb11,2020]

4 2 2/11/20 2:58 PM - 2/11/20 3:02 PM] & |» Offset

103PM T8PM 133PM 148PM ZO3PM 298PM 233PM 2:48PM

Watch the Video

Adding a Digital Offset

In this example, we will apply a digital offset on the pen renderer so you can see the values better.

1.

Right click on the Easy Chart component and choose Customizers > Easy Chart Customizer.

2. On the Pens tab, select the Statel row pen, and click the Edit # icon.
3.
4. Setthe Digital Offset to 'true'. Click OK to save the changes to the pen.

Set the Style is set to 'Digital'.

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Easy+Chart
https://inductiveuniversity.com/video/easy-chart-digital-offset/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Easy+Chart+Customizer

5. Repeat steps 2-4 for the State2 pen.

6. When you're finished editing your pens, click OK to return to the Easy Chart. You will see a little offset in the values between the State pens
in the 2nd subplot so they don't overlap each other, making it a lot easier for the operator to read the digital values.

Easy Chart Customizer X
~ Pens [Axes B Subplots B Dynamic Groups =
MName Tag Path Color Preview Q
Ramp3 [~]JRamp/Ramp3 v &,
Ploenericandoms | g
I
State2
Edit Pen x | £
- w - General - Style N
et e s oo o
Name =
Enabled [true Style I Digital v I
Hidden false Dash Pattern +
.~ ; User selectable [true) . =
LommEReR e) - Line Weight 1.5 -5
Name Axis Default Axis -
=~ Shape L] -
Subplot 2=)
: Fill Shape? # 5 v
Group Mame _ - Labels
|Digita| Offset [true | Preview wm_] peel
- Data
Tag Path [~]1_Generic_/Random/RandomDoublel &
Aggregation Mode | Min/Max -
n Cancel

Pens

@ 4 Ramp3 3%
B B state1 332
B @ state2 532

Value

150

—ronon

0.75

0.5

Value

0.25

L]
2:58 PM 2:59 PM

3:00 PM 3:01 PM
[Feb11,2020]

3:02 PM

9

2/11/20 2:58 PM - 2/11/20 3:02 PM|

T
1:03 PM 1:18 PM

D
1:33 PM

O
1:48 PM 2:03 PM 218 PM 2:33PM

)
=
=]

Related Topics ...

® Easy Chart Customizer
® Easy Chart - Calculated Pens

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Easy+Chart+Customizer

Easy Chart - Calculated Pens

Calculated Pens

This section assumes that Tags and Tag History have been configured
To learn more, go to the Tag and Configuring Tag History pages.
The examples below use OPC Tags, but Memory Tags could be used instead.

Calculated pens display a value that is dynamically calculated based on another pen. This can be used
to calculate certain values for a pen and graph them alongside the original pen values, allowing you to
gain valuable insight into your data. There are many unique calculations that can be used, with some of
them containing unique customization. Almost all of the Calculated pens require a driving pen, which is a
tag or database pen that you have already set up.

Note: You cannot bind the Calculated Pen values inside the Easy Chart Customizer. To bind the
function values, use the Cell Update Binding

Calculated Pen Functions

On thispage....

® Calculated Pens

® Calculated Pen Functions

® Configuring Calculated Pens
® Hide Driving Pens

@ INDUCTIVE
UNIVERSIT

Easy Chart -
Calculated Pens

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC81/Tags
https://legacy-docs.inductiveautomation.com/display/DOC81/Configuring+Tag+History
https://inductiveuniversity.com/video/easy-chart-calculated-pens/8.1

There are a variety of functions that can be used to calculate the pen value. The pen functions are located on the Edit Pen screen in the Function
dropdown list. The table below defines the available functions.

7)) Edit Pen x
General Style
Enabled true Style Line w/ Gaps b
Hidden false
Dash Pattern
User Selectable £4 true _ _ -
_ : Line Weight 12
Axis Default Axis -
. Shape m v
Subplot 1+ _
Fill Shape?
Group Name - Labels
. . —
Digital Offset false B I_.\\/ﬂ S
Data
| Functien + | Driving Pen -
% F
Constant Parameter =
UcL
UwL u Cancel
Avg
LWL
LCL
MovingAvg
Multiply v
Function Display Description Extra Properties
Name
Constant Constant A constant value on the chart. Constant Value - The constant value of the pen
Upper UCL The upper control limit of the driving pen, which is three standard
Control deviations above the mean of the Driving Pen.
Limit
Upper uwL The upper warning limit of the driving pen, which is two standard
Warning deviations above the mean of the Driving Pen.
Limit
Average Avg The average of the driving pen.
Lower LWL The lower warning limit of the driving pen, which is two standard
Warning deviations below the mean of the Driving Pen.
Limit
Lower LCL The lower control limit of the driving pen, which is three standard
Control deviations below the mean of the Driving Pen.
Limit
Moving MovingAvg = A series of averages based on subsets of the driving pen. The Window Size - The size of the moving average window,
Average subsets are determined by the window size. specified as a multiplier of the chart's date range.
Multiply Pen | Multiply Multiply each data point of the driving pen by a factor. Factor - The factor that each data point of the driving pen is
multiplied by.
Minimum Min The minimum value of the driving pen.
Value

Maximum Max The maximum value of the driving pen.

Value

Running RunningSum A running sum or running total of the driving pen.
Sum

Sum Sum The sum of two different driving pens.

Difference Difference = The difference of two separate driving pens.

Linear LinearRegr | Will create a linear regression line for the driving pen.
Regression | ession

Configuring Calculated Pens

Secondary Pen - The second driving pen.

Secondary Pen - The second driving pen.

In this example, we will configure the following calculated pens on our Easy Chart: Constant, Moving Average, Upper Control Limit (UCL), and Lower

Control

1
2
3.
4

Limit (LCL).

. Drag an Easy Chart component onto your Designer window.

. Drag a Tag onto the chart. In this example, we are using a 'Realisticl' tag from Programmable Device Simulator.
Right click on the Easy Chart component and choose Customizers > Easy Chart Customizer.

. The Pens tab will open and you'll notice a Calculated Pens Table at the bottom of the screen. Click the Add + icon.

(7)) Easy Chart Customizer
I L, Axes B Subplots FJ Dynamic Groups
Name Tag Path Color
Realistic1 [~1Realistic/Realistic1 _ @,
F
Name ¥ Column Table Color
F .
Name Function Pen Parameter Color
<

Preview

Preview

Preview

OK

s

=[]

Cancel

Note: Calculated pens are just like other pens, so you can specify the style, color, axis and subplot in the Edit Pen window.

5. This will open the Edit Pen window. Set the calculated pen options as follows:

6.

Name: High SP

Function field: Constant

L]
® Driving Pen: Realisticl (Since we only have one tag on our Easy Chart, the Realisticl tag is the default).
L]
L]

Constant Value: 25

Click OK.

https://legacy-docs.inductiveautomation.com/display/DOC81/Programmable+Device+Simulator
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Easy+Chart+Customizer

Edit Pen X
General Style
wme [Fonst coor |
Enabled B true Style Line w/ Gaps v
Hidden —~ false Dash Pattern
User Selectable 4 true _ _ -
_ : Line Weight 15
Axis Default Axis L
Shape] v
Subplot 1 : _
Fill Shape?
Group Name - Labels
Digital Offset false Preview I\ W
Data
Function | Constant * | Driving Pen b
Constant Value 25 =
ﬂ Cancel

7. Click OK again to save your pen options. Now, view your High SP pen on your Easy Chart. The High SP value of 25 is represented on your
Easy Chart by a blue horizontal line.

Pens E:]
= 50
B 2 High P f{ ‘ 1 &
W 2 Realistict 52 g | ‘JH‘ hrl II] |‘ I 1’\ r| I|I|| g
oML YA O
UIIRY| NN INE IR
2| WNH JII.JHI' R ".lr‘ N | fHJ |
10 |||“I lllllr‘ \ |I q LF | | |I
| \
R TR A |
-10 f\ | |
20 “ﬂll ‘| 1 ."&f \ | '.*I‘
30 I | I lﬂk' L‘- f [|
i IL|'1 |||,I|TI|| |
40 N IILi || IJLI |'{ l]||I||JI'|j
50 t L
11:16 AM 1117 AM 11:1BAM 11:19AM 11:20 AM 11:21 AM 11:22 AM
[Jun12,2019]
4| 8 6/12/19 11:16 AM - 6/12/19 11:22 AM & | p
S ——
10:00AM 1045 AM 1030 AM 10:45AM 1100 AM 1145AM 19:30 AM

8. Next, let's add a second calculated pen. Double click on the Easy Chart to open the Style Customizer. On the Calculated Pens Table at the

bottom of the screen. Click the Add + icon.
9. On the Edit Pen window, set the calculated pen options as follows:
Name: MovingAvg
Function field: MovingAvg
Driving Pen: Realisticl
Window Size: .2

Note: If you have more Tags that you dragged on to your Easy Chart from the Tag Browser, you'll have more pens to choose from
in the Driving Pen dropdown list.

Edit Pen X

- General - Style
Name MovingAvg coor [%
Enabled true Style Line w/ Gaps -
Hidden false Dash Pattern
User Selectable [true _ _ —
Line Weight 1
Axis Default Axis *
Shape m -
Subplot 1 : _
Fill Shape?
Group Name - Labels
Digital Offset false T |_f—/_'_\-\/\l
- Data
Function | MovingAvg + | Driving Pen | Realistict v
Window Size 0.2 :

ﬂ Cancel

10. Click OK. The chart now displays a running average.

Pens

M [Z HighsP

W Ed uovingavg “ 'Jf‘ F| R
) |

50
f
|

\H h A Iq

I
U |
- L !| |‘ 1| ﬁil
0 | |
w '1 W
- W

1M16aM 1117 A8M 11ABAM 1119 AM 11:20 AM 1T1:21 AM 11:22 AM
[Jun12,2019]

D ©

B & Realistic1 52 30

Ly

Value
[=]
—

I
[U.LI.IlH ||

4|Gg 6/12/19 11:16 AM - 6/12/19 11:22 AM| @Q|)
—?

o P Jrrriin e Prrriininen P e T |
10:00 &AM 10:15 AM 10:30 AM 10:45 AM 11:00 AM 11:15 AM 11:30 AM

11. Lets add two more calculated pens: one for Upper Control Limit (UCL) and another for Lower Control Limit (LCL), and set the Driving
Property to 'Realisticl.’ Select a pen color to change the default color.

Edit Pen X Edit Pen X
General Style General Style
Name ucL Color _ Name LCL Color
Enabled [true Style Line w/ Gaps - Enabled true Style Line w/ Gaps -
Hidden false e, Hidden - false Dash Pattern
User Selectable [3 true T User Selectable 2 true . =
Line Weight = . X Line Weight =
Axis Default Axis - Axis Default Axis -
Shape L] - Shape L] -
Subplot = Subplot 15
¥ Fill shape? Fill Shape?
Group Name - Labels Group Name - Labels
Digital Offset false e l. Digital Offset false Preview o]
Data Data
FunmonIUCL - I Driving Pen IReahsnﬂ - I Function | LCL - I Driving PaanaaIisticT - I
n Cancel m Cancel

12. Once you add all your calculated pens, you'll see all your pens in the Calculated Pens section at bottom of the window. Press OK.

Easy Chart Customizer X
L. Axes B Subplots E Dynamic Groups =
Mame Tag Path Color Preview Q
Realistic [~]Realistic/Realistic _ & T
+
F
Name ¥ Column Table Color Preview Q
+
F
Mame Function Pen Parameter Color Preview +
High SP Constant 25 _ & =T
MovingAvg MovingAvg Realisticl 0.2 _ & T ’
ucL ucL Realistict B -
LcL LcL Realistict L P
< >
0K Cancel

13. Now, all your calculations are displayed on your Easy Chart. The blue pen is the Constant, the pink pen is the Moving Average, and UCL
and LCL are brown and green respectively.

Pens

B 3 HighsP
W &L

W 2 Movingavg
W [Realisticl 53 I A Lo
W G uct MIENASE LN A "\ Ao

80
70
&0

- i e

30 i)
AN

fn vy wpﬁl-‘luk

0 ¥ , L“I L

10 ll 1-!"' | |

20 frl II I' 1oy

-30] |

0 \ W

50 T

|
|
T

Value

=

TT—

_—
— |

1M:14AM 11115 AM 11016 AM 1117 AM 11:1EAM 11:19 AM 11:20 AM
[Jun1Z, 2019]

4| & 6/12/19 11:14 AM - 6/12/19 11:20 AM & | p

=

P P P P P T |
10:00 AM 10:15 AM 10:30 AM 10:45 AM 11:00 AM 11:15 AM 11:30 AM

Hide Driving Pens

Once you have your Calculated Pens created, you'll notice that they disappear if you disable the pen driving them. If you want to remove the Driving
Pen but leave the Calculated Pens, set the Hidden property of the Driving Pen to 'true’.

Edit Pen 3
-General - Style
MName ucy Color _ .
Enabled 3 true Style Line w/ Gaps -
Hidden £ true Dash Pattern

User Selectable [true

_ : Line Weight 1 :
Axis Default Axis -
Shape m -
Subplot 1 : _
Fill Shape?
Group Name - Labels
Digital Offset false Preview I\‘M
- Data
Function | UCL » | Driving Pen | Realistic1 -

ﬂ Cancel

Related Topics ...

® Easy Chart Customizer
® Using the Tag Browse Tree for Charting

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Easy+Chart+Customizer

Using the Tag Browse Tree for Charting

In the Designer, you can use a special built-in component called the Tag Browse Tree to create ad hoc charts where you can pick and choose which
pens you want to put on an Easy Chart. This same functionality is also available for an operator in the Runtime.

1. In Designer, drag a Tag Browse Tree component and Easy Chart component from the component palette to your workspace.

2. Put the Designer in Preview Mode ¥ .
3. Expand the Tag folders to see the Tags in your system. By default, the Tag Browser Tree component shows you all Tags even those Tags
that are not logged in Historian.

.I.|1qul .I.lzqﬂl .I.lgqul.

1 |© & ROOT ! A
9 ¥ BobbysTags

~ @ default

Better_HMI_Tags
Demographics

Glycol

HMI

Motors

Ramp

Random

Realistic
ServerDiagnostics
im_Generic

Ramp I},
Random

ReadOnly

Realistic

Sine

Writeable

Sine

Tag Review

W Tag Types 4| &
il Tank

i Tanks_OPC

il Test

il Towerl

il Tower2

W Z_Other_Tags

bW AlarmBit Memory v

9=

H=]
{4 v v w w v v w w w

ERTTTTTTRRERREREDRN

(%51

|

IEERERENR

S

I 1
1:00 PM

S I
- T v v v v v v v

4. Put the Designer back in Design mode .
5. Select the Tag Browse Tree component.
6. Inthe Property Editor, set the following properties:
a. SetInclude Realtime Tags to false.
b. SetInclude Historical Tags to true.
c. Setthe Selection Mode to Multiple - Discontiguous.

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Tag+Browse+Tree
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Easy+Chart

Vision Property Editor Al X
%= 8| = | = o % -
Border Other Border e
Data Quality 600 &2
Font Dialog, Flain, 12 -
Include Historical Tags I £ true c2
Include Realtime Tags false G2
Mouseover Text e
Name Tag Browse Tree (5]
Quality El e
Root Node Path e
Selected Paths Dataset[1Rx 1C] Qe
Multiple - Discontiguous « G2
Show Root Handles Single Selection [T
Show Root Node Multiple - Contiguous &
Tag Tree Mode Multiple - Discontiguous =
Visible true [

7. Save your project.

©

. Launch a Vision Project or put the Designer in Preview Mode ’
. Drag some tags over onto the chart. We chose Sine0, Sine2, Sine4, and Sine6. Note that because we previously set selection mode to
Multiple - Discontiguous, we can choose several Tags using Shift-Click. The Tags don't have to be contiguous within the Tag browser.

r @ ROOT ~
» I BobbysTags Pens
v @ default W [Sine0 52 ac Iﬁ\
» E Better_HM[_.Tags W G sine2 52 s I| |I il |.' |I / -,I | || [\
-8 Demographics O & sined 2 3\ il Ik | i
: ;E::;c[ol [0 4 Sine6 32 50 || i .‘ |
b i Motors , \III I| |'||”\ ||| | ||||| \II. I'I |I ||“|| | II. u II‘. I‘ I I'. I I'| |
» il Ramp Il |||‘[I| H ||.. || |.|||. w||
» 1R |
b
»

f—
i
[I [|

M| A ‘ M J e

o

B Random of VIV WML Y W {1\

B Realistic

W ServerDiagnostics 25 \ ‘ ‘ j
| | 18

Value

& Sim_Generic

B\ Ramp 50 | I I l | | | |
B Random | | \ |
i ReadOnly 75 I, | Vo | | |/ | |
W Realistic v \ \iyf | 'If |
T Sine 100 : Y ' :

.. »-% Sina0 OPC 237PM 23BPM 2:39PM 2:40PM 2:41PM 2:42 PM

b % Sine1 OPC [Jun12,2019]

TS ez ore

b % Sine3 OFC 4 &8 6/12/19 2:37 PM - 6/12/19 2:42 PM & p

L L P sined orc | e [—
b W Sine5 OPC Apply L e
.. 1:00 PM 1:30 PM 2:00 PM 2:30 PM
b % Sine7 OPC
b % Sineg OPC
b % Sined OFC
b @ Writeable ~

{vv v~

10. You can click the Delete 3@ icon to the right of any of the pens to remove a Tag from the chart. You can also remove all pens and go back
to an empty chart, and pick and choose which of the Tags you want to drag on to the chart.

~ = ROOT
b i BobbysTags
v [default
b B Better HMI_Tags
Demographics

»

vy vvvwvvvw

EERERERRN

Glycol
HMI
Motors
Ramp
Random

B Realistic
W ServerDiagnostics
& Sim_Generic

4

4 v

-

W Ramp

W Random
W ReadOnly
W Realistic

-

v v v owrow

W RealisticO OPC
¥ Realistic1 C
W Realistic2 ©
W Realistic3 ©
W Realisticd ©
% Realistics O
b W Realistice O

1] | S esiser o

b W Realistic8 OPC
» W Realisticd OPC

W Sine
F W Sineo

OPC

Pens
O
=]
o

Realistic0 3%
Sined 34
Sine2 3%

Value

75 1--f (R (. (| (.

-100

2:45 PM 2:46 PM 2:47 PM 2:45 PM 2:49 PM
[Jun12,2019]

d| s 6/12/19 2:45 PM - 6/12/19 2:49 PM & p
e ———] —]
T e

1:00 PM 1:30 PM 2:00 PM 2:30 PM

(D Notes: Things to keep in mind when working with Ad Hoc Charting

® When working in the Designer, whatever pens you have on your Easy Chart when you saved your project, the same pens will also
be displayed on the chart when the client is opened.

® You may have multiple axes set up for your Easy Chart, but when dragging Tags from the Tag Browse Tree component to an
Easy Chart, there is no way for the user to set which axis to use. Because of this limitation, any Tag that is added in this way will
attempt to match their Engineering Units property to an axis on the chart. If no match is found, the default axis will be used.

Related Topics .

® [ndirect Easy Chart

Indirect Easy Chart

Configuring an Indirect Easy Chart
On thispage...

.:D This section assumes that Tags and Tag History have been configured

To learn more, go to the Tag and Configuring Tag History pages.
The examples below use OPC Tags, but Memory Tags can be used instead. * Configuring an Indirect Easy

Chart

It is possible for the Easy Chart component to be indirect and point to a set of Historical Tags based on
any parameter using the Cell Update Binding type. In this example, suppose you have a small tank farm
consisting of Tank 101 through Tank 109. Every tank is identical and uses the same Tags. Each tank has
a Level Tag and Temperature Tag which are set to log to the Historian.

Tag Browser o - X
Q o ¥-8 06| 006 B
* % Tank 101 Tank UDT Tank_... ~

» W Parameters Docu...

» % Alarm_Status OPC 0 Short | &

» % Batch D M String |2

» % Date_1 M DateT...

» % Date_2 Men DateT...

» % Enable_Cooling OPC Boole...

» % Enable_Heating OFC Boole...

b % HC_Allowed OFC 3 Short

b % Level OPC 58.0 Float |2

b % Mode ¢ 1 Integer D

b % Notes | String

» % Number OPC 1 Short

» % Pump_Hand_Speed OPC 0.0 Short 3%

» % Pump_HOA 0OPC 2 Short |

» % Pump_Speed ¢ 1.0 Short

b % Pump_Status OFC 1 Integer D

» % Setpoint OPC 50.0 Float |® 5%
4956 Float | O 3%

Using an Indirect Easy Chart is a good way to see the history of these Tags for each tank in the tank farm. An convenient way to set this up is using a
Dropdown List component where an operator can select various tanks to see a Tank's Tag history. This example will show you how to configure a cell
update binding on an Easy Chart to be indirect and point to a set of Historical Tags.

1. In the Designer, drag a Tag Browser Tree and an Easy Chart component into your workspace.

2. Put the Designer in Preview Mode ¥ .
3. Navigate to the Tank Tags in the Tag Browser Tree. Under Tank 101, drag the 'Level' and 'Temperature’ Tags from the Tag Browse tree
onto the Easy Chart.

F W Enable_Heatng UPC ~ Pens 80)|
b % HC_Allowed O B & Level 32 775

»—% Level OPC W £ Temperature 33 75 2
' 725 =
»

N 70

» 67.5

» % Pump_HOA OPC S 6

» % Pump_Speed 2 62.5

b % Pump_Status OFC &0

b % Setpoint OPC

b % Temperature C >

b % valve_Cooling =8

b % Valve_Heating Expressior 52.5

» % Valve_Status OPC . o T

< i > 8:05 AM 8:10 AM 8:15 AM

[Jun14,2019]

4 & 61419803 AM-6M4M198:17AM & P

4. Put the Designer back in Design Mode .

https://legacy-docs.inductiveautomation.com/display/DOC81/Tags
https://legacy-docs.inductiveautomation.com/display/DOC81/Configuring+Tag+History

5. Drag a Dropdown component to your workspace. Using a Dropdown list will make it convenient for the operator to select a Tank and see the
history of the Level and Temperature Tags for that tank.

=1
6. With the Dropdown component selected, click on the Dataset Viewer Ba icon to the right of the Data property in the Property Editor.
m

7. Click the Add Row == icon for as many Tanks that you have in your Tank Farm. Then enter the Value and Label for each of the Tanks.
8. Click OK.

Project Browser a - X T L T T T I L L
Q- Al
~ g Datasets A1
+ [Easy Chart]
+ [] Root Container 7]
| | [| [=Dropdown [y
) Easy Chart Y
T= Tag Browse Tree o 14
Vision Property Editor o1 . $_ o
= .. . 4 4 <SelectOne> @~ &
B4 | = |2 B % i e £ - i
E Common u Dataset Editor X
Name Dropdown || 4
— Val Label =
Enabled [true (-] alue abe =
. - 4 101 Tank 101
Visible 4 true (=] L 102 | Tank102 |
Border Other Border ~ [Jjea| 3 103 | Tank103 L
]
Mouseover Text Eea||] 104 | Tank 104
105 | Tank 105 a
Cursor Default v G| | 106 | Tank 106 -
& Behavior 1 106 | Tank 107 E
El Data 7] 107 | Tank 108 &
. Cll
Selected Value qed||]
S = Eeo||] Column Name: —— Column Type: —
Selected Label <Select One> G|
) [
& Appearance]

9. Put the Designer in Preview Mode "
10. Click the Dropdown list to see the complete list of Tanks in your Tank Farm that you just entered.

Tank 104 -

Tank1t -
Tank 102
Tank 103
Tank 104
Tank 105
Tank 106
Tank 107
Tank 108 w

11. Put the Designer back in Design Mode .
12. Right click on your Easy Chart and choose to Customizers > Easy Chart Customizer.

You'll notice that the Tag Paths are pointing directly to Tank 101. The only difference between Tank 101 and all the Tanks in the Tank Farm
is the Tank number (i.e., 101, 102, 103, etc.). You can manually point to a different Tag Path by replacing ‘101’ in the Tag Path with a
different Tank number such as ‘102,” but we'd rather have the Tag Paths change dynamically when the user selects a Tank. Press OK.

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Easy+Chart+Customizer

Easy Chart Custemizer X

~ Pens [Axes B Subplots B Dynamic Groups

MName Tag Path Color Preview

Level [~1Tank/Tank 101/Level -
Temperature [~]Tank/Tank 101/Temperature _é. A -

L
>
~ + P2

aw
Mame ¥ Column Table Color Preview Q
+
e
— -~
£ ¥ N
0K Cancel

13. The Easy Chart component has a property called Tag Pens which stores all the configuration information that you have configured in the

=1
Easy Chart about your pens. With the Easy Chart selected, click on the Dataset Ba icon in the Property Editor to view all the information for
your Tag Pens.

Vision Property Editor o - X
e = = |w-
* Chart Configuration)
DB Pens Dataset [ORx 23C] Bf @
T - taset 12k x 20C1[Efe|
Calculated Pens Dataset [0Rx 21C] B €D
Axes Dataset [1Rx 22C] Bf €@

L
Fa

14. The dataset is displayed. It contains one row for each Tag. The second column is the Tag Path that you will want to change dynamically.
Press OK to close the Dataset Viewer.

Dataset Editor X
NAME TAG_PATH AGGREGATIL.. = AXIS SUBPLOT ENABLED COLOR =
Level [~]Tank/Tank 101/Level MinMax Default Axis 1 [] -
Temperature | [~]Tank/Tank 101/Temperature MinMax Default Axis 1 @ [e

L]
@
[]
< >
Column Name: — Column Type: —
n Cancel

15. Next we'll use a Cell Update Binding in order to change an individual cell of a dataset. With a Cell Update Binding, you can select one or
more cells and dynamically bind them to a property or to a Tag that you have in your system. Click on the Binding == icon next to Tag Pens
property to open the Property Binding window.

16. Select the Cell Update binding type.

17. Select Tag Path cell for Level, and click the Add + icon under the Cell Bindings table.

Property Binding: Root Container.Easy Chart *
Tag Cell Update
Tag Binds specific cells inside an existing dataset
Indirect Tag
Tag History Q Use the cell Update binding to dynamically bind specific cellsinside a dataset to tag or property values. Simply select the X
Property cell you want to bind, and hit the "Plus" button. Rows can be specified explicitly by their index (e.g. "15") or by referencing
another column (e.g. "Name=Compressor”)
Expression
Dataset
Property
sqL NAME TAG_PATH A. | A. | S. | E. | .. =
~JTank/Tank 101/Level = ~| 4
Named Query Level ol [1 oo o
Tempera... | [~ITank/Tank 101/Temperat.. 1 - 1 10 |E
DB Browse
SQL Query
Cell Bindings
Qther
Row Column Value E
Cell Update
N 0 TAG_PATH &
Functions
=
%
k|
® NoBinding]
n Cancel

18. Select the first row you just added in the Cell Bindings Table, and click the Insert Property Value E] icon.
19. From the Property Window under the Dropdown folder, click the Selected String Value. This will grab the Tank number the operator
selected from the dropdown list.

20. Click OK. Ignition fills in the Cell Binding value.
21. Repeat steps 17 through 20 for the Temperature Tag Path.
22. Next, expand the Value fields to make the Tag Path dynamic. Update the fields as follows.

- @ Dropdown
B Name (String)
W Visible (boolean)
B Data (Dotoser)
B Selected Index (int)
B Selected Value (Integer)

Root Container.Dropdown.selectedStringValue

W Selected Label (String)

Cancel

-

Property Binding: Root Container.Easy Chart X
Tag Cell Update
Tag Binds specific cells inside an existing dataset
Indirect Tag
Tag History Q Use the cell Update binding to dynamically bind specific cellsinside a dataset to tag or property values. Simply select the X
Property cell you want to bind, and hit the "Plus” button. Rows can be specified explicitly by their index (e.g. "15") or by referencing
another column (e.g. "Name=CompTessor")
Expression
Dataset
Property
sqL NAME TAG_PATH A. | A. | 5. | E. | — 274 14 =
- .. | o
Named Query Level [~]Tank/Tank 101/Level 1| E - = =
Temperature [~ITank/Tank 101/Temperature 1 - .
DB Browse
SQL Query
Cell Bindings
Other
Row Column Value +
Cell Update
Functions
Choose Property X
+ [Main Window 9 Indirect A >
= [root Container ¥
B Name (String)
@ NoBinding W Vvisible hoolean) []
W Background Color (Color)
W Styles (Dataset)
B Data Quality (int) cancel
B Quality (QualityCode)

Cell Binding to make Tag Path Dynamic

[~] Tank/ { Root Cont ai ner. Dr opdown. sel ect edStri ngVal ue}/ Tenper at ure
[~] Tank/ { Root Cont ai ner. Dr opdown. sel ect edStri ngVal ue}/ Level

23. Click OK to save the bindings.

24. Now you have an Indirect Easy Chart. To test it, put the Designer in Preview Mode ’
25. Select a Tank from the Dropdown List. The Level and Temperature values will change in the chart. Next select a different Tank from your
Dropdown List to see how the history changes on the Easy Chart.

- Pens
¢ % Enable_Heating OFC = e ; EE
B B Level 32
P W HC Allowed 0OFC B (3 Temperature 5% 64 / 8
b % Level OPC perature 5 - : @
b % Mode OFC /
b % Notes Memary 0)
b % Number OFC - /
b % Pump_Hand_Speed OPC o
b W Pump_HOA OPC 3 . /
4 oFC -
% Pump_Speed ; : /
b W Pump_Status OPC
N)
b W Serpoint OPC \)
| P-% Temperature OPC___| sof N\, /
b % valve_Cooling Expressior - . y
b % Valve Heating Expression - _ZV;‘_J

b W% Vahe_Stawus OFC

. I 7:30 AM 7:35 AM 7:40 AW
[Jun14,2019]
4 B, EN4N9TITAM-6N4NSTAIAM E)
Tank 104 v
Ap

P % Enable_Heating OF Pens -1 EE
b % HC_Allowed n'::; B g Level 22 i e
F % I.m-:el oPrc L Temperature 33 63 /
b W% Mode OFC 62.5 - =
b W% Notes Mermary _ f
b W% Number OPC = ey _,ff.r
» % Pump_Hand Speed OPC & 515 S
b % Pump_HOA 07C g
¢ % Pump_Speed OFC
b % Pump_Status OPC 525
W Setpoint OFC

| »-% Temperature OPC | *
b % Valve_Cooling Expressior 475
b W Vale_Heating Expressior . /

b W Vahwe_Status OFC
(»

730 AM 7-35 AM 7:40 AM
[Jun 14, 2019

4| 8, BNAN9T2TAM-6NANSTAIAM & p

Tank 107 b]
e | i i W i P W W . . I i

Related Topics ...

® Easy Chart Customizer

https://docs.inductiveautomation.com/display/DOC81/Vision+-+Easy+Chart+Customizer

Easy Chart - Database Pens

Database Pens

Database Pens are driven by a SQL query, so they are ideal to use when trending Transaction Group On th|S page s
data. However, they can query for data in any connected SQL database, so it is possible to show
historical data recorded by other systems on the Easy Chart.

. . . . ® Database Pens
@ This section assumes that Tags and Tag History have been configured * Configuring Database Pens

To learn more, go to the Tag and Configuring Tag History pages.

The examples below use OPC Tags from the Programmable Device Simulator driver, but
Memory Tags can be used instead.

Configuring Database Pens
In this example, we'll configure a database pen driven by a SQL query to show historical data and display it on the Easy Chart.

1. Drag an Easy Chart component onto your Vision window.
2. Right click on the Easy Chart component and choose Customizers > Easy Chart Customizer.

3. In the Database Pens section, we'll create a database pen to trend data stored in our database. Click the Add + icon to create the
Database Pen.

~ Pens |, Axes £ Subplots B Dynamic Groups

Name Tag Path Color Preview Q
+
a’k
F . -
|
| Name ¥ Column Table Color Preview Q

e |

[+

=[]

0K Cancel

4. The Edit Pen window will open. Here is where you enter your database pen data. In the very least, we'll need values for the following
properties:

We entered the following settings:

a. Name - The name of the pen on the chart. Works the same as the name on any other pen.

b. Datasource - The name of the database connection (as configured on the gateway) that contains the table we want to extract
values from.

c. Table Name - The name of the database table that contains the values that we want to represent on the chart.This dropdown will
automatically populate with available table names once the Datasource property has a valid database selected.

d. Value Column - The name of the column in the database table that contains the values we want to show, representing the value of
the datapoint at a particular time. This column is ultimately responsible for the determining where each point lies on the chart's Y-
axis. This dropdown will automatically populate with column names once a value for the Table Name property has been set.

e. Time Column - The name of the column in the database table that contains a timestamp, representing the time of the datapoint.
This column is ultimately responsible for determining where each point lies on the chart's X-axis. This dropdown will automatically
populate with column names once a value for the Table Name property has been set.

f. Axis - All pens require an axis. We can use the default here.

Click OK to save your database pen settings.

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Easy+Chart+Customizer
https://legacy-docs.inductiveautomation.com/display/DOC81/Tags
https://legacy-docs.inductiveautomation.com/display/DOC81/Configuring+Tag+History
https://legacy-docs.inductiveautomation.com/display/DEP/Simulators

Edit Pen *

- General - Style
Enabled [true Style Line w/ Gaps v
Hidden false Dash Pattern
User Selectable [true _ _ -
_ : Line Weight 42
Axis Default Axis -
Shape m -
Subplot 1 : i
Fill Shape?
Group Name - Labels
Digital Offset false Preview W |
- Data
Value Column | Sined » | Table Name | group_table L
Time Column | t_stamp » | Datasource | MySQL - | i

Where Clause

M Run Diagnostics

ﬂ Cancel

5. In the Database Pens area, you will see your database pen that you created. Click OK to exit the customizer and view your Easy Chart.

Easy Chart Customizer X
L. Axes £ Subplots [Dynamic Groups =
Tag History Pens
Name Tag Path Color Preview Q
+
e
F . -
Database Pens
Name ¥ Column Table Color Preview Q
High Temp Sined group_table _ &, W N
+
g
F - ~
o >
oK Cancel

6. The High Temp database pen is now trending data for the High Temp values we want to show at a selected time.

Pens
W [High Temp

50

8
-

Value

810 AM 8:12 AM 8:14 AM 816 AM B:18 AM
[Apr28, 2020]

4 a 4/28/20 8:09 AM - 4/28/20 8:19 AM| a |p

Related Topics ...

® Easy Chart Customizer

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Easy+Chart+Customizer

Using the Classic Chart

Chart
The Chart, sometimes referred to as the Classic Chart, is capable of rendering time series, XY, and Bar On this page -
charts.
Configuration e Chart
L . o . L) o . ® Configuration
The basic idea behind configuring the classic chart is simple: add datasets, and fill them in with data in a e Datasets
format that the chart understands. You add datasets to the chart using the chart's customizer. You then * Binding Techniques
use a bindings to populate each dataset. Commonly you'll use a SQL Query Binding. Since these * Chart Type: XY vs Category

datasets are just normal dynamic properties, you can also access them via scripting. * Populating a Chart with Data

. . . ® Example - Tag History
The Customizer also lets you add additional X and Y axes. There are various types of axes and each * Customizing a Chart

works slightly differently. Lastly, you can configure additional properties for each dataset, such as which * Adding a Second Dataset to a
axis it maps to, its visual style, subplot, etc. Chart

Datasets

Each dataset should define one or more "series" (a.k.a "pens"). The expected anatomy of a dataset for
the Classic Chart depends on several settings: namely the Extract Order property on the chart, as well
as the type of renderer specified in the Chart Customizer's Dataset Properties tab.

Binding Techniques

The Classic Chart can be used to make almost any kind of chart, with some effort. Historical, realtime,
dynamic pen selection, etc., is all possible. Your job is just to fill the datasets with the pertinent data, and
the chart will display it. The most common idea is to make the chart dynamic by varying the date range
that the dataset's SQL Query bindings run. This is easy to do by adding a Date Range component and
using Indirect Bindings.

Chart Type: XY vs Category

The Classic Chart is typically in XY Plot mode. This means that the X-axis is either date or numeric, and the Y-axes are numeric. If your X-axis is
categorical (names, not numbers), you can switch the Chart Type property to Category Chart in the Property Editor. Don't be surprised when you get a
few errors - you'll need to go and switch your X-axis to be a Category Axis, and fill your dataset in with valid category data, that is, String-based X-
values. This is most often used with the Bar Renderer (see the Chart Customizer).

Vision Property Editor a - X 1 I LU 1 R L 1 I L 1 e T
12 18 = =2 | T - 1 ™ . & &
I
- 1
~ Common = | 70 :
- 1
Name Chart =) ' 65 :
- T : 60 |
Visible true [. : 55 !
Border Other Border ~ # 2| 1] I 50 :
. . I
Mouseover Text -] 4 45 |
: v 40 1
- N = |
Cursor Default * ED ! E 15 !
. N I
~ Behavior) 30 !
7 ® -
Chart Type XY Plot -] : & '
o 20 :
Extract Order By Col v G2 - I - !
) 1
Subplot Mode Shared Domain el |1 10 :
- 1
Show Tooltips? true (5] ' = :
] 1 [i} 1
Show Popup? true e o : Jul16 Jul 17 Jul18 Jul19 Jul20 Jul21 Jul22 Jul23 Jul24 |
i/ I
. 1
Selection Enabled? false D 4 Date :
1
¥ Data . 1 — Process Temp — Output Temp !
L S
Quality # D 4 o L

» Appearance < 2

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Chart
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Date+Range
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Chart+Customizer

Populating a Chart with Data

Populating the Classic Chart involves using Custom Properties to collect data. New Custom Properties are added to the component via the Chart
Customizer. Multiple dataset properties may be configured on the component, and each additional dataset will show as a new subplot. Populating the
Chart with historical data involves populating one of these Custom Properties.

The default configuration of the component expects a dataset where the first column is a timestamp (the first column always acts as the domain for
the chart), and sequential columns are pens that should be drawn on the chart. The default dataset contains a t_stamp column with values for the
domain, and two columns (Process Temp and Output Temp) with values that will be drawn against the range.

I-:I Dataset Editor -
t_stamp Process Temp Output Temp '=1'
10/6/19, 3:15:00... 53 45 |[=
10/6/19, £:15:00... 48 48 -
10/6/19, 5:15:00... 48 53 | Il
10/6/19, 6:15:00... 50 50
10/619, 7:15:00... 46 4p
10/6/19, 8:15:00... 49 44 -
10/6/19, 2:15:00... 52 45 5
10/6/19, 10:15:0.. 57 48 &
10/6/19, 11:15:0.. 59 4p
10/6/19, 12:15:0... 56 46
10/6/19, 1:15:00... 53 43
10/6/19, 2:15:00... 56 39
10/6/19, 3:15:00... 61 36 |

Column Mame: —- Column Type: -—
Lo

Example - Tag History
The Classic Chart is initially configured in a manner that easily displays Tag History with a Tag History Binding.

1. Drag a Chart component onto a window.
2. In the Vision Property Browser, scroll down to the Data property. It should be located at the bottom of the Property Editor when sorted by

section. Click the Binding & icon.

3. Select Tag History from the Tag section of the Binding window.

4. Browse the Available Historical Tags. For this example, we chose some ramp Tags. Drag the Tags over to the Selected Historical Tags ta
ble on the right of the window.

5. Change the Date Range to Realtime with a Most Recent set to 10 minutes.

https://legacy-docs.inductiveautomation.com/display/DOC79/Chart+Customizer
https://legacy-docs.inductiveautomation.com/display/DOC79/Chart+Customizer

Property Binding: Reot Container.Chart X
Tag Tag History
Tag Queries the tag history system for time-series tag history data
Indirect Tag
Tag History ©Q Drag and drop historical tags into the selected tag list. You can edit the selected tag paths x
Property and insert indirection parameters like "{1}"
Expression Available Historical Tags < Selected Historical Tags
Property v & ramp A2 > | tagPath Column Name 1+
s5QL [~]xamp/ramp@ Tampd .
Named Query [~]ramp/rampl Tampl
™~ [~1ramp/Tamp2 Tamp2 +
DE Browse
[~]1ramp/Tamp3 Tamp3
SQL Que - o
ry % ramps [~]Tamp/Tampd Tamp4
Other % rampé 5
Cell Update % ramp7?
.]
Functions _ * rgmpg
b M realistic [=l Indirection
F i sine
Ref. # Property Path
b i station 1 perty
} i station 2 i
Use fully-qualified paths
Date Range Most Recent
Aggregation Mode Return Format Sample Size
Min/Max v Wide Natural v
[+ Advanced
Polling Mode Polling Rate Retain Rows
® NoBinding O off _ Relative Absolute Rate = (Base Rate) +/- 0 -3 isec false
n Cancel

6. Click the OK button. The Chart will now show Tag History from the Tags you selected.

1,000

900

800

700

600

500

Value

400

300

200

100

221PM 2:22PM 0 2:23PM 0 2:24PM 2:25PM 2:26 PM 2:227PM 2:2BPM 2:29PM 230PM 0 2231 PM 2:32 FM
Date [May 29, 2019]

—rampl —rampl —ramp2 ramp3 ramp4

Note that the timestamp has automatically been included as the first column, so the domain has been automatically configured for you. If you wish to
change the orientation of the axes, use the Chart Orientation property in the Property Editor to swap the position of the Domain and Range axes.

Customizing a Chart

Once trends are present on the chart, additional customization can be achieved through the Chart Customizer. When you open the customizer, you'll
notice five tabs at the top: Datasets, X-Axes, Y-Axes, Dataset Properties, and Plot Properties. Each tab has its own set of properties and defaults.

Datasets X-Axes Y-Awes DatasetProperties Plot Properties

L

Axis Visible? true

Axis Label Date
Axis Label Angle

0.0
Axis Label Color 0,0,0 - &

Axis Label Font SansSerif * 12| - AA

Tick Labels Visible? true

Tick Label Color 0,0,0 - @

Tick Label Font SansSerif * 10|~ AA |
Tick Marks Visible? true

Tick Mark Color 00,0 - @
0

Tick Mark Inside L... 0 w

0K Cancel

An overview of each section in the Chart Customizer is listed below:

® Datasets: Allows additional datasets to be added to the component. Each dataset will appear as a separate custom property on the
component. Data from multiple charts can be drawn on the same chart.

® X-Axes and Y-Axes: Allows for the creation of new X and Y Axes on the chart. There are six types of axes to choose from when configuring
a chart, each having its own list of properties: Number Axis, Date Axis, Category Axis, Logarithmic Axis, Elapsed Axis, and Symbols
Axis. Most of the X and Y axes properties are used in the customizer, and some properties are specific to the axis type and have their own
unique properties. See the Chart Customizer page for more information on types of axis, associated properties, and examples.

® Dataset Properties: Specify which axes should a be used with each dataset. Also allows you to specify which subplot each dataset should
be shown on.

® Plot Properties: Configure the look of each plot.

This example walks you through adding a new dataset to a chart, and modifying the existing chart properties using the Chart Customizer. When you
first drag a chart to your window, you'll notice that it will display some data, that's because it's using the default dataset provided. For this example,
you can add a new dataset by either copying and pasting the one below or adding your own.

1. Let's add a new dataset (i.e., SnowPackData) that measures the Snow Pack Level for the month of February. Double click on the chart to
open the Chart Customizer.

2. Go to the Datasets tab and click the Add + icon to add a new dataset.
3. Enter the Dataset name and then click OK.

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Chart+Customizer
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Chart+Customizer

Chart Custemiz

er

snowrackpata P

Datasets | K-Axes Y-Axes Dataset Properties Plot Properties
Name Type Description
Data Dataset Default DataSet

- . . . B
4. In the Vision Property Editor, click on the Dataset Viewer icon.
Vision Property Editor a _ X
2= =R R
E Common
Name Chart 1 (5]
Visible & true (5}
Border Other Border » [Jj ()]
Mouseover Text (5]
Cursor Default v &2
Behavior
Data
Appearance
Deprecated
=l Custom Properties
Data Dataset [200R x 3C] g e
SnowPackData Dataset [OR x 0C] g2

5. Highlight and copy the dataset below, then click the Paste Dataset from Clipboard i icon.

Classic Chart - SnowPack Dataset

" #NAVES"
"Date","Curren
" #TYPES"
"date","F","F"
" H#ROWS", " 4"
"2018-02-02 10
"2018-02-10 10
"2018-02-15 10
"2018-02-25 10

t Snow Pack", " Nor nmal

141:22","2.25","3.75"
142:19","3.15","4.5"

143:27","2.15","5. 25"
:44:02","3.75","6. 35"

Snow Pack"

6. The data will appear in the Dataset Viewer. Click OK to save the dataset.

Dataset Editor *
Date Current Snow Pack Normal Snow Pack E"
2218, 10:41:22 AM 2.25 3.75
2018, 10:42:19 AM 3.15 4.5 o
2/15/18, 10:43:27 AM 2.15 525 | I
22518, 10:44:02 AM 3.75 6.35

a
]
Column Mame: —- Column Type: -
oK Cancel

7. The Chart component is now displaying both the default dataset and SnowPackData dataset. Let's disable the default database. Open the
Chart Customizer and go to the Dataset Properties tab.
8. Select the default dataset (i.e., Data) and uncheck the Enabled? box.

Chart Customizer x
Datasets X-Axes Y-Axes | DatasetProperties | Plot Properties -
L4
X Axis | Default X Axis
SnowPackData
¥ Axis | Defaulty Axis =
Subplot Number =
Enabled?
Renderer | XY Line/Shape Renderer v
< >
oK Cancel

9. Click OK. You'll notice the chart is now only displaying the values for the new dataset (i.e., SnowPackData).
10. This step uses the default Number Axis type, but if you want to add a new Axis Type, go the X and Y Axes tabs and select a new Axis type.
11. Next, let's change a few visual properties on our chart. Go to the Y-Axes tab and select Default Y Axis, and change the Axis Label (i.e,
Snow Pack Level (Feet)).

Chart Customizer bt

Datasets X-Axes Dataset Properties Plot Properties =

<

Default Y Axis > Property Value

Axis Visible? & true

Axis Label |Sn0w Pack Level (Feet) < |
Axis Label Angle 0.0
Axis Label Color 0,0,0 _ @.

Axis Label Font SansSerif v |12 |- A ASansS
Tick Labels Visible? B3 true

Tick Label Color 0,0,0 _ &, .

oK Cancel

12. Lastly, let's make the plot lines thicker on the chart. Go to the Dataset Properties tab, and change the Line Size renderer property from 1.0 to
3.0.

Chart Customizer .
Datasets X-Axes Y-Axes | Dataset Proper‘tiesl Plot Properties =
€
Data > . :
KAxis DefaultX Axis
SnowPackData
¥ Axis | DefaultY Axis «
Subplot Number 1 :
Enabled? [
Renderer XY Line/Shape Renderer v
Property Value
Series Colors AVEVEy 4 5 VT 8 rd
Type Lines Only -
]
Dash Pattern I
Fill sShapes £ true
Shape Offset 0
0K Cancel

13. Here is the chart with the new dataset and updated properties. As you can see, you can easily configure additional properties for a dataset,
as well as choose from a host of visual style properties to design your charts using the Chart Customizer.

w . n

Snow Pack Level (Feet)
=]

Feb? Feb4 Feb6 Feb® Feb10 Feb12 Feb14 Feb16 Feb 18 Feb20 Feb 22 Feb24 Feb 26
Date

= Current Snow Pack == Normal Snow Pack

Adding a Second Dataset to a Chart
In this example, we'll add an additional dataset to the chart.

1. Double click on the Chart component to open the Chart Customizer (or right-click and select Customizers > Chart Customizer).

2. Once the Chart Customizer is open, make sure the Datasets tab is selected, and click the Add icon to add a new dataset.
3. A new row will appear. Give the new dataset a name by typing into the cell under the Name column. We'll call it NewData.

Chart Customizer X
X-Axes Y-Axes DatasetProperties Plot Properties .
Name Type Description

Data Dataset Default DataSet -
[Newbota | paser
0K Cancel

4. Click the OK button.
5. Check the bottom of the Property Editor. The newly created dataset will appear and may now be populated with data.

Vision Property Editor g - X
= . e | =
12| I = =2 (T~

} Appearance
b Deprecated
T Custom Properties
Data Dataset[42Rx6C] BY €2

NewData Dataset[ORx0C] H§ €2

6. Now that we have a new dataset, you can add data however you like and it will show up in a second subplot.

Other Vision Trending Charts

Along with the Easy Chart and Classic Chart, there are several other types of charts contained in the Visi
on Module that can also visualize a trend and track a change in condition, output, or process through a
single data point or multiple data points over time. This page describes the Sparkline and Status Charts
and how they can be used.

Sparkline Chart

TN

The Sparkline Chart is a minimalistic chart that displays a line-chart history for a single data point that fits
well with High Performance HMI screens. It's a great way to show a lot of contextual information in a very
small amount of space. It provides a fast way to display the recent history of a single data point so the
viewer can quickly discern the most recent trend.

Note, the Sparkline Chart can not show multiple trends, however, multiple Sparkline Charts can be
stacked. This chart is often laid over an image or level display to show a simple trend with the current
value.

Usage

On thispage...

® Sparkline Chart
® Usage

® Status Chart
® Series Data
® Color Mapping

@ INDUCTIVE
UNIVERSIT

Sparkline Chart

Watch the Video

The trend on the Sparkline Chart is determined by the Data property located in the Property Editor. Bind the Data property to either a Tag Historian
realtime query, or to a database query. The dataset should contain two columns: the first being a date, and the second a number/value.

Any additional columns in the dataset are ignored. Thus, the Sparkline Chart will only show a single pen per instance of the component. The data

should be sorted by date in ascending order.

The red dot on the Sparkline Chart represents the most recent value. The Sparkline Chart can display a band of color across the back of the chart
which indicates the desired operating range of the datapoint. Setpoints can be displayed on the chart by setting a value for the Desired High and Desi
red Low properties. This allows an easy way to view when the value fell out of bounds. Note that both properties must have a value for the Desired

Range Color to appear.

| | |2I:II:I | | | | |3I:]I:] | | |

Vision Property Editor o - X P S BV R LU
|ENE: S =S (T~ .
* Common -
Name Sparkline Chart P]
Visible true o] %----------
Border Mo Border v £ GD é_ E
Mouseover Text s e . :
Cursor Default v GO 7] “l:
~ Data] :\/\j‘
Data Dataset[60Rx2C] HBfed | |2 :
Range High (o] n: C
Range Low 2 -
Desired High 65.0 €2 7
oo | so)| 13
Quality Good & G2 n:

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Easy+Chart
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Chart
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+Module
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+Module
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Sparkline+Chart
https://www.inductiveuniversity.com/video/sparkline-chart/8.1

Status Chart

The Status Chart allows you to visualize the status of one or more discrete data points over a time range. The X-axis is always a time series axis, and
the Y-axis is a category axis, with one entry per data series. The Status Chart is populated with the Series Data property in the Property Editor. This
chart is good for showing machine states or HOA values over time. It is recommended to include some sort of Legend when using this chart.

Series2 A

Oct15 Oct16 Oct17 Oct18 Oct19 Oct20 Oct21 Oct22 Oct23 Oct24

Series1 4

Series Data

The first column of the Series Data property must contain datetime values. Each additional column should be numeric (the default columns are
doubles). The order of the columns (left-to-right) determines the order of the entries on the chart (bottom-to-top). Because of this, re-ordering the
entries would involve changing the order of the columns as they appear in the Series dataset by modifying the mechanism that is populating the
dataset (i.e., changing the order of columns in a query).

In Wide format, all of the columns but the first must be numeric. These "series" columns' headers will be used as the names on the y-axis. In Tall
format, there should be exactly three columns. The first is the timestamp, the second is the series name, and the third is the value. For example:

Wide Format
t_stamp Valvel Valve2
2010-01-13 8:00:00 0 2
2010-01-13 8:02:00 0 2
2010-01-13 8:04:00 1 2
2010-01-13 8:06:00 1 1
2010-01-13 8:08:00 0 1
Tall Format
t_stamp Name Value
2010-01-13 8:00:00 = Valvel 0
2010-01-13 8:00:00 | Valve2 2
2010-01-13 8:02:00 | Valvel 0
2010-01-13 8:02:00 = Valve2 2
2010-01-13 8:04:00 | Valvel 1
2010-01-13 8:04:00 | Valve2 2
2010-01-13 8:06:00 = Valvel 1
2010-01-13 8:06:00 | Valve2 1
2010-01-13 8:08:00 = Valvel 0

2010-01-13 8:08:00 = Valve2 1

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Status+Chart

Color Mapping

Apart from getting the data into the series chart, the only other commonly configured option is the mapping of discrete values to colors. This is done in
the Status Chart Customizer. Each named series can have its own mapping of colors, if desired. These mappings are stored in the expert-level
dataset property Series Properties Data so they can be altered at runtime.

Status Chart Customizer x

I .

2.0

o Apply To All

0K Cancel

Vision Client Tags

Client Tags, as the name implies, are only available for use in Vision Clients. Their values are isolated to
a Client runtime. All clients will have the same list of client Tags, however, the actual values are unique
and independent for each running Client. In other words, even though client Tags are created in the
Designer, each client will create their own instances. This makes them very useful as in-project variables
for passing information between screens, and between other parts of the clients, such as scripting.

Client Tags support most of the data types that standard Tags do (including datasets). Additionally, Client
Tags do not have a Tag Group property, so the value will only update when the polling property
executes, or a reference in the Client Tag's expression updates.

Often, users will create parameterized windows that take in a line ID or machine name. A Client Tag can s
tore this value for indirection to be used across multiple windows without users on different clients
fighting over the current value as they would with a standard Tag.

Note: Client Tags are only available to Vision resources, and are unavailable to Perspective and
Gateway scoped resources. If you are using Perspective see the Session Properties page for a similar
system.

The following feature is new in Ignition version 8.1.26
Click here to check out the other new features

Note: Writes to Client Tags are still allowed when the Vision Client is set to read-only mode.

Tag Browser

+ - Q & | vision Client Tags v %-

Hii Browse Devices... UDT Definitions

B New Folder Value DataTy..

@r ClientTag

Expression Type

On thispage ...

Expression Type

Create a Client Tag

Using Vision Client Tags
Overriding Vision Client Tags
System Client Tags

v,

Client Tags

INDUCTIVE
UNIVERSII

Watch the Video

Client Tags can be configured in one of several ways, based on the Expression Type property. The following options are available.

None: Causes the Tag to behave like a Memory Tag.

L]
® Expression: Allows the Tag to utilize Ignition's Expression Language, much like an Expression Tag.
L]
L]

Query: Executes a SQL Query, similar to a Query Tag.
Named Queries: Client Tags may call Named Queries

Create a Client Tag

This example shows how to create a client Tag.

1. In the Tag Browser, select Vision Client Tags in the Tag Provider Selector.

https://legacy-docs.inductiveautomation.com/display/DOC81/Session+Properties
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.26
https://www.inductiveuniversity.com/videos/client-tags/8.0/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/Types+of+Tags#TypesofTags-MemoryTags
https://legacy-docs.inductiveautomation.com/display/DOC81/Types+of+Tags#TypesofTags-ExpressionTags
https://legacy-docs.inductiveautomation.com/display/DOC81/Types+of+Tags#TypesofTags-QueryTags
https://legacy-docs.inductiveautomation.com/display/DOC81/Named+Queries

Tag Browser

o - X
+ - Q 2 visionClient Tags | i~
Wii Browse Devices... [UDT Definitions
B MNewFolder Value DataTy..
o ClientTag

2. Click the Add + icon and select Client Tag. The Tag Editor will open.
3. Inthe Tag Editor enter the Tag name and the following general properties, then click OK.

Name: Area
Value: Processing
Data Type: String

[0 Tag Editor

= Expression/SQL
% Tag Events

General Properties

General Properties

Name
Area
Value
Processing
Data Type Enabled Access Rights
String v Yes v Read/MWrite v
0K Apply Cancel

4. Anew Tag called Area is created in the Client folder.

Tag Browser

+-Q

e
=

Vision Client Tags

Tags
Tag
v &Y Area
B MName
B Value

UDT Definitions
Value Data Type
Processing 5tring
Area 5tring
Processing 5tring

Using Vision Client Tags

Once a Client Tag is created, it can be used just like any other Tag. You can drag-and-drop, bind to it, use it in scripting, or add it to a Transaction
Group.

Overriding Vision Client Tags

When you open a Client, your Vision Client Tags default to the value that was saved in the Designer. If you want to open a Client with different values
in your Client Tags, you can override them in the Vision Client Launcher (either for all applications, or an individual application). A Client Tag can be
overridden in the Client Tag Overrides section of the Vision Client Launcher.

® Use the Settings button to override a client Tag in all applications.
® Select Manage on the individual application to override a tag on that specific application.

Client Tags can be overridden within a folder. You can also pass client Tag overrides with spaces by using a '+' icon as an escape character. This
happens automatically if you are configuring overrides in the Client Launcher.

The following example shows how to override client Tags on a single application.

1. In the Designer, create a client Tag inside a folder and bind it to something that can be displayed on a window. This example has two Tags:
one Tag is directly under Vision Client Tags folder, and another one under a nested folder. Each TagA tag is bound to a different Label

components.
Tag Browser g _ X 8_
+ - Q < | vision Client Tags v | i~
Tags UDT Definitions] [client]TagA Wednesday
Tag Value DataType 7] [clientTest/TagA Wednesday
@ Test 2]
b &P Tagh Wednesday String a
b &F Tagh Wednesday String i

L]
2. Open the Vision Client Launcher. On your application, click the More Options % icon to open the Manage screen.

https://legacy-docs.inductiveautomation.com/display/DOC81/Tags
https://legacy-docs.inductiveautomation.com/display/DOC81/Understanding+Transaction+Groups
https://legacy-docs.inductiveautomation.com/display/DOC81/Understanding+Transaction+Groups
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+Client+Launcher
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+Client+Launcher

Ignition Vision Client Launcher - O X

My Applications (D About %X Settings

s i=| Filter Applications Al Favorites

710.10.110.54:8088)

¥ IGNITION-TR-89MC8R2-WS (htf

Test Project SJP i t_A
‘West plant test projects projects

Create Shortcut

Add to Favorites
Export

Delete

3. Select the Client Tag Overrides tab.

4, Click the Add icon on the right side of the table to add a Tag override. In this example, let's configure two client Tag overrides. The first
TagA is for a client Tag directly under Vision Client Tags. Enter the Tag Name and Tag Value.

5. The second override is for the nested TagA Tag. In the Tag Name, the folder name must precede the Tag name followed by a forward slash.
Notice how the value has a '+' that denotes a space. The launcher will automatically enter the space for you in the client launcher when you
save your updates. Enter the Tag Name (including the folder name) and Tag Value.

B Configure Test Project SIP O X
General Client Tag Overrides
Tag Mame Tag Value +
i)
TagA value1

TestTagA value+1

6. Click the OK button. This will take you back to your My Applications screen.

7. Select your project and click the Open button. You will see the new values that you overrode in the Client Launcher.

bl Confidential - Main Window - O X

Command Windows Help

[client] TagA value1

[client]TestTagA value 1

System Client Tags

System Tags provide status about the Ignition system, such as memory usage, performance metrics, and so on. Every individual Vision client is going
to have its own values like IP address, hosting name, username, and more. You cannot modify System Client Tags. For more information, see System
Tags.

Tag Browser 4

+- Q 2 |System -l:-
Tag Value

- & Client

b Metwork
kB System
F g User

b Gateway

Related Topics ...

® Vision Client Launcher

https://legacy-docs.inductiveautomation.com/display/DOC81/System+Tags
https://legacy-docs.inductiveautomation.com/display/DOC81/System+Tags
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+Client+Launcher

Vision Project Properties

There are a number of properties you can set for your Vision projects within the Designer. For example,

there are properties for setting the Touch Screen mode, customizing a client's auto-login, or configuring

how the clients receive updates, and more. O H
n thispage...

To access the Project Properties, in the Designer, click on Project tab on the menu bar. Then select Proj

ect Properties.

) - -) ® Vision Design Properties
File Edit View Component Alignment ® Vision General Properties
N 5] ® Vision Launching Properties
B | e ik Comm Off ® Vision Login Properties
: | ® Vision Permissions Properties
Project Bi
it b I b Comm Read-Only ® Vision Timing Properties
Q- O 1} Comm Read/Write ® Vision User Interface Properties
b g Styles 4 Project Properties
v i Views Ef, Gateway Events
b mm Banners i 3
~ g Header [5f SessionEvents
) Header [& Client Events
7) Header
) Headet P Preview Mode F5
() Headet & Preview Language 3
) Side_Merer
b mm Pages
) View-Horizontal-Menu-Ex v

Alternatively, you can click on the Project Properties ”E icon at the top of the Project Browser.

Project Browser [, 4
Q- Project Properties .
Tg ITansacton Groups S
—(&} Vision
[& Client Events
+ ™ windows

™ Main Window
™ window-803 [x]
M ew-2
s © Templates
% Named Queries
4 Reports w

Project properties span several functional areas each containing settings applicable to that area. Scroll down to the Vision section.

/4 Project Properties

Vision / Design

Perspective Maintain Aspect Ratio

Center Leading Trailing

General
o 5Scale Font
Permissions
Tag Drop Default Color Mapping
Inactivity Value == Color

Project
General
Permissions Window & Template Committing
. Commit on Close Prompt Always
Designer
o Template Aute-Commit L) On Off
Vision
Constrain to Parent Container Bounds
General .
Mudge Distance 1=
Launchin :
g Alt-Nudge Distance 10 5
Login Default Component Layout
Permissions Layout Mode
Timing Relative Anchored
User Interface Relative Layout Options

Low Fallback Color: _

a

pod

OK Cancel
Vision Design Properties
This section of properties apply to the Vision Client in general.
Window & Template Committing
Property Description
Commit on Close Prompt - Prompt whether the user wants to commit changes when closing a window or template.

Always - Always commit changes when closing a window or template.

Template Auto Commit On - Always commit changes when switching to a different window or template.
Off - Do not automatically commit changes when switching to a different window or template.

Component Manipulation

Property Description
Constrain to Parent Disabling the constraint on parent bounds allows you to position components outside of their parents bounds, which
Container Bounds can be helpful in advanced layouts.
Nudge Distance The number in this box is the distance (in pixels) that a nudge moves (when using the arrow keys) or resizes a
component.
Alt-Nudge Distance The number in this box is the distance (in pixels) that an alt-nudge moves (when using the arrow keys plus the Alt key)

or resizes a component.

Default Component Layout

Property Description

Layout Mode Relative - All newly created components will be configured with a Relative layout, further configured by the Relative
Layout Options property.
Anchored - All newly created components will be configured with an Anchored layout, further configured by the Ancho
red Layout Options property.

Relative Layout Options When the Layout Mode property is set to Relative, these options determine the layout options of new components.
For more information, refer to Component Layout.

Anchored Layout Options = When the Layout Mode property is set to Anchored, these options determine the layout options of new components.
For more information, refer to Component Layout.

Default Color Mapping The initial color mapping when configuring a new number-to-color binding.

Vision General Properties

https://legacy-docs.inductiveautomation.com/display/DOC81/Working+with+Vision+Components#WorkingwithVisionComponents-ComponentLayout
https://legacy-docs.inductiveautomation.com/display/DOC81/Working+with+Vision+Components#WorkingwithVisionComponents-ComponentLayout

4 Project Properties — O *

User Interface

General
Permissions
Tag Drop

Inactivity

Project Vision / General
General
Permissions Timezone Behavior
Designer Gateway Timezone v
Vision Update Mode
Design © Notify (_ Push (_ None

Touch Screen

Touch Screen Mode Enabled
Launching _ _
_ Scrollbar Width (pixels)
Legin
o Touch Screen Mode Active on Startup

Permissions

Data
Timing

Disable Tag History Data Cache

Resource Encoding

Perspective AUto -

General

Property

Timezone
Behavior

Update
Mode

Description

The Vision Client can emulate any timezone. By default, it will appear to be in the same timezone as the Gateway Timezone. This
has the effect of all Clients behaving the same, regardless of the timezone setting on the Client's host operating system. Depending
on your project's requirements, this may not be optimal. You can have the Client use the host's timezone by choosing the Client Time
zone option, or you may specify any explicit timezone for all Clients to emulate.

This feature was changed in Ignition version 8.1.24:

Updates sent to the Client when a Designer saves the projects can push updates in three ways:

® Notify
© This option will notify the user that there is a new Vision Client project update by showing an update banner at the top of the
Client.
® Push
© This option pushes any updates to the Vision Client without warning the users.
®* None
© Introduced in Ignition 8.1.24, this option does not push updates, but instead allows users to update Vision Client projects via
a Client System Tag and companion scripting function. See Client Update Modes.

Touch Screen

https://docs.inductiveautomation.com/display/DOC81/System+Tags#SystemTags-SystemClientTags(VisionOnly)
https://docs.inductiveautomation.com/display/DOC81/system.vision.updateProject

Property

Touch
Screen
Mode
Enabled

Touch
Screen
Mode
Active on
Startup

Data

Property

Disable Ta
g History
Data
Cache

Resource
Encoding

Description

All Clients can operate in Touch Screen mode. When enabled, clicking on editable numeric and text entry fields (i.e., Text Fields,
Numeric Text Fields, etc.) will pop up on-screen keyboards that can be used for data entry. You can optionally set the width of any
scrollbars (number of pixels wide/tall).

Configures the Clients to start up with the Touch Screen mode active.
More details can be found on the Using Touch Screen Mode page.

Description

The Clients normally maintain a cache of data retrieved from Tags History, improving repeat operations on graphs and tables. When
this option is disabled, no data is cached, and the full queries execute against the Gateway each time data is required.

The following feature is new in Ignition version 8.1.25
Click here to check out the other new features

The encoding format that Vision Windows, Templates, and Template Drop Target configurations should use when saving, helping to
make them more accessible and human readable. This project property is anterograde, meaning new serializations will be affected,
but old serializations will not. Options available are:

® Auto (defaults to binary)
® Binary
® XML (plain text XML)

Vision Launching Properties

These properties affect the Vision Client's launching process.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.25

] Project Properties — O et
Project Vision / Launching
General
Permissions Gateway Launch Page
Designer Default Launch Mode | Windowed -
Vision 2 "windowed" Button 2 "Full Screen” Button
Design Hide From Launcher
General Launch Icon
=
Login Windowed Properties
Permissions Vendor
Timing Homepage
User Interface Width 1,024 -2 Height 768 &
Perspective Screen Index 0 :
General - o .)
L Start Maximized Start Centered Hide Exit Button
Permissions
Client Memaory
Tag Drop . .
Initial 3ZM « | Maximum 256M
“ Apply Cancel

Gateway Launch Page

Property Description

Default Determines the mode for a Client launched from the Launch button that appears next to the project in the Client Launcher. Available
Launch modes are Windowed or Full Screen.
Mode

Windowed = Each launch mode can also be enabled individually, which allows that mode to appear in the Dropdown list next to the Launch button
Button/Full | on the Gateway Home page.
Screen

Button
This feature was changed in Ignition version 8.1.13:

These settings were removed in 8.1.13. The Window Modes settings on applications in the Vision Client Launcher provide similar
functionality.

Hide From | This option hides the project from the Client Launcher and prevents the project from being selected in the Vision Client Launcher.
Launcher

Launch Icon

Property Description

Launch The image specified here is used to represent the project on the launch page and desktop shortcut. This needs to be a path to an
Icon image that has been uploaded to the Gateway . Use the browse button to choose or upload a new image.

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+Client+Launcher+Settings#VisionClientLauncherSettings-LauncherApplicationSettings
https://legacy-docs.inductiveautomation.com/display/DOC81/Images+and+SVGs+in+Vision#ImagesandSVGsinVision-UsingImages

The following feature is new in Ignition version 8.1.12
Click here to check out the other new features

Supported image formats now include PNG, SVG, GIF, and JPEG files.

Windowed Properties

Property
Vendor
Homepage
Width
Height

Screen
Index

Start
Maximized

Start
Centered

Hide Exit
Button

Description

This property is displayed as the project is launching through Java Web Start, as well as in the JWS application manager.
A URL that is displayed in the JWS application manager.

The width of the Client window when launched in Windowed mode.

The height of the Client window when launched in Windowed mode.

The number here is the index of the screen to use for Full Screen mode, it starts at 0. This property is not supported on all operating
systems.

If the box is selected, when the Client is launched in Windowed mode, it starts maximized. Note that this is not the same thing as Full
Screen mode, which is only available when the Client is launched in Full Screen mode. In Full Screen mode, the width, height, and
start maximized properties have no effect. When launched in Full Screen mode, the user is given an Exit button on the login screen

by default. For terminals where the application should not be exited, this button can be removed by checking the Hide Exit Button box

If the box is selected, when the Client is launched in Windowed mode, it starts centered.This property is ignored if Start Maximized is
enabled.

If the box is selected, when the Client is launched in Full Screen mode, the exit button is hidden to prevent the application from
closing.

Client Memory

Property

Initial

Maximum

Description

Governs how the Client use RAM resources on its host machine. The initial memory setting is how much memory the Client will
require on startup. While this is typically left alone, boosting it a bit can improve performance somewhat.

Governs how the Client use RAM resources on its host machine. The maximum memory setting sets a cap on how much memory the
Java VM is allowed to use. When you launch a Client on a machine with plenty of RAM, you'll also need to boost this setting to allow
the Client to use more RAM.

Vision Login Properties

These properties affect how the Vision Client's login process behaves and appears.

8

Project
General
Permissions
Designer
Vision
Design
General
Launching
Logn
Permissions
Timing
User Interface
Perspective
General
Permissions
Tag Drop

Inactivity

Vision / Login
5 Customizing Client
Login Screen
Welcome Message
| e e & Watch the Video
Login Button Text Login

Show Locale Selector | Automatic h
Username Text Username
Password Text Password
Auto Login

Enable Auto-Login

Username

Password

Password (repeat)

550 Login

Enable S50 Login

]
[o« [

el Cancel
it

INDUCTIVE
UNIVERSII

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.12
https://www.inductiveuniversity.com/video/customizing-client-login-screen/8.1

Login Screen

Property Description
Authenticat
ion)) - i
Strategy The following feature is new in Ignition version 8.1.0
Click here to check out the other new features

Authentication strategy setting. Options are Classic or ldentity Provider.

Option Description
Classic User Source system that works as it did before release 8.1.

Identity Provider = Identity Provider mode uses the system Identity Provider (IdP) to log into the Vision Client.

Welcome The message that appears in the upper-left corner of the Login screen. If left blank, no message is displayed. (HTML formatting is
Message allowed).

Welcome The image that appears in the upper-left corner of the Login screen. If left blank, uses a default image. Images are resized/forced to fit
Image into a square format. If you use a more rectangular image, the scaling on the image will automatically be adjusted.

RCWW _Project_75_Test - m| X

MY Rcww Project 75 Test

River City Waste Wator

Username

Password

inductive

automation

Login The text that appears on the Login button.

Button Text

Show Determines if the Locale Selector should appear on the Login screen. This property interacts with Ignition's Localization system.
Locale

Selector ® Automatic - Show the selector if more than a single Languages exists in the project.

® Show - Always show the selector, regardless of how many Languages exist.
® Hide - Never show the selector.

Username | (Classic authentication strategy only) The text that appears next to the username field.
Text

Password (Classic authentication strategy only) The text that appears next to the password field.
Text

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.0
https://legacy-docs.inductiveautomation.com/display/DOC81/Localization+and+Languages

Login
Prompt The following feature is new in Ignition version 8.1.17
Click here to check out the other new features

(Identity Provider strategy only) Prompt that appears on the Login screen when the Authentication Strategy is set to Identity Provider.
Default is "Log In to Continue."

Login
Message
The following feature is new in Ignition version 8.1.17
Click here to check out the other new features
(Identity Provider strategy only) Message that appears on the Login screen when the Authentication Strategy is set to Identity
Provider. Default is "Your security is our top priority. Click below to log into your account in the browser."
O
Project Title
Lorem ipsum dolor sit amet, consectetur adipiscing elit. In posuere feugiat tortor id
Log In to Continue
Your security is our top priority. Click below
to log into your account in the browser.
inductive
automation
Auto Login
Enable (Classic authentication strategy only) By enabling auto-login, you can have the launched Client skip the login process. The Client will

Auto-Login | log in behind the scenes using the credentials supplied here. If they fail, the login screen will be presented.

Property Description
Username User name of the user to automatically log in when Client is launched.
Password Password of the user to automatically log in when Client is launched.

Password (repeat) = Password of the user to automatically log in when Client is launched.

See also Setting Up Auto Login.
SSO Login

Enable (Classic authentication strategy only) Enable Single Sign-On for the project. The Project's default Authentication Profile must use Activ
SSO Login | e Directory, and SSO must be enabled in the Profile. See Active Directory Authentication for more details.

Auth Token

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.17
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.17
https://legacy-docs.inductiveautomation.com/display/DOC81/Active+Directory+Authentication

Inactivity
Timeout

Time-To-
Live (TTL)

The following feature is new in Ignition version 8.1.24
Click here to check out the other new features

(Identity Provider strategy only) The number of minutes which must elapse before expiring a designer user's auth token due to
inactivity caused by a disconnected session. Must be greater than zero. Default value is 10.

The following feature is new in Ignition version 8.1.24
Click here to check out the other new features

(Identity Provider strategy only) The maximum number of minutes a designer user's auth token may exist before it expires. If set to
any number less than or equal to zero, auth tokens may live forever, as long as the auth token has not expired due to inactivity.

Vision Permissions Properties

These properties allow you to limit the Client's ability to perform certain tasks. The tasks are grouped by IN DUC T I VI
category. Access can be configured statically for all users, or require specific roles.

8

Project
General
Permissions
Designer
Vision
Design
General
Launching
Login
Permissions
Timing

User Interface
Perspective
General
Permissions
Tag Drop
Inactivity

symbols

UNIVERSIT

Vision / Permissions

Enable? Required Client Roles C | H t P H 1
Alarm Management] 1en ermissions
Datasource Management o
Device Management o | W t h th Vd
DNP3 Management o a C e I eo
EAM Task Execution L]
Legacy Database Access Q
OPC Server Management 9
SFC Management Q
Tag Editing (]
& TagHistory Q
Translation Management 9
& User Management Q

Enable All / Disable All

Permissions

Property

Enable?

Required
Client
Roles

Category

Description

Determines if the Client has access to this category. If unselected, the category will be disabled in the Client for all users. If selected,
the Required Client Roles text field will also be used to determine if the Client has access.

A comma separated list of Managing Users and Roles and/or Security Zones that have access to the category while the Enabled ch

eckbox is selected. While these fields have focus, the down arrow key on the keyboard may be pressed to make a list of available

roles appear. There are several ways to use roles and zones in this field, and they can be used together in the comma separated list.
® Blank Field - anyone can use this, regardless of their roles.

® Role name - users with this role can use this regardless of their zone.
® roleName@zoneName - users must have this role AND be logged in from this zone.

Caution: When creating a new project, all of these settings will be disabled by default.

The following is a list of the initial categories. Note that the categories you see in your Designer are dependent on which modules are

Descriptions| installed on the Gateway. Additionally, third-party modules can add to this list.

Category Description

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.24
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.24
https://inductiveuniversity.com/video/client-permissions/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/Managing+Users+and+Roles
https://legacy-docs.inductiveautomation.com/display/DOC81/Security+Zones

Alarm Management
Datasource Management
Device Management
DNP3 Management
Legacy Database Access

OPC Server
Management

SFC Management
Tag Editing

Tag History

Translation Management

User Management

Vision Timing Properties

These properties affect the Vision Client polling rate and timeout settings.

Allows the Client to cancel, shelve, and acknowledge alarms. Applies to both local and remote Alarms.
Allows the Client to modify Gateway datasource connections.

Allows the Client to modify device connections.

Allows the Client to freeze DNP3 operations via scripting.

Allows Clients to run queries directly against the database. This doesn't effect named queries.

Allows the Client to modify OPC server connections.
Allows the Client to start or stop Sequential Function Charts.

Allows the Client to add, edit, or delete Tags through scripting.

The following feature is new in Ignition version 8.1.21
Click here to check out the other new features

Allows the Client to query/modify Tag History.

Allows the Client to modify translations in the localization system.

Allows the Client to modify schedules, holidays, and users through scripting or components.

INDUCTIVE
UNIVERSIT

A Project Properties - [m] x
Project Vision / Timing
General
Permissions Polling Base Rate . .
- so000 12 Setting Project
Vision Connect Timeout .
e 10000 -4 Polling Base Rate
General Read Timeout
Launching 60,000 -5 .
g Watch the Video
Permissions 120000 -3
Connection Concurrency
User Interface Limit Concurrent Connections
oK Apply Cancel
Timing
Property Description
Polling The base rate, in milliseconds, for all polling bindings.
Base Rate
Connect The maximum amount of time to wait for connections to the Gateway to be established. Specified in milliseconds.
Timeout
Read The maximum amount of time for socket connection to the Gateway to remain open. Specified in milliseconds.
Timeout
OoPC Maximum amount of time, in milliseconds, to wait for the response to a request. (default: 120,000)
Browse
Timeout
Connection = By default, Clients are not limited by the number of concurrent connections to the Gateway. These connections are used to send Tag
Concurren | writes, return database results, as well as any other action that requires information to be passed between the Gateway and the Client
cy . Depending on what is running in the Client, your network's bandwidth could be hindered. Enabling this property will limit the amount

of concurrent connections the Client can maintain. Note that this may negatively impact Client performance, but is usually preferable
on busy networks.

Vision User Interface Properties

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.21
https://www.inductiveuniversity.com/video/setting-project-polling-base-rate/8.1

These properties affect how the Vision Client appears and behaves while it is running. INDUCT I VI

L] [
—— “» UNIVERSIT

Project Vision / User Interface
General
Permissions Minimum Size
Width 8005 - .
— : Sett Client
oz etting Clien
Design Client Background Color Ml n | mum Sl ze
General =
Launching Client Menu
Login Dialog 12pt bold 1
T Watch the Video
Timing Hide Windows Menu
User Interface Touch Screen Keyboard Width
Perspective 7%
General Touch Screen Keyboard Font Size
Permissions 20
Tag Drop -
Inactivity Avis Precedence | East/West v
Symbols Prevent Popup/Docking Overlap
Infinite Desktop

User Interface

Property Description

MInimum Typically, a Vision Client is designed to run on multiple different resolution and sizes of monitors. The various component layout

Size features help design elastic screens, but sometimes you need to set a lower bound as to how small you'll allow the Client's usable
area to shrink. This is what the Minimum Size settings are for. You can see these settings visually represented in the Designer as
lines on the Vision workspace when the Root Container is smaller than the configured Minimum Size..

Whenever the usable space shrinks smaller than these bounds, scrollbars will appear, capping the Width and Height to these
minimums. This defaults to 800 x 600. In the image below, the project was set to a minimum size of 400 x 300. Since the window is
smaller, the outline is visible.

inirmm

Client This option allows you to specify the color of the Vision workspace which will be visible when not obscured by windows.
Backgroun
d Color

Client Menu

Property Description

https://www.inductiveuniversity.com/video/setting-client-minimum-size/8.1

Menu Font

Hide Menu
Bar

Hide
Windows
Menu

Touch
Screen
Keyboard
Width

Touch
Screen
Keyboard
Font Size

Docking

Property

Axis
Precedence

Prevent
Popup
/Docking
Overlap

Infinite
Desktop

Changes the font type, font style, and font size of the Menu Bar.

Hides the entire Menu Bar in the Client. Usually enabled in situations where users should not be able to close the client. Changes to
this setting are applied on client startup, meaning clients will need to be relaunched after changing this setting.

Hides the automatically-generated "Windows" menu that lets users switch between open windows. Enabled when users should not be

able to close windows in the Client. See also Menubar Scripts .

Determines how wide the Touch Screen Keyboard should appear in the Client. Percentage of the client window the touch screen
keyboard displays.

The following feature is new in Ignition version 8.1.34
Click here to check out the other new features

You can also use the - Di gni ti on. t ouchscr een. keyboar dW dt h system property for local overrides.

The following feature is new in Ignition version 8.1.34
Click here to check out the other new features

Customize touchscreen keyboard font size. You can also use the - Di gni ti on. t ouchscr een. keyboar dFont Si ze system
property for local overrides. Default is 30.

Description

Defines which axis takes precedence for docked windows. (i.e., East/ West or North/South). When windows are docked on adjacent
sides, this property determines which sides should take precedence. When set to "East/West", windows docked to the East or West
sides will expand vertically from the top to the bottom of the Client, and will push any North or South docked windows out of the
way.

By default, popup windows are not allowed to overlap any docked window. Disabling this property will allow Popup windows to be
placed on top of docked windows in the client.

If true, the desktop area will be expanded if floating windows are dragged out of frames. If false, popups are prevented from being
dragged beyond the bounds of a window so they don't get distorted.

Related Topics ...

Client Update Modes

Using Touch Screen Mode

Working with Components

Docked Windows - Axis Precedence

In This Section ...

https://legacy-docs.inductiveautomation.com/display/DOC81/Client+Event+Scripts#ClientEventScripts-MenubarScripts
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.34
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+Client+Parameters
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.34
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+Client+Parameters
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+Client+Parameters
https://legacy-docs.inductiveautomation.com/display/DOC81/Window+Types#WindowTypes-AxisPrecedenceandDockIndex

Client Update Modes

Notify Versus Push Versus None

When a Client is launched, the most recent version of the project is used. Vision Client projects can
receive updates in three modes:

® Notify
This is the default mode to automatically notify operators when project updates are available. In
this mode, every time you update a project in the Designer and save the changes, Clients will
display an orange information bar at the top of their display. This orange bar notifies the
operator that an update is available. By clicking on the notification banner, the new
project modifications are downloaded and applied.

SIP_test - Main Window - [u] X

Command Windows Help

® Push
When you save your changes in the Designer, this mode automatically pushes all project
changes and updates to all running clients with no operator interaction, that is, the new version
is downloaded and applied automatically. This is often desirable when a Client is running in a
situation where keyword and mouse access is inconvenient, such as in a large overhead display.

®* None

The following feature is new in Ignition version 8.1.24
Click here to check out the other new features

Selecting this option will defer updates to any currently active Vision Clients. The Vision Client
project will update upon restart of the active Vision Client, or through using the system.vision.
updateProject() system function. This option may be preferred when trying to avoid interruptions
to currently active users or Vision Clients.

Note: This property (and many other project properties) are only read when a client is launched. When
changing from one Update Mode to another, client updates will not get pushed when you save. Clients
will need to be re-launched to start using the new Update Mode.

Setting Client Update Modes

This example shows how to change the Client Update Mode.

On thispage ...

® Notify Versus Push Versus None
® Setting Client Update Modes

@ INDUCTIVE
UNIVERSIT

About Client
Updates

Watch the Video

1. In the Project Browser of the Designer, select Project > Properties from the top menubar. The Project Properties window will open.
2. Under the Vision folder, select General, set Notify, Push, or None as your Client Update Mode. The default is set to Notify.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.24
https://docs.inductiveautomation.com/display/DOC81/system.vision.updateProject
https://docs.inductiveautomation.com/display/DOC81/system.vision.updateProject
https://www.inductiveuniversity.com/video/about-client-updates/8.1

3. Click OK.

47 Project Properties

Project
General
Permissions
Designer
Vision
Design
General
Launching
Login
Permissions
Timing

User Interface
Perspective
General
Permissions
Tag Drop

Inactivity

Vision / General

Timezone Behavior

Gateway Timezcone
Update Mode

IO Notify _ Push [Nonel

Touch Screen

|| Touch Screen Mode Enabled

15 | Scrollbar Width (pixels)

|_| Touch Screen Mode Active on Startup
Data

|_| Disable Tag History Data Cache

N -

Now, in the Client (with Update Mode set to Notify), the operator will have to click the banner to update the Client.

SJP_test - Main Window

Command Windows Help

3 Project update available. Click here to update.

West

Reservoir

[

L |
0 25 50 75 100 0 25 50 75 100
River City
Waste Water
TREATMENT

<

Then, the operator must click Update on the confirmation message.

Update Available ot
There is a more recent version of this application available.

This application has been updated on the Gateway.
Click 'Update’ to update this application.

Update | Cancel |

Now the client version is updated with the most recent version of the application.

Related Topics ...

® Using Touch Screen Mode
® Vision Project Properties

Setting Up Auto Login

Client Auto Login

Clients can log in automatically when launched, once you specify the Auto Login settings in the Client
/Login section of the Project Properties window. This is typically used in situations where the client
should login with a low access user, such as a 'guest’ account.

Set the Clients to Automatically Login
In this example, we will set the project properties to allow Ignition clients to automatically login.

1. In Designer, go to Project > Properties.
The Project Properties window is displayed.

2. Scroll down to Vision > Login.
3. Click the Enable Auto-Login checkbox.
4. Enter a Username and Password.
5. Click OK.
A Project Properties - [u] X
Project Vision / Login
General
Permissions Login Screen
Designer Welcome Message
Vision
Design Welcome Image &
General
Username Text Username
Launching
Password Text Password
Login
Permissions Login ButtonText | Login
Timing Show Locale Selector | Automatic -
User Interface Auto Login
Perspective Enable Auto-Login
General Username guest
Permissions Password [T
Tag Drop Password (repeat) | *¥rareRr
S50 Login.
Enable 550 Login
Bl »ey || conee

6. Select the File > Save All to save your changes to the Gateway and your project.

Edit View Project Com

Mew L

Open...

Sawve All
Save..

Save As...
Update Project

Import..

s I« X E [N

Export..

<1 Exit

When in a client that has auto login set up, if the user accidentally logs out there is a button on the login
screen to allow the user to enter in the auto login credentials. That way there is no need for them to know
any login credentials.

On thispage...

® Client Auto Login
® Setthe Clients to
Automatically Login

@ INDUCTIVE
UNIVERSIT

Setting up Client
Auto Login

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC81/Project+Properties
https://www.inductiveuniversity.com/video/setting-up-client-auto-login/8.1

Username

Password

Language

English -

Related Topics ...

® Gateway Backup and Restore

https://legacy-docs.inductiveautomation.com/display/DOC81/Gateway+Backup+and+Restore

Using Touch Screen Mode

It is very common to deploy Ignition Vision projects on touchscreen computers, such as industrial panel-

PCs acting as Human Machine Interface (HMI) or Operator Interface Terminal (OIT). In situations where

the PC does not have a keyboard attached, Touch Screen mode can be used to assist with user input. O th

For this reason, all of the Input components in Vision can be enabled for touch screen. n IS page

Under normal circumstances, you don't have to do anything special other than enable Touch Screen
mode on your project. This will allow the operator to activate Touch Screen mode when they log in. You

can also enable Touch Screen mode via scripting. * Enabling Touch Screen Mode

® Invoke the Touch Screen
Keyboard with Scripting

® Change the Size of the Touch
Screen Keyboard

Touch Screen-enabled Input components all have an expert level property called Touch Screen Mode.
This property has three settings:

® Single-Click: The keyboard will appear on a single click

® Double-Click: The keyboard will only appear after a double-click

* None: Disable touch screen support on the component. The component will no longer invoke
the touch screen keyboard.

@ INDUCTIVE
UNIVERSIT

Using Touchscreen
Mode

Watch the Video

Enabling Touch Screen Mode

Touch screen support is built into Ignition. Turn it on through the Project Properties or scripting in the Designer.

1. From the Project Browser, click on the Project Properties 3 icon, or from the menubar go to Project > Project Properties.
The Project Properties window is displayed.

2. Scroll down to Vision > General page, to see the Touch Screen options.
® Touch Screen Mode Enabled: By default, this is enabled, which means an operator can activate the mode on the Startup
screen. All Clients can operate in touch screen mode. When Touch Screen mode is enabled, clicking on numeric and text entry
boxes will pop up on-screen keyboards that can be used for data entry. You can optionally set the width of any scrollbars (number of
pixels wide/tall)
® Touch Screen Mode Active on Startup: This option sets the Clients to start up with the Touch Screen mode active.

3. Change the settings as desired then click OK.

Note: Make sure Comm Read/Write is enabled in Project Properties of the Designer.

https://www.inductiveuniversity.com/video/using-touchscreen-mode/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/Project+Properties
https://legacy-docs.inductiveautomation.com/display/DOC81/General+Designer+Interface#GeneralDesignerInterface-ProjectMenu

A Project Properties — O *
Project A Vision / General
General
Permissions Timezone Behavior
Designer Gateway Timezone A
Perspective Update Mode
General Notify € Push None
Permissions Touch Screen
Tag Drop 4 Touch Screen Mode Enabled
Inactivity 15 | Scrollbar Width (pixels)
Symbols Touch Screen Mode Active on Startup
Vision Data
Design Disable Tag History Data Cache
Resource Encoding
Launching Auto -
Login
“ Apply Cancel

These settings are helpful for mixed-use projects, that is, those that are launched on both touch screen devices and traditional computers and laptops.
Once Touch Screen mode is enabled through Project Properties, the Touch Screen icon will appear on top right corner of the project login screen.
Click in any of the login fields to bring up the Touch Screen keyboard.

Toggle to enable or disable touchscreen mode

Username

admin

Password

Invoke the Touch Screen Keyboard with Scripting

To handle touch screen logic via scripting, the general pattern is to respond to a mouse event, popup up a keyboard, and then set the component's
value to whatever was entered in the keyboard. For example, for a text field, you would write a script like this:

if system gui.isTouchscreenMdeEnabl ed():
current Text = event. source.text
newText = system gui.showTouchscreenKeyboard(current Text)

See also system.gui.setTouchscreenModeEnabled.

Change the Size of the Touch Screen Keyboard

You can control the size of the Touch Screen keyboard that is displayed in a Vision client.

1. In the Designer, go to Project Properties > Vision > User Interface.
2. Change the percentage for the Touch Screen Keyboard Width property to anything you want.

https://legacy-docs.inductiveautomation.com/display/DOC81/system.gui.setTouchscreenModeEnabled

4 Project Properties — O x

Project Vision / User Interface
General
A Minimum Size
Permissions]
_ Width 800 -2
Designer Height 600 |2
Vision

Client Background Color

General
_ Client Menu
Launching -
_ Dialog 12pt bold
Lagin
o Hide Menu Bar
Fermissions Hide Windows Menu
Timing

Touch Screen Keyboard Width

Perspective Docking

General Axis Precedence | East/West -
Permissions (2 Prevent Popup/Docking Overlap
Tag Drop 2 Infinite Desktop

oK Apply Cancel

3. When you launch a Vision client, the Touch Screen keyboard will be displayed in the default percentage of 75%. After you're logged into the
client, the Touch Screen keyboard will be set at the value you entered into the Touch Screen Keyboard Width property field.

The Touch Screen Keyboard Width setting controls both the alphanumeric keyboard and the numeric keypad.

Alphanumeric Keyboard:

Hello World

1,535,099

Related Topics ...

® Setting Up Auto Login

Common Tasks in Vision

This section contains examples for items we've identified as "common" tasks: undertakings that many
users are looking to utilize when first starting out with a specific module or feature in Ignition .
Additionally, this section aims to demystify some of the more complex or abstract tasks that our users
may encounter. On thlS page
The examples in this section are self-contained explanations that may touch upon many other areas of Ig

nition. While they are typically focused on a single goal or end result, they can easily be expanded or

modified after the fact. In essence, they serve as a great starting point for users new to Ignition, as well

as experienced users that need to get acquainted with a new or unfamiliar feature. Component Animation

Custom Input Template

Client Tags for Indirection

High Performance HMI

Techniques

Component Animation * Qpen Dynamic Windows on
tartup

® Tank Cutaways

Below is a list of common tasks related to this section of the manual.

Creating animation within a Vision project. The Component Animation page walks through the different
ways to animate graphics on a window. The different methods vary in complexity and offer different
solutions for different needs.

Custom Input Template

Creating a simple template that can be used many times to create simple user input fields. The Custom Input Template is relatively simple to put
together, but can be a powerful tool that can quickly build out screens that are heavy on user input.

Client Tags for Indirection
Vision Client Tags can be used as a variable across all windows to indirectly point to a set of Tags, such as an area of the plant. For example, setting

up Client Tags for Indirection can enable the user to choose an area of the plant from a Dropdown List component, and have Ignition display the
correct windows for that area.

High Performance HMI Techniques
Using techniques that relay information more quickly than standard a P&ID display. High Performance HMI Techniques help create simpler screens

that have much less noise and useless "fluff" that takes up screen space. The suggestions and examples help guide better practices to increase
efficiency and performance across any industry.

Open Dynamic Windows on Startup

It can sometimes be necessary to Open Dynamic Windows on Startup, so that certain users see one set of windows while other users with potentially
different privileges sees a different set. While it is easy to set a window to open on startup, that same window will always open for anybody that logs in
to the project. By using scripting with the Client Event Startup Script, you can customize which windows get opened based on any criteria.

Tank Cutaways

The Tank Cutaways in Symbol Factory may seem like just a random shape, but they can be used to remove parts of other SVG diagrams to create a
way to "look inside" the tank or other machine and view information like how much material is available.

In This Section ...

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+Windows#VisionWindows-OpenonStartup

Component Animation

Animation can be a useful tool to help visualize what is happening at any given time. Animations make it
easy to tell if a machine is running, or a conveyor is moving with a quick glance at the screen, and it can
help highlight which components aren't currently in use. There are two main ways of creating animation:
actually moving all or part of a component, or cycling through a few different static images of a
component that give the illusion of moving. Each method has its advantages. For example, making a
dump truck move forward and backwards may be better accomplished with actually moving the
component. It would be fairly simple to make the whole component move forward on its x coordinate, and
then back the same amount. But, if the truck was instead stationary, and just its bed were moving up and
down to simulate the truck dumping its cargo, it may be difficult to seamlessly move the component,
since it would not just be moving on one axis, but would require careful rotation and movement
combined. In this instance, it would be far easier to create a few static images of the truck with its bed in
various states, and then cycle through those images fairly quickly so it looks like it is moving. Let's go
over both methods below.

Animation in Scripting

The best way of moving components around on the screen is using the scripting function system.gui.
transform. This function can move and resize components from a Python script. It provides many options
for moving and resizing components, all in one simple scripting function. This can be called on a property
change when a user enters a new value, or based on other conditions that happen on the window.

Components that Actually Move

On thispage ...

® Animation in Scripting
® Components that Actually Move
® Animating a Component

INDUCTIVE
UNIVERSII

Component
Animation

Watch the Video

To actually move components around during runtime usually involves binding all or part of an image or SVG to the value property of a timer or signal
generator. The Symbol Factory Enhanced components all contain an Angle property. Binding the Angle property of a spinning part of a motor can help

us visualize when the motor is running or not.

Note:

When searching Symbol Factory, make sure to select the Enhanced radio button in the search window. The enhanced symbols have groupings that

enable you to more easily animate them

1. Pick out a component that you would like to animate. For this example, we used the Single Stage Compressor from Symbol Factory. You

will also want to drag a Timer component onto your window.

=

@ =

1. In the Project Browser, click the Expand ’ icon to expand the Single Stage Compressor component. You will notice that the whole

component is made up of many smaller pieces. We want to select the piece called Group_Ilmpeller.

https://legacy-docs.inductiveautomation.com/display/DOC79/system.gui.transform
https://legacy-docs.inductiveautomation.com/display/DOC79/system.gui.transform
https://www.inductiveuniversity.com/video/component-animation/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/Symbol+Factory

Project Browser O - X [T B L T T

* [] Root Container ~
4 Single stage compressor
¥ fm Group_COmpressor_Box
&5 Ellipse

sE]

w Group_Impeller
b dw; Group_Inner_Sphere
b Am Group_Outer_Exhaust]
b 4w Group_Port
b 4w Group_Support]
& Timer » ﬁ_

2. In the Property Editor, bind the Group_Impeller's Angle property to the Value property of the Timer.

Property Binding: Root Container.Single stage compressor.Group_|mpeller X
Tag Property
Tag Binds to another component's property in the same window
Indirect Tag
Choose Property
Property

) b g Group_Impeller ¢ B§ "
Expression b Ax Group_Inner_Sphere
b 4s Group_Outer_Exhaust
sqQL b 4w Group_Port
b Aw Group_Support

oot & Tmer]

DB Browse B Delay(ms) (int)
SOL Query B Initial Delay (ms) (int)
B Running? (hoolean)
Root Container.Timer.value v
Options
® Mo Binding

Bidirectional Overlay Opt-Out

& -
1

3. We now need to modify the properties of the Timer to ensure a good rotation. Select the Timer component, and set
Delay (ms): 200
Step By: 10
Bound: 360
Running?: True

Vision Property Editor ol o X T B R
- (E = = V-]
> Common j
Marme Timer Pl :
~* Behavior el
Delay (ms) 200|=2 g_:
Initial Delay (ms) 1,000 € |]
Running? ||:j true e |
'bata _;_—
Value 300 & g_.
Step by 10)e :
Bound 360je | |

4. Put the Designer in Preview Mode and your Compressor symbol component will now animate. You can adjust the Delay (ms) to be lower or
higher to adjust the speed at which the component rotates.

Animating a Component

In this example, we will add some animation. We will duplicate a graphic multiple times and modify each graphic to be a little different than the others,
and then show and hide them in the correct order to make it seem like they move.

The following example uses a Signal Generator component to drive the animation, but any incrementing value can be used, such as the Value
property on a Timer component, an accumulating value in a PLC, or the current time in seconds.

1. Pick out a component to animate. For this example, we chose the Horizontal Conveyor with Perspective from the Symbol Factory. We
also placed a signal generator symbol on the window.

0000000000000000000¢

2. Duplicate this component 10 times for a total of 11 conveyors on the window.

3. Select the first instance of the component then choose Component > Ungroup.
4. In the Project Browser, expand the Group_Conveyor_Belt. Select Path 5.

https://legacy-docs.inductiveautomation.com/display/DOC81/Symbol+Factory

N a,
Project Browser g . X Lo, o, |10, |

Q- Filter H A B

+ [] Root Container ~
[ui] Bar Chart
A Group
s Group 1
s Group_Axial
s} Group_Conveyor_Belt
25 Path
Lo Path 1
£o Path2
Lo Path 3
Lo Path4
| ||| [F&paths
49 Path6
b 4 Group_Inner_Area
b 4 Group_Wheel
b 4w Horizontal conveyor with perspective 1

4 v v
521

3]
a
fim

5. Move Path 5 to the left and then move Path 4 the same distance to the left. In this example, we moved them both an equal distance left so
that the leftmost component is on the left edge of the conveyor.

6. Repeat this with the rest of the components, except move them slightly to the right of the previous instance. Notice how the gray bars slowly
move from left to right over all the components when viewed in sequence.

ojefojojojojofojojofojofolojofojolejo]o;

00000000000000000000

7. Select each Conveyor image individually select Component > Group.

8. Next, select the first Conveyor from the Project Browser (the one that has the bars on the far left), and place an expression binding on its Visi
ble property that looks like this:

i f({Root Container.Signal Generator.value} =0, 1, 0)

10.

11.

12.

13.

Duplicated this across all of the conveyors, but increment the first number by 1 each time. The last conveyor (the one that has the bars on the
far right) should have the following expression:

if({Root Container.Signal Generator.value} = 10, 1, 0)

. Repeat Step 8 across all of the conveyors, but increment the first number by 1 each time. The last conveyor (the one that has the bars on the

far right) should have the following expression:

i f ({Root Container.Signal Cenerator.value} = 10, 1, 0)

Next, stack all of the conveyer images them all on top of each other exactly. This is easily done by selecting all of the conveyors, going into

the Alignment menu, then selecting Align Centers Horizontal .'D icon and Align Centers Vertical a icon.

Select the Signal Generator component. Set the Signal Type to Ramp, the Period to 1000, the Values/Period to 11, the Upper Bound to 11
, and the Lower Bound to 0.

Set the Running? property of the Signal Generator to True and it will now cycle through showing all of the conveyors, which will make it look
like it is moving.

Save the project.

Custom Input Template

Sometimes you may need to have text fields in your project for the user to input data. Rather than
copying and pasting these text fields into each window, you can create a template that includes a single
label and text field. Parameters can then be passed in so that the label and text can be used for different
types of input. The template can then contain an expression to validate that there is data in the text field.
This template can be reused many times on multiple windows to allow users to input data.

Custom Input Template Example

In this example, we'll create a template containing a Label and Text Field components. We'll add two
parameters to be passed into the components. We will also copy the expression in the code block below
to let the user know that there is data in the text field. Once you get the template created, you can copy
the template to a window and test it out.

1. In the Project Browser, right-click Templates and select New Template.

2. Right-click on New Template and click Rename to change its name it to something meaningful
such as Text Entry.

3. To add a parameter, right-click the checkered area and select Customizers > Custom
Properties.

4. In the Custom Properties window, add two Template Parameters by clicking the Add + icon
twice and entering the following:

1st Parameter
Name: display
Type: String

2nd Parameter
Name: text
Type: String

72 Custom Properties >

Template Parameters

Name Type Descripti... | Drop Tar...

display String

Era .

Internal Properties

Name Type Description +

=[]

5. Click OK.
6. From the Component Palette, drag a Text Field and a Label to the checkered area of the
template, resizing so that the label and the text box occupy the majority of the space.

7. Select the Label component, go to the Property Editor, and click on the Binding G2 icon of
the Text property. The Property Binding window is displayed.

8. In the Property Binding window, click on the Property binding type, choose the display propert
y. Make sure the Bidirectional box is not selected, and click OK. Don't worry if the label on the
template disappears. It is simply displaying the value of the display custom property, which is

currently blank.

On thispage...

® Custom Input Template Example

@ INDUCTIVE
UNIVERSIT

Custom Input
Template

Watch the Video

https://www.inductiveuniversity.com/video/custom-input-template/8.1

9.

10.

11.

12.

13.
14.
15.

[0 Property Binding: Text Entry.Label 2 X

Tag Property
Tag Binds to another component's property in the same window

Indirect Tag
e Choose Property

Expression B rexeny
B Name (string)
B instance Name tring
sQL E
B text (string)
Named Que
v b i Label2
DeBrowse » £ Text Field
SQLQuery
Text Entry.Display -
Options
® NoBinding

[eidrectond] | overly Optoue

n Cancel

Now select the Text Field component, go to Property Editor, and click on the Binding o icon
of the Text property.

In the Property Binding window, click on the Property binding type, choose the text property.
Make sure the Bidirectional box is selected, and click OK.

72 Property Binding: Text Entry.Text Field X
Tag Property
Tag Binds to another component's property in the same window
Indirect Tag
Property Choose Property
Expression ™ & Text Entry -
W Name (String)
= Instance Name (tring)
sQL W Display (string)

Named Query b weiLabel2 e g
DB Brawse ~ O Text Field
SQLQuery = Name (String)
m Visible (boolean)
W Text (String) i

Text Entry.text ~

options

© esindns | [agreciona] - overiayopeou

n cancel

Next, make the background color of the Text Field change depending on whether the user
entered a text value or not. While the Text Field component is still selected, go to Property
Editor, and click on the binding icon of the Background property.

In the Property Binding window, click on the Expression binding type, and copy and paste in
the following expression.

Expression - Input Validation

// Inside the if statement is the len and the trimfunctions that
are avail abl e when doi ng expression bindings.

/1 The trimfunction will trimthe blank spaces fromthe text
therefore validating that there is actual text rather than spaces.
/1 The len function will count the length of the recently trimed
text.

/1 The if statenments asks the question: Is the length of the trimed
text greater than zero?

if(len(trim{textBox.Text Field.text}))>0,col or (255, 255, 255), col or
(255,0,0))

Click OK.

Close the template, click Save on the top menubar, and click Save again.

To test it out, drag a few of the Text Entry templates from Project Browser to your window. At
first, text field will be red as it is expecting data.

Mame

16. In the Property Editor, go to the display custom property and enter something like Name. Do
something similar for the other templates to fill the label. Note that the background color
changed to white.

Vision Property Editor g - X P L I

12 1 E— A A 1
} Common

¥ Behavior

» Appearance - Sally Stevens
~ Template Properties 4

' '
' '
' '
' '
' '
' '
| |
- > i ¥ p
display Name K="l “: :0
B ' '
text Sally Stevens -] ' '
4 ' '
' '
7] i !
H ' '
o]
v i |
1 oo & L’

17. Put the Designer into Preview Mode, and enter values into the text fields. Now, the information
that was entered into the text property can also be bidirectionally bound so that it writes to a
Tag or can be used in a script.

Vision Property Editor a8 - X P LI - L

1 S E T

» Common
} Behavior R
» Appearance Z Jamesjoyi

~ Template Properties
display Name # e

text James Joy £ e

Client Tags for Indirection

Vision Client Tags can be used as a variable across all windows to indirectly point to a set of Tags, such

as an area of the plant. Suppose that a window has a Dropdown List component that allows a user to

select different areas of the plant. If the drop-down is bidirectionally bound to a Client Tag's selected O th

string value property, the user can change the drop-down's value, therefore resulting in the indirect n IS page
binding throughout the project reflecting the change in the Client Tag.

The Client Tag can be bound to a custom property on a window's Root Container. This Custom property . o
can be bound to the Client Tag. The components inside the window can have indirect bindings on their (Ellent Tag Indirection Example
properties that leverage the Custom property on the window. Therefore, the components on the window Testing Your Work

will be dependent on the Client Tag. Client Tags are managed inside the Client, therefore each Client will
be independent of other Clients.

@ INDUCTIVE
UNIVERSIT

Using Client Tags
for Indirection

Watch the Video

Client Tag Indirection Example

In this example, we will set up Client Tags for indirection which can be shared between different windows in our project.

1. We need two windows and a way to navigate between them. If you don't already have a project that meets this criteria, create a new project
using the Vision Tab Nav project template.

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+Component+Customizers#VisionComponentCustomizers-CustomProperties
https://www.inductiveuniversity.com/videos/using-client-tags-for-indirection/8.0/8.1

7] Open/Create Project - O X

Ignition_‘/designer

oy i or

& Back New Project Setup

Project Name

A_New_Project ()

Project Title

User Source

default v

Default Database

MySQL =

Default Tag Provider

default v

Parent Project

v Inheritable Project (O

Project Template

! Perspective Menu Nav
Perspective Web Nav
Perspective Widget Dashboard
Vision 2-Tier Tab Nav

Vision Tab Nav

Vision Tree Nav

2. Add a Client Tag. In the Tag Browser, right click on Vision Client Tags, then choose New Tag > Client Tag.

Tag Browser
Q C |\ ¥-8 06 90 | H
Tag Value Data Type
* W Tags
¢ I System

i Vision Clioauiany

» i All Providi #

ST RN

de Cut Ctrl+X
A Copy Ctrl+C
W Paste Ctri+v
Vision PrnpertyEti .+ i _
'E__I 5 | = W NewTag » W NewFolder
= ™ Multi-instance Wizard W ClientTag
=
)
Restart Tag
2 Refresh Providers

3. Name the Tag Machine Number and set the Value to 1.

Tag Editor X

. General Properties
= Expression/SQL

%% Tag Events
l‘t g General Properties

Name

Machine Number

Value

Data Type Enabled Access Rights
Integer v Yes - Read/Write -

“ Apply Cancel

4. Add a window to show data based on the Client Tag. Create a new window named Machine Overview.
5. Next, we'll add a Custom Property to the Root Container of the window.

. In the Project Browser, select the Root Container for the Machine Overview window.

. Right click on the desktop and choose Customizers > Custom Properties.

. Click the Add icon.
. Enter MachineNumberRef as the name, and make sure the Type is Integer. Click OK to save the new custom property.

o0 To

Custom Properties e

Name Description %+

MachineNumberef —

oK Cancel

6. Next we'll bind the custom property to the Client Tag. In the Project Browser, select the Root Container for the Machine Overview window.
a. In the Vision Property Editor, click on the Binding == icon next to the MachineNumberRef custom property.
b. Choose the Tag binding type.
c. Select the Machine Number Vision Client Tag.
d. Click OK to save the binding.

Visian Property Editor g - X Property Binding: Root Container X

[z 1 =% = T

= commn ECI

Name Root Container -] Tag Binds to a tag

Visible 2 true @ Indirect Tag

Border Other Border v S & Property : : :rim

Mouseover Text -] Expression ~ '@ Vision Client Tags

Cursor Defauit Voo sQL [client]Machine Number -
¥ Behavior Named Query _
 Date DB Browse orers >
» Appearance Fallback Delay | 2.5 - Overlay Opt-Out
» Deprecated SQL Query

~ Custom Properties

7. Drag a Label component onto the window. Next we'll add an Expression binding to show the page title.

a. In the Vision Property Editor, click on the Binding o icon next to the Text property.
b. Choose the Expression binding type. Enter the following expression:

"Machi ne "+{Root Contai ner. Machi neNunber Ref} +" Overvi ew'

Property Binding: Root Container.Label X
Tag Expression
Tag Binds to an expression invelving any number of components' properties
andfor tags

Indirect Tag
Property Expression

m 1 "Machine "+{Root Container.MachineNumberRef}+" Overview" ~ | [E
Property *
s5qQL *_
Named Query 3
DE Browse
SQL Query
& NoBinding

n Cancel

c. Click OK to save the binding.

.I.|1qulu

S

8. Next we'll set up an LED Display component for the value.
a. Drag an LED Display component onto the window.
b. Click on the Binding o icon next to the Value property.
c. Select the Indirect Tag binding type.

d. Click on the Tag icon. Navigate to a Tag you want to use. We used the Sinel tag from the simulator.
e. Click OK to save the Tag path.

Property Binding: Root Container.LED Display

Tag Indirect Tag
Tag
Property Q Anindirect Tag £
Expression parts of the tag'
For instance, yo

Prope

perty then define that
sQL
Named Query Indirect Tag Path
DB Browse
5QL Query References

Ref. #
Options

® No Binding Bidirectional Fall

Binds to a tag dynamically using indirection (a.k.a parameterization)

f. Next, click the Insert Property Value

=

icon.

Choose Tag

- ' Tags -

b il _Generic_

v im Alarm Data

» AU
Compressors
General
InstFolder
Machine 100
Motor Plant
Motors
Plant Motors
Ramp
Random
Realistic
Sensor Types
~ o Sine

b % Sined

» % Sine2 v

InnEEREEREERER

[default]Sine/Sinel -

Cancel
| |

-

Cancel

g. Choose the MachineNumberRef property from the root container. Click OK.

Property Binding: Root Container.LED Display *

Tag Indirect Tag
Tag Binds to a tag dynamically using indirection (a.k.a parameterization)
/| Choose Prope X

Property Q@ Anindire| 9 Perty X
Expression parts of t| [+ [] Machine Overview W.
Property ::;W:;l « [] Root Container % and

ndey B Name (Strin
sqL (String)

Visible (hoolean)

Indirect Tag Pa
Named Query 9 Background Color (Color)

|
| . —
DE Browse [default]s B Styles (Dataset) ‘
) B Data Quality (int)
|

Quality (QualityCode) -
O e |

SQL Query References

} EEELED Display W
1 b wer Label € BS =

Options

® NoBinding Bidvecigy Root Container.MachineNumberRef -

Cancel
Cancel
L

h. In the Indirect Tag Path field, delete the "1" before the {1}.

Indirect Tag Path

[default]Sim_Generica’SineIa’Sine{l} % =

i. Click OK to save the binding.
j. Save your project.

9. Next we'll make a details screen so we can switch between the two. In the Project Browser, right click on the Machine Overview window and
select Duplicate.

Project Browser o _ XX

Q- Filte Project Properties

™ Dabatase Pens ~

™ Data

™ Database Pens2

™ Field Tanks
| +-I™) Machine overview _ _

* [] Root Container
B LED Display

L4

€ Close & Commit
wel Label &2
™ Main Window1 [+] 4 Close & Revert
M Main Window2 y
- | [¥] OpenonStartup
| @ About" Window
P Notes..
B Scripting.. Ctrl+
W Security Ctri+E
Al Rename F2
Ei Duplicate

10. Rename the copy as "Machine Details."
11. On the Machine Details window, select the Label component.

12. Click on the Binding G icon next to the Text property. Change the word "Overview" to "Details." Edit the Expression binding as follows:

"Machi ne "+{Root Contai ner. Machi neNunber Ref} +" Detail s"

Property Binding: Root Container.Label X
Tag Expression
Tag Binds to an expression involving any number of components' properties
and/or tags
Indirect Tag
Property Expression
m 1 "Machine "+{Root Container.MachineNumberRef}+" Al 3
Property 'Y
sqQL +
Named Query >3
DE Browse
SQL Query
& No Binding
n Cancel

13. On the LED Display, update the Indirect Tag binding on the Value property to point to the Ramp Tag instead of the Sine Tags.
a. Select a Ramp tag from the Tag selector and click OK.

Property Binding: Root Container,LED Display x
Tag Indirect Tag
Tag Binds to a tag dynamically using indirection (a.k.a parameterization)
Indirect Tag
Property o ; g : : %
¥ Anlindirect Tog Binding lets you bind to a tag dynamically, where
Expression parts of the tag's path are defined by properties on your window.
Property Forinstd [Choose Tag % [}_sP, and
then def umber}
sqQL ~ T Tags ~
~ W _Generic
Indirect Tag P Pl -
Named Query 4 + i Alarm Data -
DB Browse [defaultly | » @ AUT E =l
|| » @ Compressors B
SQL Query References v i General
Ref. # 1 - [nsthIder I -
1 » @ Machine 100 L
| » i@ Motor Plant rRef
> Motors
» i Plant Motors
~ 'ar Ramp
1 » % Ramp0 I
Options
LB » % Ramp2
® NoBinding Bidirectig P “l out
[default]Ramp/Rampl -

E

b. Click the Insert Property Value icon. Choose the MachineNumberRef property from the root container and click OK.

Property Binding: Root Container.LED Display x

Tag Indirect Tag
Tag Binds to a tag dynamically using indirection (a.k.a parameterization)
Property [v] . o : . %
¥ AnIndirect Tag Binding lets you bind to a tag dynamically, where
Expression parts of the tag's path are defined by properties on your window.
For instance, you could bind to [source] tanks/tank{1}_SP, and
Property hen defi
sqQL then deiiy Choose Property > FI}
Named Query Indirect Tag Pat| [+ [Machine Details
OB Browse [default]R4 + [] Root Container % ‘
1 B Name (String) I
sqQL
QL Query References 1 B Visible (boolean) P
Ref. # B Background Color (Color) =
1 B Styles (Dataset) |
B Data Quality (int)
B Quality (QualityCode)
. } EEEILED Display %
Options
b e Label G BS
& NoBinding Bidirectiong it
Root Container.MachineNumberRef | =

c. Inthe Indirect Tag Path field, delete the "1" before the {1}. Click OK to save the binding.

Indirect Tag Path

[default]Sirn_Gene:richarn;[.FF{arnp{l} =

14. Next we'll add the two new windows to the Navigation. Open the Navigation window.
a. Right click on the Tab Strip component and select Tab Strip Customizer.

Current Time: 05/22/2019 04:20 PM

EFAT L H

Ignition

Lock
Layout...

Size & Position...

Customizers » | & TabStrip Customizer Ctrl+U

Scripting... Cirl+] | /& Custom Properties Ctrl+2
Security crl+E | A Style Customizer Ctrl+3

Translations Ctri+T

[
i}
H
+1
&
X
X
)’.
B
o
®
N

Run Diagnostics

b. Inthe Tab Strip Customizer, click on the Empty tab. Change the Window name and the display name to "Machine Overview."
c. Click the Add Tab button. Change the Window name and the display name to "Machine Details."
d. Click OK to save the changes to the Tab Strip.

Tab Strip Customizer X
Orientation . _ _
Overview Alarms | Machine Overview | Machine Details
Top =
Navigation Mode
Swap Windows - Window Name Background Color Background Color
Size Mode Nindows/Machine Details| v v & v &
Individual - Display Name Foreground Color Foreground Color
St adine e s -
simple = Mouseover Text Font Font
Dialog Dialog
+ Add Tab T Remove Tab
Hover Color Gradient Start Color Gradient Start Color
4= Move Left = Move Right _ 'S - 3. v 3.
Gradient End Color Gradient End Coler
Text Alignment Text Offset B 5. _ 2.
Center e S Use Gradient Use Gradient
Text Padding Intertab Space TabIcon TabIcon
03 1% Edit Tab Icon Edit Tab Icon
Rounding Radius
105 « Apply To All

15. Add a way to change the Client Tag value in the Client. There are two ways to do this:
a. Drag a Numeric Text Field component onto the Navigation window, and then drag the Machine Number Client Tag onto the Nume
ric Text Field component.
b. If your Header doesn't have a background component, you can just simply drag the Machine Number Tag directly onto the window
and select Control > Numeric Text Field.

Tag Browser a — X
Qo | W-a 690 B

Tag Value DataType Traits
} i Tags
b i System
~ @ Vision Client Tags

» % Machine Number 1 Integer

+ i All Providers

Display
Control » | Numeric Text Field
Templates » | Spinner

Slider

1-Shot Button

2-State Toggle Button

Multi-State Button

C.

16. Save the project.

Testing Your Work

Remember that the point of a Client Tag is to have different values across multiple Clients, so there is no way to test it in the Designer. To test the
functionality of this example, do the following:

. Open two Vision Clients.

. In the first Client, change the Client Tag Value from "1" to "2" in the header.

. Click between the Machine Overview and Machine Details screen. Notice that they are both showing the Tags for Machine 2.

. Switch to the second Client. Notice that the Machine Overview and Machine Details screens still show the Tags for Machine 1.

HPWONP

High Performance HMI Techniques

About High Performance HMI Techniques

High performance HMI techniques and practices call for designs and displays which help the viewer On th|S page
make the best decision in the shortest amount of time after interacting with the HMI.

High performance HMIs often look basic and simplistic. They typically use gray-scale colors rather than

the traditional graphics and bright colors for their displays. Conceptually, the High Performance HMI ® About High Performance HMI
operates under the idea of visually contrasting critical and non-critical states. The power of this design Techniques
philosophy is when something does go wrong, a high performance HMI will quickly guide the user to the ® Traditional HMI

source of the problem. ® High Performance HMI

® Use of Color
Here is a comparison of a traditional HMI next to a high performance HMI. ® Colors and Alarm Indicators

® Technical Considerations with
Colors

® Accommodating Color Blind
Viewers

® Alarm Indicator
® Reducing Ambiguity

Traditional HMI High Performance HMI

BukTanke

T g

Tarkt Tenk2
w00 10

pump 3 Pump ¢

w1 s R

i

In Ignition, you create the high performance HMIs by using components such as moving analog indicators, sparkline charts, and radar charts.

Temp 100.00°F
Humidty 78.13%
oayTank
Doy Tank
ates

Moving Analog Indicator Sparkline Chart Radar Chart
Feed A
. 51.8%
P Tmp Feed B

53.0%

879C
V Tmp Feed C
135.0C 50.0%

[==5] OutP Feed D
50 43.0 psi 50.0%

Use of Color

Colors are an important consideration when designing a high performance HMI. Gray-scale colors are
used instead of the traditional bright red, green, and blue colors.

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Moving+Analog+Indicator
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Sparkline+Chart
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Radar+Chart

The person that designs the HMI must understand the diverse audience that may view the HMI. For

example, an operator may look at a motor on a traditional HMI. If it the HMI has colored the motor green, IN DUC T I VI
the operator may conclude that the motor is running. However, if a maintenance technician looks at the
same motor, he may conclude that the motor is not faulted. These are logical conclusions. They reflect UNIVE RS IT

the respective interest of the person viewing the HMI where the operator wants the motor to run and the
maintenance technician wants it to be working.

In reality, the motor is simply "scheduled" to run, meaning when it runs depends on its control
mechanism. For example, the motor may run when there is product on the line or boxes on the conveyor.
In other words, the motor may be periodically starting and stopping automatically.

Use of Color

A high performance HMI can eliminate this confusion by introducing a color that signifies a state of Watch the Video
"scheduled.” A common high performance HMI practice is to use a dark gray to signify a "scheduled"

state for equipment. This color should never compete with more alerting colors that "pop" from the HMI

resulting in the viewer's eye's being drawn to the portion of the HMI where the problem may be occurring.

Colors and Alarm Indicators

Color can play an important role in how an operator responds when problems do occur. High performance HMI design refrains from coloring
equipment when the equipment is in a state of fault. For example, some equipment may still run when faulted. Instead, an optimized solution is to
place an alarm indicator near the equipment in such a way that when the equipment is undergoing some fault, the alarm indicator renders with the
appropriate color and shape. The object and the consequential color should signify the most important alarm state occurring for the equipment at that
current time.

Technical Considerations with Colors

Some HMIs in industrial settings may temporarily lose their ability to render color because of various environmental factors. High performance HMI
design incorporates this possibility by encouraging the use of descriptive text with color. For example, motors of two different colors may look the
same on a color deficient HMI resulting in confusion for the viewer. Even worse, the viewer may misinterpret the motor state and assume everything is
fine. However, if each motor has a descriptive text such as "Motor 1 is Faulted" and "Motor 2 is Running”, the problem associated with a faulty HMI
failing to display color is largely reduced by the HMI's high performance design.

Accommodating Color Blind Viewers

Common color combinations such as red and green and blue and purple cannot adequately be distinguished by those with color blindness. High
performance HMI design accommodates color blind uses by combining colors with descriptive text as well as incorporating alarm indicators in unique
shapes.

Alarm Indicator

The high performance HMI design techniques make use of an object called the Alarm Indicator which displays a colored shape when there is a
problem. This works well with the high performance HMIs as color is only used when there is a problem. The Alarm Indicator can contain descriptive
text in addition to the shape and color, and is usually placed near the component that is causing the problem. You can import the Alarm Indicator,
shown in the example below, from Ignition Exchange.

The Alarm Indicator represents different levels of alarm with different shapes, color, and descriptive text. For example, a motor that exists in an
industrial setting is monitored by a high performance HMI. There are two alarms on the motor. The first is a critical alarm associated with the motor
becoming seized, will display as a red rectangle with the number 1. The second is a high priority alarm associated with the motor when overheating,
will display as a yellow triangle with the number 2. An Alarm Indicator is placed near the motor, positioned in such a way to clearly show motor that the
indicator is referring to.

Given this scenario, a high performance HMI will show the Alarm Indicator as in the following examples:

Example 1 Example 2
The motor is critically faulted. This is the Motor is overheating resulting in a high alarm.
highest priority.

A

Reducing Ambiguity

https://inductiveuniversity.com/video/use-of-color/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/Ignition+Exchange

A high performance HMI design technique to reduce ambiguity incorporates a line from the Alarm Indicator to the object experiencing the alarm. A
simple dotted line can ensure that the viewer associates the correct Alarm Indicator with the correct motor.

Open Dynamic Windows on Startup

Sometimes a project needs to change its startup windows depending on who logged in, what
security roles they have, or what computer the Client is launched on. In these cases, rather than setting a

static startup window, you can write a Client Startup Script that uses the SY St €m nav library to

open a dynamic set of windows based on hostname, IP address, and user who logged in. @ IN DUCTIVI
UNIVERSII

This means you will remove the Open on Startup option from some or all of your windows and use a Clien
t Startup Script to determine which windows will be opened. Typically, you will set your navigation
window to Open on Startup, but decide on a main window in the startup script. The example below
checks the users role before opening a window.

Open Window(s) on
Code Snippet - Client Startup Role Check Startu p

Checks the users role and opens a nain w ndow depending on the role .
Watch the Video

Grabs a list of the users roles

roles = system security. getRol es()

Checks if they have Administrator role
if "Adm nistrator' in roles:
syst em nav. openW ndow(' Admi ni strator Screen')

Checks if they have QOperator role
elif 'Operator' in roles:
system nav. openW ndow(' Oper ator Screen')

If they have neither Administrator or Operator
el se:
syst em nav. openW ndow(' W&l cone Screen')

https://inductiveuniversity.com/videos/opening-windows-on-startup/8.1

Ei Client Event Scripts

Client Event Scripts

(5] Startup

[z Shutdown

(2 Shutdown-Intercept
[E) Keystroke

& Timer

% Tag Change

[t] Menubar

@ Message

Client Startup Script

Project startup script that runs in each Client

1# Checks the users role and opens a main window depending on the role |~
2

3 # Grabs a list of the users roles

4 Toles = system.security.getRoles()

5

6 # Checks 1f they have Administrator role

7if 'Administrator’ in roles:

8 system.nav.openWindow('Administrator Screen')
9

18 # Checks 1f they have Operator role

11 elif 'Operater’ in roles:

12 system.nav.openWindow('Operator Screen')

13

14 # IT they have neither Administrator or Operator
15 else:

16 system.nav.openWindow('Welcome Screen')

Tank Cutaway

The Symbol Factory images in the Basic > Tank Cutaways category work well when combined with the
other symbols, especially tanks from the Tank Category. Use the following technique to make a dynamic

cutaway tank display:

INDUCTIVE
UNIVERSII

I@I
- -

Lpy e

Tank Cutaway

Watch the Video

1. From your Symbol Factory SVG symbols, drag a Tank and a Cutaway symbol onto the window. (We used tank 3 and jagged cut-away 2.)
2. Align the cutaway symbol on the tank where you'd like the cutaway to be placed.

= @ Field Tanks
r [About @
~ [Field Tanks

b A Tank 3
M nNovigation [+
b mm PopUps

™ Test

File Edit View Project
CHCHRN

Project Browser

Q-

M MainWindow [B
M overview Window [

Component

Alignment

g - X

A

~

[| | | ~— M RootContainer

b 45 Jagged cut_away 2

Shape Tools Help

s u(n oo o-r|s- 0] x

1 1 1 1 IIUUI 1 1

B

200

92

L

3. Select the tank symbol first, and then select the cutaway while holding CTRL to select both symbols.

4. Click the Difference b icon to use the cutaway symbol to make it appear that the area of the tank is cut away.

g Field Tanks
b [About @
+ [™ Field Tanks

™ Navigation [
» mm PopUps

M Test

~ & Templates

File Edit View Project
CHCHRN

Project Browser

Q-

+ [] Root Container

L L[booTanks

M MainWindow [I
M overview Window [£]

Component

Alignment

o - X

A

s

Shape Tools Help

Yo & i\wﬂl #iO0-»|F-2 Q| n X &

Iluul L L

200,

o]

H
Ml

5. Place a Level Indicator component (drag from the Component Palette) on the area removed by the cutaway.

https://www.inductiveuniversity.com/video/tank-cutaway/8.1

File Edit View Project Component Alignment Shape Tools Help

Hm|«»~}u:|i| Ty Dvb‘ﬁvﬁ?ﬂ‘ﬁﬂib{:ﬁhﬁ%
Project Browser O - X [T R R A L LT T T L
Q- Filt all

~ g Field Tanks A1) ¥ /
b [About @ 7

w ™ Field Tanks 7

~ [] Root Container

: B 0%

| [| | [F tevelindicaror i3
b dm Tank 3 1
[Navigation [+] 1

} mm PopUps] m
M MainWindow [] I >
™ overview Window [+] 2
D Test it

6. With the Level Indicator selected, in the Property Editor, enter a value for the Value property, or use a binding to put a value on the Level Indi
cator.

Vision Property Editor a - X
|l§ 1: = =2 | Ta -

= —

~* Common =
MNarme Level Indicator & =
Visible [true (]
Border Mo Border v S e
Mouseover Text Pl
Cursor Default - D

> Data
Value 55.0 N

7. Choose Alignment > Move Back Dto put the Level Indicator behind the tank.

Edit View Project Component Alignment Shape Tools Help

Bole (s a/nolo o-»|s-@0|xxaxn
Project Browser g - X T L M L
Q- Filts FHE

~ @ Field Tanks A0
b [About O]
~ ™ Field Tanks]
| | | | ~-MRootContainer Wiy
Ml Level Indicator o
b Tank 3 1
M Navigation [H] 1
} mm PopUps

M Main window [P
M overview Window [
™ Test v

3=n]

LRI

8. This is an optional step, but you can select the tank, including all the graphics, right click and Group them so now they can move around as
one unit. You can even make a template out of it, so you can use it multiple times.

Related Topics ...

® Symbol Factory

https://legacy-docs.inductiveautomation.com/display/DOC81/Symbol+Factory

Dropdown List Example

Dropdown lists are used when you want to select a single item from a list of options. The Dropdown

component is under the Input section of the component palette. Simply drag it on to your window. The

most important property of a Dropdown component is the Data property. It is a Dataset that contains one O th

or more rows of data. Each of the rows are different options that you see on the component. Select the n IS page res

=}
Dropdown component and click on the Dataset Viewer £ icon for the Data property to manually add

some options.
® Data Property's Dataset Modes

Vision Property Editor (=LY ° N_umber/LabeI Pair
® Single Label Column
12 1 = * Code/Label Pair
® Setting Dropdown Options

* Data - ® Displaying Multiple Columns in a
- Downdown List
Data |Dataset [0R % 2C] —:‘
Selected Value -1 &
Selected String Value -]
Selected Label <Select One= -] @ INDUCTIVI
qunity o UNIVERSIT

Dropdown

Data Property's Dataset Modes _
Watch the Video

There are three modes you can use the Data property’s dataset: a number/label pair, a single label
column, and a code/label pair. Which mode is used depends on what columns are in the Data property’s
dataset, and will determine the values of the Selected Value, Selected String Value and Selected
Label properties. Any additional columns that are added to the dataset will not affect these properties.

Number/Label Pair

In the Number/Label Pair mode, the first column of the Dataset is an integer (often an id) and the second column is a string (often a label). The first
column is the Value column which is invisible to the user and is usually used in binding. The second column is the Label column and is visible to the
user in the dropdown list.

In this example, the dataset has two rows. The Value column includes the integers 1 and 2. Under the Label column, Realtime and Historical are
displayed, respectively.

")) Dataset Editor ot
Value Label =
1 | Realtime
2 | Historical +
[[
@
(]
Column Name: -— Column Type: —
n Cancel

In Preview Mode, select from the list of dropdown options. Notice, you can only see the options in the Label column. Select the Realtime
option. Now, under the Data property section, the Selected Value is 1, which is the corresponding integer in the Value column of the dataset. The Sel

https://inductiveuniversity.com/video/dropdown/8.1

ected String Value and the Selected Label both display Realtime, which is the corresponding string in the Label column of the dataset.

File Edit View Project Component Alignment Shape Tools Help

s & (R ele|O-ms- 0

— L%) Fst =) {&)
H ¥ &b | e q @

Project Browser o - X A R i L T
Q'r Eilte E
¥ ™ Main Window2 .
Realtime -

* [] Root Container
I.. L ms Dropdown
b [T Navigation [+]
b &l Templates
£ Named Queries v

Historica

st PN AP PR PR

Single Label Column

The Single Label Column mode you can use is a string/string combination which are two columns that are both strings.

1. In the Dataset Editor, remove the Value column from our example by selecting a cell in that column and clicking on the Vertical Delete i ic
on.

-+
2. Add another column by clicking on the Vertical Add ks icon.
3. Call the new column 'Code,' set the column position to '0" and make it a 'String." Click OK. Both columns are now strings.

Dataset Editor x

Label

| |
m

Realtime -—
Historical

-
= 0

MName | Code @ Position| 0 v

Type |Date

Integer
Long
Short
Float
Double

Boolean

Column Name: —— Column Type: —

n Cancel

4. Under the 'Code’ column enter 'vl' and 'v2." Click OK.

")) Dataset Editor e
Code Label =
V1 Realtime
V2 Historical +

[[H
Y
]
Column Name: - Column Type: —-
n Cancel

Note: Because we added the 'Code' column in position '0,' the users will see the same two options in the dropdown
list: 'Realtime’ and 'Historical.' If you see 'v1' and 'v2' instead, that means your 'Code’ column is not the first column.

5. In Preview Mode, click on 'Historical' and you can see the Selected String Value is 'v2' because the value is in the first column and the
Selected Label is'Historical.'

Fle Edit Wiew Project Component Alignment Shape Tools Help

o440 - M| F - EP

Vision Property Editor o _ X I I B L R
12| 13 = =2 (- 9
Selected Value 0ea” -
7] Historical -
Selected String Value w2 & & -
Selected Label Historical Pl 1]
i

Code/Label Pair

The Code/Label Pair mode simply uses a one string column.
1. In the Dataset Editor, remove the Code column from our example by selecting a cell in that column and clicking on the Vertical Delete i ic

on.
2. You are going to see the same two options in the Dataset Viewer: ‘Realtime’ and ‘Historical.’

Note: This only applies if there is exactly one column in this dataset.

Diataset Editor et
Label =
Realtime
Historical

[
@
]
Column Mame: —- Column Type: -—
ﬂ Cancel

3. In Preview Mode, select the ‘Realtime’ option. You will see the same value in the Selected Label and Selected String Value properties
since there is only the one column.

File Edit View Project Compeonent Alignment Shape Tools Help

. .
CHCHRN R =R -
Vision Property Editor a - X P T P A L
-] — — -
12 1; = /R .
~ Data A1
7] Realtime -
Selected Value 0 T
- - 0]
Selected String Value Realtime -] 0]
Selected Lahel Realtime & D]

Setting Dropdown Options

Now, you can set these dropdown options manually or bind the Data property. In this example, you can take a Dropdown List on the window and bind
the Data property using a SQL query.

1. Select the Dropdown component, and click on the binding == icon for the Data property.
2. Select the SQL Query Binding Type and enter a query that brings back an ID and Name from one of your tables in the database.

Project Browser 8- X TP | L O < O O < 1 O IO 15 W O <1
Q- Project Properties ., | | 1 Property Binding: Root Container.Dropdown %
~ [Root Container HE
[[[= oropdomn 1| | SQL Query
= Dropdown 1] Tag Binds to data from a database, allowing you to write your own SQL query
= Dropdown 2 é_
» [Navigation [] o Indirect Tag
b a0 m(l SELECT Query
& 7 Templates 1 Tag History
=1l category_id -~ =2
Vision Property Editor a- X] Property nm!ﬂ Y.
1212 EE= S o »
~ Tt S [Expression FROM
- 1 Property category
selected Value 1e || 1 Eag NAME ASC
Selected String Value Realtime se || Named Query
o
Selected Label Realtime £ |0 DB Browse a >
Quality se] SQL Query Database Connection
~ Appearance i Other v B %
Font Dialog, Plain, 12 9 i Cell Update Polling Mode Polling Rate Retain Rows
Foreground Color 46,46,46 -é. e |© Eunctions © Off __ Relative | Absolute Rate = (Base Rate) +/- 0 : sec false B
Background Color 250,250,251 -~ & |]
J @ © NoBindin E= Convert to Named Query
selection Background 71,169,230 - s 9 v
Dropdown Display Mode ~ Table ved || {3 W
3 B - F
25 Dropdown List "Dropdown” (584,420) [60x20]

3. Click OK to see all the options that came back from the database.

4. In Preview Mode, select any one of these options and you can see the Selected Value, Selected String Value, and Selected Label as
shown in the following example.

Project Browser o - X [P AN R L T T T R
a- Al
* [] Root Container b [
I.. ma Dropdown b
= Dropdown 1 ~ 11
1
Vision Property Editor a _ X g—

= — — | = Famil v
] 1 = =y -

—_ =

~ Data ~
Data Dataset[2Rx 3C] HiG® | | |
Selected Value 1 &3] é_
Selected String Value |[ElullY & &)]
Selected Label Family 7 G] .
Quality s .| iF Welcome W ™ Navigation

Displaying Multiple Columns in a Downdown List
Another feature of the Dropdown List component is you can show more than one column to a user.

1. Drag another Dropdown component to your window.

2. Go to the Dataset Viewer and add some options manually. Instead of having only one or two columns you can add as many as you want.
The first column needs to be either an integer or a string. Any additional columns will show up in the dropdown.

. Open the Dataset View, under Value, enter ‘1’ and ‘2.’

. Under Label, enter ‘Realtime’ and ‘Historical.’

. Add another column and call it ‘Col3’ in 'Position 2' , and make it a string and click Add Column.

. Under Col3, enter ‘This is real’ and ‘This is historical'.

. Click OK.

P00

Dataset Editor e
Value Label Col3 =
1 | Realtime This is real time -
2 | Historical This is historical ~
[]
1]
S
]

Column Name: — Column Type: -—

n Cancel

3. In the Property Editor, set the Dropdown Display Mode to ‘Table’ to see both columns.

Vision Property Editor o - X
1z 1 = =z |w-

> Appearance

Font Dialoeg, Plain, 12 -
Foreground Color 46,46,46 - &, &
Background Color 250,250,251 v &, G

Selection Background 71,169,230

-
Dropdown Display Mode Table v c—q
o]

Max Row Count

Hide Table Columns? 0 -]

Show Table Header? true (5]

4. Now you can see Label and Col3 and select between those different rows. It's a nice way to show more information in the Dropdown list.
The Selected Value, Selected String Value, and Selected Label properties will behave the same as previous examples ignoring any

columns beyond the second.

Project Browser g - X

Q- Filte Project Properties /4

| | | Ceopropdown 3
~ [™ Navigation [2
b [[] Root Container

b a7 Templates

B Named Queries

Reports ~
Vision Property Editor o - X
15| 1k E= A A

~ Appearance

Font Dialog, Plain, 12 -
Foreground Color 46,46,46 - &, D
Background Color 250,250,251 v &, GO
Selection Background 71,169,230 - $, 2

Dropdown Display Mode |Tab|e - c—:|

Max Row Count 8ca

|1ag,

PGG 1 1 1

1300,

140}

[l il B

=E |

aE |

[R

ealtime

- |

Label

Col3

Thisis ealtime .

<

Historical

This is historical

Multi-Monitor Clients

Multiple Desktops

In some situations, such as control rooms, or workstations with multiple monitors, it may be preferable to
have clients open on several monitors so that different windows are simultaneously in view. Instead of
opening several different clients, it is possible to open a single client, and spawn multiple desktops
through scripting. Desktops are additional workspaces where windows may be opened. They are similar
in functionality to a standalone Client in that they may be positioned and resized independently of other
desktops and Clients, but share a session ID with the initial Client that launched the desktop.

Client Tags and Property Values

The value of Client Tags are shared between each desktop. This provides an easy method to change
values on one desktop from another without interacting with other Clients: simply write to a Client Tag.

Desktops act as separate clients in regard to property values. For example, if a Text Field is placed on a
window, and multiple Desktops open that same window, values entered into one Desktop will not
overwrite the other Text Fields. If synchronization on these components is preferred, then simply bind the
property to a Tag.

Handles

When creating a new desktop, an optional handle may be assigned to the desktop. This acts as a name,
or reference to the desktop. If a handle is not provided, then the desktop may be referenced by the
screen index. Handles and indices are useful when trying to interact with specific desktops from a Python
script.

Spotting the Primary Desktop

On thispage ...

® Multiple Desktops
® Client Tags and Property
Values
® Handles
® Spotting the Primary Desktop
® Project Updates
® Opening Another Desktop
® Navigating Windows in
Desktops
® Opening a Desktop on Each
Monitor

@ INDUCTIVE
UNIVERSIT

Multi-Monitor
Clients

Watch the Video

When multiple desktops are open, it is important to know that only the primary desktop will have a menu bar. Additionally, the title bar on the client will
show the name of the project. Additional Desktops will instead show the handle or index of the Desktop by default. However, a custom title may be

used when the desktop is invoked.

Below we see two desktops. The highlighted desktop is displaying the title of the project. Because this is the primary desktop, a menu bar is present.
The other desktop was given a title of "Secondary Desktop”. A menu bar is not present because this desktop is not the primary.

Command Windows Help

Project Updates

When a project update is pushed to a Client, the Update banner will only appear on the Primary Desktop (assuming the Update Mode of the project is
set to Notify). Updating the Primary Desktop will also push the changes to all other local desktop, so there is no need to update each

desktop individually.

https://www.inductiveuniversity.com/video/multi-monitor-clients/8.1

Opening Another Desktop

Another Desktop may be opened by calling system.gui.openDesktop:

#This will open a new desktop w thout any w ndows, and a nane of "O0"
syst em gui . openDeskt op()

However, without specifying which windows to open, the desktop will open without any opened windows. It is recommended to specify at least one
window, a title, and a handle for the new desktop. Assuming a window exists at the path "Main Windows/Main Window", the following would open a
new desktop, open the specified window, and specify a title and handle for the window.

#Create a list of window paths to open in the new desktop
wi ndowToCpen = ["Mai n W ndow']

#Defines a nane for the Desktop, which will be used as both the the title and handl e of the w ndow.
nane = "Secondary Desktop"

#Creates a new desktop. The desktop will open the windows |isted above.
syst em gui . openDeskt op(w ndows=wi ndowToQpen, titl e=nane, handl e=nane)

Navigating Windows in Desktops

Functions for the gui and nav scripting modules will execute in the Desktop that originated the call: If the Primary Desktop calls system.nav.swapTo,
then the Primary Desktop will swap to a new window, but all other desktops will remain unaffected. However, it is possible for a script on one Desktop
to force a navigation or GUI change on another Desktop with the following functions:

® system.gui.desktop
® system.nav.desktop

to open a popup in your second desktop
if you are identifying desktops by nunber, they are zero indexed
system nav. deskt op(1) . openW ndow(' Popups/ Popup')

Additional scripting functions that interact with desktops exist in the gui and nav scripting modules. Please see the System Functions in the Appendix
for more details.

Opening a Desktop on Each Monitor

Sometimes you may want your client to open a new desktop on each of your other monitors. It's pretty simple to get all of your monitors and open a
client on each, but then you will have two on your main monitor. The following code block shows you how to skip the primary monitor and even how to
open specific windows on each new desktop. This example assumes you have a 'Main Window/Overview' window, and that window has a custom
string property in the root container named 'Display’ to pass values into. Bind a label component to that custom property to easily check your script.
This script is best placed in a Client Startup Script to open a client for each monitor on startup.

Get the screen information for all of your nonitors.
screensDat aset = system gui . get Screens()

Open the first window of the project in the (current) primary nonitor.
screenl ndex = screensDat aset [0] [0]

noni tor Num = screenl ndex + 1

primaryScreenText = 'This is Mnitor %' %vonitor Num

system nav. swapTo(' Mai n W ndows/ Overview , {'Display':prinmaryScreenText})

Step through all of the screen information, starting with index 1 instead of 0.
for screenDetails in screensDataset[1:]:

unpacks the tuple that is returned for each of the nobnitors present. Consists of screen index,
wi dt h, and hei ght of the screen.

screenl ndex, screenWdth, screenHeight = screenDetails

nmoni tor Num = screenlndex + 1

screenText = "This is Mnitor %" %onitor Num

Open an enpty frame on the next nonitor.
Assign a handl e and apply the w dth/height for the nonitor you are opening on
handl eName = "Monitor %" %onitor Num

https://legacy-docs.inductiveautomation.com/display/DOC81/system.gui.openDesktop
https://legacy-docs.inductiveautomation.com/display/DOC81/system.nav.swapTo
https://legacy-docs.inductiveautomation.com/display/DOC81/system.gui.desktop
https://legacy-docs.inductiveautomation.com/display/DOC81/system.nav.desktop
https://legacy-docs.inductiveautomation.com/display/DOC81/System+Functions

system gui . openDeskt op(screen=screenl ndex, handl e=handl eNane, w dt h=screenW dt h, hei ght =screenHei ght)

Open the Main Wndow on this new desktop and pass the paraneters needed.
syst em nav. deskt op(handl eNane) . swapTo(' Mai n W ndows/ Overview , {'Display':screenText})

Related Topics ...

® system.gui.openDesktop

https://legacy-docs.inductiveautomation.com/display/DOC81/system.gui.openDesktop

Local Client Fallback

Ignition Clients are fully dependent on being able to communicate with a Gateway. If Gateway

communication is lost, the Client suspends operation while it attempts to reconnect with the Gateway.

This can be a problem when you need the Client to monitor critical operations on a plant floor. O H
n thispage...

Ignition provides a local Vision client fallback mechanism that lets you use a Gateway running on the

machine where the client is running. In normal operation, your Client can connect to a central Gateway

located somewhere on the network. The central Gateway would be responsible for all data aggregation,

such as storing historical data in a database. But if communication to the central Gateway is lost, the Clie * Enable Fallback

nt can automatically retarget to a project that you specify in the local Gateway. This project should ® Test Local Fallback

contain the minimal realtime information that you need to keep your operation running. ¢ Automatically Transfer Back

Note: In order to use local client fallback, port 6501 must be open on the local machine.

Enable Fallback

To enable local Vision client fallback, do the following steps:

1. Goto Config > System > Gateway Settings in the local Gateway.
2. Scroll down to the Local Vision Client Fallback section and select Enable Local Fallback.
3. Enter the name of the Fallback Project.

Note: The selected project must be published in the local Gateway, and it must have at least one main window.

4. Optionally, you can change the Seconds Before Failover setting to a value other than 60 seconds.

This setting controls the number of seconds to wait before fallback automatically starts. During comm failure, you can also click a button to
load the local fallback project immediately.

Local Vision Client Fallback

M Enables a Vision client to fall back to a project in a local Gateway if communication is lost to the central

Enable Local Gateway. Note that port 6501 must be open on the local machine.

Fallback

(default: false)

Seconds Before L
Failover The number of seconds to wait before switching to the local Gateway project after comm loss.

|gefauli: ol

Fallback Project i

The local project to use during fallback.

When local Vision client fallback is enabled, the Client attempts to open port 6501 on the local machine. If the port can be opened successfully,

the Client reads fallback settings from the local Gateway and shows a Fallback Project button on the bottom of the Gateway Connection Lost window.
You can click this button at any time to load the fallback project, or simply wait for the fallback project to automatically load. You may want to set

the local Client to automatically log in to avoid typing in a username and password when the Client loads. This can be set in the Login section of the
project's properties.

Test Local Fallback

Testing local Vision client fallback is highly recommended before you start to depend on it in a production setting. The easiest way to test fallback is to
simply unplug the network cable to the Client machine, or disable the network card on the machine. If the Fallback Project button is not visible on

the Gateway Connection Lost window, check your local Gateway console and verify that the message "Started Fallback Socket on port 6501" is
present in the console. Any other error message related to the Fallback Socket Controller indicates that some other problem has occurred (most likely
the port cannot be reserved) and local fallback is not available to Clients.

Automatically Transfer Back

Local Vision Client Fallback will not automatically transfer back to the main Gateway when it is running again, as simplicity was key in this system. You
can, however, provide your own solution to automatically switch back. One example is to add a retarget script to your Timer Client Event Scripts to
silently try to reconnect.

add this to a Client Tiner Script running every 30 seconds
change the ipaddress and project nanes to match your system

https://legacy-docs.inductiveautomation.com/display/DOC81/system.util.retarget

allow the nain copy of Ignition 10 seconds to give a response
status = systemutil.get Gat ewaySt at us("i paddr ess: 8088/ mai n", 10000)
if it's running again, retarget
if status == "RUNNING':

systemutil.retarget("nmy_project", "ipaddress:8088")

Vision Client Interface

Vision Clients, launched in either windowed or fullscreen mode, contain a menubar above the configured

project windows. By default, this menubar includes a Command, Windows, and Help menus. To partially

or completely hide this menubar, access Project Properties > Vision > Client Menu and check either O th

Hide Menu Bar or Hide Windows Menu within the Designer. Navigation within the menubar can be further n IS page
configured using Client Event Scripts. See the Navigation - Menubar page for an example of how to set

up a new menu.

® Command Menu

Vision Clients launched in windowed mode, will also display the project title and current window ’
® Windows Menu

displayed at the top of the Vision Client window.

® Help Menu
[T er—. B — ® Diagnostics Popup - Vision
Client Logs

System Levels

Command Menu

The Command menu lists three options by default. You can add to the Command menu using Client Menubar Scripts.
Sample CQuick Start
b Logout

Lock Screen

& 4

Exit

Function Description

Logout Logs out the current users and displays the project log in screen.

Lock Locks the screen and requires the user who set the lock to enter their password to resume activity. A popup screen will appear when
Screen selected with a Screen Locked message and field to enter a password and unlock, or log out.

Exit Closes the Vision Client.

Windows Menu

The Windows menu displays all currently opened windows, based on window titles, and allows user navigation between windows.

Sample Quick Start Project - Main Window

Close Main Window

Close all

O Main Window

https://docs.inductiveautomation.com/display/DOC81/Vision+Project+Properties#VisionProjectProperties-VisionUserInterfaceProperties
https://docs.inductiveautomation.com/display/DOC81/Navigation+-+Menubar
https://docs.inductiveautomation.com/display/DOC81/Client+Event+Scripts#ClientEventScripts-MenubarScripts
https://docs.inductiveautomation.com/display/DOC81/Vision+Windows#VisionWindows-WindowNameandTitle

Function Description

Clos_e Closes the displayed window. The window title will change based on the currently opened window.

V'\\//:ﬁgow"

Close All Closes all opened windows.

"Main Lists of all currently opened windows by window title. The list will update as windows are opened and closed. Users can switch
Window" windows by clicking between the listed windows. A blue selection icon indicates which window is currently displayed.
Help Menu

The Help menu lists options for users to view Vision Client performance, logs, and other module details.

Sample CQuick Start Project - Main Window

Command Windows
k. Diagnostics

© AboutIgnition Vision

Function Description

Diagnostics = Accesses the Diagnostics popup, which includes Performance, Console, Log Viewer, Logging Levels, Thread Viewer, Connections,
and Scripts tabs. Tabs display related information and allow user configuration for the Vision Client instance.

About Accesses the About Ignition Vision popup that displays Ignition Vision Client details, such as versions, licenses, Gateway information,
Ignition and Time Zone settings.
Vision

Diagnostics Popup - Vision Client Logs

Vision Clients have their own log files that are only available during runtime. Like the Vision Clients log display on the Gateway, these logs contain
information about the operation and errors of the Vision Client. However, the Vision Client log files can only be obtained from the runtime Diagnostics
window. There is no way to view them using the Gateway's Web interface.

These Client-scoped loggers, such as bindings loggers, can be extremely useful when troubleshooting issues that occur in the Vision Client and are
not Gateway-scoped. Users can set logger levels in the Logging Levels tab and see results in the Log Viewer tab.

Logging Levels Tab

The Logging Levels tab lists all available loggers for the Vision Client instance. Use the search bar to quickly filter loggers and the level dropdowns to
set different logger levels. By default, loggers are set to info, but loggers can be switched to trace, debug, warn, error, and fatal as desired. Changes in
logger levels are immediately reflected on the Log Viewer. All changes made to the logging levels are persistent for the current instance only and will
need to be reset upon restart.

Diagnostics
M Performance = Console % LogViewer |EH Logging Levels| IR ThreadViewer Z¥ Connections [& Scripts

@ Logging Levels o
Ignition Logging Levels

Q:

Logger

Scripting.ScheduledScriptManager
Scripting.ScriptManager
Scripting.ScriptManager.samplequickstart
Scripting. TimerScriptManager
Serialization
Serialization.BinaryParser

Tags

Tags.Client

Tags.History

Tags.History.Cache
Tags.History.Cache Bucket
Tags.5cripting
Tags.Scripting.Compiler
Tags.Scripting.ScriptDispatcher
TypeUtilities

Vision

Vision.Binding

Levels

INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO

W Changes to logging levels are persistent for this instance only. X

Close

Log Viewer Tab

The Log Viewer Tab displays certain logs by default, such as subscriptions, hooks, and managers. The displayed logs will update based on logger
level settings and can be refreshed at the bottom of the list. Selecting a log will access the full log details including Message, Time, Severity, and

Logger name. Use the filters available at the top of the Log Viewer page to adjust severity and grouping options.

Diagnostics

M Performance = Console

m Log Viewer
Q view Ignition logs

i, Log Viewer

Ef Logging Levels I, Thread Viewer £ Connections 5 Scripts

= @ subscriptions
© 10:57:048M
v @ gwinterface
© 10:557:04AM
= @ SecureRandomProvider
© 10:56:584M
@ ReportingClientHook
© 10:57:.05aM
@ GatewayConnectionManat

I°F tosroam

ad Filters

Severity
ALL
Details

Message

Sewerity

Logger

© 10:56:598M
~ @ DownloadProjectPane
© 10:557:04AM
~ @ ClientProgressManager
O 10:56:50AM
= @ ClientLocalizationManager
© 10:56:598M
L — [R Tt SR P >
< >
2 Refresh

Group Categories

- | Merge Similar Entries

Updated login state. Logged in? true, Username: admin, Roles: [Administrator], Security Zones: null
Fri Aug 4 10:57:04AM
INFO

com.inductiveautomaticn.ignition. client. gateway_interface. GatewayConnecticnManager

Copy Report Error

Close

	Vision
	Vision Designer Interface
	Vision Windows
	Window Types
	Popup Windows
	Parameterized Popup Windows

	Navigation Strategies in Vision
	Navigation - Tab Strip
	Navigation - Two Tier
	Navigation - Tree View
	Navigation - Forward and Back Buttons
	Navigation - Drill Down
	Navigation - Menubar
	Navigation - Retargeting

	Working with Vision Components
	Creating Vision Components
	Vision Component Customizers
	Drawing Tools
	Shape Geometry
	Fill and Stroke

	Images and SVGs in Vision
	Comparison Charts
	HTML in Vision
	Localization in Vision

	Binding Types in Vision
	Property Bindings in Vision
	Tag Bindings in Vision
	Indirect Tag Bindings in Vision
	Tag History Bindings in Vision
	Expression Binding in Vision
	Named Query Bindings
	DB Browse Bindings
	SQL Query Bindings in Vision
	Cell Update Bindings
	Function Bindings
	Color Animation in Vision

	Vision Templates
	Creating a Template
	Template Indirection
	Using the Template Repeater
	Using the Template Canvas

	Security in Vision
	Component and Window Security
	Security in Scripting

	Scripting in Vision
	Script Builders in Vision
	Component Events
	Extension Functions
	Custom Component Methods
	Focus Manipulation
	Client Event Scripts
	Read a Cell from a Table

	Historian in Vision
	Using the Vision Easy Chart
	Easy Chart - Axes
	Easy Chart - Subplots
	Easy Chart - Pen Names and Groups
	Easy Chart - Pen Renderer
	Easy Chart - Digital Offset
	Easy Chart - Calculated Pens
	Using the Tag Browse Tree for Charting
	Indirect Easy Chart
	Easy Chart - Database Pens

	Using the Classic Chart
	Other Vision Trending Charts

	Vision Client Tags
	Vision Project Properties
	Client Update Modes
	Setting Up Auto Login
	Using Touch Screen Mode

	Common Tasks in Vision
	Component Animation
	Custom Input Template
	Client Tags for Indirection
	High Performance HMI Techniques
	Open Dynamic Windows on Startup
	Tank Cutaway
	Dropdown List Example
	Multi-Monitor Clients

	Local Client Fallback
	Vision Client Interface

