L Tag HiStOMaN . . oo 2

1.1 Configuring Tag HiStory 4
1.2 Custom Tag HiStory AQQregatesottt ettt e e e e e e e e 15
1.3 Tag History ProViderso 18
1.3.1 DB Table Historian Provider i e e e e e 23
1.3.2 Historian SIMUIALOr oo e e e 29
1.4 How the Tag Historian System WOTKSot e e e e e e e e e e e 34
2. SQL Bridge (Transaction GrOUPS) . . .o v vttt et ettt e et e e e e e e e e e e e e e e e e e e e 38
2.1 Understanding TranSaCtion GrOUPS vttt et e e e e et et e e e e e e e e e e e e e e e e s 41
2.2 TYPES OF GIOUPS . . oottt et ettt et et e e e e e e e e 51
2 3 M T PSS o oo 57
2.4 Hour and EVENE MELEIS . . . oot e e e e e 64
2.5 Transaction Group EXampPleso 70
2.5 1 BIOCK GrOUP . oottt ettt et e e et e e e e 73
2.5, 2 RECIPE GIOUD . ottt et e e et et e e e e e e 80
2.5.3Update OF INSEIT GrOUD . . o vttt ettt e e e e e e e e et e e e e e e e e 84
P2 X g To o T @ o o L 87

2.5.5 Transaction Group Update MOAes 91

Tag Historian

The Tag Historian module provides power and flexibility for storing and accessing historical data. When

history is enabled on an Ignition Tag, data is stored automatically in your SQL database in an efficient

format. This data is then available for querying through scripting, historical bindings, and reporting. O th

Options for partitioning and deleting old data help to ensure the system stays maintained with minimal n IS page
extra work. Also, you can drag-and-drop Tags directly onto an Easy Chart component to create trends or

onto a table to display historical values. Tag Historian's robust querying features provide you great

flexibility in how you retrieve the stored data. L .
Tag Historian Querying

L]
® Charts that Display Historian Data
; H ; ® Store and Forward
Tag Historian Querying « Data storage
While the data is stored openly in the database, it does not lend itself well to direct querying. Ignition
offers a range of built-in querying options that are very powerful and flexible. In addition to simple on-
change querying, the system can perform advanced functions such as querying many Tags from multiple
providers, calculating their quality, interpolating their values, and coordinating their timestamps to provide
fixed resolution returns. Tag history bindings allow you to pull Tag history data that is stored in the databa
se into a component through a binding. The binding type, which is only available for Dataset type
properties, runs a query against the Tag Historian.
For more information, see Tag History Bindings in Perspective or Tag History Bindings in Vision.

Querying can be performed on tables and charts through the Historical binding, Nested Queries, and
through scripting. You can also query Tags from the Reporting module.

Charts that Display Historian Data

With the Vision module Easy Chart component you can create powerful timeseries charts from Tag Historian data. As of 8.1.0, the Perspective module
has a Power Chart component with similar capabilities. Both components enable you to drag and drop history-enabled Tags onto a chart to create
chart pens and data trends. Your charts and graphs can include subplots, axes, digital offsets, and moving averages. You can quickly and easily turn
your historical and realtime data into dynamic charts and graphs for your users. These charts can be configured in the runtime to give users quick
access to data in the time range they need.

ns 50 i
E HOA 58 0 & > Last 30 minutes IR
W 3 Realistic0 3%

W 3 Realistic5 33 301/ =]]

2020f09/24 2:19 PM

Peak performance

Hand

State
E

off

==

off ; ; ;
11:15 AM 11:16 AM 1117 AM 1118 AM
[Jun14,2019]

4 & 6/14/1911:15 AM - 6/14/19 11:18 AM %,

4
..... “‘—‘f

Lo o
9:25 AM 9:55 AM 10:25 AM

13

sinel sinel sine2

Store and Forward

The Store and Forward system provides a reliable way for Ignition to store historical data to the database. The Store and Forward system is not
exclusively part of Tag history, but systems such as the Tag Historian and Transaction Groups use it to prevent data loss and store data efficiently
using a record cache.

Data storage

https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+History+Bindings+in+Perspective
https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+History+Bindings+in+Vision
https://legacy-docs.inductiveautomation.com/display/DOC81/Reporting
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Easy+Chart
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Power+Chart
https://legacy-docs.inductiveautomation.com/display/DOC81/Store+and+Forward

Historical Tag values pass through the Store and Forward system before they are stored in the database connection associated with the historian
provider. The data is stored according to its data type directly to a table in the SQL database, with its quality and a millisecond resolution timestamp.
The data is only stored on-change, according to the value mode and deadband settings on each Tag, thereby avoiding duplicate and unnecessary
data storage. The storage of scan class execution statistics ensures the integrity of the data. While advanced users may change the table according to
their database to be more efficient (for example, using a compression engine), Ignition does not perform binary compression or encrypt the data.

https://legacy-docs.inductiveautomation.com/display/DOC81/Store+and+Forward

Configuring Tag History

This feature was changed in Ignition version 8.1.17:

In 8.1.17, the Tag Editor was redesigned to improve usability. The new Tag Editor now requires fewer
clicks and keeps relevant tag information visible while modifying bindings, alarms, and event scripts.

Pages detailing features of the previous Tag Editor can be found in Deprecated Ignition Features.

Logging data is easy with Tag Historian. Once you have a database connection, all you do is set the tags
to store history and Ignition takes care of the work. Ignition creates the tables, logs the data, and
maintains the database.

The historical tag values pass through the store-and-forward engine before ultimately being stored in the
database connection associated with the historian provider. The data is stored according to its data type
directly to a table in the SQL database, along with its quality and a millisecond resolution timestamp. The
data is only stored on-change, according to the value mode and deadband settings on each tag, thereby
avoiding duplicate and unnecessary data storage. The storage of Tag Group execution statistics ensures
the integrity of the data.

The first step to storing historical data is to configure tags to record values. This is done from the History s
ection of the Tag Editor in the Designer. Select the History Enabled property to turn on history. The
properties include an Historical Tag Group that will be used to check for new values. Once values
surpass the specified deadband, they are reported to the history system, which then places them in the
proper store and forward engine.

[0 Teg Editor X
Sine5
MICE
sample_Tags
Categories History
All Properties
© Basic History Enabled true -
i Meta Data Storage Provider Sample_SQLite_Database -
Deadband Style Auto .
1a Value
Deadband Mode Absolute)
B Numeric . Historical Deadband 001
& security sample Mode on Change P
& Scripting Min Time Between Samples 1
2 parms N -MiniTirme Unics Seconds -
e —
i Max Time Units Hours =
Custom
El || o

Enable History on a Tag

On thispage ...

® Enable History on a Tag
® Setting a UDT to Log History Data
® Tag History Configuration
® Sample Mode
® Max and Min Time Between
Samples
® [nterpolated Values
® Deadband and Analog
Compression
® Seeded Values
® Raw Data Queries

INDUCTIVE
UNIVERSII

Configuring Tag
History

Watch the Video

The following example demonstrates how to configure a tag to store values into the Tag Historian. Complete information on the History properties

(and all properties in the Tag Editor), can be found on the Tag Properties Table.

Note: Dataset type tags are not supported by the Tag History system.

1. In the Tag Browser, select one or more tags. For example, we selected several Sine tags in the Sine folder.
"

2. Right-click on the selected tags, and then select Edit Tag »’ .

The Tag Editor window is displayed where you can change the tag name, data type, scaling options, metadata, permissions, history, and

alarming.

https://legacy-docs.inductiveautomation.com/display/DEP/Deprecated+Pages
https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+Properties
https://legacy-docs.inductiveautomation.com/display/DOC81/Understanding+Transaction+Groups#UnderstandingTransactionGroups-CreatingaTransactionGroup
https://www.inductiveuniversity.com/videos/configuring-tag-history/8.0/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+Properties#TagProperties-TagPropertiesTable

oUW

Tag Browser g _ X
Q o $-a 0 00 B-
~ @ _Sim_New Programmable_ ~
» il _Controls_
» B Ramp
> 1 Random / EditTag
» i ReadOnly = -
¢+ W Realistic :
~ @ Sine M Rename
e i Delete Delete
r %
L Cut Ctri+X
r %
Co Ctri+C
* % Sineq OFC Py
» % Sine5 OFC % CopyJSON
* % Sine6 OPC i Taq Pat
» W Sine7 OPC & pact .
. o
» % Sineg OPC aste tr

. Scroll down to History or select the History pane on the Tag Editor. Set History Enabled to true.
. Choose a database (for example, SQLite) from the Storage Provider dropdown.
. Set the Sample Mode to Tag Group.

. Set the Historical Tag Group to Default Historical.

Categories History
All Properties
. O Basic History Enabled true Py
£ Meta Data Storage Provider Sample_SQLite_Database v
Deadband Style Auto -
1a Value
_ Deadband Mode ~ Absolute -
fil Numeric y Historical Deadband 0.01
B Security I Sample Mode Tag Group -
[E Scripting Max Time Between Samples | 0
& Alarms , | MaxTime Units Hours -
- Historical Tag Grou Default Historical
KETEUER
/& Custom
Appl Cancel

7. Click OK. Now look in the Tag Browser. To the right of each Sine tag that is storing history, a History E) icon appears letting you know it is

set up.
Tag Browser a - X
Q C W-82 04 9 BH-
¥ I ReadOnly -
» B Realistic
* T Sine
b % SineQ Of -04,78 Doublef D
P % Sinel OF 9.3 Double] D
b W Sine2 O 0.92 Double] D
b W Sine3 OF 38.12 Double] | D
b % Sined Of -20.42 Doublef D
b % Sines OF 04,78 Double

Now, if you look in your database, you can see all the tables and data Ignition has created for you.

Setting a UDT to Log History Data

Enabling tag history on members in a UDT involves editing the UDT definition, and enabling history on the any members you wish to record. These
history settings will then propagate to members in any instances.

Tag History Configuration

Below is a description of some important tag history settings.

Sample Mode

The Sample Mode setting determines how often the Tag History system will check if the tag’s value should be stored to the database using Deadband
and Deadband Style settings.

® On Change - Ignition will check if the value should be stored to the database each time the tag value changes.

® Periodic - Ignition will check if the value should be stored to the database at a specific rate defined by the Sample Rate property.

® Tag Group - Ignition will check if the value should be stored to the database at the specific rate defined within the Tag Group selected under
the Historical Tag Group property.

Historical Tag Group

The Historical Tag Group setting is visible when Sample Mode is set to Tag Group. The Historical Tag Group setting determines how often to check if
the value on the tag should be stored. It uses the same Tag Groups that dictate how often your tags should execute. Typically, the Historical Tag
Group should execute at the same rate as the tag's Tag Group or slower. For example, if a tag's Tag Group is set to update at a 1,000ms rate, but the
Historical Tag Group is set to a Tag Group that runs at 500ms rate, then the Tag History system will be checking the tag's value twice between normal
value changes, which is unnecessary.

Max and Min Time Between Samples

Normally, Tag Historian only stores records when values change. By default, an "unlimited" amount of time can pass between records — if the value
doesn't change, a new row is never inserted in the database. By modifying these settings, it is possible to specify the maximum number of Tag Group
execution cycles that can occur before a value is recorded. Setting the value to 1, for example, would cause the tag value to be inserted each
execution, even if it has not changed. Given the amount of extra data in the database that this would lead to, it's important to only change this property
when necessary.

Interpolated Values

When the Ignition historian queries a database for historical data, there may be intervals with no raw data in the database. When this happens,
Ignition interpolates the missing data. Interpolation is the process of estimating unknown values that fall between known values, and is calculated
depending on the tag configuration or selected Aggregation Mode , as long as AvoidInterpolation is false. Although interpolated values are
calculated every time a raw data point is found or when an interval ends based on the configuration or Aggregation Mode selections, the values are
reserved to be used only when there are no data points in an interval.

To demonstrate how interpolation works, example data queried using a traditional Tag History binding from 1:30pm to 5:30pm in 60 minute time
windows is shown below. The query returned three windows with data and one window with no data.

https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+Groups
https://docs.inductiveautomation.com/display/DOC81/Tag+History+Bindings+in+Vision#TagHistoryBindingsinVision-AggregationMode

Raw Data

t_stamp localatag1
L]
Mowv 15, 2021 1:33 PM 0,04
) Mowv 15, 2021 1:36 PM 5.6
Time
. Nowv 15, 2021 1:39 PM 45.6
Window 1
Nov 15, 2021 1:42 PM 3.45
Nov 15, 2021 1:45 PM 96.45
L
Time Mov 15, 2021 333 PM 9.68
Window 3§ | mov 15, 2021 3:35 P 5.6
I
Mov 15, 2021 4:33 PM 30.04
) Nov 15, 2021 436 FM 9.6
. Time Mewv 15, 2021 4:39 PM 236
Window 4
Nowv 15, 2021 4:42 PM 76.49
Nov 15, 2021 4:45 FM 2.54
I

Time Window 1 - 1:30pm through 2:30pm: 0.04, 5.6, 45.6, 3.45, 96.45
Time Window 2 - 2:30pm through 3:30pm: no data in this time window
Time Window 3 - 3:30pm through 4:40pm: 9.68, 5.6

Time Window 4 - 4:30pm through 5:30pm: 30.04, 9.6, 23.6, 76.49, 2.54

If you select SimpleAverage as your Aggregation Mode , the request returns a row representing the SimpleAverage value for every time window.
The value in the first row was calculated by averaging all of the values between 1:30pm - 2:30pm:

(0.04 + 5.6 + 45.6 + 3.45 + 96.45) / 5 = 30.23

This same method applies to the third and fourth row values. However, since there are no raw records between 2:30pm - 3:30pm, the value of 12.09
is calculated using interpolation.

SimpleAverage
Queried Data

t_stamp LocalATag1
Mowv 15, 2021 1:30 PM 30.23
Mowv 15, 2021 2:30 PM 12.09
Mowv 15, 2021 3:30 PM 7.64
Mowv 15, 2021 4:30 PM 28.45

12.09 was obtained by marking the end point of the empty window along a line connecting the last value from the previous window to the first value in
the next window. This is easily shown using a chart to visualize where the time and value intersect. The last value in the previous time window is
marked at 96.45 and the first value in the next time window is marked at 9.68. Once the line is drawn between the two, the marked value at the end of
the empty window end time (3:30pm) gives us the interpolated value of 12.09.

>
x&&
~
—
\
e
™~
Interpolated Value - O
H\K“*T
1:45pm 3:30pm 3:33pm
96.45 12.09 9.68

The interpolated value remains 12.09 for every Aggregation Mode we query for unless we select the Average Aggregation Mode, which returns a
value of 36.19.

The Average Aggregation Mode is an exception to the previously described interpolation method because the time-weighted calculation included in
the Average process remains the same whether there are or aren't data points in a time interval.

Average .
Queried Data
t_stamp LocalATag1
Nov 15,2021 1:30 PM 67.29
Nov 15, 2021 2:30 PM 36.19
Nov 15, 2021 3:30 PM 16.39
Nov 15, 2021 4:30 PM 9.45

The time-weighted process uses current and previous values with the interval time difference in milliseconds to determine Average values.
® Average Value = (0.5 * abs((currVal - prevVal) * timediff)) + (timediff)(min(currVal,prevVval))

If we use the same data from the earlier example, the process looks like:

prevVal 96. 45
currVval = 60.29

Since the current value, or end time of the first window, has no data the value is obtained with a retValue process. The required data for this process
includes the last value in the previous non-empty window, represented by A; the first value in the next non-empty window, represented by B; and the
amount of time between the last value in the previous non-empty window divided by the total time between collected values.

® retValue = A + ((B-A) * ((ts - Ats) / (Bts - Ats)

A = 96.45

B = 9.68

Bts - Ats = 3:33pm - 1:45pm > 108 mi nutes
ts - Ats = 2:30pm - 1:45pm > 45 ninutes

96.45 + ((9.68 - 96.45) (45/108)) = 60.29

If there was data for the 2:30pm interval, which is the end of Time Window 1, that would be used as the current value and no further calculations
would be required.

Since the previous value was collected at 1:45pm and the current value was collected at 2:30pm, the time difference is 45 minutes. Since time
difference is calculated in milliseconds, 2,699,999 is used:

tinediff = 2,699,999

Therefore the process calculation for the first window is:

(0.5 * abs((60.2958 - 96.45) * 2,699, 999)) + (2, 699, 999) (i n(60.2958)) = 211, 606, 751. 6271

Add this result to the sum of all Average values for the data between 1:33pm and 1:45pm to include all time-weighted data.

The same process calculation is used for the values between 1:33pm and 1:45 as used for the first window calculation above.

Ti ne Val ue
1: 33 0.04
1: 36 5.6

1: 39 45. 6
1: 42 3.45
1:45 96. 45

1:33 to 1:36:
(0.5 * abs((5.6-0.04) * 179,999)) + 179, 999(0.04) = 507,597.18

1:36 to 1:39:
(0.5 * abs((45.6-5.6) * 179,999)) + 179,999(5.6) = 4,607,974.4

1:39 to 1:42:
(0.5 * abs((3.45-45.6) * 179,999)) + 179,999(3.45) = 4,414,475. 47

1:42 to 1:45:
(0.5 * abs((96.45-3.45) * 179,999)) + 179,999(3.45) = 8,990, 950. 05

507,597.18 + 4,607,974.4 + 4,414, 475. 47 + 8,990, 950. 05 = 18,520,997.1

Then, divide by the total time that has passed, which is 57 minutes (1:33pm-2:30pm) or 3,419,999ms:

(211, 606, 751. 6271 + 18,520,997.1) / 3,419,999 = 67.29

As shown in the queried values above, 67.29 is the Average value for Time Window 1.

Now, instead of just creating a chart to find the linear interpolated value and moving on, we must follow the same Average process for the empty
window to apply the time-weighted calculations. To do this, we will still use the linear interpolated value of 12.09 as the current value in the process
since the window has no data. The current value of 60.29 used in the Time Window 1 process becomes the previous value for this Time Window 2
process.

prevVal 60. 29
currval = 12.09

Since the time window interval is from 2:30pm to 3:30pm, we use 60 minutes, or 3599999ms for the time difference:

timediff = 3599999

Therefore, the process calculation for the empty window is:

(0.5 * abs((12.09 - 60.2958) * 3,599,999)) + (3,599, 999) (m n(12.09)) = 130, 283, 963. 81

Lastly, to get the Average interpolated value this number is divided by the total time that has passed, which is 60 minutes or 3,599,999ms:

130, 283,963.81 / 3,599,999 = 36.19

Deadband and Analog Compression

The deadband value is used differently depending on whether the tag is configured as a Discrete Tag or as an Analog Tag. Its use with discrete
values is straightforward, registering a change any time the value moves +/- the specified amount from the last stored value. With Analog Tags,
however, the deadband value is used more as a compression threshold, in an algorithm similar to that employed in other Historian packages. Itis a
modified version of the 'Sliding Window' algorithm. Its behavior may not be immediately clear, so the following images show the process in action,
comparing a raw value trend to a "compressed" trend.

The Deadband Style property sets the: Auto, Analog, or Discrete.

Discrete
Storage

The deadband will be applied directly to the value. That is, a new value (V) will only be stored when: |V;-V| >= Deadband.

Interpolation

The value will not be interpolated. The value returned will be the previous known value, up until the point at which the next value was recorded.

Analog
Storage
Every time the tag's value changes, this method will calculate upper and lower slope values. These slope values are stored in memory, and are

ultimately used to determine when a new value is stored. The calculations used are listed below:

Upper Slope

(((Newval ue + Deadband) - PreviousValue) / (NewTinmestanp - PreviousTi nestanp))

Lower Slope

(((Newval ue - Deadband) - PreviousValue) / (NewTinestanp - PreviousTi nestanp))

The algorithm will only store new values under the following conditions:

®* The system always stores the first value on the tag when using the method, since the subsequent values will need an initial value to calculate
slope from.

® |f the newly calculated upper slope is lower than the previously calculated lower slope value, the system will store the new value.

® [f the newly calculated lower slope is larger than the previously calculated upper slope value, the system will store the new value.

®* The system always stores a value when the quality on the tag changes.

In cases where a new value isn't stored, the system will compare the newly calculated slope values to the previously calculated values:

® |f the new upper slope is less than the previous upper slope, then the new upper slope is used for future comparisons.
® |f the new lower slope is greater than the previous lower slope, then the new lower slope is used for future comparisons.

In the image below, an analog value has been stored. The graph has been zoomed in to show detail; the value changes often and ranges over time
+/- 10 points from around 1490.0. The compressed value was stored using a deadband value of 1.0, which is only about .06% of the raw value, or
about 5% of the effective range. The raw value was stored using the Analog mode, but with a deadband of 0.0. While not exactly pertinent to the
explanation of the algorithm, it is worth noting that the data size of the compressed value, in this instance, was 54% less than that of the raw value.

15025

1500.0

1487 5

14850

YValue

14025

14000

14875

14850

4:28:25 PM £4:28:30 PM 4:28:35 PM 4:22:40 PM £4:28:45 PM 4:28:50 PM £4:28:55 PM 4:20:00 PM

Interpolation

The value will be interpolated linearly between the last stored value and the next value. For example, if the value at Time, was 1, and the value at Time,
is 3, selecting Timel will return 2.

Example

Let's look at a demonstration of how the analog compression works. For this example we'll assume a tag is using a historical deadband value of 0.01.
Over the course of a few moments the tag's value changed several times, as represented on the chart below.

B

1501
1440 1
130 1
120 1

110
F

100
90 1 A
B0 -
701
60 -
50 1
i C D E
30 1
20 1
10 1

Value

10:13:30 PM 10:14:00 PM 10:14:30 PM 10:15:00 PM 10:15:30 PM 10:16:00 PM 10:16:30 PM
Date [Nov 8, 2021]

The tag historian system stores the records into one of the data partitions. After the value changes above, our database stores the records.

Databasze Query Browser

select * FROM sqlt_data_1_ 2621 11
where tagid = 17

<

B3 Limit SELECT to: | 1000 | rows

4 Resultset1

tagid intvalue floatvalue stringval... | datev.. dataintegrity | t_stamp
17 100 riucL | 192 1636409614396
17 150 HuLL | 1692 1636409655838
17 50 [HULL | 192 1636409701167
17 50.002 192 1636409760145

Below we'll describe how each value was stored as the tag changed value.

Value A

Once we enable history on the tag and set the deadband style to Analog, the system will record the first value on the tag. Since we only have our first
value, we use arbitrarily large and small values for the upper slope and lower slope (3.40282347 x 10”38 and -3.40282347 x 10”38, respectively), and
store those numbers until the tag changes value again.

Value B

Here we see the value on the tag changed to 150. Since this is only the second value recorded, the system needs to figure out the slope values so it
knows when to next collect a record. The system calculates both slope values as listed above.

/'l Upper Sl ope

((150 + 0.01) - 100) / (1636409655838 - 1636409614396)
(150.01 - 100) / 41442

50.01 / 41442

0. 001206768

/1 Lower Sl ope

((150 - 0.01) - 100) / (1636409655838 - 1636409614396)
(149.99 - 100) / 41442

49.99 / 41442

0. 0012062641

Because the previously stored slope values are simply placeholders, we replace them with these newly calculated values. This value of 150 is not yet
stored in the database. Instead, this value of 150 is kept in memory, waiting until the tag changes again.

Value C

Our tag changes value to 50. The system calculates the new slope values again, this time using 150 as the previous value.

/'l Upper Sl ope

((50 + 0.01) - 150) / (1636409701167 - 1636409655838)
(50.01 - 150) / 45329

-99.99 / 45329

-0.0022058727

/1 Lower Sl ope

((50 - 0.01) - 150) / (1636409701167 - 1636409655838)
(49.99 - 150) / 45329

-100.01 / 45329

-0. 002206314

Our newly calculated values meet our storage criteria. The new upper slope (-0.0022058727) is less than the previous lower slope (0.0012062641).
Therefore the system will store the previous value (150) and use these newly calculated slope values the next time the tag changes value. The newest
value of 50 is not yet stored.

Value D

Our tag changes to a value of 50.001. As usual, the system calculates some new slope values.

/1 Upper Slope

((50.001 + 0.01) - 50) / (1636409726809 - 1636409701167)
(50.011 - 50) / 25642

0.011 / 25642

4.289837E-7

/1 Lower Sl ope

((50.001 - 0.01) - 50) / (1636409726809 - 1636409701167)
(49.991 - 50) / 25642

-0.009 / 25642

- 3. 5098665E- 7

Our new lower slope is larger than our previously stored upper slope. We record the previous value of 50 and keep our new slope values in memory.

Value E

Our tag changes to a value of 50.002. We calculate new slope values.

/1 Upper Sl ope

((50.002 + 0.01) - 50) / (1636409760145 - 1636409701167)
(50.012 - 50) / 58978

0.012 / 58978

2. 034657E-7

/1 Lower Sl ope

((50.002 - 0.01) - 50) / (1636409760145 - 1636409701167)
(49.992 - 50) / 58978

-0.008 / 58978

-1.356438E-7

These new slope values do not meet our storage criteria: the new upper slope is not less than the previous lower slope, and the new lower slope isn't
greater than the previous upper slope. Thus, the previous tag value of 50.001 is not stored since it's too similar to the current value of 50.002.

In addition, the system does notice that the new upper slope is less than the old upper slope, and the new lower slope is greater than the old lower
slope. So the system deems the new slope values to be more restrictive, and will use those the next time the tag value changes. The system will use
the newly calculated slope values when evaluating the next value change.

Value F

Our tag changes to a value of 100. New slope values are calculated, using the most recent value of 100 compared to the previous value of 50.002.

/1 Upper Sl ope

((100 + 0.01) - 50.002) / (1636409786810 - 1636409760145)
(100.01 - 50.002) / 26665

50. 008 / 26665

0. 0018754172

/1 Lower Sl ope

((100 - 0.01) - 50.002) / (1636409786810 - 1636409760145)
(99.99 - 50.002) / 26665

49.988 / 26665

0.0018746671

The new lower slope is greater than the previous lower slope, so the previous value (50.002) is stored. This process repeats indefinitely.

Auto
The setting will automatically pick either Analog or Discrete, based on the data type of the tag.

® [f the data type of the tag is set to a float or double, then Auto will use the Analog Style.
® [f the data type of the tag is any other type, then the Discrete style will be used.

Seeded Values

Tag history queries sometimes use seeded values (occasionally called "Boundary Values"). When retrieving tag history data, the system will also

retrieve values just outside of the query range (before the start time, after the end time), and include them in the returned result set. They're generally

used for interpolation purposes. If you do not want to include these seeded values, interpolation must not be enabled. The following is also required:
® Have the tag store history with a Discrete Mode

® Set the [nolnterpolation] parameter to t r ue
® Set the [includeBoundingValues] parameter to f al se on the calling query

Pre-Query Seed Value

These are a single value taken from just before the start of the query range. The value and timestamp for this value is typically the first row in the
resulting query. Pre-query seed values are always included when not using a raw data query.

An exception to this rule is can be found with the system.tag.queryTagHistory function. Setting i ncl udi ngBoundi ngVal ues argument to True and r
et urnSi ze to -1 will return a raw data query with a pre-query seed value.

Post-Query Seed Value

These extra values are added to the end of the result set, representing the next data point after the query range. Post-query seed values are only
included when interpolation is requested/enabled for the query. Thus, values stored with a Discrete deadband style will not include post-query seed
values in the query results, but an Analog deadband style will include post-query seed values.

If the system knows the query is retrieving records for a tag on the local system, this value will be determined by the current tag's value instead of
retrieving the last recorded value in the database. The current tag's value is also used in cases where the time range extends to the present time.

Note: If a result in a query is outside of the requested range, the value is typically a seeded value. This typically occurs when the range is so small
that values were not recorded, or when the range is in the future (and thus values have not yet been recorded).

Raw Data Queries

In most cases queries returned by tag history will apply some form of aggregation. However it is possible to get a "raw data query", which is a result
set that contains only values that were recorded: meaning no aggregation or interpolation is applied to the results. A raw data query can be obtained
by using one of the following options:

® Set the Sample Size on Vision Tag History bindings to On Change
® Setting the returnSize parameter on system.tag.queryTagHistory or system.tag.queryTagCalculations to -1.

Note: Be aware that if a tag is storing history using the Analog style, the returned dataset will include post-query seed values.

® Settting the Query Mode on Perspective Tag History bindings to AsStored

https://legacy-docs.inductiveautomation.com/display/DOC81/system.tag.queryTagHistory
https://legacy-docs.inductiveautomation.com/display/DOC81/system.tag.queryTagHistory
https://legacy-docs.inductiveautomation.com/display/DOC81/system.tag.queryTagHistory
https://legacy-docs.inductiveautomation.com/display/DOC81/system.tag.queryTagCalculations

Custom Tag History Aggregates

Python Aggregation Functions

The Tag History system has many built-in aggregate function, such as Average, Sum, and Count. On th|S page
However a custom aggregate may be defined via Python scripting. These functions are used for
calculations across timeframes, and they process multiple values in a “window” into a single result value.

For example, if a query defines a single row result, but covers an hour of time (either by requesting a ® Python Aggregation Functions
single row, or using the Tag Calculations feature), the system must decide how to combine the ® Description
values. There are many built in functions, such as Average, Sum, Count, etc. Using a custom Python ® Parameters
aggregate, however, allows you to extend these functions and perform any type of calculation. ® Return Value
® Usage
L ® Conditions
Description * Examples
® Creating an Aggregate
As values come in, they will be delivered to this function. The interpolator will create and deliver values. Function on the Fly

For each window (or “data block”, the terms are used synonymously), the function will get a fresh copy of
blockContext. The blockContext is a dictionary that can be used to as a memory space. The function
should not use global variables. If values must be persisted across blocks, they can be stored in the
gueryContext, which is also a dictionary.

The function can choose what data to include, such as allowing interpolation or not, and allowing bad
quality or not.

The window will receive the following values, many of which are generally interpolated (unless a raw
value happens to fall exactly at the time):

® The start of the window

® 1 ms before each raw value (due to the difference between discrete and analog interpolation. A
value equal to the previous raw value indicates discrete interpolation)

® The raw value

® The end of the window

At the end of the window, the function will be called with “finished=true”. The function should return the
calculated value(s). The resulting value will have a timestamp that corresponds to the beginning of the
block timeframe.

Parameters

® qval - The incoming QualifiedValue. This has:
© value : Object
© quality : Quality (which has ‘name’, ‘isGood()’)
© timestamp : Date
® interpolated - Boolean indicating if the value is interpolated (true) or raw (false)
* finished - Boolean indicating that the window is finished. If true, the return of this particular call is what will be used for the results. If false, the
return will be ignored.
* blockContext - A dictionary created fresh for this particular window. The function may use this as temporary storage for calculations. This
object also has:
© blockld - Integer roughly indicating the row id (doesn’t take into account aggregates that return multiple rows)
blockStart - Long UTC time of the start of the window
blockEnd - Long UTC time of the end of the window
previousRawValue - QualifiedValue, the previous non-interpolated value received before this window
previousBlockResults - QualifiedValue[], the results of the previous window.
insideBlock(long) - Returns boolean indicating if the time is covered by this window.
© get(key, default) - A helper function that conforms to python’s dictionary “get with default return”.
® queryContext - A dictionary that is shared by all windows in a query. It also has:
© queryld - String, an id that can be used to identify this query in logging
blockSize - Long, time in ms covered by each window
queryStart - Long, the start time of the query
queryEnd - Long, the end time of the query
logTrace(), logDebug(), loginfo() - all take (formatString, Object... args).

O O O O O

O O O O

Return Value
Your custom aggregate should return one of the following for each window:

® Object - Turned into Good Quality qualified value
® List - Used to return up to 2 values per window

® Tuple - (value, quality_int)

® List of quality tuples

Usage
Custom Python aggregates can be used in two ways:

1. Defined as a Project Library script, where the full path to the function is passed to the query.
2. Defined as a string, prefaced with “python:”, and passed to the query.

Currently both options are only available through the system.tag.queryTagHistory/queryTagCalculations functions.

Both of these options are used with the “aggregationMode” and “ aggregationModes” parameters to system.tag.queryTagHistory, and the
“calculations” parameter of system.tag.queryTagCalculations. If the value is not an Enum value from the defined AggregationModes, it will be
assumed to be a custom aggregate. The system will first see if it's the path to a Project Library script, and if not, will then try to compile it as a full
function.

For performance reasons, it is generally recommended to use the Project Library script whenever possible. For more information, see Project Library.

Conditions
There are some key factors to keep in mind when calling a custom aggregate.

Return Size

When calling a custom tag history aggregate, the r et ur nSi ze argument must be set to a number greater than 0, otherwise the custom aggregate will
be ignored.

Aggregate Library Project

When using a Project Library, the library must reside in the Gateway's scripting project.

Library Name

The name of the project library must start with "shar ed", in lowercase. However there can be additional characters following the word "shared". For
example: "shared_myLib"

Examples

1. Add a project script, by right clicking the Project Library item in the Project Browser, and choosing the New Script option.

Project Browser a - X

Q Project Properties .4

44 Alarm Notification Pipelines

o5 Sequential Function Charts

+ [§ Scripting
[5 Gateway Events

| T Projectlibange

b @ Perspective Bl NewScript %

2% Transaction Grot & NewPackage

b & Vision
» B Named Queries
k5] Reports A Export..

2. Enter a name for the script and click Create Script (we named ours shared in the example).
3. Enter the following code block:

Example

https://legacy-docs.inductiveautomation.com/display/DOC81/Project+Library
https://legacy-docs.inductiveautomation.com/display/DOC81/Project+Library#ProjectLibrary-GatewayScriptingProject

this is a sinple count function, called for each value in a tinme w ndow
def nyCount(qval, interpolated, finished, blockContext, queryContext):
cnt = bl ockCont ext.get OrDefault('cnt', 0)
if qval.quality.isGood():
bl ockContext['cnt']=int(cnt)+1

if finished:
return bl ockContext.getODefault('cnt', 0)

Project Browser g -
shared
Q Project Properties .f — : : : : :
1# this is a simple count function, called for each value in a time window
&) Alarm Notification Pipelines 2def myCount(gval, interpolated, finished, blockContext, gueryContext):
¥)) 3 cnt = blockContext.getOrDefault('cnt',@)
& » Sequential Function Charts 4 if qual.quality.isGood():
- E Scripting 5 blockContext['cnt']=int(cnt)+1
=f 6
5 Gateway Events
P)) 7 if finished:
~ i Project Library 8 return blockContext.getOrDefault('cnt', @)
[Tasee [
3 @ Perspective L)
11
9% Transaction Groups 12

The custom function could be used by using the example below:

Example

#Return tag history using a custom aggregate function you wote.

systemtag. queryTagHi story(paths=[' WTag'], rangeHours=1, aggregati onMbdes=['shared.nyCount'], returnSize =
100)

Creating an Aggregate Function on the Fly

Example
#Create a function on the fly to pass in as a custom aggregate.

wrapper = """\
pyt hon: def wrapper(qval, interpolated, finished, blockContext, queryContext):
return shared. aggr egat es. cust onfFuncti on(qval, interpolated, finished, blockContext, queryContext)

systemtag. queryTagHi story(pat hs=[' MyTag'], rangeHours=1, aggregati onModes=[w apper], returnSize = 100)

Tag History Providers

The Tag Historian module uses a concept of "History Providers" as a means to keep track of different
storage configurations. Each provider is responsible for maintaining its own set of tables and records.

Tables used by the Tag Historian system are described on the Ignition Database Table Reference page.

Creating a History Provider
Most history provider types need to be manually created. New providers can be created on the Gateway:

. Go to the Config section of the Gateway Webpage and select Tags > History
. Click the "Create new Historical Tag Provider" link

. Select the type, and click Next

Give the new provider a name, and make any other configuration changes

. Click Create New Historical Tag Provider button when finished.

A WN R

Datasource History Providers

Datasource History Providers can not be created or deleted manually. Instead they are tied to a database
connection. They are automatically created when a connection to a database is configured on a gateway.
Deleting a database connection from a gateway will also delete the Datasource History Provider,
although any tables used by the provider will persist in the database.

Datasource History Providers Settings

On thispage ...

® Creating a History Provider

Datasource History Providers
® Datasource History Providers
Settings

Pre-Processed Partitions

Internal Historian Provider

® |nternal Historian Provider
Settings

Remote History Provider
® Remote History Provider Settings

Tag History Splitter
® Tag History Splitter Provider
Properties

DB Table Historian Provider
Historian Simulator
OPC-HDA Properties

The following table lists the settings for the Datasource History Providers. To access these settings, go to the Config tab of the Gateway Webpage

and select Tags > History. Then click the Edit button for the provider you want to update.

Main

Provider = Name of the Tag History Provider. By default, this will match up with the name of the database connection.

Name

Enabled If the check box is selected (enabled), the provider is turned on and accepts tag history data.

If disabled, the database is not shown in the list of history providers when configuring tag history from the Designer. Also, any
data logged to the provider, will error out and be quarantined by the store and forward engine, if possible.

Descript = A user created description of the provider.
ion

Data Partitioning

Enable = To improve query performance, Tag Historian can partition the data based on time. Partitions will only be queried if the query time range

Partition = includes their data, thereby avoiding partitions that aren't applicable and reducing database processing. On the other hand, the system

ing must execute a query per partition. It is therefore best to avoid both very large partitions, and partitions that are too small and fragment
the data too much. When choosing a partition size, it is also useful to examine the most common time span of queries.

Partition = The size of each partition, the default is one month. Many systems whose primary goal is to show only recent data might use smaller

Length values, such as a week, or even a day.
and
Units

Enabled = Enables pre-processed partitions.
Pre-

process

ed

Partitions

Pre- When pre-processed partitions is turned on, this setting defines the window size.
process

ed

Window

Size

(second

s)

https://legacy-docs.inductiveautomation.com/display/DOC81/Ignition+Database+Table+Reference

Data Pruning

Enable = Partitions with data older than a specific age are deleted. The check box is not selected/enabled by default.
Data

Pruning
Note: Data pruning works by deleting old partitions. Therefore, data will only be removed when a partition has no data younger than the

prune age.

Prune The maximum age of data. As mentioned, the data is deleted by the partition, and could therefore surpass this threshold by quite a bit

Age before all of the data in the partition is old enough to be dropped.
and

Units

Advanced

Enable If enabled, tracks Tag Group executions to determine the difference between unchanging values, and values that are flat due to the
Stale system not running.

Data

Detection

Stale The multiplier for Tag Group rate used to determine when values are stale. If Tag Group execution is not recorded within this amount of
Detectio = time, values will be considered bad on query.

n

Multiplier

Pre-Processed Partitions

Datasource history providers can opt into "pre-processed partitions". With pre-processed partitions enabled, records stored by the provider are stored
in two different sets of partitions: the normal partitions, and a summarized "pre-processed" partition. In other words, the data that is stored in the
normal partitions is summarized and then placed into an additional table in the database. While this takes up more space in the database, it can
improve query speeds dramatically by reducing the amount of resulting data points. While enabled, tag history queries that request data in intervals
greater than the specified Pre-processed Window Size setting will use the pre-processed tables.

For example, say a system.tag.queryTagHistory call was made with intervalSeconds set to 90. If the Pre-processed Window Size setting on the
datasource history provider is set to something less than 90 seconds, such as the default value of 60 seconds, then the function would retrieve
records from the pre-processed partitions. On the other hand, if the same function was used with intervalSeconds set to a value less than the Pre-

processed Window Size, then the raw tables would be used. Both of these examples would retrieve data from the historian, but the first query's result
set would be smaller than the second example's query.

When pre-processed partitions are enabled, a new partition table is created to store the pre-processed
records. The pre-processed partitions use the following haming convention: sql t h_dat a_dri ver| D_YYY
Y_MM w ndowSi ze

More details on the pre-processed tables can be found on the Ignition Database Table Reference page.

Internal Historian Provider

The Internal Historian is a historian that stores data within the Ignition installation directory, via SQLite. It is
available on standard Ignition Gateways.

Note: Records stored by the Internal Historian Provider don't contain information about Tag group execution, meaning stale execution data is not
recorded.

The Internal Historian provider can choose to prune records when either the Time Limited Enabled? or Point Limit Enabled? settings are enabled.
The check to prune records in these cases occur when the system tries to store a record.

Internal Historian Provider Settings

Main

Provider Name of the internal history provider.
Name

Enabled If the check box is selected (enabled), the provider is turned on and accepts tag history data. Default is true.

https://legacy-docs.inductiveautomation.com/display/DOC81/system.tag.queryTagHistory
https://legacy-docs.inductiveautomation.com/display/DOC81/Ignition+Database+Table+Reference#IgnitionDatabaseTableReference-sqlt_data_X_X

Description A description of the provider.

Limits (Requires Historian Module Licensing)

Time Limited = Whether or not time limit is enabled. Default is true.
Enabled?

Time Limit Size of the time limit. Unit (seconds, weeks, etc) is set in the Time Limit UnitsDefault is 1.
Size

Time Limit Options are milliseconds, seconds, minutes, hours, days, weeks, months, or years. Default is WEEK.
Units?

Point Limit Whether or not point limit is enabled. Default is true.
Enabled?

Point Limit Maximum number of data points the historian will store. Default is 10,000,000.
Size

Sync Settings

Remote Allows you to turn Tag History Synchronization on or off. Default is false.
Sync
Enabled
Remote The Gateway to target for remote synchronization. Must have the Tag Historian module installed, and allow remote storage. The Igni
Gateway tion Gateway's security settings will also need to be configured to allow remote storage.
Name
Remote The remote history provider to sync data to.
Provider
Name
Sync The frequency with which data will be sent to the remote Gateway. This setting will be used in conjunction with the sync schedule, if
Frequency enabled. Default is 10.
Sync The unit of time that will be used with the Sync Frequency. Options are milliseconds, seconds, minutes, hours, days, weeks,
Frequency months, or years. Default is SEC.
Units
Max Batch The maximum number of data points that will be sent per batch to the remote Gateway. Default is 10,000.
Size
Enable If enabled, the data will only be synchronized during the times specified by the pattern provided. Default is false.
Schedule
Schedule A comma separated list of time ranges. Examples:
Pattern
® 9:00-15:00
® 9pm-5am
® 20.30-04.30

Remote History Provider

A Remote History Provider is a link to a historical provider on another Gateway. Since it is retrieving historical Tag data from another provider, its only
configuration is to ensure it is pointed at the correct history provider on the remote system. You can't change any of the settings like partition length
and prune age, but would instead have to change those settings on the original history provider on the remote Gateway. By default, the remote history
provider will fall under the Default Security Zone and be read only.

Configuring a remote history provider involves some extra steps, when compared to the other provider types. Since they involve a tag provider on

another Gateway, you'll be asked to select the target gateway. The list of Gateways is filled with gateways discoverable on the gateway network. If the
Gateway is not currently available or displayed, you can specify its name manually.

Remote History Provider Settings

Main
Provider Name of the Tag History Provider.
Name
Enabled If the check box is selected (enabled), the provider is turned on and accepts Tag history data. Default is true.

If disabled, the database is not shown in the list of history providers when configuring Tag history from the Designer. Also, any
data logged to the provider, will error out and be quarantined by the store and forward engine, if possible.

https://legacy-docs.inductiveautomation.com/display/DOC81/Config#Config-Security
https://legacy-docs.inductiveautomation.com/display/DOC81/Security+Zones

Description

A description of the provider.

Remote Gateway

Remote
Gateway
Name

Remote

History
Provider

Storage

Allow
Storage

Max Bundle
Size

The name of the remote Gateway.

The name of the provider on the remote Gateway. This does not have to match the provider name on the local Gateway.

If false, the provider will only be used for querying historical data. If true, the provider will create a store and forward pipeline for
sending data to a remote Gateway. Default is true.

This setting also requires that Service Security on the remote system allows for storage to the specified provider.

When enabled, storage for this tag in the remote system will not include execution rate (which is normally logged into the sqth_sce
table by local providers).

The maximum number of data points that can be sent per request. This value is used in conjunction with the store and forward
settings to dictate how much data is sent at once. Set to 0 for an unlimited size.

Tag History Splitter

Like the Remote History Provider, the Tag History Splitter Provider doesn't store history on its own, instead relying on having other providers already
configured. A Splitter provider simply logs Tag History into multiple other History Providers.

When setting up a Tag to store history, selecting this provider will write the same data to both providers that it has selected. The Tag History Splitter is
useful for automatically creating a backup of your data, or for reading history from two separate providers.

Tag History Splitter Provider Properties

Below are the properties available on the Historical Tag Provider.

Main

Provider
Name

Enabled

Description
Storage

First
Connection

Second
Connection

Querying

Limit First
Connection
Query
Limit
Length and
Units

Name of the connection.

Enables and disables the connection.

Description of the connection. The description appears on the Historical Tag Providers page of the Gateway.

Data is stored to both connections equally. However, all tag history queries (tag history bindings, system.tag.queryTagHistory calls,
reporting tag historian queries, etc.) execute against the first connection, unless a limit is imposed using the settings below, or the
first connection is unavailable.

The second connection to store Tag history.

If enabled, only queries that are within the time frame specified below will be executed against the first connection. Queries that go
further back will execute against the second connection.

The unit and length of the time frame limitation mentioned above.

DB Table Historian Provider

This provider allows the Tag Historian module to retrieve data from tables that weren't created by the module, such as tables created with Transaction
Groups or third party systems.

Read more about this provider type on the DB Table Historian Provider page.

https://legacy-docs.inductiveautomation.com/display/DOC81/Service+Security
https://legacy-docs.inductiveautomation.com/display/DOC81/Ignition+Database+Table+Reference#IgnitionDatabaseTableReference-sqlth_sce
https://legacy-docs.inductiveautomation.com/display/DOC81/Ignition+Database+Table+Reference#IgnitionDatabaseTableReference-sqlth_sce
https://legacy-docs.inductiveautomation.com/display/DOC81/system.tag.queryTagHistory

Historian Simulator
The Historian Simulator allows the Tag Historian module to create simulated records that can be used for testing.

Read more about this provider type on the Historian Simulator page.

OPC-HDA Properties

Establishes a connection to an OPC-HDA Server to read history data that may be stored there from a third party. Ignition can not write to this type of
history provider.

Note: This type of provider can only be created if the OPC COM module is installed and the gateway is running on a Windows operating system.

Main

Provider Name = Name of the Tag History Provider.

Enabled If the check box is selected (enabled), the provider is turned on and will expose historical data
Description A description of the provider.
Server
Progld A description of the provider.
Use Flat Flat browsing returns all items at once. This is less efficient than normal browsing, but if a server only supports flat browsing, then
Browsing this needs to be checked.

Remote Connection

Remote If selected, DCOM will be used to connect to the server on the specified Host with the given Progld or CLSID.
Server

Host Machine | The name or IP address of the machine hosting the server. Leave empty for local machine.

CLSID The CLSID of the server. If not specified, will be obtained using the Progld.

https://legacy-docs.inductiveautomation.com/display/DOC81/OPC+COM

DB Table Historian Provider

The following feature is new in Ignition version 8.1.0
Click here to check out the other new features

The DB Table Historian Provider acts as a bridge between tables in a database connection and the Tag
Historian Module, mapping columns in the tables as "available Tags", thus allowing Tag History Queries
to access the content of the table. Usually Tag History Queries can interact only with tables created by
the Tag Historian. Thus, a table created with a Transaction Group, or by some other means (e.g.,
manually creating the database tables, tables generated by third party systems, etc) couldn't be
accessed via things like a Tag History Binding. The DB Table Historian Provider solves this problem.

Utilizing this provider requires a Datasource History Provider, which is the type of historical provider
that is automatically created whenever a Database connection is configured. You can check the type of
any History Provider under the Config section of the Gateway, on the Tags > History page.

ProviderName Enabled Type Description Status
DB_Table_Historian true DB Table Historian Running | delete ‘m
Internal_Historian true Internal Historian Running | delete ‘m

| Maria_D8 true Datasource History Provider | Running m
Simulated_Provider true Simulator Running | delete ‘m

| internal_DB true Datasource History Provider | Running m

- Create new Historical Tag Provider...

Note: For details about 2 provider's status, see the Tag Providers Status page.

Configuring a DB Table Historian Provider

. On the Gateway Webpage, navigate to the Config section.

. Under the TAGS heading in the sidebar, click on History.

. On the History Provider's listing, click Create new Historical Tag Provider.

. From the listing of available types, select DB Table Historian, and click Next.

A WNPE

On thispage...

® Configuring a DB Table Historian
Provider

® Retrieving Records

® Path Components
® Example

INDUCTIVE
UNIVERSIT

DB Table Historian

Watch the Video

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.0
https://www.inductiveuniversity.com/videos/db-table-historian/8.1/8.1

FL Ol svstem & Config > Tags > History

Heme Overview Trial Mode 1:37:27
W Backup/Restore

Status Ignition Exchange

ﬂ Licensing @® DB Table Historian

Config Modules

i Adds tag historian style query support to standard wide database
PR tables.

Redundancy

Gateway Settings O Internal Historian

A built-in local historian with limited storage.
NETWORKING

Web Server) Remote History Provider

Gateway Network
e Sends tag history through the Gateway Network for storage in a

Email Settings remote history provider.

SECINERY O simulator
e Provides simulation data for testing without an external data

Users, Roles source.

Service Security

Identity Providers O Tag History Splitter

Security Levels Stores tag history concurrently to two other connections in the

Security Zones gateway.

5. Enter a unique name for the provider in the Provider Name field.
6. In the Data source field, select the backing data source. You would select which ever Datasource History Provider contains the tables you
want exposed to the historian system. Once ready, click the Create New Historical Tag Provider button, which completes the configuration

Next >

process.
Provider Name [DB_TabIe_Historian| l
Enabled 4 Enable this tag history providar
(default: true)
Description
g

Data source Maria_DB v

Create New Historical Tag Provider

Retrieving Records

Once configured, the DB Table Historian will expose any tables found in the associated data source (specifically, the Data Source listed on the
configuration page of the DB Table Historian). From this point on, any tables found in the data source will be available for browsing via the various Tag
History interfaces found throughout Ignition.

For example, we could store some records in a database connection with a Transaction Group, which would create a table like the following:

Schema History

- group_table

group_table_ndx (INTEGER) D=
Sine0 (REAL)

Sine1 (REAL)

Sine2 (REAL)

Sine3 (REAL)

Sined (INTEGER)

SineS (INTEGER)

t_stamp (TEXT)

Then, we could use the Perspective Power Chart built-in Tag browser panel to detect the table, which exposes the columns as "tags":

S C €l| P8 Lacesminues v @ lela () (%) ()

¥ [@ DBTable Historian 1004
I * [group_table I
— W group_table_ndx slq
— ‘ SI I'IEG 80 <
— @ Sinel
70+
— @ Sine?
— % Sine3 80
— @ Sined 504
— @ Sinet
— W t_stamp 404
» C@ Maria_DB 304
204
10
D -
I I I I
52 54 55 57 gt
Mo Trend Data Source available.
Please add tags from the Tag browser panel.

Add Selected Tags

https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Power+Chart

Path Components

The DB Table Historian Provider attempts to map each column in a database table to a Tag. When querying the results, the historical Tag path used
is composed of multiple components, which each represent some identification of the data source. The DB Table Historian is molded after the

following:

hi stprov:[historyProvider]:/table:[tabl eNane]:/col um:[col utmNane] :/ti mestanp: [tinestanpCol umNane] :
/ keycol um: [keyCol utmNane] : / keyval ue: [keyCol utmVal ue]

Each of the components are described below.

Component
histprov
table
column

timestamp

keycolumn

keyvalue

Description
The name of the history provider that should be queried.
The name of the database table in the the history provider.
The name of the column on the table, in the history provider.

A column on the table that will be used as the source of the timestamp for the query. By default, the query will look for a column
named t_stamp to use for the timestamp component.

It's highly recommended to include this component if the table doesn't contain a timestamp column named "t_stamp", otherwise
the query will fail.

An optional component that allows you to specify a single column on the table to use for simple filtering. Used in conjunction with
keyvalue.

There can only ever be a single keycolumn for any given path. More complex filtering can be accomplished by instead using a Nam
ed Query.

An optional component that works with keycolumn, allowing the query to only return rows if the keycolumn contains the value
specified on this component. Value must be an integer.

As far as historical pathing goes, Tags created by this provider may look something like below, with dedicated table and column components in the

path.

hi st prov: DB_Tabl e_Hi stori an:/tabl e: group_tabl e:/col um: Si nel:/timestanp: ny_timestanp_col um

Example

Say we have a database table like the following.

SELECT nmachi ne_i d, process_val ue, time FROM nachi ne_val ues

machine_id
1

1

process_value time

111 2020-09-10 21:44:35
100 2020-09-10 21:44:41
22 2020-09-10 21:45:01

222 2020-09-10 21:45:15

https://legacy-docs.inductiveautomation.com/display/DOC81/Named+Queries
https://legacy-docs.inductiveautomation.com/display/DOC81/Named+Queries

Database Query Browser o 4
SELECT machine_id, process_value, time FROM machine_values = ’
- = Execute
[Z Limit SELECT to: | 1000 | rows
4 Resultset1 x .
>
machine_id process_val.. time
1 111 2020-09-10 21:44:35
1 100 2020-09-10 21:44:41
2 22 2020-09-10 21:45:M
2 222 2020-09-10 21:45:15
4 rows fetched in 0.026s % Auto Refresh

We could use the DB Table Historian provider to expose our machine_values table to a Vision Tag History Binding.

Property Binding: Root Container.Power Table

Tag Tag History
Tag Queries the tag history system for time-series tag history data
Indirect Tag
Available Historical Tags < Selected Historical Tags
Tag History
n rt), hdl E DE Table Historian 'I{:/ * Tag Path Column Name +
rope _
_ > i group_table histprov:DB Table Historian:/tabl process_value s
Expression ~ @ machine_values
Property % machine_id +
@ [T procesae i
% time =
Named Query b = internalDB &
DE Browse &
SQL Query
= Indirection
Lo Ref. # Property Path
Cell Update]
Use fully-qualified paths
Functions
Date Range Most Recent
® No Binding Realtime 10 @ E min -

The resulting historical Tag path for process_value (after dragging it over to the Selected Historical Tags table) would look like the following:

https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+History+Bindings+in+Vision

hi st prov: DB Tabl e Hi storian:/tabl e: machi ne_val ues:/col um: process_val ue

We would need to explicitly state that the "time" column should be used by the binding, so we could double click on the cell under the "Tag Path"
header, and change the Tag Path to the following, which would allow the query to feature the records accurately.

hi st prov: DB Tabl e Hi storian:/tabl e: machi ne_val ues:/col umm: process_val ue: /ti mestanp:ti me

We could further modify this Tag path, so that only entries with a "machine_id" of 1 are returned, but changing the path to the following:

hi st prov: DB Tabl e_Hi stori an:/tabl e: machi ne_val ues:/ col uim: process_val ue: /ti mestanp: ti ne: / keycol um:
machi ne_i d: / keyval ue: 1

Historian Simulator

The following feature is new in Ignition version 8.1.0
Click here to check out the other new features

The Historian Simulator is a provider that will generate simulated historical records, without the need for
an external database or data source. The Simulator doesn't actually store any records. Rather,

subsystems in Ignition can make requests to the simulator, and it will generate a result set based on the
Tag path(s) provided.

The simulator is great for testing, as the data generated is reliably aligned to the specified period. Each
generation of data for a given set of parameters and given time range will be repeatable. In addition, the
"resolution” of the raw data, or the frequency of the generated datapoints, is configurable allowing for as
dense or sparse raw values.

Configuring a Historian Simulator Provider

. On the Gateway Webpage, navigate to the Config section.

. Under the TAGS heading in the sidebar, click on History.

. On the History Provider listing, click Create new Historical Tag Provider.
. From the listing of available types, select Simulator, and click Next.

A WNPRE

On thispage....

® Configuring a Historian Simulator
Provider

® Retrieving Simulated Data

® Simulator Path Syntax
® Editing the Paths
® Function Examples

@ INDUCTIVE
UNIVERSIT

Historian Simulator

Watch the Video

& Config » Tags > History

Trial Mode 8:18:39 Activate Ignition

) DB Table Historian

Adds tag historian style query support to standard wide database tables.

O Internal Historian

A built-in local historian with limited storage.

O Remote History Provider

ider

® Ssimulator

Provides simulation data for testing without an external data source.

O Tag History Splitter

Stores tag history concurrently to two other connections in the gateway.

Next >

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.0
https://www.inductiveuniversity.com/videos/historian-simulator/8.1

5. The simulator requires a unique name from other historical providers on the same Gateway, but otherwise does not require any other
configuration settings. The bulk of configuration occurs when attempting to request records from the simulator. For now just provide a name,
and click the Create New Historical Tag Provider button to finish configuring the provider.

2 Config » Tags » History

Trial Mode 8:49:52
Provider Name Simulated Provider

Enable this tag history provider
(default: true)

Enabled

Description

Create New Historical Tag Provider

6. You'll be redirected back to the History Provider listing. You're now ready to use the simulator.

Retrieving Simulated Data

Once a Simulator Provider has been configured, you need a Tag Historian Query to start retrieving records from it. Lots of different interfaces can
request Tag Historian Queries, but for the sake of simplicity we'll only focus on Tag history bindings in Vision. Browsing for available historical Tags
using a Vision Tag History binding reveals the following Tags:

Simulated Provider

cos_1m_100_1000ms
function_period_amplitude_resolution
ramp_60s_100_1s

realistic_1d

sine_10s_20_500ms
square_1h_10_10s

https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+History+Bindings+in+Vision

EJ Property Binding: Root Container.Power Table
Tag Tag History
Tag CQueries the tag history system for time-series tag history data
Indirect Tag
Available Historical Tags < Selected Historica
Tag History
— 2 simulated Provider i Tag Path
Prope
perty @ cos_1m_100_1000ms
Expression % function_period_amplitude_resolution
Property W ramp_60s_100_1s
sqL % realistic_1d
W sine_10s_20 500ms
Named Query W square_1h_10_10s
DB Browse
5QL Query
-l Indirection
Other .| Property|
Cell Update)
Use fully-gualified paths
Functions
Date Range Most Recent
Realtime 1 f
® No Binding Aggregation Mode Return Format Sample Size

To get started quickly, you can use the default Tags in the list above. The one exception would be the "f unct i on_peri od_anpl i t ude_resol uti on
" Tag, as that's simply there for syntax reference. The rest of the Tags utilizes the simulator's pathing syntax.

Simulator Path Syntax

The built-in "Tags" provided by the simulator are a great example of the simulator can do, but it is worth knowing that the data returned by the
simulator can be customized. Doing so involves modifying the Tag path in the Tag history query.

As a refresher, history providers require a path that contains multiple components. Together, the components identify where the data came from. For
example, a historical path could have a hi st prov component that represents the history provider associated with the data, and a Tag component
that represents the Tag path of the Tag. A hypothetical historical path would look like the following:

hi st prov: ny_provider:/tag: my_tag_path

With that understanding, retrieving records from the simulator involves providing the name of the simulator configuration on the gateway (the hi st pr ov
) and a Tag path. Again, the simulator doesn't store any records. Rather, it looks at the Tag path provided, parses it, and returns a result set based off
of contents in the path.

The simulator expects Tag paths to use the following notation, with each "parameter" delimited by an underscore:

function_periodTi me_anplitude_resol utionTinme

Each parameter is described below:

parameter description

function The function to use when generating the raw data. The following functions are available:

® Ramp - Start at zero, and increment up to Amplitude over a the periodTime. Once Amplitude has been reached, start over at
zero and repeat.

Sine - Generates a Sine wave over the period of time, with Amplitude representing the peak deviations from zero.

Cos - Generate a Cosine wave over a period of time, with Amplitude representing the peak deviations from zero.

Square - Half the time is spend at zero, the other half is spent at amplitude, across periodTime.

Realistic - Generates 400 random but somewhat realistic data points that repeat each period. Note that this function ignores
both the amplitude and resolutionTime parameters.

periodTime How often the data sequence starts over. Values for periodTime need a time unit.
amplitude Used as a peak value by most of the functions.

resolutionTi How often raw data points are generated. Like periodTime, this parameter requires a time unit.
me

For those functions utilizing a time unit represented by certain notation. A description of each notation can be found below:

Notation Time Unit

ms Milliseconds
s Seconds

m Minutes

h Hours

d Days

Editing the Paths

With the knowledge of how the paths work, you can easily use the existing Tag history interfaces to request datasets with custom paths, usually by
simply typing in the desired parameters.

For example, the image below shows Vision's Tag History Binding interface, but we modified the Selected Historical Tag path to use the realistic
function over a period of 30 minutes, instead of the default one day.

EJ Property Binding: Root Container.Power Table
Tag Tag History
Tag Queries the tag history system for time-series tag history data
Indirect Tag
" Available Historical Tags < Selected Historical Tags
Tag History
w— = Simulated Provider S 7 | Tag Path Co. | ¢
Property
) % cos_1m_100_1000ms histprov:Simulated Provider:/tag:realistic_3@m 3
Expression % function_peried_amplitude_resolution
Property % ramp_60s_100_1s +
sqL W realistic_1d &
W sine_10s_20_500ms
Named Query % square_1h_10_10s]
DE Browse .
]
SQL Query
-l Indirection
Other Ref. # Property Path
Cell Update -
Use fully-qualified paths
Functions
Date Range Most Recent

Function Examples

For example, the Tag in the path below utilizes a sine function, over a period of 10 seconds, with an amplitude of 20, and a raw point will be generated
every 500 milliseconds.

tag: si ne_10s_20_500ns

The following would generate a square wave, with an amplitude of 10, repeating every day, while generating a raw value for every 5 minutes.

tag: square_1d_10_5m

The realistic function is unique in that it only utilizes the periodTime parameter, therefore:

tag:realistic_30m

How the Tag Historian System Works

This page provides an overview on how the Tag Historian system evaluates tag changes, stores them, and later retrieves those values.

Deciding When to Store

» Max Time Reached " Storage
/ Sample Mode \ » Sufficient Change]7 / Deadband \
Periodic W
Sufficient Change
Tag Group J /_ Min/Max Timer \
Max Time Reached |-~
On Change ~ .
N Insufficient Change —
[(Realtime) _Lb Between Min and Max |— [. }
_ J/ . _ J
Min Time not Reached

\ J Storage

The diagram above demonstrates the evaluation cycle for determining if the system needs to collect a sample starting with the sample mode type and
working through timer settings and deadband change sufficiency.

When configuring history on a tag, these are some of the several checks that occur. These checks ultimately determine if the system should collect a
sample. Each check is handled by something on the backend of Ignition called an "Actor". The notable actors here are Sample Mode, Min/Max Timer, and
Deadband, which each correlate to similarly named properties on the tag's configuration.

Sample Mode
First the system needs to detect a value change on the tag, which is handled by the Sample Mode actor.

® |f the tag is using a Periodic or Tag Group mode, then the storage evaluation occurs at the same rate specified by the mode's rate.

® |f the tag is using an On Change mode, then storage evaluation occurs every time the tag changes value.

® |n addition, there is a periodic timer for On Change modes running that checks if an On Change tag has remained static for a period of time longer
than the configured maximum time between samples. If this occurs then the system immediately collects a sample, regardless of the other actors.
The periodic timer evaluates all tags that share a tag provider, history provider, and rate simultaneously. So two tags that share a tag provider and
history provider, but have different sample rates, will be evaluated separately.

Min/Max Timer

The next actor is the Min/Max Timer. Where applicable, if the mode's minimum time between samples has not yet been reached, then the new value is
discarded. Otherwise, if the maximum time has been exceeded, then the system will collect a sample. The Max Time between samples will bypass the

deadband, but not the sample rate. If the value is in between any minimum and maximum allowable sample periods, then the value is handed off to the
next actor.

When using a Tag Group sample mode, there are two locations where a Max Time can be defined: On the tag's history settings, and on the Tag Group's
history settings. The Tag Group's settings override the settings on the Tag, except when the Tag Group is using it's default values: in other words, neither
the Max Time Between Samples or Max Time Units settings on the Tag Group have been changed.

Deadband

Next the Deadband actor examines the newly changed value in comparison to the previous value. The deadband will ultimately determine if the new value
is sufficiently different enough than the previous value. If so, then a sample is collected.

Storing a Value

Store and Forward System

Bundled Memory Buffer Database Sink
:.l:it;:ry — [Local Cache is empty } :'\‘/
> [Local Cache is not empty } _ c;tabase
I
Disk Store

Quarantine —

P
\,_l

Once a sample is collected, it's added to a History Set, which is a collection of samples to store from a particular Tag Group/Scan Class (values using a
"periodic" sample mode are all bundled together under an "_exempt_" group).

After being bundled, the History Set is processed by the Store and Forward System.

Memory Buffer

The History Set first reaches the Memory Bulffer. If the Local Cache (in the Disk Store) is empty, then we know there are no other sets to process, and our
new set is sent off to a Database Sink.

If the Local Cache has records, then the memory buffer will direct the newly acquired History Set to the Disk Store.

Disk Store

The Disk Store stores records on disk, in one of two areas.

The Local Cache is used to store sets that need to be sent to the Database Sink. Sets stay here until the Store and Forward system's Write Time or Write
Size are met.

The Quarantine stores records that failed to be sent to the Database, typically due to an error reported by the database.

Database Sink
A Database Sink is responsible for several things:

® Bundle samples from a History Set into a SQL transaction

® Execute queries against the database.

® Keep tag id values in memory, so the sink doesn't have to constantly query the database for identifying features when a new record from an
existing tag comes in.

® Samples that failed to be inserted into the database will be retried as individual queries before being moved to the Quarantine.

Retrieving a Value

https://legacy-docs.inductiveautomation.com/display/DOC81/Store+and+Forward
https://legacy-docs.inductiveautomation.com/display/DOC81/Configuring+Store+and+Forward
https://legacy-docs.inductiveautomation.com/display/DOC81/Configuring+Store+and+Forward

Request Origin Cache

— [Request Matches Data }_:D Processor | | Storein Return

Data from Cache Cache Data

Request Perspective Binding —— |
[Q [Parts of the Request }_
Not Found
e}

Query
Data from
Database

|/

Many features in Ignition can request data from the historian system. Requests must include some key attributes:

Start datetime.

End datetime.

Tag paths.

Sample size, determining how many datapoints should be returned.

Aggregation mode, used in cases where many points are shown in a relatively small time frame.
Return format, either wide or tall.

Request Origin

Tag History requests from Perspective and Vision Component Bindings can be cached for future use. Because of this the history system takes note of
where the request originated from. If it was from a Tag History component binding then the system will check the appropriate cache. Other origins, such as
the system.tag.queryTagHistory function don't have a cache, and instead immediately query from the database.

Of note, component bindings that opt out of using the cache (enabling the Vision "Bypass Tag History Cache" setting, or by disabling the Perspective
"Cache & Share" setting) will skip the cache and query their results from the database.

Cache

Requests originating from a component binding are compared to existing caches. If data within the cache matches the request exactly, then the request is
sent to the Processor.

If the cache is missing some of the requested data points, then they're retrieved from the database.

Query Data from Database

Here the system will write and execute a query to retrieve records from the database, based upon the start datetime and end datetime. The Tag Historian
normally partitions data across multiple tables, so this step typically involves several SELECT queries to discover which partitions need to be consulted.

If pre-processed partitions are enabled, the system will determine if it should use those processed tables at this step.

Processor

The Processor has several responsibilities. Ultimately it needs to create a result set to return to the originator, but it also needs to process the data in the
following ways:

® |f some of the records from the query were retrieved from the cache, then the Processor is responsible for combining the cached records with the
newly queried records.

® The Processor is responsible for placing records into time slices, as well as aggregating or interpolating the data as necessary. For example, if a
query is requested to return 10 data points over a 10 minute time period, the processor would create 10 time slices that span one minute each. If
there were multiple values collected within any of those slices, the values are aggregated using the selected aggregation method. If there aren't
any records within that slice, interpolation will create a value.

Store in Cache

https://legacy-docs.inductiveautomation.com/display/DOC81/system.tag.queryTagHistory
https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+History+Providers#TagHistoryProviders-Pre-ProcessedPartitions

If the request originated from a system that has a cache, the result set created by the Processor is cached at this step. Regardless, after this step the
result set is handed back to the object that originally made the request.

Storage Format

A listing of tables used by the Tag Historian can be found on the Ignition Database Table Reference page.

https://legacy-docs.inductiveautomation.com/display/DOC81/Ignition+Database+Table+Reference

SQL Bridge (Transaction Groups)

Transaction Groups are the heart of the SQL Bridge module. They are

execution engines that perform database tasks such as storing data .
historically, synchronizing database values to a device, and loading recipe On thispage....
values. A variety of group types, items types, and options means that

Transaction Groups can be configured to accomplish a variety of tasks

. e T tion G O i
against a database table. ansacion oroup Sveten

® Transaction Grou ications
T ion Group Applicati

® Historical Data Logging

® Recipe Management and

Transaction Group Overview Synchronization
® Block Data Transfers
At their core, Transaction Groups are user-configured collections of data references (called items) that ® Stored Procedures

are then linked to columns in a table in a SQL database. Iltems can be OPC references, tag references,
expressions, or SQL queries, and transaction groups allow precise control of data flow to, or from,
specified items to a configured table. To set up and use Transaction Groups, SQL knowledge is not
required; all a group needs to run is a database connection. Ignition can automatically create and
manage the database table for each group.

Transaction Groups are configured in the Ignition Designer. The group will then execute at a specific
interval of time, or on a user-defined schedule. A trigger can be used to prevent planned executions
when specified conditions are not met. On execution, the simplest groups (Historical groups) will create a
new row in the database table with a separate column for each Item in the group. However, more
complex variations are possible.

Transaction Group Applications

There are four types of Transaction Groups, and they each handle data a little differently.

® Historical Group - A basic, one-way group that collects a data point from each item, and logs it to a column in the database.

® Standard Group - A flexible, two-way group that can log data to the database, or pull data from the database to write to OPC items or tags.

® Block Group - A standard group with an additional feature: each execution of the group can create, modify, or extract multiple rows from the
database table, rather than just one.

® Stored Procedure Group - A group capable of invoking a stored procedure in the database, returning the results of any OUT or INOUT
parameters to tags or OPC items.

Learn more about each type of group on the Types of Groups page.

Project Browser a _—

a4 Alarm Motification Pipelines
o5 Sequential Function Charts
» & scripting
» @ Perspective

IW

by © Vi MWew Folder
y B Nar] MNew Transaction Group » [E MNewstandard Group
») Rep = New Block Group
D wel 2 Export. . =] New Historical Group
A Import R [E] MNew Stored Procedure Group

¢’ Find/Replace Groups

Historical Data Logging

Transaction groups can function as a flexible alternative to the Tag Historian, Which is more focused on speed and efficiency
than simplicity. The Historical Group is explicitly designed for this purpose, but the Block Group can allow

multiple rows to be logged at once.

new historical
Running

B Enabled [Disabled

ll Pause

Basic OPC/Group Items (6)

Item Name Source Va.. | Latched.. Target Name Data Type = Properti...
) Sim_Generic/Ramp/Ramp0 344,427 344,427 [3 Ramp0 Floats

5 Sim_Generic/Ramp/Ramp! 58.320 58.320 [Ramp1 Float8

® Sim_Generic/Ramp/Ramp2 | FRamp2 | Floats |]
% Sim_Generic/Ramp/Ramp3 247.480 247480 [Ramp3 Floats

5 Sim_Generic/Ramp/Ramp5 465.267 465,267 [Ramp5 Floats

% Sim_Generic/Ramp/Ramp4 158.320 158.320 [Ramp4 Floats

<m ¥ Trigger L[Options
Execution Scheduling:
Timer Schedule
1 second(s) v
Data source:
MySQL -
Table name:

ramp_historical -

Automatically create table

Database Query Browser o - X
SELECT * FROM ramp_historical -~ o
[t
g " Execute
Limit SELECT to: | 1000 | rows
E,c' Resultset 1 ¢ <Default= L AES)
ramp_historical_.. = Ramp0 Ramp1 Ramp2 Ramp3 Ramp5 Ramp4 t_stamp (2 schema -_O History
> aoem 14 aem3 1921 sa 614 20190618 toof] [ELSELECT<FROM Tarkris
3 821.52 16.14 348 34.21 1345 IPRPREPYSPRVRPRPSISI £ SELECT - FROM iemp bk
4 834.867 26.15 9.867 49,225 21.792 26.15 2019-06-18 10:2
5 848.2 36.15 232 64.225 30.125 36.15 2019-06-18 10:2
6 861.547 46.16 36.547 79.24 38.467 46.16 2019-06-18 10:2
7 874.88 56.16 49.88 94.24 46.8 56.16 2019-06-18 10:2
8 888.227 66.17 63.227 109.255 55.142 66.17 2019-06-18 10:2
9 901.56 76.17 76.56 124.255 63.475 76.17 2019-06-18 10:2
10 914.92 86.19 89.92 139.285 71.825 86.19 2019-06-18 10:2)~
< >
268 rows fetched in 0.013s @ Auto Refresh 7 Edit « Apply 3¢ Discard < 5

Recipe Management and Synchronization

Transaction groups can furnish devices connected to Ignition with information stored in a database,

based on a parameter from the device or

elsewhere. Typically a Standard Group would be used for this application, but Block and Stored Procedure groups can accomplish this as well. See

the Recipe example for more details.

More generally, Standard and Block groups can be used to synchronize device or tag data with a database table on a timer or schedule, allowing the
database to act as a go-between for another system and a target device, or for the database to reflect realtime values for specified data points.

Line 1 Recipe
Running

0
% RunControl o 0o

&

P Enabled

Item Name Source Va.. LatchedV.. Mode Target Name Data Type Properties
% CaseCount 96.716 95,882 [3 CaseCount Floats

% CurrentOrder 0 0 <A @ currentOrder Int2

B CurrentRun 0 <@ [@ CurrentRun Int2

F_RunControl (ned |

B Disabled Bl Pause

Basic OPC/Group Items (4)

Block Data Transfers

The Block Group supports the transfer of entire arrays of data to and from the database.

T4 ACC B Enabled B> Disabled]|
Execution Disabled

Itern View Block View

Block Items (0)

Item Mame Source .. | Latche.. Mode Target Name Data Type | Prope Size
% ftern_T4_0

9 T4_0_ACC String 2
I:ns=1 S=[SLC]_MetaTHT40M4:.0ACC 0
ns=1:5=[SLC]_Meta:T4T4.0/T4:0.0M falze
W ftern_T4_1 3 T4_3_ACC String 2
% fem T4 2 3 T4_2_ACC String 2
% fem T4 3 3 T4_1_ACC String 2

Stored Procedures

The Stored Procedure Group allows you to use group items as inputs and outputs for your existing Stored Procedures, allowing query specifics to be
managed external to Ignition.

SP All Params B Enabled | [Disabled B8 rause
Errored

Basic OPC/Group Items (2)

Item Name SourceV.. | Latched .. Target Name Output Data Type

——mm——

% Out_Tag 3 myCounts £6 None Int4

Properties

Run-Always Expression Items (ignore trigger) (0)

Item Name Source Value = Latched Val.. = Target Name Data Type Properties

In This Section ...

https://legacy-docs.inductiveautomation.com/display/DOC81/Types+of+Groups#TypesofGroups-BlockGroup
https://legacy-docs.inductiveautomation.com/display/DOC81/Types+of+Groups#TypesofGroups-StoredProcedureGroup

Understanding Transaction Groups

Transaction Group Workspace

Transaction Groups are edited through the Ignition Designer. When a group is selected, you are
presented with the transaction group workspace. The workspace is broken into several parts:

® Title bar - Shows the name of the currently selected group, as well as options to set it

as Enabled or Disabled, and to Pause, if it's currently executing.

Item tables - Shows all of the items configured in the selected group. Many settings can be
modified directly through the display, the rest by double-clicking the item or selecting Edit in the
context menu.

Action / Trigger / Options tabs - Defines how and when a group executes. Holds most of

the options that apply to the group in general, such as the update rate, and which data
connection it uses.

Status / Events tabs - Provides information about the executing group, including the most
recent messages that have been generated.

Jlagknacs Title Bar > Enabled | © Disabled I pouse

Source Value Latched Value
456291 456,291
737.180 737.180
91.106 91106

Floats J: Action/Trigger/
© s Options Tabs

Item Name SourceVal.. | Latched Va.. = TargetName DataType Properties

Status/Events Tabs

o Sat Mar 1200:16:21 UTC 2022 Total executions;
jer: SatMar 12001621 UTC 2022 Fal
0:16:22 UTC 2022 orer,

68
0
0
2
0

opCTagwi

53 B Tankoata

Welcome Page

On thispage ...

® Transaction Group Workspace
® Welcome Page
® Items
® Enabling Group Execution
® Editing Group Settings
® Action Settings
® Group Update Rate
® Timer
® Schedule
® Execution Cycle
® Trigger Settings
® Advanced Settings
® Troubleshooting
® Events Tab
® Creating a Transaction Group

INDUCTIVE
UNIVERSII

Transaction Group
Introduction

Watch the Video

The Transaction Group Welcome page allows you to create any one of the four types of transaction groups. Each one of the transaction groups is
basically a template to help you get started creating your transaction group. Once you select a Transaction Group, enter a name, and press ‘create’,
and the specific transaction group template will open. All you have to do next is enter the tags for the values you want to collect. The Transaction
Group Welcome tab will show you any recently modified transaction groups along with the date it was modified and who modified it. You can even

double click on a recently modified chart and open it.

https://www.inductiveuniversity.com/videos/transaction-group-introduction/8.1

Edit View Project Tools Help

H M Wi B -% - B F
Project Browser o _ X o
A | Transaction Groups [Learn more [} Gateway Status
b &) Alarm Notification Pipelines
b oh Sequential Function Charts
3 Scripting .
Q . Create a New Transaction Group
b @ Perspective
-8 Transaction Groups
=] Historical
b Vision
b & Named Queries
' 8 g £ E g
b (33 Web Dev
Historical Group Block Group Standard Group Stored Procedure
Group
Recently Modified Transaction Groups
Mame Last Modified Modified By
Historical Sep 3, 2020, 2:46:22 PM admin
Y% [E] Nogroup selected
Items

Each Item (Tag) in the Transaction Group consists of several properties, but the key properties are the Source/Latched Values and Target Name.

Source and Latched Value

The Source Value will be the value of the items source. This can be something like a Tag or a direct OPC Item if writing to the database, but can also
be the value pulled from the database if in DB to OPC mode. This value can change in between executions, depending on the source type. When the
source is a Tag, it will update as the Tag updates, depending on how the Tag Group for the Tag is set. However, if the source is an OPC Item, it will
update only when the group executes, unless the OPC subscription rate is overridden in the group.

The Latched value will be the value that was written at execution. This can be the value that gets written to the database on execution in OPC to DB
mode, or it can be the value that gets written to the Tag in DB to OPC mode. The value will only change on execution of the group.

Target Name

In most cases, the Target Name is a column on the database table the Transaction Group is associated with. However, it is possible to have the
Target Name 'Read-only'. When set to 'Read-only' the value of the item will not be tied to any columns in the database, but is still visible from the
Transaction Group and can be used as a trigger.

Enabling Group Execution

In order for groups to be evaluated, they must first be enabled. This is done by selecting Enabled in the group title bar, and then saving the project.
The group executing can be stopped by reversing the procedure and selecting Disabled before saving. If you want to quickly and temporarily stop the
group's evaluation, toggle the Pause button. This will prevent execution until the group is enabled again, or until the system is restarted.

p Enabled 9 Disabled

Note: Transaction Groups exist in a project, but they execute in the Gateway space. This means that once your groups are enabled, they do not
need (or use) Vision clients or Perspective sessions in order to run.

Editing Group Settings

Group settings may be modified at any time, regardless of whether or not the group is executing. Modifications will be applied when the project is
saved, and the group will be started or stopped as required. Some changes such as modifying items may cause features like live values to appear
to be incorrect. It is therefore important to notice the modified icon that appears next to the group, and to save often. If you would prefer to stop the
group before making edits you can simply pause the group. Execution will begin again after the project is saved.

ACtIOI’] SettlngS ‘ P Trigger % Options

The action settings of a Transaction group define how often the group will be evaluated, as well as Execuition Scheduling:

important settings that apply to the group as a whole. They are found on the Action tab, the first of the
tabs on the right side of the Transaction Group workspace. 1 second(s) ¥
Update mode:

Timer Schedule

The Action settings vary for the different types of Transaction Groups, but a few settings are common to

most of them: Bi-directional OPC wins

Data source:
Setting Description <Default> -
Table name:
Executio | Despite the name, determines how often the group is evaluated. For a number of reasons, the gr{ [sample -

n may not execute during the evaluation. The most common reason is the trigger, but see Executio

scheduling’ Cycle below for more possible reasons why evaluation will exit. Automatically create table

Use custom index column:

® Timer - specifies the OPC Tag subscription rate for the OPC Tags. It can run at millisecond, Store timestamp to: Lstamp
second, minute, hour, or day rates.
® Schedule - is a specified start time on the update Rate. Set a list of time (or time ranges) th Store quality code to:
group should evaluate at. If the pattern specified includes a time range, a rate must be provi Delete records older than:
Update For groups that support it, sets the default for how items are compared to their targets. Options al
mode insert new row
® OPC to DB - Only read from the OPC server and write to the database. update/select

* DB to OPC - Only read from the database and write to the OPC Server.
® Bi-directional OPC wins - Read and Write to both the database and OPC Server. On group §
write OPC values to the database.
® Bi-directional DB wins - Read and Write to both the database and OPC Server. On group stg ~
write database values to OPC items.

Where:

Data The database connection name the group should use. Can be Default, which will use the default < >
source connection for the project.

Table Name of the table in the database that the group should interact with (reading or writing, dependi

name the Update mode and individual item Mode settings). The tables listed in this dropdown are ¢

determined by the Data source property.

This setting allows you to type arbitrary names into it. If you type the name of a database table that

doesn't exist, and the Automatically create table setting is enabled, then the group will attempt fOqitor notes are only visible to
create the database table on start. logged in users

) .) From Brandon: | was originally
Automati = If enabled, the Transaction Group will attempt to create a database table once the group starts ggoing to get rid of this screenshot

E?;_Zte ;lljrr;rzgg,e?(si:ttémtiagnor?gtﬁ;esg al:anasdy exist as determined by the Table name setting. If the tabl“since IGN-3350 was reverted but it
b y ' g happens. might be prudent to leave this here

for now in case the change goes

Use If left disabled, the group will attempt to add an index column to the database table when the group[hmﬁgh in Fhelfqtl;re.‘S;ee IGN.'6310
custom starts executing. If enabled, the group will use the column selected in the adjacent dropdown, or rgfhe original tic etr']n 0rrr|1at_|on
index a new column if you type in a column name that doesn't exist on the table (requires the Automat cafl IGN 6316 for further solution

create table setting to be enabled). research

Store If enabled, will attempt to store a timestamp value to the column specified in the adjacent dropdoyn. If
timestamp = you type in a column name that doesn't exist on the table, the group will attempt to create the colymn
on start, assuming the Automatically create table setting.

=3
T

Store Stores an aggregate quality for the group along with the regular data. The aggregate quality is a
quality wise AND of the qualities of the items in the group.

code ¥+ Acuonl P Trigger % Options
. Execution Scheduling:
Delete If enabled, and the group is running, this setting will make the group delete older rows in the tablg. O Timer O schedule
records Options are minute(s), day(s), month(s), and year(s). While enabled, a task will be created to cheg : aTT o
older the database tables for older records. The rate this task occurs is determined by frequency configy e .
than on this property. poste mode:
OPC to DB
) Data source:
Frequency Task execution rate e .
) Table name:
Less than an hour Every minute
group_table v
Between one and twelve hours | Every 15 minutes B Automaically create table
Use custom index column:
Over twelve hours Every hour [store timestamp to: 1.stamp
Store quality code to:
Delete records clder than:
The following feature is new in Ignition version 8.1.19
Click here to check out the other new features
Transaction Groups using this property will use timestamps instead of the row index the record wp!)
inserted at when pruning. Q insertnew row
update/select
Where:
Table Defines which row will be targeted by the group. N
Action
® insert new row z il
® update/select - allows you to target specific rows in the database table. Options are:

© first row - the group always executes against the first row.

O last row - the group always executes against the last row

O custom - allows you to write a custom where clause to determine which row should be
targeted. Uses the Where text area. The custom clause can use references to values of
items in the group.

insert new row

update/select

first
Where:

last custom key/value pairs

Triggered Expression Items (1)

Item Name Source Value

group_table_ndx = {[-]someTag}

© key/value pairs - Provides dropdowns for both a column and a item in the group, allowing
the group to target a single row in a table based on the item's value. For example, if a value

of 5 is used in conjunction with the "group_table_ndx" column in the database table, rows

where group_table_ndx has a value of 5 are targeted when the group executes.

insert new row
updatesselect
first

last custom keyivalue pairs

Triggered Expression Items (1)

Value
=

Item Name Source Value Column

group_table_ndx someTag

+ @

Insert row when not present

Additional conditions can be added or removed with the Add or Delete buttons at the bottom

of the Table Action settings.

Group Update Rate

Groups generally work on a timer. They are set to run at a certain rate. As they are running at that certain
rate, they then check the rest of the settings. If the trigger conditions pass, the group is executed fully.

The Execution Schedule controls the rate at which the transaction group executes. On the Action tab of a
group you selected, under Execution Scheduling, there are two options: Timer and Schedule. Timer,
executes the group at a certain rate. Schedule, executes the group at specific times. When the Schedule

INDUCTIVE
UNIVERSII

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.19

option spans across a period of time, you must specify the rate at which the group executes during that
time.

Timer

The Timer acts as the heartbeat of the transaction group and is evaluated at the provided rate. It can run
at millisecond, second, minute, hour, or day rates. The Timer specifies the OPC Tag subscription rate for
the OPC Tags. When a Timer is running the transaction group it first analyzes the Tags inside the Basic
OPC/Group Items section of the transaction group. Then it looks at the trigger configuration and
evaluates for Tag changes. Then it evaluates the specific trigger conditions and decides to execute on a
trigger. Depending on the trigger settings, full execution may not occur, but the trigger will at least be
evaluated at this rate. If the triggered condition is true, the transaction group proceeds to the Triggered
Expression Items section of the transaction group. Only after this flow is complete, will the transaction
group interact with the database, and for example, insert the Tag values into the database.

Schedule

An important difference between the Timer and the Schedule options is that the schedule option will
automatically align to the specified start time on the update rate. With Schedule mode, you are providing
a list of time (or time ranges) that the group should run at. If the pattern specified includes a time range, a
rate must be provided, and the group will evaluate as in timer mode during that period.

The schedule is specified as a comma separated list of times or time ranges. You may use the following
formats:

® 24-hour times. "8:00, 15:00, 21:00", for execution at 8am, 3pm, and 9pm.

® 12-hour with am/pm (if not specified, "12" is considered noon): "8am, 3pm, 9pm"
® Ranges, "8am-11am, 3pm-5pm"

® Ranges that span over midnight, such as "9pm - 8am"

When using ranges, the execution times will be aligned to the start time. For example, if you specify a
schedule of "9am - 5pm" with a rate of "30 minutes", the group will evaluate at 9, 9:30, 10, etc.,
regardless of when it was started. This is a useful difference compared to the Timer mode, which runs
based on when the group was started. For example, if you want a group that runs every hour, on the
hour, you could specify a 1 hour rate with a range of "0-24."

Execution Cycle

All of the Transaction Groups follow a similar execution cycle. The flow may differ based on the group's
configuration, but the general cycle is always the same.

1. Timer determines it is time to evaluate.

2. Is the group paused? If so, end the cycle.

3. Is the Gateway part of a redundant pair? If so, is it active? If not active, end the cycle. Groups
only execute on the active node.

. Evaluate run-always items: OPC items, Tag references, and expression items set to ignore the
trigger (or items placed in the run always section of the Configuration window).

5. Is trigger set/active? If there is a trigger defined, but it is not active, end the cycle.

6. Evaluate "triggered"” Expression items.

7. If applicable, read values from the database.

8

9

IN

. Compare items with their targets.

. Execute any writes.
10. Report alarms configured on the executed items
11. Acknowledge the trigger, if applicable.
12. Write handshake value, if applicable.

If an error occurs at any stage besides the last stage, the cycle will end and a failure handshake will be
written, if configured. The group will attempt execution again after the next update rate period.

When the "Bypass Store and Forward System" option is false, writing to a database from the Transaction
Group will result in a successful execution if the database write enters the Store and Forward Pipeline.

Caution: If the group errors due to a bad database connection, it will need to be manually restarted
once the database connection is brought back.

Trigger Settings

The Trigger tab contains settings that modify how the group executes. The outcome of an execution is
handled in the handshake section of the trigger section of the transaction group.

The table below is a list of Trigger and Handshake settings.

Group Update Rate

Watch the Video

https://inductiveuniversity.com/video/group-update-rate/8.1

Setting Description
Only Enabling this setting will cause the group to evaluate only if values or Tag qualities hav
evaluate e changed. If the values have not changed, it will exit the evaluation. You have the
when values | option to monitor all Run-Always items in the group, or only specific ones.
have
changed ® Tags to watch for change - Select either all Tags or one or more Tags in order

to monitor for value changes. Select 'all Tags' or 'Custom,’ and select the Tag(s)
from the dropdown.

Execute this | Enables a trigger on a specific item in the group. The trigger item can be any Run-

group on a Always item, such as an OPC item, Tag reference, or an Expression item set to "Run-
trigger Always" mode.
Note: When using triggers in a Block Group, the intended trigger will need to be
under Basic OPC/Group Items instead of Block Items order for the trigger to show
in the Trigger on item dropdown list.
® Trigger on item - select the item time you want to use as the trigger.
Only The group will only execute once when the trigger goes into an active state, and will
execute not execute again until the trigger goes inactive first. If unselected, the group will
once while execute each cycle while the trigger conditions evaluate to true.
trigger is
active
Reset trigger | If using the ">0" or "=0" trigger modes, the trigger can be set to write an opposite value
after after the group has executed successfully. This is useful for relaying the execution
execution back to the PLC.
Prevent If selected, the group will not execute if the trigger is active on the first evaluation of
trigger the group after enabling the group. Selecting this option will prevent initial executions
caused by caused by system restarts, or reenabling the group.

group start

Trigger Set any of the following trigger conditions:
conditions
® s =0 (or true)
® is =0 (or false)
® s active or non-active, which causes the group to execute if the trigger value
matches the is active condition.
® Active on value change, which will cause the group to execute if the trigger
changes value at all.
Write Set the item and the value you want to see when the group executes successfully.
handshake
on success
Write Set the item and the value you want to see when an error prevents the group
handshake execution.
on failure

To learn more about configuring Transaction Groups with the different trigger options, refer to the Trigger
Options page.

Advanced Settings

Transaction Groups offer several advanced settings that affect how execution occurs. These settings can
be found under the Options tab for a group. The table below describes the Advanced settings.

Setting Description
OPC Modifies how the group receives data from OPC.
Data
Mode
Option Description
Subscri | Data points are registered with the OPC server, and data is received by the

be group on-change. This is the default setting and generally offers the best

¢ 4 Action | P Trigger | £F Options

»

Only evaluate when values have changed.
Tags to watch for change:
All tags -

Execute this group on a trigger

Write handshake on success
Set:
To value:

Write handshake on failure
Set:

To value:

¢ 4 Action P Trigger

>

OPC data mede: | Subscribe -
Bypass Store and Forward system
Override OPC subscription rate

Always store NULL for bad quality items
Set NULL Tag values to default
Set NULL DB values to default

https://legacy-docs.inductiveautomation.com/display/DOC81/Item+Types#ItemTypes-RunAlwaysvs.TriggerItems

Bypass
Store
and
Forward
System

Override
OPC
subscripti
on rate

Always
store
NULL for
bad

quality
items

Set
NULL
Tag
values to
default

Set
NULL
DB
values to
default

performance, as it reduces unnecessary data flow and allows the OPC
server to optimize reads.

Note: Data is received by the group asynchronously, meaning that it can
arrive at any time. When the group executes, it "snapshots” the last values
received and uses those during evaluation. If some values arrive after
execution begins, they will not be used until the following execution cycle.

Read Each time the group executes it will first read the values of OPC items from
the server. This operation takes more time and involves more overhead
than subscribed evaluation, but ensures that all values are updated
together with the latest values. It is therefore commonly used with batching
situations, where all of the data depends on each other and must be
updated together. It's worth noting that when using an OPC item as the
trigger, the item will be subscribed, and the rest of the values read when the
trigger condition occurs.

This setting is only applicable to groups that insert rows into the database. Causes groups
to target the database directly instead of going through the store-and-forward system. If
the connection becomes unavailable, the group will report errors instead of logging data to
the cache.

Specifies the rate at which OPC items in the group will be subscribed. These items are
normally subscribed at the rate of the group, but by modifying this setting it is possible to
request updates at a faster or slower rate.

With this option set to True, it will force the group to store a NULL value when the item
has a bad quality, instead of writing the bad quality value.

If a NULL is read from the Tag, it will instead use a default value to write to the database,
depending on the type. This can prevent errors for database columns that do not accept
NULL values. The default values are the same as the table above.

If a NULL is read from the database, it will instead use a default value to write to the Tag,
depending on the type. This can prevent errors for OPC Tags that do not accept NULL
values. Not available in a Historical Group.

Enabling the Set DB Values to Default setting on Block Groups will clear the latched
value, setting the item to a default if the corresponding database value is Null.

Type Default Value
Byte 0
Short 0
Integer 0
Long 0
Float 0.0
Double 0.0

Boolean FALSE

String " (Empty Sting)
Date/Time | Current Date/Time
Dataset [0x0] (Empty Dataset)

Array [1 (Empty Array)

Troubleshooting

It may be helpful when troubleshooting or testing Transaction Groups to increase the default threadpool count. Refer to the Gateway Configuration

File Reference - Threadpool Counts for more information.

Events Tab

In the Events tab, the list of events will have a brief summary of the occurrence. Double-click an event to display a pop-up with a more detailed

description.

M. Status | £% Events

Group state changed to ‘warned’
Group state changed to 'running'

(i)
o
- Unable to start group.

[] Group state changed to ‘fatally_errored'

€ Fri Aug 25 14:42:37 PDT 2023 - O *

Message

Unable to start group.
com.inductiveautomation.factorysgl.configuration.InvalidConfigurationExeception:

Default database connection selected, but the project does not have a default
connection configured.

e =

Creating a Transaction Group

This example demonstrates how to configure a transaction group, specifically a Historical Group.
However, the process of creating any transaction group type is very similar, especially so in the case of a
standard group. The Transaction Group Examples section contains more examples.

1. Click on the Transaction Groups in the Project Browser to switch the Designer's workspace to
the Transaction Group workspace.

2. In the Project Browser, right click on Transaction Groups > New Transaction Group to make
a New Historical Group. Name the group 'Group.'

Mew Group Y
Name
| }Group |@'

3. Browse your OPC device and drag some OPC Tags to the Basic OPC/Group Items section.
The group starts out 'Disabled' by default.

@ INDUCTIVE

W2 UNIVERSIT

-

Basic Historical
Group

Watch the Video

INDUCTIVI
% UNIVERSIT

Realtime Group

Watch the Video

https://docs.inductiveautomation.com/display/DOC81/Gateway+Configuration+File+Reference#GatewayConfigurationFileReference-ThreadpoolCounts
https://docs.inductiveautomation.com/display/DOC81/Gateway+Configuration+File+Reference#GatewayConfigurationFileReference-ThreadpoolCounts
https://www.inductiveuniversity.com/videos/historical-group-type/8.1/8.1
https://inductiveuniversity.com/video/realtime-group/8.1

Fle Edt Vew Pt ook Rep
Bo[e s e no/ofE %
Projctroneer a

%
a

Project Properties

b Enabled | © Disabled

4. Save your project.
5. Click the Enabled button above the item tables to enable logging.

p Enabled & Disabled

6. Go to the Action tab and change the Table Name. For the example, we gave it the name
"New_Test_Table."
At this step, your group only exists in the Designer.

¢ 4 Action | Trigger 4F Options
>
Execution Scheduling:

Timer Schedule

1 second(s) -
Data source:
=Default=

Table name:

I New_Test_Table| I

Automatically create table

Use custom index column:
Store timestamp to: t_stamp

Store quality code tor

Delete records older than:

7. Save your project to start the group. Your group is now running and logging data to your
database connection.
8. To see the data, you can use the Ignition Designer's built-in Database Query Browser. The
0L

-
easiest way to do this is to click on the Database™= icon next to your group's Table Name field.
The Query Browser is a convenient way to directly query your database connection without
leaving the Ignition Designer. Of course, you can also use any query browser tools that came
with your database.

https://legacy-docs.inductiveautomation.com/display/DOC81/Database+Query+Browser

Diatabase Query Browser] x

SELECT * FROM group_table_new WHERE Ramp@=@ ~ ’

= = Execute

2 Limit SELECT to: | 1,000 | rows

- e

‘;’ Resultset 1 i M}"SQL — g
Y [Te—
group_table_new_ndx Ramp0 Ramp1 Ramp2 Schema History
1 4,649 69.8960 183 |~ » EH group_table3 .
2 4,649 69,896 1.83 b EH group table new
3 4,649 69.8960 1.83 » | ﬁ P- -
4 5.651 75.037 113 Istory
5 5.651 75.037 113 || | B history sine tags
. = F EH hitachi_errors
7 rows fetched in 0.042s £ Auto Refresh # Edit + Apply [Discard N R e —

Types of Groups

The SQL Bridge Module provides four different types of Transaction Groups that you can use in your
projects. Each of these different types of groups vary in their operation and use for data logging and
database to PLC synchronization.

Standard Group

The Standard Group contains items, which may be mapped to columns in the group's linked database
table, or used internally for features such as triggering or handshakes. Items that are mapped to the
database target a specific column of a single specific row, chosen according to the group settings.
Values can flow from the items into the database, from the database to the items, or bidirectionally,
allowing the value of the database and the item will be synchronized.

The group may also insert new rows instead of updating a specific row, similar to the Historical Group.

Group Settings

The Standard Group uses a timer-based execution model shared by all groups, and the normal trigger
settings. Additionally, there are several settings specific to the group type:

® Automatically create table - If the target table does not exist, or does not have all of
the required columns, it will be created/modified on group startup. If not selected and the
table doesn't match, an error will be generated on startup.

® Use custom index column - If selected, you may enter any column name to hold the index. If
unselected, the table index will be named <table name>_ndx.

® Store timestamp to - Specifies whether or not to store a timestamp with the record, and the
target column. The timestamp will be generated by the group during execution. For groups that
update a row, the timestamp will only be written if any of the values in the group are also written.

® Store quality code to - If selected, stores an aggregate quality for the group to the
specified column. The aggregate quality is the combined quality of all of the items that write to
the table. For more information about quality values, see Data Quality.

® Delete records older than - If selected, records in the target table will be deleted after
they reach the specified age. This setting is useful for preventing tables from growing in an
unbounded manner, which can cause disk space and performance problems over time.

Table Action

This section details how the group interacts with the table on each execution. The group can insert a new
row, or select/update the first, last or a custom record.

® Insert New Row - This option will make the group insert a new record into the database every
time the group executes. This is the forced behavior of the Historical Group.

® Update / Select - This option will either update or select from matching rows based on the
option selected below it. The Update Mode property above determines whether an update
(OPC to DB), select (DB to OPC), or both (Bi-directional) are used when the group executes.

® First - Use the first row in the table. It is not recommended to use this option unless the order of
the data in the table is guaranteed.

® Last - Use the last row in the table. This is commonly used when another group (or another
program) is inserting new rows for us, and we always want to update the most recent record.

® Custom - A custom update clause is essentially the WHERE clause of the SQL query that will
be generated to read and write the group data. This usually contains a reference to a Tag in the
group. IE: column_name = {[~]item_name}

® Key/Value Pairs - Used to inject dynamic values in order to create a WHERE clause for you.
The table below this option will allow you to enter column names and link them to values
(usually Tags in the group). This option also has the ability to Insert a new row with the current
key/value pair if it was not found.

Typical Uses
Standard Groups can be used any time you want to work with a single row of data. This can include:

® Historical logging - Set the group to insert new records, and log data historically either on
a timer, or as the result of a trigger. Flexible trigger settings and handshakes make it possible
to create robust transactions.

® Maintain status tables - Keep a row in the database updated with the current status
values. Once in the database, your process data is now available for use by any application that
can access a database, dramatically opening up possibilities.

® Manage recipes - Store recipe settings in the database, where you have a virtually
unlimited amount of memory. Then, load them into the PLC by mapping DB-to-OPC using a
custom where clause with an item binding in order to dynamically select the desired recipe.

® Sync PLCs - Items in the group can be set to target other items, both for one-way and
bidirectional syncing. By adding items from multiple PLCs to the group, you can set the items

On thispage ...

® Standard Group
® Group Settings
® Table Action
® Typical Uses
® Historical Group
® Group Settings
® Typical Uses
® Block Group
® General Description
Typical Uses
Table Format
Row ID and Block ID
Group Settings
Table action
tored Procedure Group
Group Settings
Typical Uses
Known Issues
Parameters in the Stored
Procedure Group

.
e 0o 0 00) e 0 0 0 o

https://legacy-docs.inductiveautomation.com/display/DOC79/Tag+Quality+and+Overlays

of one PLC to sync with the others. By creating expression items that map from one PLC item
to the other, you can manipulate the value before passing it on.

Historical Group

The Historical Group inserts records of data into a SQL database, mapping items to columns. Full support for triggering, expression items, hour &
event meters and more means that you can also set up complex historical transactions. Unlike the Standard Group, the Historical Group
cannot update rows, only insert. It also cannot write back to items (besides trigger resets and handshakes).

Group Settings

The settings of the Historical Group are identical to the settings in the Standard Group, but limited to inserting rows.

Typical Uses

® Basic Historical Logging - Recording data to a SQL database gives you incredible storage and querying capabilities, and makes your
process data available to any application that has DB access.

® Shift Tracking - Use an expression item to track the current shift based on time, and then trigger off of it to record summary values from the
PLC. Use a handshake to tell the PLC to reset the values.

Block Group
Block Groups instead allow you to store your data in a tall format. They allow you to create a unique type @ IN DUC T I VI

of item, called a Block Item, which represents an ordered list of values to store within a column for each

execution. UNIVERSI'I

General Description

A Block Group contains one or more block items. Each block item maps to a column in the group's table, Bl ocC K Grou p Type
and then defines any number of values (OPC or SQLTag items) that will be written vertically as rows

under that column. The values may be defined in the block item in two modes. The first, List mode, lets a .

list of value-defining items to be entered. These value items may either be OPC items, Tag items, or WatCh the V|de0
static values. The second mode, Pattern mode, can be useful when OPC item paths or Tag paths contain

an incrementing number. You may provide a pattern for the item's path, using the wildcard marker {?} to

indicate where the number should be inserted.

Block groups are very efficient, and can be used to store massive amounts of data to the database (for
example, 100 columns each with 100 row -10,000 data points- will often take only a few hundred
milliseconds to write, depending on the database). They are also particularly useful for mirroring array
values in the database, as each element will appear under a single column, and share the same data

type.

Like the Standard Group, the Block Group can insert a new block, or update the first, last or a custom
block. Additionally, the group can be set to only insert rows that have changed in the block.

In addition to block items, the group can have other OPC items, Tag references, and Expression items.
These items can be used for triggers, handshakes, etc. They may also target a column to be written, and
will write their single value to all rows in the block.

The block group is so named because it writes "blocks" of data to a database table, consisting of multiple
rows and columns.

Typical Uses
Block Groups are useful in a number of situations where you need to deal with a lot of data efficiently. Mirroring/Synchronizing array values to DB -
Arrays are often best stored vertically, which makes them perfect for Block Groups. Pattern mode makes configuration a breeze by allowing to you
specify the array as a pattern, and set the bounds
® Recipe management - Like Standard Groups, but used when set points are better stored vertically than horizontally.
® Vertical history tables - Group data points by data type (integer, float, string), create a copy of the item that stores item path, and then use
the insert changed rows option to create your own vertically storing historical tables. Create additional copies of the block item that refer to
quality and timestamp in order to get further information about the data point.

Table Format

Due to their nature, Block Groups store records in a different format than the other groups. Consider how other Transaction Groups work. A single
execution of a Standard or Historical Group would store a row that looked like the following:

table_ndx tagl tag2 tag3

https://www.inductiveuniversity.com/videos/block-group-type/8.1

1 10 20 30

We could take the Tags from the above example, and place them in under a single block item:

Blocky p Enabled & Disabled
Running

ItemView Block View

Block Items (1)

Item Name Source Value Latched Value = Mode | Target Name DataType | Properties | Size
= % BlockItem 3 Tags String 3
[default]Tag! 10 10
[default]Tag2 20 20
[default]Tag3 30 30

Under a single block item, each Tag is nested under the block item, and the block item is targeting the "Tags" column under Target name. A single
execution of this group stores the records in our table as so:

table_ndx Tags

1 10
2 20
3 30

Each additional block item would store records as a separate column.

table_ndx Tags More_Tags
1 10 11
2 20 22
3 30 33

Row ID and Block ID

Using the same Tag example from above, if we kept inserting new rows at every execution, our table would start to looks like the following:

table_ndx Tags

1 10
2 20
3 30
4 15
5 25
6 35

This isn't ideal, since the table doesn't have a great way to show which value came from which Tag. To help with this, Block Groups have optional
row_id and block_id columns that can be enabled (see the "Store row id" and "Store block id" settings under Group Settings). If we enable both the
Block ID and Row ID, our table would look like the following:

table_ndx Tags row_id block_id

1 10 0 1
2 20 1 1

3 30 2 1

4 15 0 2
5] 25 1 2
6 35 2 2

Block ID represents the a single execution of the group, meaning rows with the same block_id value were inserted together. We see block_id values
of 1 (colored green) are part of the same execution, and rows with a block_id value of 2 (colored blue) are a separate execution.

Row ID in an index representing which item in the block item the row corresponds to. In our example, Tagl is the first or top item in the block item
(row index 0), Tag2 is next (row index 1), and Tag3 is last (row index 2). Now we know that any value on that table with a row_id of 0 came from Tag1.

Group Settings

Beyond the differences in the data, namely that the Block Group works with multiple rows instead of just 1, this group type shares many similarities
with the Standard Group.

The unique settings are:

® Automatically create table - If the target table does not exist, or does not have all of the required columns, it will be created/modified on
group startup. If not selected and the table doesn't match, an error will be generated on startup.

* Automatically create rows - If the target rows do not exist, they will be created on group execution. If not selected and the rows don't
match, no records will be updated.

® Use custom index column - If selected, you may enter any column name to hold the index. If unselected, the table index will be named
<table name>_ndx.

® Store timestamp to - Specifies whether or not to store a timestamp with the record, and the target column. The timestamp will be generated
by the group during execution. For groups that update a row(s), the timestamp will only be written if any of the values in the group are also
written.

® Store quality code to - If selected, stores an aggregate quality for the row to the specified column. The aggregate quality is the combined
quality of all of the items that write to that row. For more information about quality values, see Data Quality.

® Store row id - Each row will be assigned a numeric id, starting at 0. If selected, this id will also be stored with the data.

® Store block id - If selected, an incremental block id will be stored along with the data. This number will be 1 greater than the previous block
id in the table.

® Delete records older than - If selected, records in the target table will be deleted after they reach the specified age. This setting is useful for
preventing tables from growing in an unbounded manner, which can cause disk space and performance problems over time.

Table action

This section details how the group interacts with the table on each execution, and is not available for the Historical Group type. This means when the
Timer or Schedule is active, and the Trigger condition are met. The group can insert a new row, or update the first, last or a custom record.

® Insert New Block - If selected, each row of the block will be inserted when the group executes, even if the data has not changed.

® Insert changed rows - This option will only insert the rows that have new data when the group executes. This is particularly useful for
recording history for many data points on an "on change" basis, provided there is a unique id column defined. The "store row id" feature is
useful for this, as well as the ability to reference the item path in an item's value property.

® Update / Select - This option will either update or select from matching rows based on the option selected below it. The Update
Mode property above determines whether an update (OPC to DB), select (DB to OPC), or both (Bi-directional) are used when the group
executes.

® First - Use the first row in the table. It is not recommended to use this option unless the order of the data in the table is guaranteed.

® Last - Use the last row in the table. This is commonly used when another group (or another program) is inserting new rows for us, and we
always want to update the most recent record.

® Custom - Like Standard Groups, this setting allows you to target a specific section of the table, using SQL where clause syntax, with the
ability to bind to dynamic item values. Unlike Standard Groups, however, the WHERE clause specified should result in enough rows to cover
the block. Excess rows will not be written to, but fewer rows will result in a group warning indicating that some data could not be written.

Stored Procedure Group

The Stored Procedure Group lets you quickly map values bi-directionally to the parameters of a IN DUC T I VI
stored procedure. It is similar to the other groups in terms of execution, triggering, and item configuration.
The primary difference is that unlike the other group types, the target is not a database table, but instead U NIV E RS Ir_[

a stored procedure.

Items in the group can be mapped to input (or inout) parameters of the procedure. They also can
be bound to output parameters, in which case the value returned from the procedure will be written
to the item. ltems can be bound to both an input and output at the same time. Stored Procedure

Group Type
Parameters may be specified using either parameter names or numerical indices. That is, in
any location where you can specify a parameter, you can either use the name defined in the database, or
a 0-indexed value specifying the parameter's place in the function call. Watch the Video

@ You cannot mix names and indices. That is, you must consistently use one or the other.

https://legacy-docs.inductiveautomation.com/display/DOC81/Quality+Codes+and+Overlays
https://www.inductiveuniversity.com/videos/stored-procedure-group-type/8.1

If using parameter names, the names should not include any particular identifying character
(for example, "?" or "@", which are used by some databases to specify a parameter).

SP All Params B Enabled ® Disabled
Errored

Basic OPC/Group Items (2)

Item Name SourceV.. | Latched . Target Name Output Data Type Properties
——mmm——
% Out_Tag 3 myCounts 26 None Intd

Run-Ahways Expression Items (ignore trigger) (0)

Item Name Source Value = Latched Val.. = Target Name Data Type Properties

Group Settings

The Stored Procedure Group's settings look and act the same as those of the Historical Group. The primary difference, of course, is that instead of
specifying a table name and column names, you'll specify a Stored Procedure and its parameters.

® Store timestamp to - Specifies whether or not to store a timestamp with the record, and the target column. The timestamp will be generated
by the group during execution. For groups that update a row, the timestamp will only be written if any of the values in the group are also
written.

® Store quality code to - If selected, stores an aggregate quality for the group to the specified column. The aggregate quality is the combined
quality of all of the items that write to the table. For more information about quality values, see see Data Quality.

® Procedure Name - The name of the Stored Procedure (SP) that you will be using. You must look into the SP definition to see what inputs
and outputs are available.

Typical Uses
® Call stored procedures - The Stored Procedure Group is the obvious choice when you want to bind values to a stored procedure. It can
also be used to call procedures that take no parameters (though this can also be accomplished from Expression ltems/SQLTags.

® Replace RSSQL - The Stored Procedure Group is very popular among users switching from RSSQL, given that application's heavy use of
stored procedures.

Known Issues

When using an Oracle database, you must use indexed parameters.

Parameters in the Stored Procedure Group
When using a Stored Procedure Group, parameters may be configured to each item based on the type of the parameter:
® The Target Name column is used for writing, so specifying an IN or INOUT parameters under this column will have the item try to write its
value to the parameter

® The Output column is used to move the value of an OUT or INOUT parameter into an item in the group. If an item in a group is configured to
reference an OUT parameters, its Target Name value should be set to Read-Only.

Related Topics ...

® Group Update Rate

https://legacy-docs.inductiveautomation.com/display/DOC79/Tag+Quality+and+Overlays
https://legacy-docs.inductiveautomation.com/display/DOC81/Understanding+Transaction+Groups#UnderstandingTransactionGroups-GroupUpdateRate

ltem Types

Iltems are the backbone of a Transaction Group. They represent a link

between a source value (derived from either an OPC value or an .
expression) and a cell in a database table. Items generally aren't executed On thispage....
in a reliable order, with the exception of Expression items.

Expression items can be ordered using the up and down arrows located to

the right of the list where the items are displayed. This can be crucial for . fag References and OPC ltems

® Expression Items

performing complex operations that require a specific sequence. Below is * Scope
ot P ® Execution Order
a listing of each type of item. e Expression Type
® Run Always vs. Triggered ltems
ltem Description ¢ Changing the Evaluation State
Type ® SQL Queries and Expressions
® Creating a New Item
. . . . ® |tem Type Property Table
OPC Directly subscribed to an OPC server at the rate of the group. These items effectively * OPC Item Options
Item ignore the gateway's Tag system, bypassing Tag groups and Tag providers altogether.

® Tag Reference Item Options

. . I I . ® Expression Item Options
Express | Much like an expression Tag, expression items are flexible in that their value can come P P

ion from a number of different sources: specifically an expression or a database query.
Item
Expression items have two sub types:

® Run-Always expression items are evaluated every time the group executes. Meaning,
they'll run their associated expression or query every time the group executes. @ IN DUC T I VI
® Triggered expression items only evaluate when the group trigger is active. U NIV E RS I-I
Tag A reference to a Tag in a Tag provider. Allows a Tag to be used in a group like any other
Referen | item type, except that the Tag is evaluated by its scan class instead of by the group. For
ce ltem | more information, see the next section, Tag References vs. OPC Items. ltem Types

Tag Reference Items can reference the value on any Tag in a Tag provider, such as query

Tags and memory Tags. Watch the Video

Tag References and OPC Items

It is easy to confuse the definition and purpose of Tag reference items and direct OPC items in IN DUC T I VI
Transaction Groups.
UNIVERSI1

Tags may be referenced inside of Transaction Groups through a Tag Reference Item. Since the source
of the Tag reference item exists outside of the Transaction Group, they have their own rules and
configurations that determine when their value changes. Thus Tag reference items can have their value
update according to their own execution (commonly, a Tag Group). Adding a Tag into a group is like
creating a shortcut to that Tag. However, once in the group, the item can be used like any other item. Tag Tag References VS.
references are useful when it is necessary to have a single value in multiple groups, for example, as a OPC ltems

trigger in order to coordinate execution.

OPC Items in groups (as well as expression items in groups), however, are completely executed by the Watch the Video
group. They do not exist outside of the group in which they are defined. They are subscribed
and evaluated according to the rate of the group.

Refer to the Item Type Property Table at the bottom of this page to see the properties for both Tag and
OPC items.

Expression Items

Expression ltems are items not driven by a PLC. Instead they allow you to configure a static value, or use @ IN DUC T I VI

some other means to automatically set a value, such as a query. They are useful for executing
comparisons, simple math, and looking up values from other database tables. U NIV E RS I'I

Much like OPC Items, Expression Items can have alarms configured, as well as numeric scaling applied
directly to the item.

Expression Items
Scope

https://inductiveuniversity.com/video/item-types/8.1
https://docs.inductiveautomation.com/display/DOC81/Item+Types#ItemTypes-ItemTypePropertyTable
https://inductiveuniversity.com/video/tag-references-vs-opc-items/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+Scaling+Properties

It is important to understand that an Expression Item only exists within its group, and can not be
referenced by items in other Transaction Groups, Tags, and any components on a window.

Execution Order

All Expression items will evaluate in order from top to bottom. This means referencing an Expression

Item above will pull the new value, but referencing an Expression Item below will give you the value from

the last group execution.

Expression Type

How an Expression Item determines its value depends heavily on its type.

< Edit group tag - [m] X
£+ General Expression/SQL
[Numeric
& Alarming Expression Type
None (Memory Tag)
Expression
Named Query
0K Apply Cancel
Expression Definition
Type
None Behaves similar to a Memory Tag in that the value does not automatically change.
Expression Uses Ignition's Expression Language to determine the value on the Item. The
expression can reference other items in the group, as well as Tags.
SQL Query Utilizes a SQL query to determine the item's value. Thus, a query can execute on the

Named Query

item and the results can be referenced by other items in the same group.

Selecting this option will cause the value on the item to be determined by a Named
Query in the same project as the Transaction Group.

Refer to the Property Table at the bottom of this page to see the Expression Item Options.

Run Always vs. Triggered Items

Expression Item can be configured in two different evaluation states:

® Triggered: The Expression Item executes only when the Transaction Group is triggered.
However if the group is not configured to execute on a trigger, then the item will evaluate every
time the group executes (similar to how the Run-Always state works). This is the default
evaluation state new Expression Items use.

® Run-Always: The Expression Items will run before the group trigger is checked, so it always
executes at the group's rate. This allows your expression to always evaluate regardless of the
trigger in the group. Additionally, this state allows you to use the Expression Item as the trigger
for the group. We advise that you never have a Target for a Run-Always Expression item

Watch the Video

INDUCTIVE
UNIVERSII

Run Always vs.
Triggered Items

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC81/Expression+Language+and+Syntax
https://docs.inductiveautomation.com/display/DOC81/Item+Types#ItemTypes-ExpressionItemOptions
https://inductiveuniversity.com/video/expression-items/8.1
https://inductiveuniversity.com/video/run-always-vs-triggered-items/8.1

because it always runs.

N MR B Ensbled | © Disabled

Unable to Start

Item Name Sourc.. Latch.. Mode Target Name = Data.. | Prop..

% accumulatorLevel N/A N/A 3 accumul.. Intd -
% ambientHum 3 ambient.. Floatd

% ambientTemp 3 ambient.. Floatd

% dischargePressure 3 discharg.. Floatd

% dischargeTemp 3 discharg.. Int4

% receiverLevel 3 receiver.. Intd v
Run-Always Expression Items (ignore trigger) (1) AW
Item Name Source.. Latche.. Target Name DataTy... Propert...
S My Run_Always Ttem N/A N/A £ Read-only Intd

Item Name Source.. Latche.. Target Name Data Type Properties
% My Triggered Item N/A N/A #6 Read-only Int4

Changing the Evaluation State

Toggling between the two modes can be accomplished by dragging and dropping the Expression Item to
either the Run-Always Expression Items table or the Triggered Expression Items table. Alternatively,
the evaluation state can be changed by editing the Expression Item and toggling the Run-always
(ignore trigger) checkbox

g Edit group tag — O x
B Numeric B
A Alarming General Properties
= Expression/5QL Name

item 2
Value
0
Data Type
Integer -
Value Made
Property
Value -
Mode
Directvalue

Hour meter Event meter

L]

Evaluation Options

Run-always (ignore trigger)

Write target

Target Type Target Name

None, read-only item -

< >
OK Apply Cancel

SQL Queries and Expressions

Expression items can use SQL statements and Ignition's Expression language to automatically determine
the value of an Expression Item. This is useful in scenarios where you want to use a value from the

database as the trigger for the Transaction Group, or aggregate several other items in the group into a
single value.

Expressions and queries on an Expression Item can reference the value of other items in the group or

Tags in the system by clicking on the Tag \> icon.

There are several Expression functions available that exist only for Transaction Groups. You can find
them in the Store and Forward and Variables sections of the f(x) function list.

INDUCTIVE
UNIVERSII

SQL Query
Expression ltems

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC81/Writing+SQL+Queries
https://legacy-docs.inductiveautomation.com/display/DOC81/Expression+Language+and+Syntax
https://inductiveuniversity.com/video/sql-query-expression-items/8.1

Lgf Edit group tag - O X

4 General Expression/SQL
[Numeric
& Alarming Expression Type *
B Expression/soL SQL Query -
SELECT RIS
COUNT (target_number)
FROM
workorders
WHERE

id = {[~]currentwoId}|

< >

Datasource Query Type

<Defatft= = o Auto Detect v

OK Apply Cancel

Creating a New Item

Below is an example of creating a new item. The steps can be applied to any item type.

1. In the Designer, go to Project Browser, and click on Transaction Groups.
The workspace now changes to the Transaction Group workspace.

2. Right-click on Transaction Group to create a New Transaction Group, or click on a group you have previously created.
You will now see the workspace changes to look like:

=1 —
e e o= ¢ 4 Action = Trigger £ Options
Q. A Group > R
T ~ v i P Enobled | © Disabled Execution Scheduling:
~ 94 Transaction Groups Execution Disabled >2V€ Projecttostart
[2) Block-Group-ex group Timer | Schedule

E:Z:t nzz:z Basic OPC/Group Items (5) 1 secondls) v
T | i .

Mode Target Na... DataT... Proper... Update mode:
‘Z Historical-ex % Ramp4 Use group'... Ramp4 Floatg -~
o 8 OPC t0 DB
(=) New Group % Ramp3 Use group'.. Ramp3 Floats
) Realtime " % Ramp2 Use group'... Ramp2 Floats Data source:
G Bamn1 Lise aronn’ Ramn1 Elnat! =1
OPC Browser [=L 3 Run-Always Expression Items (ignore trigger) (0} A <Default>
F-c Item Name Sourc... Latch... Target Name Data Type Properties Table name:
» il [OMRON NJJ |~
b i [sim] New_Test_Table
~ @ [Sim_Dairy_7-2020]
+ i [Controls] Triggered Expression Items (0} Automatically create table
b i Overview m Item Name Sourc.. Latch.. | Target Name Data Type Properties Use custom index column:
. 2 Store timestamp to: tstal
Tag Bramser g - X 2 =
Qo W-8 0| a B —

M Status &% Events
Value Data.. Traits

Execution Disabled

Last execution: Total executions: 0
» i All Providers
Last trigger: Failed executions: 0
Next execution: OPC/Tag writes: 0
Last duration: 0.0 second(s) DB writes: 0

o

Avg duraticn: 0.0 second(s) OPC/Tagwrite failures:

3. Right-click in the white area, and choose New Item > New OPC Item. The options in the popups represent the different item types. Refer to
the Item Type Property Table on this page for more information on the various item types and their properties.

+ Newltem » Wy NewOPC Item
s New Expression Item

©s New Tag Reference

https://docs.inductiveautomation.com/display/DOC81/Item+Types#ItemTypes-ItemTypePropertyTable

4. Once you configured the item, click OK.

Item Type Property Table

The following tables describes the OPC, Tag and Expression Item properties.

OPC Item Options
Property Description

General

Name The name of the OPC item in the group. There cannot be duplicate names within a group.

Data Type @ The data type used to read values from the PLC.
OPC Properties

OPC The Selected OPC Server. This is a dropdown list showing all the OPC Servers added in the Ignition Gateway.
Server

OPC ltem The OPC address assigned by the server. Dragging and dropping from the OPC Browser will automatically populate this field.
Path

The following feature is new in Ignition version 8.1.5
Click here to check out the other new features

As of 8.1.5 it's possible to escape curly braces {} in the item path by using additional curly braces. For example:
{{devi ce_nane}} would evaluate to { <devi ce_nanme param val ue>}.

Source Data type for the OPC item.
Data Type
Value Mode

Property Which property of the OPC item you want to use.

Value - Item value

Quality - Quality code from OPC Server (192 = GOOD_DATA)
Timestamp - The last time the item value changed

Name - The SQLBridge Item Name property of this ltem

Note: UDT Instances used in Transaction groups only support String datatypes. Other datatypes could cause Transaction Groups
groups running in previous versions of Ignition to fault.

Mode Options for displaying values based on the Item value.

® Direct Value - Item value
® Hour Meter - Record the amount of time the Item value is non-zero. This accumulation will reset to zero when the item value
goes to zero. The data type should be set to integer or float when using an Hour Meter regardless of the OPC Item type.
© On Zero - Use a zero value to accumulate time instead of a non-zero value
O Retentive - Retain the Hour Meter value when it is not accumulating.
© Units - The time units to display.
® Event Meter - Record the number or times the Item value is non-zero. The data type should be set to integer when using an
Event Meter regardless of the OPC Item type.
© On Zero - Use a zero value to accumulate events instead of a non-zero value

Write Target

Mode Changes the items directional read/write option.

Use group's mode - Inherit the Update Mode from the Item's Group.

OPC to DB - Only read from the OPC server and write to the database.

DB to OPC - Only read from the database and write to the OPC Server.

Bi-directional OPC wins - Read and Write to both the database and OPC Server. On group start, write OPC Server values to the
database.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.5

® Bi-directional DB wins - Read and Write to both the database and OPC Server. On group start, write database values to the

OPC Server.
Target This is the selection for what the Item will write to when the group executes.
Type
® None, read-only item - Do not write this value to the database.
® Database field - Write the Item value to the specified column in the database table. This list will populate with all the column
names from the Group's target table after the first time the group is run.
Target The name of the column in the database that this Item will write to when the group executes. The Target Name list will populate with
Name all the column names from the Group's target table if the Target Type is Database field.

Alarming The Alarming settings for the OPC items. See Alarming Properties for a full explanation.

Tag Reference Item Options

General

Name | The name of the OPC item in the group. There cannot be duplicate names within a group.

Tag The path to the tag being referenced. This value is not editable except by clicking the Insert Tag button. There cannot be duplicate names
Path within a group.

Data | The data type to write to into the database if this item is not read-only.
Type

Value Mode

Prope | Which property of the Tag you want to use.

rty

Value - Item value

Quality - Quality code of the Tag (192 = GOOD_DATA)
Timestamp - The last time the item value changed
Name - The SQLBridge Item Name property of this ltem.

Mode | Options for displaying values based on the Item value.

® Direct Value - Item value

® Hour Meter - Record the amount of time the Item value is non-zero. This accumulation will reset to zero when the item value goes to
zero. The data type should be set to integer or float when using an Hour Meter regardless of the OPC Item type.
On Zero - Use a zero value to accumulate time instead of a non-zero value
Retentive - Retain the Hour Meter value when it is not accumulating.
Units - The time units to display.

® Event Meter - Record the number or times the Item value is non-zero. The data type should be set to integer when using an Event
Meter regardless of the OPC Item type.
On Zero - Use a zero value to accumulate events instead of a non-zero value

Write Target

Mode | Changes the items directional read/write option. This is only editable when the target Type is set to Database field.

Use group's mode - Inherit the Update Mode from the Item's Group.

OPC to DB - Only read from the OPC server and write to the database.

DB to OPC - Only read from the database and write to the OPC Server.

Bi-directional OPC wins - Read and Write to both the database and OPC Server. On group start, write OPC Server values to the
database.

® Bi-directional DB wins - Read and Write to both the database and OPC Server. On group start, write database values to the database.

Targe @ This is the selection for what the Item will write to when the group executes.
t Type
* None, read-only item - Do not write this value to the database.
® Database field - Write the Item value to the specified column in the database table.

Targe = The name of the column in the database that this Item will write to when the group executes. The Target Name list will populate with all the
t column names from the Group's target table if the Target Type is Database field.
Name

Expression Item Options

https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+Alarm+Properties

General

Name | The name of the OPC item in the group. There cannot be duplicate names within a group.
Value @ The static value of this Expression item. This will be overwritten by an Expression/SQL binding.
Data The data type values are stored as.
Type
Value Mode
Proper | Which property of the OPC item you want to use.
ty
® Value - Item value
® Quality - Quality code of the expression/SQL Query (192 = GOOD_DATA)
® Timestamp - The last time the item value changed.
® Name - The SQLBridge Item Name property of this ltem.
Mode | Options for displaying values based on the Item value.
® Direct Value - Item value
® Hour Meter - Record the amount of time the Item value is non-zero. This accumulation will reset to zero when the item value goes to
zero. The data type should be set to integer or float when using an Hour Meter regardless of the OPC Item type.
On Zero - Use a zero value to accumulate time instead of a non-zero value
Retentive - Retain the Hour Meter value when it is not accumulating.
Units - The time units to display.
® Event Meter - Record the number or times the Item value is non-zero. The data type should be set to integer when using an Event
Meter regardless of the OPC Item type.
On Zero - Use a zero value to accumulate events instead of a non-zero value
Evalua | Run-always (ignore Trigger) - When selected, this causes the group to evaluate at each group interval, before the trigger state is
tion evaluated.
Mode
Write Target type - This is the selection for what the Item will write to when the group executes.
Target
® None, read-only item - Do not write this value to the database.
® Database field - Write the Item value to the specified column in the database table.
® Other Tag - Write the Expression Item's value back to an OPC item or Tag Reference.
Target = The name of the column in the database that this Item will write to when the group executes. The Target Name list will populate with all
Name | the OPC Item and Tag Reference names from this Group, or the column names from the Group's target table depending on the Target
Type selected.
Numer | These are the Numeric properties for Expression Items. For a full description, see Tag Scaling Properties.
ic
Alarmi | These are the Alarming settings for the OPC items. See Alarming Properties for a full explanation.
ng
Expre | These are the Expression/SQL Query options for Expression Items. See Expression/SQL Properties for a full explanation.

ssion

https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+Scaling+Properties
https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+Alarm+Properties
https://legacy-docs.inductiveautomation.com/display/DOC81/Scripting+Vs.+SQL+Vs.+Expressions

Hour and Event Meters

Hour meter and Event meter refer to the Value Mode option settings on Tags in Transaction Groups.

The Value mode drives values that are used to create values that determine how long a value was true.

While the selected Value Mode for most transactions is Direct, however, the Hour meter mode

accumulates value for the duration of a condition, and the Event meter accumulates count in response IN DUC T I VI

to the condition. UNIVERSI]
Hour Meter

It is common to write to a Tag during the time when a Tag's value is true. An hour meter simplifies this Hour and Event
effort. Hour meters can be meters that accumulate the millisecond, second, minute, hour, or day. Meters

Watch the Video

Count the Duration of a Tag Being True

1. From the Tag Browser, drag a boolean Tag into the Basic OPC/Groups Items area of a Standard Transaction Group.

File Edit View Project Tools Help

B M+« ¥ S o E - -8
Project Browser o - X
Q A New Group_Internal
g (T SO SO T T TR = Ve D - P Enabled | ® Disabled
v . Execution Disabled 3 [IGEROEEELD
b 4w Sequential Function Charts changes
» Scripti

b @) Perspective

a. Item Name Sou.. | Llatc.. = Mode TargetName DataTy.. Propert.
+ ©g Transaction Groups -
» Boolean... MN/A N/A Use group's.. BooleanTag2 Boolean
[=] Bi Directional
=] Event_Meter /

=] Group
[2] New Block Group

Item Name Source.. Latche.. Target Name Data Type Properties
I. [E] New Group_Internal L]

Run-Always Expression Items (ignore trigger) (0)

Tag Browser o -
+- Q O default v |y~
—eeeeeeeee Triggered Expression Items (0)
Tags UDT Definitighs .
Item Name Source.. | Latche.. = Target Name Data Type Properties
Tag Vilue Da
» @ _Generic_Programmable_sim,
» il _Sim_New_Programmable_
b i Demegraphics .
b W Writeable_Test J status & Events
»—2% BooleanTag2
» % Dataset Datas... C Execution Disabled
» @ FloatTag 1 null | F Last execution: N/A Total executions: N/A

2. From OPC Browser or Tag Browser, drag a memory tag or OPC tag (must be a numeric data type) into the Basic OPC/Groups Items portion
of the Standard Transaction Group.

3. Right-click on the boolean tag in the Transaction Group and select Edit to edit it.
The Edit group tag window is displayed.

https://inductiveuniversity.com/video/hour-and-event-meters/8.1

New Group_Internal
Unable to Start Save project to apply changes

Basic OPC/Group Items (2)

Item Name Source V... Latched .. Mode TargetNa.. ~ ' DataType Properties
£ sim _/Ramp/Ramp0 [Ramp0 Float8

®_Sim_/Boolean Examp... __-— F BooleanE.. | Boolean | |

<+ Newltem »

p Enabled ® Disabled

Edit
Item Name So e Cut ‘a.. | Target Name Data Type Properties

A Copy

o Delete
riggered Expression Items (0) . W
Item Name Source Val.. | Latched Va.. = Target Name Data Type Properties

4. In the Edit group tag window, for Value Mode, select Hour meter.
5. In the Edit group tag window, for Target Type select Other tag from the dropdown menu, and in Target Name enter the name of the
memory tag as the target, and click OK.

L Edit group tag — O X

General
Name
Sim/Boolean Example Tag
Tag Path Data Type

% | Boolean -

Value Mode
Property
Walue -

Mode

Direct value

) Hour meter Event meter

OnZero Retentive Units | second(s) -

Reset on condition: L -

Write target
Mode

Use group's mode -

Target Type Target Name

IOthertag - "_Sim_;fRampr’RampD vI

6. Inthe Basic OPC/Groups Items area where the tags are located, go to the Target Name column, left-click on each tag to get the dropdown
menu, and set the following:

a. For the boolean tag, select the memory tag from the dropdown which is set previously as the target tag to write the hour meter to.

New Group_Internal

p Enabled ® Disabled
Unable to Start Save project to apply changes

Item Name Source V... Latched ... = Mode TargetNa.. ~ ! DataType Properties
£ _sim_/Ram p/Ramp0 MN/A A 3 Ramp0 Float8

® Sim Booleanbxamp..| | | — _ [WATEN0Rg Boolean |6

4% Read On ly

3 DB Columns
B Tags

Run-Always Expression Items (ignore trigger) (0)

Item Name Source Val.. | Latched Va.. Target Name Data Type Properties

b. For the memory Tag, select Read-only from the dropdown.

New Group_Internal

p Enabled ® Disabled
Unable to Start Save project to apply changes

Basic OPC/Group Items (2)

Item Name Source V... Latched ... Mode TargetNa.. ~ ' DataType Properties

Ramp0
#% Read Only Boolean @
3 DE Columns
% Tags
Sim/Boolean £

Run-Always Expression Items (ignore trigger) (0)

Item Name Source Val.. | LatchedVa.. Target Name Data Type Properties

7. Click Enabled at the top of the page, and do a File > Save to start the group.
8. Make the boolean Tag true to the start the Hour meter.

Event Meter

Another common scenario is to count the number of times an event occurred. For example, where there is boolean Tag and you want to count the
number of cycles the boolean Tag has experienced.

Count in Response to a Tag being True

1. From OPC Browser or Tag Browser, drag a boolean Tag into the Basic OPC/Groups Items area of a Standard Transaction Group.

2. From OPC Browser or Tag Browser, drag a memory Tag or OPC Tag (must be a numeric data type) into the Basic OPC/Groups Items portio
n of the Standard Transaction Group.

Eveni.:—MgterQ p Enabled ® Disabled
Execution Disabled

Basic OPC/Group Items (2)
“1 Properties

Itemn Name Source.. Latched.. M.. Target.. Data Type
" _Sim_New_Programmable_/Boolea... MN/A N/A 4 Booleant Boolean
5 _sim_New_Programmable_/Events /A N/A 3 Events Int4

Run-Always Expression Items (ignore trigger) (0)

Itemn Name Source Value | Latched Va.. | Target Name Data Type Properties
Triggered Expression Items (0) ‘ahd
Itemn Name Source Value | Latched Va.. | Target Name Data Type Properties

3. Right-click on the boolean Tag in the Transaction Group and select Edit to edit it.
4. In the Edit group tag window, set the following:

Value Mode: Event meter

Target Type: Other Tag
Target Name: _Sim_New_Programmable_/Events (or name of the Tag you are using)

5. Click OK.

General
Name
_Sim_New_Programmable_/Boolean1

Tag Path Data Type

% | Boolean v

Value Mode
Property
Value v

Mode
Direct value

OnZero

Reset on condition:

Write target
Mode

Use group's mode

Target Type Target Name

I Other tag - I I _Sim_New_Programmable_/Events - I

6. In the Basic OPC/Groups Items area where the Tags are located, go to the Target Name column. Left-click on each Tag to get the
dropdown menu, and set the following:

a. For the boolean Tag, select the memory Tag from the dropdown which is set previously as the target Tag to write the hour meter to.

b. For the memory Tag, select Read-only from the dropdown.

Event-Meter-2

Execution Disabled Save project to apply changes

Basic OPC/Group Items (2)

Item Name Source.. Latched .. M.
5 _Sim_New_Programmable_/Boolea... A /A " _Sim_N...

% Sim_New Programmable /Events | |] Everts v

DB Columns

P Enabled ® Disabled

Data Type
Boolean

Properties

Item Name Source Value = Latched Va.. | Target Name ~— [DataType

BT
Run-Ahways Expression Items (ignore trigger) (0) SR _
_Sim_MNew_Pr

Properties

Triggered Expression Items (0)

Item Name Source Value | Latched Va.. | Target Name Data Type

Properties

7. Click Enabled at the top of the page, and do a File > Save All to start the group.

8. Make the boolean Tag true to start the Event meter. You'll see the Event Tag update in the Tag Browser.

Reset an Hour or Event Meter Based on a Condition

You can set the hour or event meter based on a condition.

1. In the Basic OPC/Group ltems section, right-click and Edit a Tag that is serving as the Hour or
Event meter.
The Edit group tag window is displayed.

2. Inthe Value Mode area, select the Reset on condition check box.

3. Click the Tag icon to display the Choose Tag window, and select a Group Tag from the popup

window.
4. Click OK.

& Edit group tag — o %
General
Name
_Sim_New_Programmable_/Events
Tag Path Data Type

W | Ine4 -

Value Mode | &g Choose Tag % X
property e e
Value v ® _sim_New_Programmable_/Events

Mode % _Sim_New_Programmable_/Boolean1
Directvalue
Hour meter Event meter

OnZero

Write target
Mode

Target Type Target Nam)

None, read-only item =

“ cancel

oK Apply Ccancel

5. Next to the Tag icon, choose the operator sign (for example >), and enter a number. In the
example we entered 9.

INDUCTIVE
UNIVERSIT

Resetting Hour and
Event Meters

Watch the Video

https://inductiveuniversity.com/video/resetting-hour-and-event-meters/8.1

g Edit group ta - o X
group tag

General
Name

_Sim_New_Programmable_/Events

Tag Path Data Type

% || Intd -

Value Mode
Property
Value -
Mode
Direct value
Hnurme[ir O Eventmeter

onzero v

|Dkese(onmr\dmon yrammable fEvents || % || > v |9

Write target
Mode

Target Type Target Name

None, read-only item - -

Apply || cancel

6. Click OK. The target Tag will now reset in response to the condition (after nine occurrences in
our example).

Next...

© Trigger Options

Transaction Group Examples

Transaction Groups
There are four basic types of Transaction Groups that can be used in Ignition: On th|S page

® Standard: The heart of bi-directional data storage and management
® Historical: Simple historical trending
L]
L]

Block: Efficient large scale data storage ® Transaction Groups
Stored Procedure: Interact with existing protected data systems ® Standard Group
® Historical Group
This Section has examples for each type of group and shows the different ways that you can use them. ® Block Group
For a more complete understanding of how the parts of each group works, see Understanding ® Configuring Transaction Group
Transaction Groups. for OPC to OPC Interaction

Standard Group

The Standard Group is the most flexible group. It is commonly used as a bi-directional sync between your PLCs and databases. In addition to this, it
can also be used to push data in either direction. This means the Standard Group can be used to store historical data, add to/update existing tables,
and create recipe management tools.

¢ 4 Action = Trigger £ Options

Bi Directional >

_ _ S p Enabled | ® Disabled Execution Scheduling:
Execution Disabled .

changes Timer Schedule
1 [seconss

Item Name Mode Target Na... DataT.. Proper.. Update mode:
B accumul... Use group'... accumulate.. Float8 ~ e ;
& ambient... Use group'... ambientHum Floatd ‘ e
B ambient... Use group'... ambientTe... Floats Data source:
B dischar... Use group'... dischargePr.. Float8
% dischar... Use group'... dischargeT... Float <Default> -
& receiver... Use group'... receiverLevel Float8
% valveDis... Use group'... valveDischa.. Float8 v Table name:

Run-Ahways Expression Items (ignore trigger) (0)

group_table -
Item Name Source.. Latche.. Target Name Data Type Properties !
Automatically create table
Use custom index column:

Store timestamp tor t_stamp

Store quality code to:

Delete records older than:

Triggered Expression Items (0)

Item Name Source.. Latche.. Target Name Data Type Properties

iNsert new row

update/select

Historical Group

The Historical Group is the most straightforward and simplest to use. It will take OPC data and store it as history in a database.

¢ 4 Action

P Trigger 4* Options
New Historical Group >
. . e T p» Enabled ® Disabled Execution Scheduling:
Execution Disabled)
changes Timer Schedule
1 [ty

Item Name Source .. Latche.. Target Name Data Type Properties Data source:
%, RealisticO NIA RealisticO Floats - =
% Realistic (A Realistic Floats <Uefau
= - i
® Real!st!c2 Real!st!c2 Float8 Table name:
% Realistic3 Realistic3 Floats -

group_table

Run-Always Expression Items (ignore trigger) (0)

Item Name

Source.. | Latche.. | Target Name Data Type Properties Automatically create table

Use custom index column:

Store timestamp to: t_stamp

Store quality code to:

Triggered Expression Items (0)

Delete records older than:

Item Name Source.. Latche.. Target Name Data Type Properties

Block Group

The Block Group is used to efficiently store large amounts of data in blocks or chunks of similar data in the database. This is very useful if you have
many devices with the same Tags in them.

< 4 Action

£} Options
New Block Group >

P Trigger

] . Save project to apply p Enabled | & Disabled Execution Scheduling:
Execution Disabled)
changes Timer Schedule
Item View Block View 1 seconds) st

Itemn Name So.. | Lat.. Mode Targe.. Data.. Pr.. Size OPC to DB
& Item_Ramp0 Use g... Ramp0 Float8 10 }
% Item_RealisticO Use g... Realis... Floata 10 Data source:
- - . ;
+ % Itern_Sine0 Use g... Sined String 10 <Default> -
Table name:
Itemn Name Source.. | Latche.. Target Mame Data Type Properties group_table v

Automatically create table
Automatically create rows

Use custom index column:

Run-Always Expression Items (ignore trigger) (00

Store timestamp to: t_stamp

Itemn Name Source.. | Latche.. Target Mame Data Type Properties

Store quality code to:
Store row id to:

Store block id to:

Triggered Expression Items (0) Delete records older than:

Item Name Source.. Latche.. Target Name Data Type Properties -

insert new block

Configuring Transaction Group for OPC to OPC Interaction

Transaction Groups are generally used to channel OPC data to a database or vice-versa. It is also possible to configure your Standard Transaction
Group to be able to get information from one OPC data point to another. This is useful in the event that you have tags coming from one PLC and you
need the tag information to be sent to another PLC on your plant floor.

1. Create a Standard Transaction Group and from your Tag browser.

2. Drag two Tags into your Transaction Group's Basic OPC/Group ltems section. For this example, the Tags will be called tagl and tag2 and
they will be coming from two different PLCs.

3. Set the mode on tagl to Bi-directional OPC Wins and set its Target Name to be tag2.

4. Set the mode on tag2 to be Bi-directional OPC Wins and set its Target Name to Read-only. The mode on tag2 is not as important here as
it is a read-only item, but we set it to Bi-directional OPC Wins anyway.

ronser)

Project By Y <% Acton | b Trigger % Options

Q Project Properties .83 RODc to opc P Enabled © Disabled n pau ke Execution Scheduling
unning

&) Alarm Notification Pipelines

Timer) Schedule
& Sequential Function Charts

Basic opC/Group Items (2)

1 second(s) v
» B scripuing SourceVa.. | LatchedV.. Mode Target Name DataType Properties
$-® rerspective 12 12 Bidiectonal OPCvins tag2 i Updte mode:
£33 TrarsscionGros S 7 T T N N | | ovc 108 o
|| T8 opctoonc ©

» © vision Data source:
1) Named Queries o8 vz
B Reports s Frprate T R E AN
Table name
Source Value | Latched Value | TargetName Data Type Properties
group_table v g
Tag Browser a_x

Automatically create table

QC|¥-a0|la 2@ Use custom index column:

Tag Vi DataType Taits | Comer—m— storetmesampt: [Laanmp 5
“mTs
e Nome Source Value | Latched Value | Target Name DataType Properies e
& DataTypes g Typ pe Store quality code to:
) @ tagl 12 Integer Delete records older than:
I T T
> @ Sytem

» 8 AllProviders

This will make sure that every 1 second, the value from tagl will be written to tag2.

Related Topics ...

® Understanding Transaction Groups

In This Section ...

https://docs.inductiveautomation.com/display/DOC81/Types+of+Groups#TypesofGroups-StandardGroup
https://legacy-docs.inductiveautomation.com/display/DOC81/Understanding+Transaction+Groups#UnderstandingTransactionGroups-CreatingaTransactionGroup

Block Group

The Block group is a type of Transaction Group that stores data vertically. Whereas, a Standard group

stores the information horizontally in a single row. Block groups share many of the same features as the

Standard group. They can be bidirectional, insert into a database, or simply update the database. All the O th

rows in a Block group are associated with a single database transaction therefore the process of writing n IS page res
to the database is very efficient.

® Create a Block Group
®* DB to OPC Mode with
Custom Where Clause
® Next...

@ INDUCTIVE
2 UNIVERSIT

Block Group Type

Watch the Video

Create a Block Group

1. In the Project Browser, right-click on Transaction Groups and select New Transaction Group > New Block Group.

Project Browser a - X

Q A

b [#) Alarm Notification Pipelines
¥ X Sequential Function Charts

¥ [& scripting

[Z] Bi Directiona, mm New Folder

g ELZE&;E?: [E] MNew Transaction Group > [E] MewStandard Group

g Et‘;:tp—memr Al Rename F2 [MewBlock Group

=] Historical-ex =] New Historical Group

(=) New Group New Stored Procedure Group

=] New Historict

2. Give the group a name and click Create Group.
3. Drag a Tag folder into the Block Items section of the new Transaction Group.

https://www.inductiveuniversity.com/videos/block-group-type/8.1

Project Browser a - X
Q A
b [®) Alarm Notification Pipelines
b X sequential Function Charts
+ & scripting
b @& Perspective
-

B2 Transaction Groups
[Z] Bi Directional
[52] Block-Group-ex
[E] Event-Meter-2
=1 _Cunnt hlntar
Tag Browser
Qo | W-8B O a
@ _Sim_New_Programmable_ ~
i _Controls_
W Overview
im Ramp
W Random
W ReadOnly
i Realistic
m Refrigeration

> Enabled ® Disabled
Execution Disabled save project to apply changes
W Block view
Item Name So... Latc.. Mode Target.. DataT.. Pro.. Size
O Item Sined Use gr... Sine0 String 10

New Block Group

Pasic OPC/Group Items (0)

Item Name Source ... Latched.. = Target Name Data Type Properties

Run-Always Expression Items (ignore trigger) (0)

Item Name Source ... Latched.. Target Name Data Type Properties

Triggered Expression Items (0)

Item View Block View

Block Items (1)

Item Name Source ... Latched.. = Target Name Data Type Properties
b i Writeable
. Select the item in the Block group, right-click and select Edit.
New Block Grou)
P b Enabled | © Disabled

Execution Disabled Save project to apply changes

Item Name So... Latc.. | Mode Target.. DataT.. Pro.. Size
" ltemsined | | | Usegr. | Sne0 | sting | [10
4 Newltem 3
Edit
¥ I
Item Name 5t § Copy Target Name Data Type Properties
T Delete
Split Itemn
— =H
Item Name St Target Name Data Type Properties

5. Change the Name, enter the Target Name to anything appropriate. Click OK.

r':ﬂf Edit group tag

£+ Block Item

2a Items
B MNumeric

& Alarming

Block Item

- General

Name

Block Group Sine Floats

~Value Mode

Data Type

Property

| Value -

Mode
) Directvalue

Hour meter Event meter

- Write target

Target Type Target Name

Database field w || Sine0

OK Apply

Cancel

6. Configure the remainder of the group settings under the Action tab.

4 Actionl B Trigger £F Options

Execution Scheduling:

Timer Schedule
1 second(s) -
Update mode:
OPCto DB
Data source:
=Default=
Table name:
group_table

Automatically create table

Automatically create rows

Use custom index column;
Store timestamp to:

Store quality code to:
Store row id to:

Store block id to:

Delete records older than:

insert new block
insert changed rows

update/select

Where:

Q

ur
o

7. Select the group, and click Enabled.
8. Save the project to start the group.

DB to OPC Mode with Custom Where Clause

Like the Standard Group, block groups can be configured to retrieve records from the database, writing back to an OPC address or Tag. When using a
custom WHERE clause, you can write the WHERE statement in such a way that multiple rows are returned, which would then update multiple items,
which in turn write back to to OPC addresses. We could then add a dynamic OPC value as a "lookup" that would determine which set of rows to
return.

This is a great way to retrieve multiple datapoints that are stored in a tall format on a database table, ideally when you're looking to retrieve multiple
sequential rows. For example a table with the following content, a single block item targeting the "itemValue" column, and a "lookup” Tag or OPC item
that the group will use in the WHERE clause.

Table structure

table_ndx itemValue
1 1
2 20
3 300
4 4,000
5 50,000
6 600,000
7 7,000,000

Our block item

Block

Execution Disabled

p Enabled & Disabled

Item View Block View

Block Items (1)

Item Name Source.. | Latche.. M.. | Target Name

- % itemValue 3 itemValue
[default]Block Group/itemvaluel
[default]Block Group/itemValueZ
[default]Block Group/itemValue3

Our Tags, including "lookup”

Tag Browser o - X
Q | ¥-8 06 90C B
Tag Value Data Type Traits
~ = Tags
* B Data Types

¢ B _Generic_Simulator_
I Alarms

~ '@ Block Group

» % itemValuel Memory 0 Integer
» % itemValue2 Memory 0 Integer
» W itemValue3 Memory 0 Integer
* % lookup Memory 0 Integer

. Set the "Update mode" for the group to "DB to OPC."

. Set the Table action (under the "Action” tab) to "update/select.”

. Select the "custom" radio button.

. Under the "Where:" text area, click the Tag icon, and select the "lookup" Tag, which adds a reference to the Tag like this: {[default]Block
Group/lookup}

. Write the rest of the our condition. In this case, we'll say we want results from our table starting a value greater than our lookup value. Using
the table specified above, we could write the following condition:

HWN P

(4]

nul | _tabl e_test_ndx > {[defaul t]Bl ock G oup/| ookup}

6. Enable the group, and save the project.

When the group is running, with an initial lookup value of 0, the group automatically grab table_ndx of 1, and write a value of 1 (from the first row) to
itemValuel, a value of 20 (from the second row) to itemValue2, and so on.

~ @ Block Group

r W itemValuel Memory 1 Integer
» W itemValue2 Memory 20 Integer
v B itemValue3 Memory 300 Integer
» W lookup Memory | 0 | Integer |
T e

If we set the value on lookup to 3, that means the first row in the result set will be row 4, setting itemValuel to 4000, itemValue2 to 50,000, and so on.

~ @ Block Group

r B itemValuel Memory | 4,000 Integer
» W itemValue2 Memory | 50,000 Integer
» W jtemValue3 Memory | 600,000 Integer

» % lookup Memoy | 3 | integer

If you set the value of lookup to 6, then that will set the value on itemValuel to row 7's value (7,000,000), but you'll notice the other Tags are retaining
a value, which is notable since those items don't have a corresponding value to retrieve.

Values on our Tags

~ @ Block Group

v W itemvValue1 Memory | 7,000,000 Integer
v B itemValue2 Memory 50,000 Integer
v W itemValue3 Memory | 600,000 Integer

» WlookupMemory § 6 | Integer | |

Items in the group

Itern View Block View

Block Items (1)

Item Name Source Val.. | LatchedV.. | Mo.. Target Name Da...

= % itemvalue 3 itemvalue Int4 3
[default]Block Group/itemValuel 7000000 7000000
[default]Block Group/itemValue2 50000 50000
[default]Block Group/itemValue3 600000 600000

This is expected. By default, when a Block Group is configured like this, and some items can't receive updated values as a result of the dynamic
WHERE clause not returning enough rows, the items will retain their previous latched value: that is to say, the group will not automatically clear or
reset the values on the other items. Refer to Set NULL DB Values to Default.

Next...

® Recipe Group

https://legacy-docs.inductiveautomation.com/display/DOC81/Understanding+Transaction+Groups#UnderstandingTransactionGroups-AdvancedSettings

Recipe Group

You can use Transaction Groups to create a recipe management system which will pull recipe
information from the database and push it to the PLC when requested. With this system, the Transaction

Group is what queries the database rather than writing scripts to handle it all.

INDUCTIVE

Before the Transaction Group UNIVERSI1

Before we make the Transaction Group, we first need to make sure we have a table set up in our
database that holds recipes. If you already have this, then you can skip to the next step on making the

Transaction Group. Recipe GfOUp
We will make a table in our database that will hold our recipes. Our recipes will be simple, containing a
name, unique id, and two setpoints, so we will need a column for each of those values. .
Watch the Video
1. Verify the Designer's Comm Mode is set to Read/Write, and open up the Database Query
Browser.
LI Help

= Console

Bl Image Management

w‘l

Script Console

Database Query Browser

Translation Manager

D ame

Symbol Factory

Launch Perspective... b

2. Execute the query below in the Database Query Browser to create the table we'll use in this
example:

CREATE TABLE reci pes(
id INT PRI MARY KEY,
reci pe_nane VARCHAR(50),
set poi nt 1 FLQAT,
set poi nt 2 FLQAT)

Note: This query was designed for an MSSQL database. If you are connected to a different
database, the syntax on the CREATE statement may differ. Check your database's
documentation for more details.

3. Next we need to put some data into the table by using an i nsert statement. Execute the below
query to insert a new record into our recipes table:

I NSERT | NTO reci pes (id, recipe_nanme, setpointl, setpoint?2)
VALUES (1, 'Recipe 1', 10, 0)

You can rerun this query as many times as you want, incrementing the id to give you a new
unique id, changing the name, and providing different setpoints. Your table might look
something like the one below.

id recipe_name setpointl setpoint2

1 The First Recipe 34.7 54.1

2 The Wrong Recipe | 12.8 42.3

https://legacy-docs.inductiveautomation.com/display/DOC81/General+Designer+Interface#GeneralDesignerInterface-ToSetorChangeCommunicationMode
https://legacy-docs.inductiveautomation.com/display/DOC81/Database+Query+Browser
https://legacy-docs.inductiveautomation.com/display/DOC81/Database+Query+Browser
https://inductiveuniversity.com/video/recipe-group/8.1

3 The Best Recipe 65.7 95.1

4 The Other Recipe | 49.8 112.2

Create the Transaction Group

Now that we have a recipe table in the database that is populated with some records, we can create the Transaction Group that will load a recipe from
the table into our Tags. We will be using the recipes table that we put together previously, but if you already had a table, you can use that here instead.

1. Create a new Standard Transaction Group.
2. We have four columns in our database table, so we will need four Tags to use in the Transaction Group: an integer, string, and two floats for
the id, name, and setpoints respectively. Add the four Tags to the Transaction Group.

Tag Browser o - X
Qo W-8 5 2 B\ Recipe Group
. ol P Enabled | ® Disabled
Tag DatalTynse Execution Disabled >2V8 Project toapply
- G Tags changes
L
» i _Generic_Pn -
» @ _Sim_New P Item Name 1 Sou.. | La.. Mode Target ... Data.. | Prop..
» i Sim_Dairy 7 55 FloatTag 1 Use g... Float_T... Float4
» i Tanks_OPC L % Float Tag 2 Use g... Float_T... Floatd
i Test_Provide T Integer Tag Use g... Integer... Int4
» % BooleanTag [String Tag Useg.. String T.. Int4
+ % FloatTag1
+ % FloatTag2 . . .
» % Integer Tag Integer Run-Always Expression Items (ignore trigger) (0)
+ % String Tag Integer Item Name Sour.. | Latch.. Target Name DataType | Properti...
+ % TagA Memo Integer
» % TagA1 Men Integer

3. Set the Table Name to 'recipes’, the table that we created earlier.
4. We then need to ensure that our Tags will be receiving the proper values from the database.
a. Setthe Target Names for each of the Tags: the string to 'recipe_name', the floats to 'setpointl’ and 'setpoint2'
b. Setinteger to 'Read Only'. We don't need to set the integer to the id column, because we will not pull the the id from the database,
but rather use the id as a trigger and in the where clause.

Basic OPC/Group Items (4)

Item Name

% Integer Tag

string Tag
Float Tag 1

.
=
% FloatTag 2

Source ...

Latche... Mode

\
N
N
N/A

Target Name
£6 Read-only

3 recipe_name
3 setpointl

3 setpoint2

Data Type

Intd

string
Floatd
Float4

Properties

5. Now we can finish setting up the rest of the Transaction Group. Set the Update mode to DB to OPC.

6. Setthe Table Action to Update/Select using Key/Value Pairs with the Column set to id, and the Value set to the Integer Tag you are

using.

4 Action P Trigger £ Options

Execution Scheduling:

Timer Schedule

1 second(s) -
Update mode:
DB to OPC -
Data source:
=Default= L)
Table name:
recipes an:- |

Automatically create table
Use custom index column:
Store timestamp to: t_stamp -

Store quality code to:

Delete records older than:

INSert new row

update/select

first last custom keyivalue pairs
Column Value
id %5 Integer Tag

. Set the Update Rate to 1 second. We want to query the values out of the database as soon as we ask for them, so we need the group to
update quickly. However, we don't want the group to actually query the database every second, so we will need to set up the trigger.

. Go to the Trigger tab, and select Execute this group on a trigger. Trigger on the item the int Tag that is being used for the id. Specify the
Trigger condition as Active on value change.

4 Action e Trigger £ Options

Only evaluate when values have changed.

3 Execute this group on a trigger

Trigger on item:
Integer Tag -
Only execute once while trigger is active
Reset trigger after execution
Frevent trigger caused by group start
Trigger conditions:
is =0 {or true)
is =0 (or false)
is active: |= w ||0
non-active: | ==« || 1

Active on value change

9. Finally, Enable the Transaction Group and save the project to get it started. The Transaction Group will now pull the recipe out of the
database where the id matches the value of the int Tag. The trigger also prevents it from running all the time, instead running only when the
int Tag value changes.

10. To test it out, simply change the value of id Tag to an id of one of the recipes in the recipes table.

Update or Insert Group

You can update a row or insert a new row into the database when a key pair combination does not exist.
This eliminates the need to have a database that has every possible option considered in its original
design. Because of the insert row when not present setting, the group will insert a new record

whenever the designated ID doesn't exist. Afterwards, it will update the rows in the table that are
associated with the key/value references as shown in this example. @ IN DUC T I VI

UNIVERSIT

Update or Insert
Group

Watch the Video

Update or Insert a New Row into the Database

1. In the Project Browser, right-click on Transaction Groups and select New Standard Group.

Project Browser o - X

Q, A

441 Alarm MNotification Pipelines
o% Sequential Function Charts
» [scripting
» @ Perspective
L2 1ra)
b @ visig I New Folder
E Nam 5 NewTransacticn Group >

Repc
» & web Al Rename

New Standard Group
New Block Group
MNew Historical Group

MNew Stored Procedure Group

‘B rE o

L-g Import g
@ Export 3

2. Give the group a name and click Create Group.
3. Drag a group of Tags into the groups Basic OPC/Group Items section.

https://inductiveuniversity.com/video/update-or-insert-group/8.1

Project Browser a_ X

- Update Groy, .
© 8 P roup b Enabled | @ Disabled
=] Realtime ~ Execution Disabled save project to apply changes
[&] Stored-Procedure-ex -
EE
I. [Z] Update Group Item Name Sourc... Mode TargetNa.. DataT.. Proper..
[E] Update Group 2 B [_Sim_New_Programmable_/Sine/Sine0 N/A Usegro.. Sine0 Floatd
b @ Vision - 5 _Sim_Mew_Programmable_/Sine/Sine1 N/A Use gro... Sine1 Float4
=== — 5 _Sim_New_Programmable_/Sine/Sine2 N/A / Use gro... Sine2 Floatd
Tag Browser g _ X T _Sim_New_Programmable_/Sine/Sine3 N/A N/A Use gro... Sine3 Floats
ac|v-a0laalm New_Programmable /siefsineé ||| Usegro.. | Sinet | floats ||
L T o= — -

& _Sim_New_Programmable_ @
Controls
Overview
Ramp
Random
ReadCnly
Realistic

i Refrigeration
T Sine

» % Sined OPC
» % Sinel OPC
r % Sine2 OPC
3

»

Kun-Always Expression Items (ignore trigger) (0)

Item Name Source Val.. | Latched V.. | Target Name Data Type Properties

IRERRER

Triggered Expression Items (0)

Item Name Source Val.. | Latched V.. | Target Name Data Type Properties

% Sine3 OPC =
M Status & Events

¥ Sined OPC

4, Change one of the Tags to be read-only by selecting Read Only from the Tag's Target Name column.

Upd“_“’ 'G_m”P b Enabled | ® Disabled
Execution Disabled Save project to apply changes

Basic OPC/Group Items (5)

Item Name Sourc.. | Latch.. Mode Target Na.. DataTy.. Propert..
% _Sim_New_Programmable_/Sine/Sine0 Use gro...

5 _Sim_New_Programmable_/Sine/Sine1 Use gro...
5 _Sim_New_Programmable_/Sine/Sine2 /A /A Use gro. = I Float8
© _Sim_New_Programmable_/Sine/Sine3 N/A N/A Use gro.. | = DBColumns goorg
3 _Sim_New_Programmable_/Sine/Sine4 /A /A Use gro.. W Tags Floats
_Sim_New P
Run-Always Expression Items (ignore trigger) (0) _Sim_NeW_P_
Item Name Source Value = Latched Va.. Target Name _Sim_New_P Properties

| _Sim_New P

Triggered Expression Items (0)

Item Name Source Value | Latched Va.. = Target Name Data Type Properties

5. In the group's Action tab, in the Table action area, select the update/select radio button and the key/value pairs radio button.

4 Al:til}nl B Trigger £F Options

Execution Scheduling:

Timer Schedule

1 second(s) -
Update mode:
OPCto DB -
Data source:
<Default= v |
Table name:
group_tahle - @.

Automatically create table

Use custom index column: N
Store timestamp to: t_stamp -
Store gquality code to: v

Delete records older than:

INSert new row

update/select

first last custom keyivalue pairs
Column Value
null
g @ Insert row when not present

6. Click the Add + icon.
a. For the Column select the database table ID column.
b. For the Value column, select the read-only Tag.
c. Select Insert row when not present check box at the bottom of the Table action area.

7. Select the group, and click Enabled.
8. Save the project to start the group.

Next...

Trigger Options

It is often useful to execute a group only when a certain condition is met or as a bit turns on or off.
Triggers allow Transaction Groups to run based on values changing in various ways.

On thispage...
Execute on Value Change

A group can execute when the group's Tags have changed, or when a particular Tag within the group

has changed. In either case, the Transaction Group will execute every time the value or values change. Execute on Value Change

Execute while Condition Is True

1. Inthe Trigger tab, select at the very top the Only evaluate when values have changed Execute on a Rising Edge

checkbox. Reset Trigger
Now the group will execute if any of the Tags change. Handshakes
2. To execute when only one Tag changes, from the Tags to watch for change dropdown, select Next...

Custom, click on Select Tags, select the Tag from the pop-up window, and click OK. You can
select more than one Tag at a time in order to monitor more than one Tag for value changes.

3. From the Trigger on item dropdown, select the appropriate Tag to execute the Tag on a trigger.
4. Select the Active on value change radio button.
5. Save the Project to start the Transaction Group.
Trigger — On Value
Change
Watch the Video
¢ 4 Action P Trigger %F Options
VD P Enabled | © Disabled 1l Pause » -
Running Save project to apply changes Only evaluate when values have changed.

Basic OPC/Group Items (2) Tags to watch for change:

Item Name Source.. Latche.. Target Name Data Type Properties Custom... - Select tags

® HighTemp | | | HighTemp _ [Intd [|

o
Speed 102 102 Speed)
P P 7] Choose Tags >

Execute this group on a trigger

Trigger on item:

Select tags to meniter for change. Hold
Rur-Always Expression [tems (ignore trigger) (0) CTRL to select multiple tags.

Item Name Source .. | Latche.. TargetN T— Only execute once while trigger is active

Reset trigger after execution
Speed 9

High Temp -

Prevent trigger caused by group start

Trigger conditions:

- . 15 !=0(or true)
Triggered Expression Items (0)

is =0 (or fal
Item Name Source.. Latche.. TargetN is =0 {or false)

is active: | > w0

non-active: | <=« |1

I Active onvalue change I

Execute while Condition Is True

Groups can execute while a condition is true resulting in the Transaction Group continuing to execute for the duration of this condition.

1. Create a Transaction Group, and drag a numeric or boolean Tag into the Basic OPC/Group Items section.

https://inductiveuniversity.com/video/trigger-on-value-change/8.1

. From the Target Name column dropdown, select Read Only if you do not want the trigger value to be written to the database.
. Go to the Trigger tab, and select the Execute this group on a trigger checkbox.
. In the Trigger conditions area, set the trigger conditions which will determine under what condition the group executes.

A WN

. Save the Project to start the Transaction Group.

<

Test GroupA

Running

P Enabled ’

® Disabled 1l Pause

Basic OPC/Group Items (2)

Item Name Source Value Latched Value | TargetName '

High_Tem

DataT.. Proper..

~ EE I

~ Boolean

% Booleant false false

= DB Columns
group_table_nd!

Run-Always Expression Items (ignore trigger) (0) Sinet _
Item Name Source .. Latche.. Target| Sine2 pe Properties
Sine3
Sined
Sines o

Triggered Expression [tems (0) P

Item Name Source.. Latche.. | Target Name Data Type Properties

4 Action P Trigger &£F Options

Only evaluate when values have changed.

4

I Execute this group on a mggeri

Trigger on item:
High Temp -
Only execute once while trigger is active

Reset trigger after execution

Prevent trigger caused by group start

Trigger conditions:

is 1= 0 {or trug)
is =0 (or false)
is active: > w | 100
nor-active: | <= w99

Active onvalue change

Execute on a Rising Edge

Groups can execute when the trigger becomes True. This is known as a rising edge trigger and it will only execute once and will not execute again

until the trigger repeats the same cycle.

1. Create a standard Transaction Group with any number of Tags as long as one of them is a boolean Tag that will serve at the trigger for the
group.
2. Setthe Write Target for the boolean Tag to Read-only by selecting read-only from its drop down in the Target Name column. You do not
need to do this if you want the trigger value to be written to the database.
3. Go to the Trigger tab and select the check box to Execute this group on a trigger. Select the boolean Tag from the drop down menu and
select to have the group only execute once while the trigger is active.
4. Save the Project to start the Transaction Group.
¢ 4 Action P Trigger £ Options
E@pE P Enabled ® Disabled 1l Pause ’ -
Running Only evaluate when values have changed.
Basic OPC/Group Items (4) Tags to watch for change:
Item Name SourceV.. Latched Val.. | Mode Target Na.. Custom... - Select tags
% Sinessine0 9.635 47427 Use group's mode Sinel
T Sine/Sinel 270516 312,387 Use group's mode Sinel Execute this group on a trigger
% Sine/Sine2 -90.875 -12.054 Use group's mode _ Sine2
® Booeantagz || | Usegroupsmode Reac-only | .. NI SR
| BooleanTag2 -
Run-Always Expression Items (ignore trigger) (0) Only execute once while trigger is active
Item Name Source .. Latche.. Target Name Data Type Properties Reset trigger after execution
Prevent trigger caused by group start
Trigger conditions:
is 1= 0 (or true)
is =0 (or false)
Triggered Expression Items (0)
N is active: > || 0
Item Name Source.. Latche.. Target Name Data Type Properties
non-active: | <= w= |1
Active onvalue change N
>
Reset Trigger

Resetting a trigger after execution of a triggered Transaction Group will result in the Transaction Group writing once to the targets followed by writing

back to the trigger to reset it.

To reset the trigger after execution:

1. Create a Transaction Group with a boolean Tag. The Target Name column for the trigger Tag can be read-only, though this is not mandatory.
2. Select the Trigger tab and select the Execute this group on atrigger check box.

3. Select the Reset trigger after execution check box.

4. Save the Project to start the Transaction Group.

. . 4 Action P Trigger & Options
testHistorical P Enabled | © Disabled I Pause “
Running Only evaluate when values have changed.
Basic OPC/Group Items (3)

Item Name Source V... Latched .. = Target Name Data Type Properties -
&
[S T i
| testBoolean] Boolean | |
R testBoolean | - [-] testBoolean Boolean Trigger on tem:
testBoolean A
n Itams (ignore trigger) (0} . - I Only execute once while trigger is active
Item Name Source V... Latched ... = Target Name Data Type Properties
Prevent trigger caused by group start
’ Trigger conditions:
© is'=0(ortrue)
is =0 (or false)
Triggered Expression Items (0) is active: |> v |0
Item Name Source V... Latched ... Target Name Data Type Properties non-active: <= v || 2
Active on value change
Write handshake on success
Set: E
Handshakes

When a group executes, it either completes successfully or an error prevents its execution. The outcome of an execution can be handled in the
handshake section of the trigger section of the Transaction Group. When a group executes successfully or fails to execute, the handshake can write a
value back to a Tag to alert the user that the group executed successfully or unsuccessfully.

To set handshake values for alerting the user:

. Create a Transaction Group with a boolean Tag and a numeric Tag.

. Set the boolean and the numeric Tag to read only.

. Go to the Trigger tab and choose to Execute this group on a trigger.

. Select the boolean Tag as the trigger In the Trigger on item drop down, and select the appropriate execution conditions.

. In the bottom section, select Write handshake on success, select the numeric Tag to write to, and choose a number that signifies success.

. Likewise, in the bottom section, select Write handshake on failure, select the numeric Tag to write to, and choose a number that signifies
failure.

. Save the Project to start the Transaction Group.

oOahhWNE

~

<

Group Z

Running

>

Basic OPC/Group Items (2)
Item Name Latched ...

true

Source...

% BooleanTag
¥ Writeablelntegers

rue

4 Action W Trigger 4 Options

Enabled © Disabled Il Pause ’ |

Execute this group on a trigger I

Target Name

DataT..
Boolean

Prope...
Read-only

| [Readonly |t [

Run-Always Expression Items (ignore trigger) (0)

Item Name

Source.. | Latche..

Target Name

Data Type Properties

Trigger onitem:

BooleanTag -

Only execute once while trigger is active

Reset trigger after execution

Prevent trigger caused by group start
Trigger conditions:

is 1= 0 {or true)

is = 0 (or false)

Is active: |> w0
non-active:

<= w |1

Active onvalue change

Triggered Expression Items (0)

Item Name Source.. | Latche..

Target Name

Data Type Properties

Write handshake on success
Set: | WriteableInteger5 v
Tovalue: | 1

Write handshake on failure
Set: | WriteableInteger5 v

Tovalue: | 2

Next...

® Understanding Transaction Groups
® Transaction Group Examples

Transaction Group Update Modes

Transaction Groups are generally used to store OPC data into a database. Transaction Group Update

Modes give users additional flexibility as to whether data should flow from an OPC server to a database

or from a database to an OPC server. Additionally, it is possible to configure data to be synchronized O h

between a database and an OPC server via Bi-directional Update Modes. n t IS page

All update modes do not work for all Transaction Group types. For example, Historical Transaction
Groups can only insert data to a database table and not update it. In addition, Historical Transaction
Groups also cannot write back to OPC items so Bi-directional Update Mode will not be an option for
users using the Historical Transaction Group type.

®* OPCtoDB

®* DBto OPC

® Bi-directional OPC Wins
L]

The different Update Modes: Bi-directional DB Wins

® OPC to DB - Only read from the OPC server and write to the database.

®* DB to OPC - Only read from the database and write to the OPC Server.

® Bi-directional OPC wins - Read and Write to both the database and OPC Server. On group
start, write OPC values to the database.

® Bi-directional DB wins - Read and Write to both the database and OPC Server. On group start,
write database values to OPC items.

OPC to DB

The OPC to DB Update Mode allows a Transaction Group to store OPC data to a Database Ignition that it has a connection to as shown in the
following example.

1. Create a Standard Transaction Group and from your Tag Browser, drag a single tag into your Transaction Group's Basic OPC/Group Items
section. For this example, the tag is called 'tag1.'

2. Set the Update Mode on 'tagl' to OPC to DB and set its Target Name to be 'tagl.' The Target Name will correlate to the name of the column
in your database table where 'tagl’ will be stored.

Fle Edt View Project Tools Help

CHORR R woeE - %-a

—— 5 EXTTY
Project b LIERS <74 Action P Trigger % Options

8| opctodb » Enabled | © Disabled Wease pecuionschedsiing
Running
£&) Alarm Notfcation Pipelines ? Timer Schedule
o Sequential Function Charts [Basic OPC/Group Items (1) p s)
seconds) v

» B scripting Item Name Source Value Latched Value Mode Target Name Data Type Properties

) @ perspective Update mode:

E;
~ O Transaction Groups

opCtoDB -

|| "5 octoch O

» © Vision Data source:

B Named Queries o8 e

B Repors

Table name:

group.table -] &

Automatically create table:
[Run-Atways Expression Items Ggnore trigger) (0 ~

Use custom index column:
Item Name Source Value Latched Value | Target Name DataType Properties

Store timestamp to tstamp -

Store quality code to
Tag Bronser a_x%

Qo v-a0 [i:M

Delete records older than:

Tag Value DataT... Traits
- Tags
& Data Types insert new row

> tagt 6 om updatelselect
\ m syseem Triggered Expression ltems (0

> i All Providers Item Name Source Value Latched Value | Target Name Data Type Properties

Where:

K Status | @ Events

Running

Last execution: Wed May 13 09:05:08 PDT 2020 Total executions: 66
Lasttrigger: WedMay 1309:05:08PDT 2020 Failed executions: 0

Next execution: Wed May 13 09:05:09 PDT 2020 OPC/Tag wites: 0
Last duration: 0.0 second(s) 0B writes: 132
‘Avg duration: 0.0 second(s) OPC/Tag write failures: 0

This configuration will allow for tagl's value to be stored into a database table called 'group_table' every 1 second to a column called 'tagl.'

https://legacy-docs.inductiveautomation.com/display/DOC81/Types+of+Groups#TypesofGroups-StandardGroup

We can see this working now through the Database Query Browser.

Database Query Browser [=154
SELECT * FROM group_table order by t_Stamp desc A ’
Execute
< >

Limit SELECT to: | 1000 | rows

4 Resultset 1 < DB v o
group_tabl... tag1 t_stamp “Schema History
24 16 2020-05-13 09:04:26 } B group_table
23 16 2020-05-13 09:04:25
22 16 2020-05-13 09:04:24
21 16 2020-05-13 09:04:23
20 16 2020-05-13 09:04:22
19 16 2020-05-13 09:04:21
18 16 2020-05-13 09:04:20
17 16 2020-05-13 09:04:19
16 16 2020-05-13 09:04:18
15 16 2020-05-13 09:04:17
14 16 2020-05-13 09:04:16
13 16 2020-05-13 09:04:15 L]
24 rows fetched in 0.001s < Auto Refresh

DB to OPC

DB to OPC Update Mode allows you to write data from your Database to an OPC tag. This can be done by configuring the following:

1. Create a Standard Transaction Group and from your Tag Browser, drag a single tag into your Transaction Group's Basic OPC/Group Items
section. For this example, the tag will be called tagl.'

2. Set the mode of the Transaction Group to DB to OPC and set the Mode for tagl to DB to OPC.

3. Set the Transaction Groups Table Action to 'update/select' and check the 'last’ option. What this will do is ensure that we do not have a new
value inserted to the database. What we will have instead is a single row of data in the table group_table where the value of the ‘tagl' column
will control tagl's OPC value.

Testing these settings, we can see that when the value in the Database Query Browser for column 'tagl' is 22, the value for 'tagl' is also 22.
When we change the value on column 'tagl' to 29, we see tagl's value change to 29 as well.

‘Tag Browser 8- X Delete records older than:
Q< -8 0 B -
Tag Value DataT... Traits
~ @ Tags
i System first © last () custom (_ keynvalue pairs
» i@ All Providers Item Name Source Value Latched Value TargetName Data Type Properties e
SELECT * FROM group_table order by t_Stamp desc ~ >
K Staws | & Events Execute
Running &
Last execution: Wed May 13 0:19:42 PDT 2020 Total executions: 199 e — 0 [
Next execution: Wed May 13 09:19:43 PDT 2020 OPC/Tag writes: 19 7 Resulset 1 <[pB vz
Last duration: 0.0 second(s) DB writes: 0 group tabl_|iteg1 stamp e T
Avg duration: 0,00060 second(s) OPC/Tag write failures: 0 3 2| mm
» B group_table
1 row fetched in 0.004s & Auto Refresh 7 Edit
‘Tag Browser a - X Delete records older than:
Q o -8 06 B
Tag Value DataT.. Traits
e
» % tagl OF 29 Int. update/select
o ”"
i System first © last (custom) keyivalue pairs
» @ All Providers Item Name Source Value Latched Value Target Name Data Type Properties "
e
SELECT * FROM group_table order by t_Stamp desc A >
X Status | & Events Execute
Running . o
Last trigger: Wed May 13 09:20:10 PDT 2020 Failed executions: 0
Next execution: Wed May 13 09:20:11 PDT 2020 OPC/Tag writes: 20 7 Resultset1 </o8 v|S
Last duration: 0.0010 second(s) DB writes: 0 group_tabl... | tagt tstamp e
Avg duration: 0.016 second(s) OPC/Tag write failures: 0 5 o
1 row fetched in 0.003s & Auto Refresh #" Edit

Bi-directional OPC Wins

https://legacy-docs.inductiveautomation.com/display/DOC81/Database+Query+Browser
https://legacy-docs.inductiveautomation.com/display/DOC81/Types+of+Groups#TypesofGroups-StandardGroup
https://legacy-docs.inductiveautomation.com/display/DOC81/Database+Query+Browser

Bi-directional OPC wins means that Ignition will Read and Write to both the database and.OPC Server. However, on
initial group start, if the OPC and database values are different, the OPC value will win and the Transaction Group
will write opc values to the database.

1.

2.
3.

Create a Standard Transaction Group and from your Tag Browser, drag a single tag into your Transaction Group's Basic OPC/Group Items
section. For this example, the tag will be called tagl.'

Set the mode of the Transaction Group to 'Bi-directional OPC wins' and set the Mode for tagl to 'Bi-directional OPC wins.'

Set the Transaction Groups Table Action to 'update/select' and check the 'last' option. What this will do is ensure that we do not have a new
value inserted to the database. What we will have instead is a single row of data in the table group_table where the value of the 'tagl' column
will control tagl's OPC value and similarly, 'tagl's OPC value will control the value of the 'tagl' column database side.

What you will have at this point is a bi-directionally controlled Transaction Group where any change to tagl's value will be reflected on the
database and any change database side for the 'tagl' column value will be reflected on your 'tagl' tag.

In the event that the OPC and database values do not match on Transaction Group start, the OPC value will win and it will be written to the
database. For instance, if Transaction Group is disabled and the 'tagl' value is 20 and the 'tagl' column value is 880, the Update Mode 'Bi-
directional OPC wins' means the 'tagl' column value will be set to 20 when the Transaction Group starts.

Fle Edt View Project Tools Help

B @« w i E-H-a

rogectsrowser 5 —_—
Frojects 8- % < Acton | B Trigger % Options

8| dbtoopc » Enabled | © Disabled 2
e e Execution Scheduling:
) Alarm Notifcaton Pipelines Timer () Schedule
% Sequential Functon Chants Basic OPC/Group items (1 . =
seconds) v

» B scripting Item Name SourceValue | Latched Value | Mode TargetName DataType Properties

, Update mode:

3
~ 3 Transaction Groups - . .
pAEC Bidrectionsl OPC wins

» @ vision Data source:

B} Named Queries o8 vlo

B Reports Database Query Browser ax

Table name:

SELECT * FROM group_table order by t_Stamp desc A » o .
group_table DR

Execute | L

Automatically create table

Use custom index column:

Limit SELECT to: | 1000 | rows Store timestamp to tstamp

o)
7 Resultset1 <[o8 Tle store quality code to:

Tagtomer e ;
a e v = group_tabl. tagl t stamp s RN Delete records older than:
e = - i 20200513 100244) aroup.table
Tag Value DataType Traits group_t
~ @ Tags — .
ety 1 row feched n 00025 | Auto Refresh IEGR
» ® ag orc [T T ——— updateselect

» @ system
» @ AllProviders Item Name SourceValue Latched Value | Target Name DataType Properties first © last () custom) keyNalue pairs
Where:

Database Query Browser B X
SELECT * FROM group_table order by t_Stamp desc - ’
Execute
L > :

Limit SELECT to:| | 1000 | rows

W

¥ Resultset 1 ¢ DB v | =
> p—
group_tabl.. | tag1 t_stamp Schema History

1 2020-05-13 10:09:06 B group._table

1 row fetched in 0.002s | & Auto Refresh # Edit

Bi-directional DB Wins

Bi-directional DB wins means that Ignition will Read and Write to both the database and OPC Server. However, on initial group start, if the OPC and
database values are different, the database value will win and the Transaction Group will write database data to your OPC data points.

1.

2.
3.

Create a Standard Transaction Group and from your Tag Browser, drag a single tag into your Transaction Group's Basic OPC/Group Items
section. For this example, the tag will be called tagl.'

Set the mode of the Transaction Group to 'Bi-directional DB wins' and set the Mode for 'tagl’ to 'Bi-directional DB wins.'

Set the Transaction Groups Table Action to 'update/select' and check the 'last' option. What this will do is ensure that we do not have a new
value inserted to the database. What we will have instead is a single row of data in the table group_table where the value of the 'tagl' column
will control tagl's OPC value and similarly, tagl's OPC value will control the value of the 'tagl' column database side.

What you will have at this point is a bi-directionally controlled Transaction Group where any change to tagl's value will be reflected on the
database and any change database side for the 'tagl' column value will be reflected on your 'tagl' tag.

In the event that the OPC and database values do not match on Transaction Group start, the database value will win and it will be written to
the OPC data point. For instance, when the Transaction Group is disabled and 'tagl' value is 10, and the 'tagl' column value is 20, the
Update Mode being 'Bi-directional DB wins' means the tagl tag value will be set to 20 when the Transaction Group starts.

https://legacy-docs.inductiveautomation.com/display/DOC81/Types+of+Groups#TypesofGroups-StandardGroup
https://legacy-docs.inductiveautomation.com/display/DOC81/Types+of+Groups#TypesofGroups-StandardGroup

® Perspective

»
~ Of Transaction Groups
[[“8 dbroopc

» G vision
5} Named Queries
Reports
rum
Item Name Target Data Type Properties
Database Query Browser B X
‘Tag Browser 8- X
. SELECT * FROM group_table order by t_Stamp desc N
Qc|v-mo|x 2@ groue- i " >
Tag Value DataType Traits Execute
~ W Tags v
Data Types - -
» % gt 07 9 Limit SELECT to: | 1000 | rows
» & system A
» @ AllProviders Item Nam) "7 g Nion P
group_tabl.. | tag1 t.stamp “Schema | History
i 20200513 102624 e
1 rowfetchedin 0.001s| & AutoRefresh | # Edit| v Apply | fi Discard

Related Topics ...

® Understanding Transaction Groups
® Types of Groups

Update mode:
Bi-directional DB wins

Data source:
o8

Table name:
group.table

Automatically create table

Use custom index column:

Store timestamp
tore quality code to:
Delete records older than:

insertnew row
O updatesselect
first © last) custom

Where:

tstamp -

keyvalue pairs

https://docs.inductiveautomation.com/display/DOC80/Understanding+Transaction+Groups

	Tag Historian
	Configuring Tag History
	Custom Tag History Aggregates
	Tag History Providers
	DB Table Historian Provider
	Historian Simulator

	How the Tag Historian System Works

	SQL Bridge (Transaction Groups)
	Understanding Transaction Groups
	Types of Groups
	Item Types
	Hour and Event Meters
	Transaction Group Examples
	Block Group
	Recipe Group
	Update or Insert Group
	Trigger Options
	Transaction Group Update Modes

