
1. Tag Historian . 2
1.1 Configuring Tag History . 4
1.2 Custom Tag History Aggregates . 15
1.3 Tag History Providers . 18

1.3.1 DB Table Historian Provider . 23
1.3.2 Historian Simulator . 29

1.4 How the Tag Historian System Works . 34
2. SQL Bridge (Transaction Groups) . 38

2.1 Understanding Transaction Groups . 41
2.2 Types of Groups . 51
2.3 Item Types . 57
2.4 Hour and Event Meters . 64
2.5 Transaction Group Examples . 70

2.5.1 Block Group . 73
2.5.2 Recipe Group . 80
2.5.3 Update or Insert Group . 84
2.5.4 Trigger Options . 87
2.5.5 Transaction Group Update Modes . 91

Tag Historian

The Tag Historian module provides power and flexibility for storing and accessing historical data. When
history is enabled on an Ignition Tag, data is stored automatically in your SQL database in an efficient
format. This data is then available for querying through scripting, historical bindings, and reporting.
Options for partitioning and deleting old data help to ensure the system stays maintained with minimal
extra work. Also, you can drag-and-drop Tags directly onto an Easy Chart component to create trends or
onto a table to display historical values. Tag Historian's robust querying features provide you great
flexibility in how you retrieve the stored data.

Tag Historian Querying

While the data is stored openly in the database, it does not lend itself well to direct querying. Ignition
offers a range of built-in querying options that are very powerful and flexible. In addition to simple on-
change querying, the system can perform advanced functions such as querying many Tags from multiple
providers, calculating their quality, interpolating their values, and coordinating their timestamps to provide
fixed resolution returns. history bindings allow you to pull history data that is stored in the Tag Tag databa

 into a component through a binding. The binding type, which is only available for Dataset type se
properties, runs a query against the Historian. Tag
For more information, see or .Tag History Bindings in Perspective Tag History Bindings in Vision

Querying can be performed on tables and charts through the Historical binding, Nested Queries, and
through scripting. You can also query Tags from the .Reporting module

On this page ...

Tag Historian Querying
Charts that Display Historian Data
Store and Forward
Data storage

Charts that Display Historian Data

With the Vision module you can create powerful timeseries charts from Tag Historian data. As of 8.1.0, the Perspective module Easy Chart component
has a component with similar capabilities. Both components enable you to drag and drop history-enabled Tags onto a chart to create Power Chart
chart pens and data trends. Your charts and graphs can include subplots, axes, digital offsets, and moving averages. You can quickly and easily turn
your historical and realtime data into dynamic charts and graphs for your users. These charts can be configured in the runtime to give users quick
access to data in the time range they need.

Store and Forward

The system provides a reliable way for Ignition to store historical data to the database. The Store and Forward system is not Store and Forward
exclusively part of Tag history, but systems such as the Tag Historian and Transaction Groups use it to prevent data loss and store data efficiently
using a record cache.

Data storage

https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+History+Bindings+in+Perspective
https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+History+Bindings+in+Vision
https://legacy-docs.inductiveautomation.com/display/DOC81/Reporting
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Easy+Chart
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Power+Chart
https://legacy-docs.inductiveautomation.com/display/DOC81/Store+and+Forward

Historical Tag values pass through the Store and Forward system before they are stored in the database connection associated with the historian
provider. The data is stored according to its data type directly to a table in the SQL database, with its quality and a millisecond resolution timestamp.
The data is only stored on-change, according to the value mode and deadband settings on each Tag, thereby avoiding duplicate and unnecessary
data storage. The storage of scan class execution statistics ensures the integrity of the data. While advanced users may change the table according to
their database to be more efficient (for example, using a compression engine), Ignition does not perform binary compression or encrypt the data.

https://legacy-docs.inductiveautomation.com/display/DOC81/Store+and+Forward

1.

2.

Configuring Tag History

This feature was changed in Ignition version :8.1.17

In 8.1.17, the Tag Editor was redesigned to improve usability. The new Tag Editor now requires fewer
clicks and keeps relevant tag information visible while modifying bindings, alarms, and event scripts.

Pages detailing features of the previous Tag Editor can be found in .Deprecated Ignition Features

Logging data is easy with . Once you have a database connection, all you do is set the tags Tag Historian
to store history and Ignition takes care of the work. Ignition creates the tables, logs the data, and
maintains the database.

The historical tag values pass through the store-and-forward engine before ultimately being stored in the
database connection associated with the historian provider. The data is stored according to its data type
directly to a table in the SQL database, along with its quality and a millisecond resolution timestamp. The
data is only stored on-change, according to the value mode and deadband settings on each tag, thereby
avoiding duplicate and unnecessary data storage. The storage of Tag Group execution statistics ensures
the integrity of the data.

The first step to storing historical data is to configure tags to record values. This is done from the sHistory
ection of the Tag Editor in the Designer. Select the property to turn on history. The History Enabled
properties include an Historical that will be used to check for new values. Once values Tag Group
surpass the specified deadband, they are reported to the history system, which then places them in the
proper store and forward engine.

On this page ...

Enable History on a Tag
Setting a UDT to Log History Data
Tag History Configuration

Sample Mode
Max and Min Time Between
Samples
Interpolated Values
Deadband and Analog
Compression
Seeded Values
Raw Data Queries

Configuring Tag
History

Watch the Video

Enable History on a Tag

The following example demonstrates how to configure a tag to store values into the Tag Historian. Complete information on the History properties
(and all properties in the Tag Editor), can be found on the . Tag Properties Table

Note: Dataset type tags are not supported by the Tag History system.

In the Tag Browser, select one or more tags. For example, we selected several tags in the Sine folder.Sine

Right-click on the selected tags, and then select .Edit Tag
The Tag Editor window is displayed where you can change the tag name, data type, scaling options, metadata, permissions, history, and
alarming.

https://legacy-docs.inductiveautomation.com/display/DEP/Deprecated+Pages
https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+Properties
https://legacy-docs.inductiveautomation.com/display/DOC81/Understanding+Transaction+Groups#UnderstandingTransactionGroups-CreatingaTransactionGroup
https://www.inductiveuniversity.com/videos/configuring-tag-history/8.0/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+Properties#TagProperties-TagPropertiesTable

2.

3.
4.
5.
6.

Scroll down to History or select the History pane on the Tag Editor. Set to true.History Enabled
Choose a database (for example, SQLite) from the dropdown.Storage Provider
Set the Sample Mode to .Tag Group
Set the Historical Tag Group to .Default Historical

7. Click . Now look in the Tag Browser. To the right of each Sine tag that is storing history, a icon appears letting you know it is OK History
set up.

Now, if you look in your database, you can see all the tables and data Ignition has created for you.

Setting a UDT to Log History Data

Enabling tag history on members in a UDT involves editing the UDT definition, and enabling history on the any members you wish to record. These
history settings will then propagate to members in any instances.

Tag History Configuration

Below is a description of some important tag history settings.

Sample Mode

The Sample Mode setting determines how often the Tag History system will check if the tag’s value should be stored to the database using Deadband
and Deadband Style settings.

On Change - Ignition will check if the value should be stored to the database each time the tag value changes.
Periodic - Ignition will check if the value should be stored to the database at a specific rate defined by the Sample Rate property.
Tag Group - Ignition will check if the value should be stored to the database at the specific rate defined within the Tag Group selected under
the Historical Tag Group property.

Historical Tag Group

The Historical Tag Group setting is visible when Sample Mode is set to Tag Group. The Historical Tag Group setting determines how often to check if
the value on the tag should be stored. It uses the same that dictate how often your tags should execute. Typically, the Historical Tag Tag Groups
Group should execute at the same rate as the tag's Tag Group or slower. For example, if a tag's Tag Group is set to update at a 1,000ms rate, but the
Historical Tag Group is set to a Tag Group that runs at 500ms rate, then the Tag History system will be checking the tag's value twice between normal
value changes, which is unnecessary.

Max and Min Time Between Samples

Normally, Tag Historian only stores records when values change. By default, an "unlimited" amount of time can pass between records – if the value
doesn't change, a new row is never inserted in the database. By modifying these settings, it is possible to specify the maximum number of Tag Group
execution cycles that can occur before a value is recorded. Setting the value to 1, for example, would cause the tag value to be inserted each
execution, even if it has not changed. Given the amount of extra data in the database that this would lead to, it's important to only change this property
when necessary.

Interpolated Values

When the Ignition historian queries a database for historical data, there may be intervals with no raw data in the database. When this happens,
Ignition interpolates the missing data. Interpolation is the process of estimating unknown values that fall between known values, and is calculated
depending on the tag configuration or selected Aggregation Mode , as long as AvoidInterpolation is false. Although interpolated values are
calculated every time a raw data point is found or when an interval ends based on the configuration or Aggregation Mode selections, the values are
reserved to be used only when there are no data points in an interval.

To demonstrate how interpolation works, example data queried using a traditional Tag History binding from 1:30pm to 5:30pm in 60 minute time
windows is shown below. The query returned three windows with data and one window with no data.

https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+Groups
https://docs.inductiveautomation.com/display/DOC81/Tag+History+Bindings+in+Vision#TagHistoryBindingsinVision-AggregationMode

 - 1:30pm through 2:30pm: 0.04, 5.6, 45.6, 3.45, 96.45Time Window 1
Time Window 2 - 2:30pm through 3:30pm: no data in this time window
Time Window 3 - 3:30pm through 4:40pm: 9.68, 5.6
Time Window 4 - 4:30pm through 5:30pm: 30.04, 9.6, 23.6, 76.49, 2.54

If you select SimpleAverage as your Aggregation Mode , the request returns a row representing the SimpleAverage value for every time window.
 The value in the first row was calculated by averaging all of the values between 1:30pm - 2:30pm:

 (0.04 + 5.6 + 45.6 + 3.45 + 96.45) / 5 = 30.23

This same method applies to the third and fourth row values. However, since there are no raw records between 2:30pm - 3:30pm, the value of 12.09
is calculated using interpolation.

12.09 was obtained by marking the end point of the empty window along a line connecting the last value from the previous window to the first value in
the next window. This is easily shown using a chart to visualize where the time and value intersect. The last value in the previous time window is
marked at 96.45 and the first value in the next time window is marked at 9.68. Once the line is drawn between the two, the marked value at the end of

 the empty window end time (3:30pm) gives us the interpolated value of 12.09.

The interpolated value remains 12.09 for every Aggregation Mode we query for unless we select the Average Aggregation Mode, which returns a
value of 36.19.

The Average Aggregation Mode is an exception to the previously described interpolation method because the time-weighted calculation included in
the process remains the same whether there are or aren't data points in a time interval.Average

The time-weighted process uses current and previous values with the interval time difference in milliseconds to determine . Average values

 Average Value = (0.5 * abs((currVal - prevVal) * timediff)) + (timediff)(min(currVal,prevVal))

If we use the same data from the earlier example, the process looks like:

prevVal = 96.45
currVal = 60.29

Since the current value, or end time of the first window, has no data the value is obtained with a process. The required data for this process retValue
includes the last value in the previous non-empty window, represented by A; the first value in the next non-empty window, represented by B; and the
amount of time between the last value in the previous non-empty window divided by the total time between collected values.

retValue = A + ((B-A) * ((ts - Ats) / (Bts - Ats)

A = 96.45
B = 9.68
Bts - Ats = 3:33pm - 1:45pm > 108 minutes
ts - Ats = 2:30pm - 1:45pm > 45 minutes

96.45 + ((9.68 - 96.45) (45/108)) = 60.29

If there was data for the 2:30pm interval, which is the end of Time Window 1, that would be used as the current value and no further calculations
would be required.

Since the previous value was collected at 1:45pm and the current value was collected at 2:30pm, the time difference is 45 minutes. Since time
difference is calculated in milliseconds, 2,699,999 is used:

timediff = 2,699,999

Therefore the process calculation for the first window is:

(0.5 * abs((60.2958 - 96.45) * 2,699,999)) + (2,699,999)(min(60.2958)) = 211,606,751.6271

Add this result to the sum of all values for the dataAverage between 1:33pm and 1:45pm to include all time-weighted data.

The same process calculation is used for the values between 1:33pm and 1:45 as used for the first window calculation above.

Time Value
1:33 0.04
1:36 5.6
1:39 45.6
1:42 3.45
1:45 96.45

1:33 to 1:36:
(0.5 * abs((5.6-0.04) * 179,999)) + 179,999(0.04) = 507,597.18

1:36 to 1:39:
(0.5 * abs((45.6-5.6) * 179,999)) + 179,999(5.6) = 4,607,974.4

1:39 to 1:42:
(0.5 * abs((3.45-45.6) * 179,999)) + 179,999(3.45) = 4,414,475.47

1:42 to 1:45:
(0.5 * abs((96.45-3.45) * 179,999)) + 179,999(3.45) = 8,990,950.05

507,597.18 + 4,607,974.4 + 4,414,475.47 + 8,990,950.05 = 18,520,997.1

Then, divide by the total time that has passed, which is 57 minutes (1:33pm-2:30pm) or 3,419,999ms:

(211,606,751.6271 + 18,520,997.1) / 3,419,999 = 67.29

As shown in the queried values above, 67.29 is the value for Time Window 1.Average

Now, instead of just creating a chart to find the linear interpolated value and moving on, we must follow the same Average process for the empty
calculationswindow to apply the time-weighted . To do this, we will still use the linear interpolated value of 12.09 as the current value in the process

 since the window has no data. The current value of 60.29 used in the Time Window 1 process becomes the previous value for this Time Window 2
process.

prevVal = 60.29
currVal = 12.09

Since the time window interval is from 2:30pm to 3:30pm, we use 60 minutes, or 3599999ms for the time difference:

timediff = 3599999

Therefore, the process calculation for the empty window is:

(0.5 * abs((12.09 - 60.2958) * 3,599,999)) + (3,599,999)(min(12.09)) = 130,283,963.81

Lastly, to get the interpolated value this number is divided by the total time that has passed, which is 60 minutes or 3,599,999ms:Average

130,283,963.81 / 3,599,999 = 36.19

Deadband and Analog Compression

The deadband value is used differently depending on whether the tag is configured as a Discrete Tag or as an Analog Tag. Its use with discrete
values is straightforward, registering a change any time the value moves +/- the specified amount from the last stored value. With Analog Tags,
however, the deadband value is used more as a compression threshold, in an algorithm similar to that employed in other Historian packages. It is a
modified version of the 'Sliding Window' algorithm. Its behavior may not be immediately clear, so the following images show the process in action,
comparing a raw value trend to a "compressed" trend.

The Deadband Style property sets the: Auto, Analog, or Discrete.

Discrete

 Storage

The deadband will be applied directly to the value. That is, a new value (V) will only be stored when: |V -V | >= Deadband.1 1 0

 Interpolation

The value will not be interpolated. The value returned will be the previous known value, up until the point at which the next value was recorded.

Analog

Storage

Every time the tag's value changes, this method will calculate upper and lower slope values. These slope values are stored in memory, and are
ultimately used to determine when a new value is stored. The calculations used are listed below:

Upper Slope

(((NewValue + Deadband) - PreviousValue) / (NewTimestamp - PreviousTimestamp))

Lower Slope

(((NewValue - Deadband) - PreviousValue) / (NewTimestamp - PreviousTimestamp))

The algorithm will only store new values under the following conditions:

The system always stores the first value on the tag when using the method, since the subsequent values will need an initial value to calculate
slope from.
If the newly calculated upper slope is lower than the previously calculated lower slope value, the system will store the new value.
If the newly calculated lower slope is larger than the previously calculated upper slope value, the system will store the new value.
The system always stores a value when the quality on the tag changes.

In cases where a new value isn't stored, the system will compare the newly calculated slope values to the previously calculated values:

If the new upper slope is less than the previous upper slope, then the new upper slope is used for future comparisons.
If the new lower slope is greater than the previous lower slope, then the new lower slope is used for future comparisons.

In the image below, an analog value has been stored. The graph has been zoomed in to show detail; the value changes often and ranges over time
+/- 10 points from around 1490.0. The compressed value was stored using a deadband value of 1.0, which is only about .06% of the raw value, or
about 5% of the effective range. The raw value was stored using the Analog mode, but with a deadband of 0.0. While not exactly pertinent to the
explanation of the algorithm, it is worth noting that the data size of the compressed value, in this instance, was 54% less than that of the raw value.

 Interpolation

The value will be interpolated linearly between the last stored value and the next value. For example, if the value at Time was 1, and the value at Time0 2
 is 3, selecting Time will return 2.1

Example

Let's look at a demonstration of how the analog compression works. For this example we'll assume a tag is using a historical deadband value of 0.01.
Over the course of a few moments the tag's value changed several times, as represented on the chart below.

The tag historian system stores the records into one of the data partitions. After the value changes above, our database stores the records.

Below we'll describe how each value was stored as the tag changed value.

Value A

Once we enable history on the tag and set the deadband style to Analog, the system will record the first value on the tag. Since we only have our first
value, we use arbitrarily large and small values for the upper slope and lower slope (3.40282347 x 10^38 and - , respectively), and 3.40282347 x 10^38
store those numbers until the tag changes value again.

Value B

Here we see the value on the tag changed to 150. Since this is only the second value recorded, the system needs to figure out the slope values so it
knows when to next collect a record. The system calculates both slope values . as listed above

// Upper Slope
((150 + 0.01) - 100) / (1636409655838 - 1636409614396)
(150.01 - 100) / 41442
50.01 / 41442
0.001206768

// Lower Slope
((150 - 0.01) - 100) / (1636409655838 - 1636409614396)
(149.99 - 100) / 41442
49.99 / 41442
0.0012062641

Because the previously stored slope values are simply placeholders, we replace them with these newly calculated values. This value of 150 is not yet
stored in the database. Instead, this value of 150 is kept in memory, waiting until the tag changes again.

Value C

Our tag changes value to 50. The system calculates the new slope values again, this time using 150 as the previous value.

// Upper Slope
((50 + 0.01) - 150) / (1636409701167 - 1636409655838)
(50.01 - 150) / 45329
-99.99 / 45329
-0.0022058727

// Lower Slope
((50 - 0.01) - 150) / (1636409701167 - 1636409655838)
(49.99 - 150) / 45329
-100.01 / 45329
-0.002206314

Our newly calculated values meet our storage criteria. The new upper slope (-0.0022058727) is less than the previous lower slope (0.0012062641).
Therefore the system will store the previous value (150) and use these newly calculated slope values the next time the tag changes value. The newest
value of 50 is not yet stored.

Value D

Our tag changes to a value of 50.001. As usual, the system calculates some new slope values.

// Upper Slope
((50.001 + 0.01) - 50) / (1636409726809 - 1636409701167)
(50.011 - 50) / 25642
0.011 / 25642
4.289837E-7

// Lower Slope
((50.001 - 0.01) - 50) / (1636409726809 - 1636409701167)
(49.991 - 50) / 25642
-0.009 / 25642
-3.5098665E-7

Our new lower slope is larger than our previously stored upper slope. We record the previous value of 50 and keep our new slope values in memory.

Value E

Our tag changes to a value of 50.002. We calculate new slope values.

// Upper Slope
((50.002 + 0.01) - 50) / (1636409760145 - 1636409701167)
(50.012 - 50) / 58978
0.012 / 58978
2.034657E-7

// Lower Slope
((50.002 - 0.01) - 50) / (1636409760145 - 1636409701167)
(49.992 - 50) / 58978
-0.008 / 58978
-1.356438E-7

These new slope values do meet our storage criteria: the new upper slope is not less than the previous lower slope, and the new lower slope isn't not
greater than the previous upper slope. Thus, the previous tag value of 50.001 is not stored since it's too similar to the current value of 50.002.

In addition, the system does notice that the new upper slope is less than the old upper slope, and the new lower slope is greater than the old lower
slope. So the system deems the new slope values to be more restrictive, and will use those the next time the tag value changes. The system will use
the newly calculated slope values when evaluating the next value change.

Value F

Our tag changes to a value of 100. New slope values are calculated, using the most recent value of 100 compared to the previous value of 50.002.

// Upper Slope
((100 + 0.01) - 50.002) / (1636409786810 - 1636409760145)
(100.01 - 50.002) / 26665
50.008 / 26665
0.0018754172

// Lower Slope
((100 - 0.01) - 50.002) / (1636409786810 - 1636409760145)
(99.99 - 50.002) / 26665
49.988 / 26665
0.0018746671

The new lower slope is greater than the previous lower slope, so the previous value (50.002) is stored. This process repeats indefinitely.

Auto

The setting will automatically pick either Analog or Discrete, based on the data type of the tag.

If the data type of the is set to a float or double, then Auto will use the Analog Style.tag
If the data type of the tag is any other type, then the Discrete style will be used.

Seeded Values

Tag history queries sometimes use seeded values (occasionally called "Boundary Values"). When retrieving tag history data, the system will also
retrieve values just outside of the query range (before the start time, after the end time), and include them in the returned result set. They're generally
used for interpolation purposes. If you do not want to include these seeded values, interpolation must not be enabled. The following is also required:

Have the tag store history with a Discrete Mode
Set the [noInterpolation] parameter to true
Set the to on the [includeBoundingValues] parameter false calling query

Pre-Query Seed Value

These are a single value taken from just before the start of the query range. The value and timestamp for this value is typically the first row in the
resulting query. Pre-query seed values are always included when not using a . raw data query

An exception to this rule is can be found with the system.tag.queryTagHistory function. Setting argument to True and includingBoundingValues r
 to -1 will return a raw data query with a pre-query seed value. eturnSize

Post-Query Seed Value

These extra values are added to the end of the result set, representing the next data point after the query range. Post-query seed values are only
included when interpolation is requested/enabled for the query. Thus, values stored with a Discrete will not include post-query seed deadband style
values in the query results, but an Analog deadband style will include post-query seed values.

If the system knows the query is retrieving records for a tag on the local system, this value will be determined by the current tag's value instead of
retrieving the last recorded value in the database. The current tag's value is also used in cases where the time range extends to the present time.

Note: If a result in a query is outside of the requested range, the value is typically a seeded value. This typically occurs when the range is so small
that values were not recorded, or when the range is in the future (and thus values have not yet been recorded).

Raw Data Queries

In most cases queries returned by tag history will apply some form of aggregation. However it is possible to get a "raw data query", which is a result
set that contains only values that were recorded: meaning no aggregation or interpolation is applied to the results. A raw data query can be obtained
by using one of the following options:

Set the Sample Size on Vision Tag History bindings to On Change
Setting the parameter on or to -1. returnSize system.tag.queryTagHistory system.tag.queryTagCalculations

Note: Be aware that if a tag is storing history using the Analog style, the returned dataset will include post-query seed values.

Settting the Query Mode on Perspective Tag History bindings to AsStored

https://legacy-docs.inductiveautomation.com/display/DOC81/system.tag.queryTagHistory
https://legacy-docs.inductiveautomation.com/display/DOC81/system.tag.queryTagHistory
https://legacy-docs.inductiveautomation.com/display/DOC81/system.tag.queryTagHistory
https://legacy-docs.inductiveautomation.com/display/DOC81/system.tag.queryTagCalculations

Custom Tag History Aggregates

Python Aggregation Functions

The Tag History system has many built-in aggregate function, such as Average, Sum, and Count.
However a custom aggregate may be defined via Python scripting. These functions are used for
calculations across timeframes, and they process multiple values in a “window” into a single result value.

For example, if a query defines a single row result, but covers an hour of time (either by requesting a
single row, or using the Tag Calculations feature), the system must decide how to combine the
values. There are many built in functions, such as Average, Sum, Count, etc. Using a custom Python
aggregate, however, allows you to extend these functions and perform any type of calculation.

Description

As values come in, they will be delivered to this function. The interpolator will create and deliver values.
For each window (or “data block”, the terms are used synonymously), the function will get a fresh copy of
blockContext. The blockContext is a dictionary that can be used to as a memory space. The function
should not use global variables. If values must be persisted across blocks, they can be stored in the
queryContext, which is also a dictionary.

The function can choose what data to include, such as allowing interpolation or not, and allowing bad
quality or not.

The window will receive the following values, many of which are generally interpolated (unless a raw
value happens to fall exactly at the time):

The start of the window
1 ms before each raw value (due to the difference between discrete and analog interpolation. A
value equal to the previous raw value indicates discrete interpolation)
The raw value
The end of the window

At the end of the window, the function will be called with “finished=true”. The function should return the
calculated value(s). The resulting value will have a timestamp that corresponds to the beginning of the
block timeframe.

On this page ...

Python Aggregation Functions
Description

Parameters
Return Value

Usage
Conditions

Examples
Creating an Aggregate
Function on the Fly

Parameters

qval - The incoming QualifiedValue. This has:
value : Object
quality : Quality (which has ‘name’, ‘isGood()’)
timestamp : Date

interpolated - Boolean indicating if the value is interpolated (true) or raw (false)
finished - Boolean indicating that the window is finished. If true, the return of this particular call is what will be used for the results. If false, the
return will be ignored.
blockContext - A dictionary created fresh for this particular window. The function may use this as temporary storage for calculations. This
object also has:

blockId - Integer roughly indicating the row id (doesn’t take into account aggregates that return multiple rows)
blockStart - Long UTC time of the start of the window
blockEnd - Long UTC time of the end of the window
previousRawValue - QualifiedValue, the previous non-interpolated value received before this window
previousBlockResults - QualifiedValue[], the results of the previous window.
insideBlock(long) - Returns boolean indicating if the time is covered by this window.
get(key, default) - A helper function that conforms to python’s dictionary “get with default return”.

queryContext - A dictionary that is shared by all windows in a query. It also has:
queryId - String, an id that can be used to identify this query in logging
blockSize - Long, time in ms covered by each window
queryStart - Long, the start time of the query
queryEnd - Long, the end time of the query
logTrace(), logDebug(), logInfo() - all take (formatString, Object... args).

Return Value

Your custom aggregate should return one of the following for each window:

Object - Turned into Good Quality qualified value
List - Used to return up to 2 values per window
Tuple - (value, quality_int)
List of quality tuples

1.
2.

1.

2.
3.

Usage

Custom Python aggregates can be used in two ways:

Defined as a Project Library script, where the full path to the function is passed to the query.
Defined as a string, prefaced with “python:”, and passed to the query.

Currently both options are only available through the system.tag.queryTagHistory/queryTagCalculations functions.

Both of these options are used with the “aggregationMode” and “ aggregationModes” parameters to system.tag.queryTagHistory, and the
“calculations” parameter of system.tag.queryTagCalculations. If the value is not an Enum value from the defined AggregationModes, it will be
assumed to be a custom aggregate. The system will first see if it’s the path to a Project Library script, and if not, will then try to compile it as a full
function.

For performance reasons, it is generally recommended to use the Project Library script whenever possible. For more information, see .Project Library

Conditions

There are some key factors to keep in mind when calling a custom aggregate.

Return Size

When calling a custom tag history aggregate, the argument must be set to a number greater than 0, otherwise the custom aggregate will returnSize
be ignored.

Aggregate Library Project

When using a Project Library, the library reside in the . must Gateway's scripting project

Library Name

The name of the project library must start with " ", in lowercase. However there can be additional characters following the word "shared". For shared
example: "shared_myLib"

Examples

Add a project script, by right clicking the Project Library item in the Project Browser, and choosing the New Script option.

Enter a name for the script and click (we named ours in the example).Create Script shared
Enter the following code block:

Example

https://legacy-docs.inductiveautomation.com/display/DOC81/Project+Library
https://legacy-docs.inductiveautomation.com/display/DOC81/Project+Library#ProjectLibrary-GatewayScriptingProject

this is a simple count function, called for each value in a time window
def myCount(qval, interpolated, finished, blockContext, queryContext):
 cnt = blockContext.getOrDefault('cnt',0)
 if qval.quality.isGood():
 blockContext['cnt']=int(cnt)+1

 if finished:
 return blockContext.getOrDefault('cnt', 0)

The custom function could be used by using the example below:

Example

#Return tag history using a custom aggregate function you wrote.

system.tag.queryTagHistory(paths=['MyTag'], rangeHours=1, aggregationModes=['shared.myCount'], returnSize =
100)

Creating an Aggregate Function on the Fly

Example

#Create a function on the fly to pass in as a custom aggregate.

wrapper = """\
python:def wrapper(qval, interpolated, finished, blockContext, queryContext):
 return shared.aggregates.customFunction(qval, interpolated, finished, blockContext, queryContext)
"""
system.tag.queryTagHistory(paths=['MyTag'], rangeHours=1, aggregationModes=[wrapper], returnSize = 100)

1.
2.
3.
4.
5.

Tag History Providers

The Tag Historian module uses a concept of "History Providers" as a means to keep track of different
storage configurations. Each provider is responsible for maintaining its own set of tables and records.

Tables used by the Tag Historian system are described on the page. Ignition Database Table Reference

Creating a History Provider

Most history provider types need to be manually created. New providers can be created on the Gateway:

Go to the section of the Gateway Webpage and selectConfig Tags > History
Click the "Create new Historical Tag Provider" link
Select the type, and click Next
Give the new provider a name, and make any other configuration changes
Click button when finished. Create New Historical Tag Provider

Datasource History Providers

Datasource History Providers can not be created or deleted manually. Instead they are tied to a database
connection. They are automatically created when a connection to a database is configured on a gateway.
Deleting a database connection from a gateway will also delete the Datasource History Provider,
although any tables used by the provider will persist in the database.

On this page ...

Creating a History Provider

Datasource History Providers
Datasource History Providers
Settings

Pre-Processed Partitions
Internal Historian Provider

Internal Historian Provider
Settings

Remote History Provider
Remote History Provider Settings

Tag History Splitter
Tag History Splitter Provider
Properties

DB Table Historian Provider
Historian Simulator
OPC-HDA Properties

Datasource History Providers Settings

The following table lists the settings for the Datasource History Providers. To access these settings, go to the tab of the Gateway Webpage Config
and select . Then click the button for the provider you want to update. Tags > History Edit

Main

Provider
Name

Name of the Tag History Provider. By default, this will match up with the name of the database connection.

Enabled If the check box is selected (enabled), the provider is turned on and accepts tag history data.

If disabled, the database is not shown in the list of history providers when configuring tag history from the Designer. Also, any
data logged to the provider, will error out and be quarantined by the store and forward engine, if possible.

Descript
ion

A user created description of the provider.

Data Partitioning

Enable
Partition
ing

To improve query performance, Tag Historian can partition the data based on time. Partitions will only be queried if the query time range
includes their data, thereby avoiding partitions that aren't applicable and reducing database processing. On the other hand, the system
must execute a query per partition. It is therefore best to avoid both very large partitions, and partitions that are too small and fragment
the data too much. When choosing a partition size, it is also useful to examine the most common time span of queries.

Partition
Length
and
Units

The size of each partition, the default is one month. Many systems whose primary goal is to show only recent data might use smaller
values, such as a week, or even a day.

Enabled
Pre-
process
ed
Partitions

Enables . pre-processed partitions

Pre-
process
ed
Window
Size
(second
s)

When pre-processed partitions is turned on, this setting defines the window size.

https://legacy-docs.inductiveautomation.com/display/DOC81/Ignition+Database+Table+Reference

Data Pruning

Enable
Data
Pruning

Partitions with data older than a specific age are deleted. The check box is not selected/enabled by default.

Note: Data pruning works by deleting old partitions. Therefore, data will only be removed when a partition has no data younger than the
prune age.

Prune
Age
and
Units

The maximum age of data. As mentioned, the data is deleted by the partition, and could therefore surpass this threshold by quite a bit
before all of the data in the partition is old enough to be dropped.

Advanced

Enable
Stale
Data
Detection

If enabled, tracks Tag Group executions to determine the difference between unchanging values, and values that are flat due to the
system not running.

Stale
Detectio
n
Multiplier

The multiplier for Tag Group rate used to determine when values are stale. If Tag Group execution is not recorded within this amount of
time, values will be considered bad on query.

Pre-Processed Partitions

Datasource history providers can opt into "pre-processed partitions". With pre-processed partitions enabled, records stored by the provider are stored
in two different sets of partitions: the normal partitions, and a summarized "pre-processed" partition. In other words, the data that is stored in the
normal partitions is summarized and then placed into an additional table in the database. While this takes up more space in the database, it can
improve query speeds dramatically by reducing the amount of resulting data points. While enabled, tag history queries that request data in intervals
greater than the specified setting will use the pre-processed tables. Pre-processed Window Size

For example, say a call was made with intervalSeconds set to 90. If the Pre-processed Window Size setting on the system.tag.queryTagHistory
datasource history provider is set to something less than 90 seconds, such as the default value of 60 seconds, then the function would retrieve
records from the pre-processed partitions. On the other hand, if the same function was used with intervalSeconds set to a value less than the Pre-
processed Window Size, then the raw tables would be used. Both of these examples would retrieve data from the historian, but the first query's result
set would be smaller than the second example's query.

When pre-processed partitions are enabled, a new partition table is created to store the pre-processed
records. The pre-processed partitions use the following naming convention: sqlth_data_driverID_YYY
Y_MM_windowSize

More details on the pre-processed tables can be found on the page. Ignition Database Table Reference

Internal Historian Provider

The Internal Historian is a historian that stores data within the Ignition installation directory, via SQLite. It is
available on standard Ignition Gateways.

Note: Records stored by the Internal Historian Provider don't contain information about Tag group execution, meaning stale execution data is not
recorded.

The Internal Historian provider can choose to prune records when either the or settings are enabled. Time Limited Enabled? Point Limit Enabled?
The check to prune records in these cases occur when the system tries to store a record.

Internal Historian Provider Settings

Main

Provider
Name

Name of the internal history provider.

Enabled If the check box is selected (enabled), the provider is turned on and accepts tag history data. Default is true.

https://legacy-docs.inductiveautomation.com/display/DOC81/system.tag.queryTagHistory
https://legacy-docs.inductiveautomation.com/display/DOC81/Ignition+Database+Table+Reference#IgnitionDatabaseTableReference-sqlt_data_X_X

Description A description of the provider.

Limits (Requires Historian Module Licensing)

Time Limited
Enabled?

Whether or not time limit is enabled. Default is true.

Time Limit
Size

Size of the time limit. Unit (seconds, weeks, etc) is set in the Time Limit UnitsDefault is 1.

Time Limit
Units?

Options are milliseconds, seconds, minutes, hours, days, weeks, months, or years. Default is WEEK.

Point Limit
Enabled?

Whether or not point limit is enabled. Default is true.

Point Limit
Size

Default is 10,000,000.Maximum number of data points the historian will store.

Sync Settings

Remote
Sync
Enabled

Allows you to turn History Synchronization on or off. Tag Default is false.

Remote
Gateway
Name

The Gateway to target for remote synchronization. Must have the module installed, and allow remote storage. The Tag Historian Igni
 's will also need to be configured to allow remote storage.tion Gateway settingssecurity

Remote
Provider
Name

The remote history provider to sync data to.

Sync
Frequency

The frequency with which data will be sent to the remote Gateway. This setting will be used in conjunction with the sync schedule, if
enabled. Default is 10.

Sync
Frequency
Units

The unit of time that will be used with the Sync Frequency. Options are milliseconds, seconds, minutes, hours, days, weeks,
months, or years. Default is SEC.

Max Batch
Size

The maximum number of data points that will be sent per batch to the remote Gateway. Default is 10,000.

Enable
Schedule

If enabled, the data will only be synchronized during the times specified by the pattern provided. Default is false.

Schedule
Pattern

A comma separated list of time ranges. Examples:

9:00-15:00
9pm-5am
20.30-04.30

Remote History Provider

A Remote History Provider is a link to a historical provider on another Gateway. Since it is retrieving historical Tag data from another provider, its only
configuration is to ensure it is pointed at the correct history provider on the remote system. You can't change any of the settings like partition length
and prune age, but would instead have to change those settings on the original history provider on the remote Gateway. By default, the remote history
provider will fall under the and be read only.Default Security Zone

Configuring a remote history provider involves some extra steps, when compared to the other provider types. Since they involve a tag provider on
another Gateway, you'll be asked to select the target gateway. The list of Gateways is filled with gateways discoverable on the gateway network. If the
Gateway is not currently available or displayed, you can specify its name manually.

Remote History Provider Settings

Main

Provider
Name

Name of the Tag History Provider.

Enabled If the check box is selected (enabled), the provider is turned on and accepts Tag history data. Default is true.

If disabled, the database is not shown in the list of history providers when configuring Tag history from the Designer. Also, any
data logged to the provider, will error out and be quarantined by the store and forward engine, if possible.

https://legacy-docs.inductiveautomation.com/display/DOC81/Config#Config-Security
https://legacy-docs.inductiveautomation.com/display/DOC81/Security+Zones

Description A description of the provider.

Remote Gateway

Remote
Gateway
Name

The name of the remote Gateway.

Remote
History
Provider

The name of the provider on the remote Gateway. This does not have to match the provider name on the local Gateway.

Storage

Allow
Storage

If false, the provider will only be used for querying historical data. If true, the provider will create a store and forward pipeline for
sending data to a remote Gateway. Default is true.

This setting also requires that on the remote system allows for storage to the specified provider. Service Security

When enabled, storage for this tag in the remote system will not include execution rate (which is normally logged into the sqth_sce
 by local providers). table

Max Bundle
Size

The maximum number of data points that can be sent per request. This value is used in conjunction with the store and forward
settings to dictate how much data is sent at once. Set to 0 for an unlimited size.

Tag History Splitter

Like the Remote History Provider, the Tag History Splitter Provider doesn't store history on its own, instead relying on having other providers already
configured. A Splitter provider simply logs Tag History into multiple other History Providers.

When setting up a Tag to store history, selecting this provider will write the same data to both providers that it has selected. The Tag History Splitter is
useful for automatically creating a backup of your data, or for reading history from two separate providers.

Tag History Splitter Provider Properties

Below are the properties available on the Historical Tag Provider.

Main

Provider
Name

Name of the connection.

Enabled Enables and disables the connection.

Description Description of the connection. The description appears on the Historical Tag Providers page of the Gateway.

Storage

First
Connection

Data is stored to both connections equally. However, all tag history queries (tag history bindings, calls, system.tag.queryTagHistory
reporting tag historian queries, etc.) execute against the first connection, unless a limit is imposed using the settings below, or the
first connection is unavailable.

Second
Connection

The second connection to store Tag history.

Querying

Limit First
Connection
Query

If enabled, only queries that are within the time frame specified below will be executed against the first connection. Queries that go
further back will execute against the second connection.

Limit
Length and
Units

The unit and length of the time frame limitation mentioned above.

DB Table Historian Provider

This provider allows the Tag Historian module to retrieve data from tables that weren't created by the module, such as tables created with Transaction
Groups or third party systems.

Read more about this provider type on the page. DB Table Historian Provider

https://legacy-docs.inductiveautomation.com/display/DOC81/Service+Security
https://legacy-docs.inductiveautomation.com/display/DOC81/Ignition+Database+Table+Reference#IgnitionDatabaseTableReference-sqlth_sce
https://legacy-docs.inductiveautomation.com/display/DOC81/Ignition+Database+Table+Reference#IgnitionDatabaseTableReference-sqlth_sce
https://legacy-docs.inductiveautomation.com/display/DOC81/system.tag.queryTagHistory

Historian Simulator

The Historian Simulator allows the Tag Historian module to create simulated records that can be used for testing.

Read more about this provider type on the page. Historian Simulator

OPC-HDA Properties

Establishes a connection to an OPC-HDA Server to read history data that may be stored there from a third party. Ignition can not write to this type of
 history provider.

Note: This type of provider can only be created if the module is installed and the gateway is running on a Windows operating system. OPC COM

Main

Provider Name Name of the Tag History Provider.

Enabled If the check box is selected (enabled), the provider is turned on and will expose historical data

Description A description of the provider.

Server

ProgId A description of the provider.

Use Flat
Browsing

Flat browsing returns all items at once. This is less efficient than normal browsing, but if a server only supports flat browsing, then
this needs to be checked.

Remote Connection

Remote
Server

If selected, DCOM will be used to connect to the server on the specified Host with the given ProgId or CLSID.

Host Machine The name or IP address of the machine hosting the server. Leave empty for local machine.

CLSID The CLSID of the server. If not specified, will be obtained using the ProgId.

https://legacy-docs.inductiveautomation.com/display/DOC81/OPC+COM

1.
2.
3.
4.

DB Table Historian Provider

The following feature is new in Ignition version 8.1.0
 to check out the other new featuresClick here

The DB Table Historian Provider acts as a bridge between tables in a database connection and the Tag
Historian Module, mapping columns in the tables as "available Tags", thus allowing Tag History Queries
to access the content of the table. Usually Tag History Queries can interact only with tables created by
the Tag Historian. Thus, a table created with a Transaction Group, or by some other means (e.g.,
manually creating the database tables, tables generated by third party systems, etc) couldn't be
accessed via things like a Tag History Binding. The DB Table Historian Provider solves this problem.

Utilizing this provider requires a , which is the type of historical provider Datasource History Provider
that is automatically created whenever a Database connection is configured. You can check the type of
any History Provider under the section of the Gateway, on the page. Config Tags > History

On this page ...

Configuring a DB Table Historian
Provider
Retrieving Records
Path Components

Example

DB Table Historian

Watch the Video

Configuring a DB Table Historian Provider

On the Gateway Webpage, navigate to the Config section.
Under the TAGS heading in the sidebar, click on .History
On the History Provider's listing, click .Create new Historical Tag Provider
From the listing of available types, select , and click .DB Table Historian Next

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.0
https://www.inductiveuniversity.com/videos/db-table-historian/8.1/8.1

4.

5.
6.

Enter a unique name for the provider in the Provider Name field.
In the Data source field, select the backing data source. You would select which ever Datasource History Provider contains the tables you
want exposed to the historian system. Once ready, click the button, which completes the configuration Create New Historical Tag Provider
process.

Retrieving Records

Once configured, the DB Table Historian will expose any tables found in the associated data source (specifically, the listed on the Data Source
configuration page of the DB Table Historian). From this point on, any tables found in the data source will be available for browsing via the various Tag
History interfaces found throughout Ignition.

For example, we could store some records in a database connection with a Transaction Group, which would create a table like the following:

Then, we could use the Perspective built-in Tag browser panel to detect the table, which exposes the columns as "tags":Power Chart

https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Power+Chart

Path Components

The DB Table Historian Provider attempts to map each column in a database table to a Tag. When querying the results, the historical Tag path used
is composed of multiple components, which each represent some identification of the data source. The DB Table Historian is molded after the
following:

histprov:[historyProvider]:/table:[tableName]:/column:[columnName]:/timestamp:[timestampColumnName]:
/keycolumn:[keyColumnName]:/keyvalue:[keyColumnValue]

Each of the components are described below.

Component Description

histprov The name of the history provider that should be queried.

table The name of the database table in the the history provider.

column The name of the column on the table, in the history provider.

timestamp A column on the table that will be used as the source of the timestamp for the query. By default, the query will look for a column
named to use for the timestamp component. t_stamp

It's highly recommended to include this component if the table doesn't contain a timestamp column named "t_stamp", otherwise
the query will fail.

keycolumn An optional component that allows you to specify a single column on the table to use for simple filtering. Used in conjunction with
keyvalue.

There can only ever be a single keycolumn for any given path. More complex filtering can be accomplished by instead using a Nam
. ed Query

keyvalue An optional component that works with keycolumn, allowing the query to only return rows if the keycolumn contains the value
specified on this component. Value must be an integer.

As far as historical pathing goes, Tags created by this provider may look something like below, with dedicated and components in the table column
path.

histprov:DB_Table_Historian:/table:group_table:/column:Sine1:/timestamp:my_timestamp_column

Example

Say we have a database table like the following.

SELECT machine_id, process_value, time FROM machine_values

machine_id process_value time

1 111 2020-09-10 21:44:35

1 100 2020-09-10 21:44:41

2 22 2020-09-10 21:45:01

2 222 2020-09-10 21:45:15

https://legacy-docs.inductiveautomation.com/display/DOC81/Named+Queries
https://legacy-docs.inductiveautomation.com/display/DOC81/Named+Queries

We could use the DB Table Historian provider to expose our machine_values table to a . Vision Tag History Binding

The resulting historical Tag path for process_value (after dragging it over to the table) would look like the following:Selected Historical Tags

https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+History+Bindings+in+Vision

histprov:DB Table Historian:/table:machine_values:/column:process_value

We would need to explicitly state that the "time" column should be used by the binding, so we could double click on the cell under the "Tag Path"
header, and change the Tag Path to the following, which would allow the query to feature the records accurately.

histprov:DB Table Historian:/table:machine_values:/column:process_value:/timestamp:time

We could further modify this Tag path, so that only entries with a "machine_id" of 1 are returned, but changing the path to the following:

histprov:DB Table_Historian:/table:machine_values:/column:process_value:/timestamp:time:/keycolumn:
machine_id:/keyvalue:1

1.
2.
3.
4.

Historian Simulator

The following feature is new in Ignition version 8.1.0
 to check out the other new featuresClick here

The Historian Simulator is a provider that will generate simulated historical records, without the need for
an external database or data source. The Simulator doesn't actually store any records. Rather,
subsystems in Ignition can make requests to the simulator, and it will generate a result set based on the
Tag path(s) provided.

The simulator is great for testing, as the data generated is reliably aligned to the specified period. Each
generation of data for a given set of parameters and given time range will be repeatable. In addition, the
"resolution" of the raw data, or the frequency of the generated datapoints, is configurable allowing for as
dense or sparse raw values.

On this page ...

Configuring a Historian Simulator
Provider
Retrieving Simulated Data
Simulator Path Syntax

Editing the Paths
Function Examples

Historian Simulator

Watch the Video

Configuring a Historian Simulator Provider

On the Gateway Webpage, navigate to the Config section.
Under the heading in the sidebar, click on TAGS History.
On the History Provider listing, click Create new Historical Tag Provider.
From the listing of available types, select , and click Simulator Next.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.0
https://www.inductiveuniversity.com/videos/historian-simulator/8.1

5.

6.

The simulator requires a unique name from other historical providers on the same Gateway, but otherwise does not require any other
configuration settings. The bulk of configuration occurs when attempting to request records from the simulator. For now just provide a name,
and click the button to finish configuring the provider. Create New Historical Tag Provider

You'll be redirected back to the History Provider listing. You're now ready to use the simulator.

Retrieving Simulated Data

Once a Simulator Provider has been configured, you need a Tag Historian Query to start retrieving records from it. Lots of different interfaces can
request Tag Historian Queries, but for the sake of simplicity we'll only focus on . Browsing for available historical Tags Tag history bindings in Vision
using a Vision Tag History binding reveals the following Tags:

Simulated Provider

cos_1m_100_1000ms
function_period_amplitude_resolution
ramp_60s_100_1s
realistic_1d
sine_10s_20_500ms
square_1h_10_10s

https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+History+Bindings+in+Vision

To get started quickly, you can use the default Tags in the list above. The one exception would be the "function_period_amplitude_resolution
 " Tag, as that's simply there for syntax reference. The rest of the Tags utilizes the simulator's pathing syntax.

Simulator Path Syntax

The built-in "Tags" provided by the simulator are a great example of the simulator can do, but it is worth knowing that the data returned by the
simulator can be customized. Doing so involves modifying the Tag path in the Tag history query.

As a refresher, history providers require a path that contains multiple components. Together, the components identify where the data came from. For
example, a historical path could have a component that represents the history provider associated with the data, and a component histprov Tag
that represents the Tag path of the Tag. A hypothetical historical path would look like the following:

histprov:my_provider:/tag:my_tag_path

With that understanding, retrieving records from the simulator involves providing the name of the simulator configuration on the gateway (the histprov
) and a Tag path. Again, the simulator doesn't store any records. Rather, it looks at the Tag path provided, parses it, and returns a result set based off
of contents in the path.

The simulator expects Tag paths to use the following notation, with each "parameter" delimited by an underscore:

function_periodTime_amplitude_resolutionTime

Each parameter is described below:

parameter description

function The function to use when generating the raw data. The following functions are available:

Ramp - Start at zero, and increment up to Amplitude over a the periodTime. Once Amplitude has been reached, start over at
zero and repeat.
Sine - Generates a Sine wave over the period of time, with Amplitude representing the peak deviations from zero.
Cos - Generate a Cosine wave over a period of time, with Amplitude representing the peak deviations from zero.
Square - Half the time is spend at zero, the other half is spent at amplitude, across periodTime.
Realistic - Generates 400 random but somewhat realistic data points that repeat each period. Note that this function ignores
both the amplitude and resolutionTime parameters.

periodTime How often the data sequence starts over. Values for periodTime need a time unit.

amplitude Used as a peak value by most of the functions.

resolutionTi
me

How often raw data points are generated. Like periodTime, this parameter requires a time unit.

For those functions utilizing a time unit represented by certain notation. A description of each notation can be found below:

Notation Time Unit

ms Milliseconds

s Seconds

m Minutes

h Hours

d Days

Editing the Paths

With the knowledge of how the paths work, you can easily use the existing Tag history interfaces to request datasets with custom paths, usually by
simply typing in the desired parameters.

For example, the image below shows Vision's Tag History Binding interface, but we modified the Selected Historical Tag path to use the realistic
function over a period of 30 minutes, instead of the default one day.

Function Examples

For example, the Tag in the path below utilizes a sine function, over a period of 10 seconds, with an amplitude of 20, and a raw point will be generated
every 500 milliseconds.

tag:sine_10s_20_500ms

The following would generate a square wave, with an amplitude of 10, repeating every day, while generating a raw value for every 5 minutes.

tag:square_1d_10_5m

The realistic function is unique in that it only utilizes the periodTime parameter, therefore:

tag:realistic_30m

How the Tag Historian System Works
This page provides an overview on how the Tag Historian system evaluates tag changes, stores them, and later retrieves those values.

Deciding When to Store

The diagram above demonstrates the evaluation cycle for determining if the system needs to collect a sample starting with the sample mode type and
working through timer settings and deadband change sufficiency.

When configuring history on a tag, these are some of the several checks that occur. These checks ultimately determine if the system should collect a
sample. Each check is handled by something on the backend of Ignition called an "Actor". The notable actors here are , , and Sample Mode Min/Max Timer

, which each correlate to similarly named properties on the tag's configuration. Deadband

Sample Mode

First the system needs to detect a value change on the tag, which is handled by the actor.Sample Mode

If the tag is using a Periodic or Tag Group mode, then the storage evaluation occurs at the same rate specified by the mode's rate.
If the tag is using an On Change mode, then storage evaluation occurs every time the tag changes value.
In addition, there is a periodic timer for On Change modes running that checks if an On Change tag has remained static for a period of time longer
than the configured maximum time between samples. If this occurs then the system immediately collects a sample, regardless of the other actors.
The periodic timer evaluates all tags that share a tag provider, history provider simultaneously, and rate . So two tags that share a tag provider and
history provider, but have different sample rates, will be evaluated separately.

Min/Max Timer

The next actor is the . Where applicable, if the mode's minimum time between samples has not yet been reached, then the new value is Min/Max Timer
discarded. Otherwise, if the maximum time has been exceeded, then the system will collect a sample. The Max Time between samples will bypass the
deadband, but not the sample rate. If the value is in between any minimum and maximum allowable sample periods, then the value is handed off to the
next actor.

When using a Tag Group sample mode, there are two locations where a Max Time can be defined: On the tag's history settings, and on the Tag Group's
history settings. The Tag Group's settings override the settings on the Tag, when the Tag Group is using it's default values: in other words, neither except
the Max Time Between Samples or Max Time Units settings on the Tag Group have been changed.

Deadband

Next the actor examines the newly changed value in comparison to the previous value. The deadband will ultimately determine if the new value Deadband
is sufficiently different enough than the previous value. If so, then a sample is collected.

Storing a Value

Once a sample is collected, it's added to a , which is a collection of samples to store from a particular Tag Group/Scan Class (values using a History Set
"periodic" sample mode are all bundled together under an "_exempt_" group).

After being bundled, the History Set is processed by the . Store and Forward System

Memory Buffer

The History Set first reaches the Memory Buffer. If the Local Cache (in the Disk Store) is empty, then we know there are no other sets to process, and our
new set is sent off to a Database Sink.

If the Local Cache has records, then the memory buffer will direct the newly acquired History Set to the Disk Store.

Disk Store

The Disk Store stores records on disk, in one of two areas.

The is used to store sets that need to be sent to the Database Sink. Sets stay here until the Store and Forward system's Local Cache Write Time or Write
 are met. Size

The Q stores records that failed to be sent to the Database, typically due to an error reported by the database. uarantine

Database Sink

A Database Sink is responsible for several things:

Bundle samples from a History Set into a SQL transaction
Execute queries against the database.
Keep tag id values in memory, so the sink doesn't have to constantly query the database for identifying features when a new record from an
existing tag comes in.
Samples that failed to be inserted into the database will be retried as individual queries before being moved to the Quarantine.

Retrieving a Value

https://legacy-docs.inductiveautomation.com/display/DOC81/Store+and+Forward
https://legacy-docs.inductiveautomation.com/display/DOC81/Configuring+Store+and+Forward
https://legacy-docs.inductiveautomation.com/display/DOC81/Configuring+Store+and+Forward

Many features in Ignition can request data from the historian system. Requests must include some key attributes:

Start datetime.
End datetime.
Tag paths.
Sample size, determining how many datapoints should be returned.
Aggregation mode, used in cases where many points are shown in a relatively small time frame.
Return format, either wide or tall.

Request Origin

Tag History requests from Perspective and Vision Component Bindings can be cached for future use. Because of this the history system takes note of
where the request originated from. If it was from a Tag History component binding then the system will check the appropriate cache. Other origins, such as
the function don't have a cache, and instead immediately query from the database. system.tag.queryTagHistory

Of note, component bindings that opt out of using the cache (enabling the Vision "Bypass Tag History Cache" setting, or by disabling the Perspective
"Cache & Share" setting) will skip the cache and query their results from the database.

Cache

Requests originating from a component binding are compared to existing caches. If data within the cache matches the request exactly, then the request is
sent to the Processor.

If the cache is missing some of the requested data points, then they're retrieved from the database.

Query Data from Database

Here the system will write and execute a query to retrieve records from the database, based upon the start datetime and end datetime. The Tag Historian
normally partitions data across multiple tables, so this step typically involves several SELECT queries to discover which partitions need to be consulted.

If are enabled, the system will determine if it should use those processed tables at this step. pre-processed partitions

Processor

The Processor has several responsibilities. Ultimately it needs to create a result set to return to the originator, but it also needs to process the data in the
following ways:

If some of the records from the query were retrieved from the cache, then the Processor is responsible for combining the cached records with the
newly queried records.
The Processor is responsible for placing records into time slices, as well as aggregating or interpolating the data as necessary. For example, if a
query is requested to return 10 data points over a 10 minute time period, the processor would create 10 time slices that span one minute each. If
there were multiple values collected within any of those slices, the values are aggregated using the selected aggregation method. If there aren't
any records within that slice, interpolation will create a value.

Store in Cache

https://legacy-docs.inductiveautomation.com/display/DOC81/system.tag.queryTagHistory
https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+History+Providers#TagHistoryProviders-Pre-ProcessedPartitions

If the request originated from a system that has a cache, the result set created by the Processor is cached at this step. Regardless, after this step the
result set is handed back to the object that originally made the request.

Storage Format

A listing of tables used by the Tag Historian can be found on the page. Ignition Database Table Reference

https://legacy-docs.inductiveautomation.com/display/DOC81/Ignition+Database+Table+Reference

SQL Bridge (Transaction Groups)
Transaction Groups are the heart of the SQL Bridge module. They are
execution engines that perform database tasks such as storing data
historically, synchronizing database values to a device, and loading recipe
values. A variety of group types, items types, and options means that
Transaction Groups can be configured to accomplish a variety of tasks
against a database table.

Transaction Group Overview

At their core, Transaction Groups are user-configured collections of data references (called) that items
are then linked to columns in a table in a SQL database. Items can be OPC references, tag references,
expressions, or SQL queries, and transaction groups allow precise control of data flow to, or from,
specified items to a configured table. To set up and use Transaction Groups, SQL knowledge is not
required; all a group needs to run is a database connection. Ignition can automatically create and
manage the database table for each group.

Transaction Groups are configured in the Ignition Designer. The group will then execute at a specific
interval of time, or on a user-defined schedule. A can be used to prevent planned executions trigger
when specified conditions are not met. On execution, the simplest groups (Historical groups) will create a
new row in the database table with a separate column for each Item in the group. However, more
complex variations are possible.

On this page ...

Transaction Group Overview
Transaction Group Applications

Historical Data Logging
Recipe Management and
Synchronization
Block Data Transfers
Stored Procedures

Transaction Group Applications

There are four types of Transaction Groups, and they each handle data a little differently.

Historical Group - A basic, one-way group that collects a data point from each item, and logs it to a column in the database.
Standard - A flexible, two-way group that can log data to the database, or pull data from the database to write to OPC items or tags. Group
Block - A standard group with an additional feature: each execution of the group can create, modify, or extract multiple rows from the Group
database table, rather than just one.
Stored - A group capable of invoking a stored procedure in the database, returning the results of any OUT or INOUT Procedure Group
parameters to tags or OPC items.

Learn more about each type of group on the page. Types of Groups

Historical Data Logging

Transaction groups can function as a flexible alternative to the Tag Historian, which is more focused on speed and efficiency
than simplicity. The Historical Group is explicitly designed for this purpose, but the Block Group can allow
multiple rows to be logged at once.

Recipe Management and Synchronization

Transaction groups can furnish devices connected to Ignition with information stored in a database, based on a parameter from the device or
elsewhere. Typically a Standard Group would be used for this application, but Block and Stored Procedure groups can accomplish this as well. See
the example for more details.Recipe

More generally, Standard and Block groups can be used to synchronize device or tag data with a database table on a timer or schedule, allowing the
database to act as a go-between for another system and a target device, or for the database to reflect realtime values for specified data points.

Block Data Transfers

The supports the transfer of entire arrays of data to and from the database.Block Group

Stored Procedures

The Stored Procedure Group allows you to use group items as inputs and outputs for your existing , allowing query specifics to be Stored Procedures
managed external to Ignition.

In This Section ...

https://legacy-docs.inductiveautomation.com/display/DOC81/Types+of+Groups#TypesofGroups-BlockGroup
https://legacy-docs.inductiveautomation.com/display/DOC81/Types+of+Groups#TypesofGroups-StoredProcedureGroup

Understanding Transaction Groups

Transaction Group Workspace

Transaction Groups are edited through the Ignition Designer. When a group is selected, you are
presented with the transaction group workspace. The workspace is broken into several parts:

Title bar - Shows the name of the currently selected group, as well as options to set it
as Enabled or Disabled, and to Pause, if it's currently executing.
Item - Shows all of the items configured in the selected group. Many settings can be tables
modified directly through the display, the rest by double-clicking the item or selecting in the Edit
context menu.
Action / Trigger / Options tabs - Defines how and when a group executes. Holds most of
the options that apply to the group in general, such as the update rate, and which data
connection it uses.
Status / Events tabs - Provides information about the executing group, including the most
recent messages that have been generated.

On this page ...

Transaction Group Workspace
Welcome Page
Items
Enabling Group Execution
Editing Group Settings

Action Settings
Group Update Rate

Timer
Schedule
Execution Cycle

Trigger Settings
Advanced Settings
Troubleshooting

Events Tab
Creating a Transaction Group

Transaction Group
Introduction

Watch the Video

Welcome Page

The Transaction Group Welcome page allows you to create any one of the four types of transaction groups. Each one of the transaction groups is
basically a template to help you get started creating your transaction group. Once you select a Transaction Group, enter a name, and press 'create',
and the specific transaction group template will open. All you have to do next is enter the tags for the values you want to collect. The Transaction
Group Welcome tab will show you any recently modified transaction groups along with the date it was modified and who modified it. You can even
double click on a recently modified chart and open it.

https://www.inductiveuniversity.com/videos/transaction-group-introduction/8.1

Items

Each Item (Tag) in the Transaction Group consists of several properties, but the key properties are the Source/Latched Values and Target Name.

Source and Latched Value

The Source Value will be the value of the items source. This can be something like a Tag or a direct OPC Item if writing to the database, but can also
be the value pulled from the database if in DB to OPC mode. This value can change in between executions, depending on the source type. When the
source is a Tag, it will update as the Tag updates, depending on how the Tag Group for the Tag is set. However, if the source is an OPC Item, it will
update only when the group executes, unless the OPC subscription rate is overridden in the group.

The Latched value will be the value that was written at execution. This can be the value that gets written to the database on execution in OPC to DB
mode, or it can be the value that gets written to the Tag in DB to OPC mode. The value will only change on execution of the group.

Target Name

In most cases, the Target Name is a column on the database table the Transaction Group is associated with. However, it is possible to have the
Target Name 'Read-only'. When set to 'Read-only' the value of the item will not be tied to any columns in the database, but is still visible from the
Transaction Group and can be used as a trigger.

Enabling Group Execution

In order for groups to be evaluated, they must first be enabled. This is done by selecting in the group title bar, and then saving the project. Enabled
The group executing can be stopped by reversing the procedure and selecting before saving. If you want to quickly and temporarily stop the Disabled
group's evaluation, toggle the button. This will prevent execution until the group is enabled again, or until the system is restarted.Pause

Note: Transaction Groups exist in a project, but they execute in the Gateway space. This means that once your groups are enabled, they do not
need (or use) Vision clients or Perspective sessions in order to run.

Editing Group Settings

Group settings may be modified at any time, regardless of whether or not the group is executing. Modifications will be applied when the project is
saved, and the group will be started or stopped as required. Some changes such as modifying items may cause features like live values to appear
to be incorrect. It is therefore important to notice the modified icon that appears next to the group, and to save often. If you would prefer to stop the
group before making edits you can simply pause the group. Execution will begin again after the project is saved.

Action Settings

The action settings of a Transaction group define how often the group will be evaluated, as well as
important settings that apply to the group as a whole. They are found on the Action tab, the first of the
tabs on the right side of the Transaction Group workspace.

The Action settings vary for the different types of Transaction Groups, but a few settings are common to
most of them:

Setting Description

Executio
n
scheduling

Despite the name, determines how often the group is . For a number of reasons, the group evaluated
may not execute during the evaluation. The most common reason is the trigger, but see Execution

 below for more possible reasons why evaluation will exit.Cycle

Timer - specifies the OPC Tag subscription rate for the OPC Tags. It can run at millisecond,
second, minute, hour, or day rates.
Schedule - is a specified start time on the update . Set a list of time (or time ranges) that the Rate
group should evaluate at. If the pattern specified includes a time range, a rate must be provided.

Update
mode

For groups that support it, sets the default for how items are compared to their targets. Options are:

OPC to DB - Only read from the and write to the . OPC server database
DB to - Only read from the and write to the . OPC database OPC Server
Bi-directional wins - Read and Write to both the and . On group start, OPC database OPC Server
write values to the . OPC database
Bi-directional DB wins - Read and Write to both the and . On group start, database OPC Server
write values to items. database OPC

Data
source

The database connection name the group should use. Can be , which will use the default Default
connection for the project.

Table
name

Name of the table in the database that the group should interact with (reading or writing, depending on
the and individual item settings). The tables listed in this dropdown are Update mode Mode
determined by the property. Data source

This setting allows you to type arbitrary names into it. If you type the name of a database table that
doesn't exist, and the setting is enabled, then the group will attempt to Automatically create table
create the database table on start.

Automati
cally
create
table

If enabled, the Transaction Group will attempt to create a database table once the group starts
running, assuming one doesn't already exist as determined by the setting. If the table Table name
already exists, then nothing happens.

Use
custom
index

If left disabled, the group will attempt to add an index column to the database table when the group
starts executing. If enabled, the group will use the column selected in the adjacent dropdown, or create
a new column if you type in a column name that doesn't exist on the table (requires the Automatically

 setting to be enabled). create table

Store
timestamp

If enabled, will attempt to store a timestamp value to the column specified in the adjacent dropdown. If
you type in a column name that doesn't exist on the table, the group will attempt to create the column
on start, assuming the setting.Automatically create table

Store
quality

Stores an aggregate quality for the group along with the regular data. The aggregate quality is a bit-
wise AND of the qualities of the items in the group.

Editor notes are only visible to
logged in users
From Brandon: I was originally
going to get rid of this screenshot
since IGN-3350 was reverted but it
might be prudent to leave this here
for now in case the change goes
through in the future. See IGN-6310
for the original ticket information
and IGN 6316 for further solution
research

code

Delete
records
older
than

If enabled, and the group is running, this setting will make the group delete older rows in the table.
Options are minute(s), day(s), month(s), and year(s). While enabled, a task will be created to check
the database tables for older records. The rate this task occurs is determined by frequency configured
on this property.

Frequency Task execution rate

Less than an hour Every minute

Between one and twelve hours Every 15 minutes

Over twelve hours Every hour

The following feature is new in Ignition version 8.1.19
 to check out the other new featuresClick here

Transaction Groups using this property will use timestamps instead of the row index the record was
inserted at when pruning.

Table
Action

Defines which row will be targeted by the group.

insert new row
update/select - allows you to target specific rows in the database table. Options are:

first row - the group always executes against the first row.
last row - the group always executes against the last row
custom - allows you to write a custom where clause to determine which row should be
targeted. Uses the text area. The custom clause can use references to values of Where
items in the group.

key/value pairs - Provides dropdowns for both a column and a item in the group, allowing
the group to target a single row in a table based on the item's value. For example, if a value
of 5 is used in conjunction with the "group_table_ndx" column in the database table, rows
where group_table_ndx has a value of 5 are targeted when the group executes.

Additional conditions can be added or removed with the Add or Delete buttons at the bottom
of the Table Action settings.

Group Update Rate

Groups generally work on a timer. They are set to run at a certain rate. As they are running at that certain
rate, they then check the rest of the settings. If the trigger conditions pass, the group is executed fully.

The Execution Schedule controls the rate at which the transaction group executes. On the Action tab of a
group you selected, under Execution Scheduling, there are two options: and . Timer, Timer Schedule
executes the group at a certain rate. Schedule, executes the group at specific times. When the Schedule

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.19

1.
2.
3.

4.

5.
6.
7.
8.
9.

10.
11.
12.

option spans across a period of time, you must specify the rate at which the group executes during that
time.

Timer

The Timer acts as the heartbeat of the transaction group and is evaluated at the provided rate. It can run
at millisecond, second, minute, hour, or day rates. The Timer specifies the OPC Tag subscription rate for
the OPC Tags. When a Timer is running the transaction group it first analyzes the Tags inside the Basic

 section of the transaction group. Then it looks at the trigger configuration and OPC/Group Items
evaluates for Tag changes. Then it evaluates the specific trigger conditions and decides to execute on a
trigger. Depending on the trigger settings, full execution may not occur, but the trigger will at least be
evaluated at this rate. If the triggered condition is true, the transaction group proceeds to the Triggered

 section of the transaction group. Only after this flow is complete, will the transaction Expression Items
group interact with the database, and for example, insert the Tag values into the database.

Schedule

An important difference between the Timer and the Schedule options is that the schedule option will
automatically align to the specified start time on the update rate. With Schedule mode, you are providing
a list of time (or time ranges) that the group should run at. If the pattern specified includes a time range, a
rate must be provided, and the group will evaluate as in timer mode during that period.

The schedule is specified as a comma separated list of times or time ranges. You may use the following
formats:

24-hour times. "8:00, 15:00, 21:00", for execution at 8am, 3pm, and 9pm.
12-hour with am/pm (if not specified, "12" is considered noon): "8am, 3pm, 9pm"
Ranges, "8am-11am, 3pm-5pm"
Ranges that span over midnight, such as "9pm - 8am"

When using ranges, the execution times will be aligned to the start time. For example, if you specify a
schedule of "9am - 5pm" with a rate of "30 minutes", the group will evaluate at 9, 9:30, 10, etc.,
regardless of when it was started. This is a useful difference compared to the Timer mode, which runs
based on when the group was started. For example, if you want a group that runs every hour, on the
hour, you could specify a 1 hour rate with a range of "0-24."

Execution Cycle

All of the Transaction Groups follow a similar execution cycle. The flow may differ based on the group's
configuration, but the general cycle is always the same.

Timer determines it is time to evaluate.
Is the group paused? If so, end the cycle.
Is the Gateway part of a redundant pair? If so, is it active? If not active, end the cycle. Groups
only execute on the active node.
Evaluate run-always items: OPC items, Tag references, and expression items set to ignore the
trigger (or items placed in the run always section of the Configuration window).
Is trigger set/active? If there is a trigger defined, but it is not active, end the cycle.
Evaluate "triggered" Expression items.
If applicable, read values from the database.
Compare items with their targets.
Execute any writes.
Report alarms configured on the executed items
Acknowledge the trigger, if applicable.
Write handshake value, if applicable.

If an error occurs at any stage besides the last stage, the cycle will end and a failure handshake will be
written, if configured. The group will attempt execution again after the next update rate period.

When the "Bypass Store and Forward System" option is false, writing to a database from the Transaction
Group will result in a successful execution if the database write enters the Store and Forward Pipeline.

If the group errors due to a bad database connection, it will need to be manually restarted Caution:
once the database connection is brought back.

Group Update Rate

Watch the Video

Trigger Settings

The Trigger tab contains settings that modify how the group executes. The outcome of an execution is
handled in the handshake section of the trigger section of the transaction group.

The table below is a list of Trigger and Handshake settings.

https://inductiveuniversity.com/video/group-update-rate/8.1

Setting Description

Only
evaluate
when values
have
changed

Enabling this setting will cause the group to evaluate only if values Tag qualities havor
e changed. If the values have not changed, it will exit the evaluation. You have the
option to monitor all Run-Always items in the group, or only specific ones.

 - Select either all Tags or one or more Tags in order Tags to watch for change
to monitor for value changes. Select 'all Tags' or 'Custom,' and select the Tag(s)
from the dropdown.

Execute this
group on a
trigger

Enables a trigger on a specific item in the group. The trigger item can be any Run-
Always item, such as an OPC item, Tag reference, or an Expression item set to "Run-
Always" mode.

Note: When using triggers in a Block Group, the intended trigger will need to be
under instead of order for the trigger to show Basic OPC/Group Items Block Items
in the dropdown list.Trigger on item

Trigger on item - select the item time you want to use as the trigger.

Only
execute
once while
trigger is
active

The group will only execute once when the trigger goes into an active state, and will
not execute again until the trigger goes inactive first. If unselected, the group will
execute each cycle while the trigger conditions evaluate to true.

Reset trigger
after
execution

If using the ">0" or "=0" trigger modes, the trigger can be set to write an opposite value
after the group has executed successfully. This is useful for relaying the execution
back to the PLC.

Prevent
trigger
caused by
group start

If selected, the group will not execute if the trigger is active on the first evaluation of
the group after enabling the group. Selecting this option will prevent initial executions
caused by system restarts, or reenabling the group.

Trigger
conditions

Set any of the following trigger conditions:

is !=0 (or true)
is =0 (or false)
is active or non-active, which causes the group to execute if the trigger value
matches the condition. is active
Active on value change, which will cause the group to execute if the trigger
changes value at all.

Write
handshake
on success

Set the item and the value you want to see when the group executes successfully.

Write
handshake
on failure

Set the item and the value you want to see when an error prevents the group
execution.

To learn more about configuring Transaction Groups with the different trigger options, refer to the Trigger
 page. Options

Advanced Settings

Transaction Groups offer several advanced settings that affect how execution occurs. These settings can
be found under the tab for a group. The table below describes the Advanced settings. Options

Setting Description

OPC
Data
Mode

Modifies how the group receives data from OPC.

Option Description

Subscri
be

Data points are registered with the OPC server, and data is received by the
group . This is the default setting and generally offers the best on-change

https://legacy-docs.inductiveautomation.com/display/DOC81/Item+Types#ItemTypes-RunAlwaysvs.TriggerItems

performance, as it reduces unnecessary data flow and allows the OPC
server to optimize reads.

Note: Data is received by the group asynchronously, meaning that it can
arrive at any time. When the group executes, it "snapshots" the last values
received and uses those during evaluation. If some values arrive after
execution begins, they will not be used until the following execution cycle.

Read Each time the group executes it will first read the values of OPC items from
the server. This operation takes more time and involves more overhead
than subscribed evaluation, but ensures that all values are updated
together with the latest values. It is therefore commonly used with batching
situations, where all of the data depends on each other and must be
updated together. It's worth noting that when using an OPC item as the
trigger, the item will be subscribed, and the rest of the values read when the
trigger condition occurs.

Bypass
Store
and
Forward
System

This setting is only applicable to groups that insert rows into the database. Causes groups
to target the database directly instead of going through the store-and-forward system. If
the connection becomes unavailable, the group will report errors instead of logging data to
the cache.

Override
OPC
subscripti
on rate

Specifies the rate at which OPC items in the group will be subscribed. These items are
normally subscribed at the rate of the group, but by modifying this setting it is possible to
request updates at a faster or slower rate.

Always
store
NULL for
bad
quality
items

With this option set to True, it will force the group to store a NULL value when the item
has a bad quality, instead of writing the bad quality value.

Set
NULL
Tag
values to
default

If a NULL is read from the Tag, it will instead use a default value to write to the database,
depending on the type. This can prevent errors for database columns that do not accept
NULL values. The default values are the same as the table above.

Set
NULL
DB
values to
default

If a NULL is read from the database, it will instead use a default value to write to the Tag,
depending on the type. This can prevent errors for OPC Tags that do not accept NULL
values. Not available in a Historical Group.

Enabling the Set DB Values to Default setting on Block Groups will clear the latched
value, setting the item to a default if the corresponding database value is Null.

Type Default Value

Byte 0

Short 0

Integer 0

Long 0

Float 0.0

Double 0.0

Boolean FALSE

String '' (Empty Sting)

Date/Time Current Date/Time

Dataset [0x0] (Empty Dataset)

Array [] (Empty Array)

1.

2.

3.

Troubleshooting

It may be helpful when troubleshooting or testing Transaction Groups to increase the default threadpool count. Refer to the Gateway Configuration
 for more information.File Reference - Threadpool Counts

Events Tab

In the Events tab, the list of events will have a brief summary of the occurrence. Double-click an event to display a pop-up with a more detailed
description.

Creating a Transaction Group

This example demonstrates how to configure a transaction group, specifically a Historical Group.
However, the process of creating any transaction group type is very similar, especially so in the case of a
standard group. The section contains more examples. Transaction Group Examples

Click on the in the Project Browser to switch the Designer's workspace to Transaction Groups
the Transaction Group workspace.
In the Project Browser, right click on to make Transaction Groups > New Transaction Group
a New Historical Group. Name the group 'Group.'

Browse your OPC device and drag some OPC Tags to the section.Basic OPC/Group Items
The group starts out 'Disabled' by default.

Basic Historical
Group

Watch the Video

Realtime Group

Watch the Video

https://docs.inductiveautomation.com/display/DOC81/Gateway+Configuration+File+Reference#GatewayConfigurationFileReference-ThreadpoolCounts
https://docs.inductiveautomation.com/display/DOC81/Gateway+Configuration+File+Reference#GatewayConfigurationFileReference-ThreadpoolCounts
https://www.inductiveuniversity.com/videos/historical-group-type/8.1/8.1
https://inductiveuniversity.com/video/realtime-group/8.1

3.

4.
5.

6.

7.

8.

Save your project.
Click the button above the item tables to enable logging.Enabled

Go to the tab and change the . For the example, we gave it the name Action Table Name
"New_Test_Table."
At this step, your group only exists in the Designer.

Save your project to start the group. Your group is now running and logging data to your
database connection.
To see the data, you can use the Ignition Designer's built-in . The Database Query Browser

easiest way to do this is to click on the icon next to your group's Table Name field. Database
The Query Browser is a convenient way to directly query your database connection without
leaving the Ignition Designer. Of course, you can also use any query browser tools that came
with your database.

https://legacy-docs.inductiveautomation.com/display/DOC81/Database+Query+Browser

Types of Groups

The SQL Bridge Module provides four different types of Transaction Groups that you can use in your
projects. Each of these different types of groups vary in their operation and use for data logging and
database to PLC synchronization.

Standard Group

The Standard Group contains items, which may be mapped to columns in the group's linked database
table, or used internally for features such as triggering or handshakes. Items that are mapped to the
database target a specific column of a single specific row, chosen according to the group settings.
Values can flow from the items into the database, from the database to the items, or bidirectionally,
allowing the value of the database and the item will be synchronized.

The group may also insert new rows instead of updating a specific row, similar to the Historical Group.

Group Settings

The Standard Group uses a timer-based execution model shared by all groups, and the normal trigger
settings. Additionally, there are several settings specific to the group type:

Automatically create table - If the target table does not exist, or does not have all of
the required columns, it will be created/modified on group startup. If not selected and the
table doesn't match, an error will be generated on startup.
Use custom index column - If selected, you may enter any column name to hold the index. If
unselected, the table index will be named <table name>_ndx.
Store timestamp to - Specifies whether or not to store a timestamp with the record, and the
target column. The timestamp will be generated by the group during execution. For groups that
update a row, the timestamp will only be written if any of the values in the group are also written.
Store quality code to - If selected, stores an aggregate quality for the group to the
specified column. The aggregate quality is the combined quality of all of the items that write to
the table. For more information about quality values, see .Data Quality
Delete records older than - If selected, records in the target table will be deleted after
they reach the specified age. This setting is useful for preventing tables from growing in an
unbounded manner, which can cause disk space and performance problems over time.

Table Action

This section details how the group interacts with the table on each execution. The group can insert a new
row, or select/update the first, last or a custom record.

Insert New Row - This option will make the group insert a new record into the database every
time the group executes. This is the forced behavior of the Historical Group.
Update / Select - This option will either update or select from matching rows based on the
option selected below it. The property above determines whether an update Update Mode
(OPC to DB), select (DB to OPC), or both (Bi-directional) are used when the group executes.
First - Use the first row in the table. It is not recommended to use this option unless the order of
the data in the table is guaranteed.
Last - Use the last row in the table. This is commonly used when another group (or another
program) is inserting new rows for us, and we always want to update the most recent record.
Custom - A custom update clause is essentially the WHERE clause of the SQL query that will
be generated to read and write the group data. This usually contains a reference to a Tag in the
group. IE: column_name = {[~]item_name}
Key/Value Pairs - Used to inject dynamic values in order to create a WHERE clause for you.
The table below this option will allow you to enter column names and link them to values
(usually Tags in the group). This option also has the ability to Insert a new row with the current
key/value pair if it was not found.

Typical Uses

Standard Groups can be used any time you want to work with a single row of data. This can include:

Historical logging - Set the group to insert new records, and log data historically either on
a timer, or as the result of a trigger. Flexible trigger settings and handshakes make it possible
to create robust transactions.
Maintain status tables - Keep a row in the database updated with the current status
values. Once in the database, your process data is now available for use by any application that
can access a database, dramatically opening up possibilities.
Manage recipes - Store recipe settings in the database, where you have a virtually
unlimited amount of memory. Then, load them into the PLC by mapping DB-to-OPC using a
custom where clause with an item binding in order to dynamically select the desired recipe.
Sync PLCs - Items in the group can be set to target other items, both for one-way and
bidirectional syncing. By adding items from multiple PLCs to the group, you can set the items

On this page ...

Standard Group
Group Settings
Table Action
Typical Uses

Historical Group
Group Settings
Typical Uses

Block Group
General Description
Typical Uses
Table Format
Row ID and Block ID
Group Settings
Table action

Stored Procedure Group
Group Settings
Typical Uses
Known Issues
Parameters in the Stored
Procedure Group

https://legacy-docs.inductiveautomation.com/display/DOC79/Tag+Quality+and+Overlays

of one PLC to sync with the others. By creating expression items that map from one PLC item
to the other, you can manipulate the value before passing it on.

Historical Group

The Historical Group inserts records of data into a SQL database, mapping items to columns. Full support for triggering, expression items, hour &
event meters and more means that you can also set up complex historical transactions. Unlike the Standard Group, the Historical Group
cannot update rows, only insert. It also cannot write back to items (besides trigger resets and handshakes).

Group Settings

The settings of the Historical Group are identical to the settings in the Standard Group, but limited to inserting rows.

Typical Uses

Basic Historical Logging - Recording data to a SQL database gives you incredible storage and querying capabilities, and makes your
process data available to any application that has DB access.
Shift Tracking - Use an expression item to track the current shift based on time, and then trigger off of it to record summary values from the
PLC. Use a handshake to tell the PLC to reset the values.

Block Group

Block Groups instead allow you to store your data in a tall format. They allow you to create a unique type
of item, called a , which represents an ordered list of values to store within a column for each Block Item
execution.

General Description

A Block Group contains one or more block items. Each block item maps to a column in the group's table,
and then defines any number of values (OPC or SQLTag items) that will be written vertically as rows
under that column. The values may be defined in the block item in two modes. The first, List mode, lets a
list of value-defining items to be entered. These value items may either be OPC items, Tag items, or
static values. The second mode, Pattern mode, can be useful when OPC item paths or Tag paths contain
an incrementing number. You may provide a pattern for the item's path, using the wildcard marker {?} to
indicate where the number should be inserted.

Block groups are very efficient, and can be used to store massive amounts of data to the database (for
example, 100 columns each with 100 row -10,000 data points- will often take only a few hundred
milliseconds to write, depending on the database). They are also particularly useful for mirroring array
values in the database, as each element will appear under a single column, and share the same data
type.

Like the Standard Group, the Block Group can insert a new block, or update the first, last or a custom
block. Additionally, the group can be set to only insert rows that have changed in the block.

In addition to block items, the group can have other OPC items, Tag references, and Expression items.
These items can be used for triggers, handshakes, etc. They may also target a column to be written, and
will write their single value to all rows in the block.

The block group is so named because it writes "blocks" of data to a database table, consisting of multiple
rows and columns.

Block Group Type

Watch the Video

Typical Uses

Block Groups are useful in a number of situations where you need to deal with a lot of data efficiently. Mirroring/Synchronizing array values to DB -
Arrays are often best stored vertically, which makes them perfect for Block Groups. Pattern mode makes configuration a breeze by allowing to you
specify the array as a pattern, and set the bounds

Recipe management - Like Standard Groups, but used when set points are better stored vertically than horizontally.
Vertical history tables - Group data points by data type (integer, float, string), create a copy of the item that stores item path, and then use
the insert changed rows option to create your own vertically storing historical tables. Create additional copies of the block item that refer to
quality and timestamp in order to get further information about the data point.

Table Format

Due to their nature, Block Groups store records in a different format than the other groups. Consider how other Transaction Groups work. A single
execution of a Standard or Historical Group would store a row that looked like the following:

table_ndx tag1 tag2 tag3

https://www.inductiveuniversity.com/videos/block-group-type/8.1

1 10 20 30

We could take the Tags from the above example, and place them in under a single block item:

Under a single block item, each Tag is nested under the block item, and the block item is targeting the "Tags" column under Target name. A single
execution of this group stores the records in our table as so:

table_ndx Tags

1 10

2 20

3 30

Each additional block item would store records as a separate column.

table_ndx Tags More_Tags

1 10 11

2 20 22

3 30 33

Row ID and Block ID

Using the same Tag example from above, if we kept inserting new rows at every execution, our table would start to looks like the following:

table_ndx Tags

1 10

2 20

3 30

4 15

5 25

6 35

This isn't ideal, since the table doesn't have a great way to show which value came from which Tag. To help with this, Block Groups have optional
row_id and block_id columns that can be enabled (see the "Store row id" and "Store block id" settings under Group Settings). If we enable both the
Block ID and Row ID, our table would look like the following:

table_ndx Tags row_id block_id

1 10 0 1

2 20 1 1

3 30 2 1

4 15 0 2

5 25 1 2

6 35 2 2

Block ID represents the a single execution of the group, meaning rows with the same block_id value were inserted together. We see block_id values
of 1 (colored green) are part of the same execution, and rows with a block_id value of 2 (colored blue) are a separate execution.

Row ID in an index representing which item in the block item the row corresponds to. In our example, Tag1 is the first or top item in the block item
(row index 0), Tag2 is next (row index 1), and Tag3 is last (row index 2). Now we know that any value on that table with a row_id of 0 came from Tag1.

Group Settings

Beyond the differences in the data, namely that the Block Group works with multiple rows instead of just 1, this group type shares many similarities
with the Standard Group.

The unique settings are:

Automatically create table - If the target table does not exist, or does not have all of the required columns, it will be created/modified on
group startup. If not selected and the table doesn't match, an error will be generated on startup.
Automatically create rows - If the target rows do not exist, they will be created on group execution. If not selected and the rows don't
match, no records will be updated.
Use custom index column - If selected, you may enter any column name to hold the index. If unselected, the table index will be named
<table name>_ndx.
Store timestamp to - Specifies whether or not to store a timestamp with the record, and the target column. The timestamp will be generated
by the group during execution. For groups that update a row(s), the timestamp will only be written if any of the values in the group are also
written.
Store quality code to - If selected, stores an aggregate quality for the row to the specified column. The aggregate quality is the combined
quality of all of the items that write to that row. For more information about quality values, see .Data Quality
Store row id - Each row will be assigned a numeric id, starting at 0. If selected, this id will also be stored with the data.
Store block id - If selected, an incremental block id will be stored along with the data. This number will be 1 greater than the previous block
id in the table.
Delete records older than - If selected, records in the target table will be deleted after they reach the specified age. This setting is useful for
preventing tables from growing in an unbounded manner, which can cause disk space and performance problems over time.

Table action

This section details how the group interacts with the table on each execution, and is not available for the Historical Group type. This means when the
Timer or Schedule is active, and the Trigger condition are met. The group can insert a new row, or update the first, last or a custom record.

Insert New Block - If selected, each row of the block will be inserted when the group executes, even if the data has not changed.
Insert changed rows - This option will only insert the rows that have new data when the group executes. This is particularly useful for
recording history for many data points on an "on change" basis, provided there is a unique id column defined. The "store row id" feature is
useful for this, as well as the ability to reference the item path in an item's value property.
Update / Select - This option will either update or select from matching rows based on the option selected below it. The Update
Mode property above determines whether an update (OPC to DB), select (DB to OPC), or both (Bi-directional) are used when the group
executes.
First - Use the first row in the table. It is not recommended to use this option unless the order of the data in the table is guaranteed.
Last - Use the last row in the table. This is commonly used when another group (or another program) is inserting new rows for us, and we
always want to update the most recent record.
Custom - Like Standard Groups, this setting allows you to target a specific section of the table, using SQL where clause syntax, with the
ability to bind to dynamic item values. Unlike Standard Groups, however, the WHERE clause specified should result in enough rows to cover
the block. Excess rows will not be written to, but fewer rows will result in a group warning indicating that some data could not be written.

Stored Procedure Group

The Stored Procedure Group lets you quickly map values bi-directionally to the parameters of a
stored procedure. It is similar to the other groups in terms of execution, triggering, and item configuration.
The primary difference is that unlike the other group types, the target is not a database table, but instead
a stored procedure.

Items in the group can be mapped to input (or inout) parameters of the procedure. They also can
be bound to output parameters, in which case the value returned from the procedure will be written
to the item. Items can be bound to both an input and output at the same time.

Parameters may be specified using either or . That is, in parameter names numerical indices
any location where you can specify a parameter, you can either use the name defined in the database, or
a 0-indexed value specifying the parameter's place in the function call.

Stored Procedure
Group Type

Watch the Video

You cannot mix names and indices. That is, you must consistently use one or the other.

https://legacy-docs.inductiveautomation.com/display/DOC81/Quality+Codes+and+Overlays
https://www.inductiveuniversity.com/videos/stored-procedure-group-type/8.1

 If using parameter names, the names should not include any particular identifying character
(for example, "?" or "@", which are used by some databases to specify a parameter).

Group Settings

The Stored Procedure Group's settings look and act the same as those of the Historical Group. The primary difference, of course, is that instead of
specifying a table name and column names, you'll specify a Stored Procedure and its parameters.

Store timestamp to - Specifies whether or not to store a timestamp with the record, and the target column. The timestamp will be generated
by the group during execution. For groups that update a row, the timestamp will only be written if any of the values in the group are also
written.
Store quality code to - If selected, stores an aggregate quality for the group to the specified column. The aggregate quality is the combined
quality of all of the items that write to the table. For more information about quality values, see see .Data Quality
Procedure Name - The name of the Stored Procedure (SP) that you will be using. You must look into the SP definition to see what inputs
and outputs are available.

Typical Uses

Call stored procedures - The Stored Procedure Group is the obvious choice when you want to bind values to a stored procedure. It can
also be used to call procedures that take no parameters (though this can also be accomplished from Expression Items/SQLTags.
Replace RSSQL - The Stored Procedure Group is very popular among users switching from RSSQL, given that application's heavy use of
stored procedures.

Known Issues

When using an Oracle database, you must use indexed parameters.

Parameters in the Stored Procedure Group

When using a Stored Procedure Group, parameters may be configured to each item based on the type of the parameter:

The column is used for writing, so specifying an IN or INOUT parameters under this column will have the item try to write its Target Name
value to the parameter
The column is used to move the value of an OUT or INOUT parameter into an item in the group. If an item in a group is configured to Output
reference an OUT parameters, its value should be set to Target Name Read-Only.

Related Topics ...

Group Update Rate

https://legacy-docs.inductiveautomation.com/display/DOC79/Tag+Quality+and+Overlays
https://legacy-docs.inductiveautomation.com/display/DOC81/Understanding+Transaction+Groups#UnderstandingTransactionGroups-GroupUpdateRate

Item Types

Items are the backbone of a Transaction Group. They represent a link
between a source value (derived from either an OPC value or an
expression) and a cell in a database table. Items generally aren't executed
in a reliable order, with the exception of items. Expression
Expression items can be ordered using the up and down arrows located to
the right of the list where the items are displayed. This can be crucial for
performing complex operations that require a specific sequence. Below is
a listing of each type of item.

Item
Type

Description

OPC
Item

Directly subscribed to an OPC server at the rate of the group. These items effectively
ignore the gateway's Tag system, bypassing Tag groups and Tag providers altogether.

Express
ion
Item

Much like an expression Tag, expression items are flexible in that their value can come
from a number of different sources: specifically an expression or a database query.

Expression items have two sub types:

Run-Always expression items are evaluated every time the group executes. Meaning,
they'll run their associated expression or query every time the group executes.
Triggered expression items only evaluate when the group trigger is active.

Tag
Referen
ce Item

A reference to a Tag in a Tag provider. Allows a Tag to be used in a group like any other
item type, except that the Tag is evaluated by its scan class instead of by the group. For
more information, see the next section, . Tag References vs. OPC Items

Tag Reference Items can reference the value on any Tag in a Tag provider, such as query
Tags and memory Tags.

On this page ...

Tag References and OPC Items
Expression Items

Scope
Execution Order
Expression Type

Run Always vs. Triggered Items
Changing the Evaluation State

SQL Queries and Expressions
Creating a New Item
Item Type Property Table

OPC Item Options
Tag Reference Item Options
Expression Item Options

Item Types

Watch the Video

Tag References and OPC Items

It is easy to confuse the definition and purpose of Tag reference items and direct OPC items in
Transaction Groups.

Tags may be referenced inside of Transaction Groups through a Tag Reference Item. Since the source
of the Tag reference item exists outside of the Transaction Group, they have their own rules and
configurations that determine when their value changes. Thus Tag reference items can have their value
update according to their own execution (commonly, a Tag Group). Adding a Tag into a group is like
creating a shortcut to that Tag. However, once in the group, the item can be used like any other item. Tag
references are useful when it is necessary to have a single value in multiple groups, for example, as a
trigger in order to coordinate execution.

OPC Items in groups (as well as expression items in groups), however, are completely executed by the
group. They do not exist outside of the group in which they are defined. They are subscribed
and evaluated according to the rate of the group.

Refer to the at the bottom of this page to see the properties for both Tag and Item Type Property Table
OPC items.

Tag References vs.
OPC Items

Watch the Video

Expression Items

Expression Items are items not driven by a PLC. Instead they allow you to configure a static value, or use
some other means to automatically set a value, such as a query. They are useful for executing
comparisons, simple math, and looking up values from other database tables.

Much like OPC Items, Expression Items can have alarms configured, as well as applied numeric scaling
directly to the item.

Scope
Expression Items

https://inductiveuniversity.com/video/item-types/8.1
https://docs.inductiveautomation.com/display/DOC81/Item+Types#ItemTypes-ItemTypePropertyTable
https://inductiveuniversity.com/video/tag-references-vs-opc-items/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+Scaling+Properties

It is important to understand that an Expression Item only exists within its group, and can not be
referenced by items in other Transaction Groups, Tags, and any components on a window.

Execution Order

All Expression items will evaluate in order from top to bottom. This means referencing an Expression
Item above will pull the new value, but referencing an Expression Item below will give you the value from
the last group execution.

Expression Type

How an Expression Item determines its value depends heavily on its type.

Expression
Type

Definition

None Behaves similar to a Memory Tag in that the value does not automatically change.

Expression Uses Ignition's to determine the value on the Item. The Expression Language
expression can reference other items in the group, as well as Tags.

SQL Query Utilizes a SQL query to determine the item's value. Thus, a query can execute on the
item and the results can be referenced by other items in the same group.

Named Query Selecting this option will cause the value on the item to be determined by a Named
Query in the same project as the Transaction Group.

Refer to the Property Table at the bottom of this page to see the .Expression Item Options

Watch the Video

Run Always vs. Triggered Items

Expression Item can be configured in two different evaluation states:

Triggered: The Expression Item executes only when the Transaction Group is triggered.
However if the group is configured to execute on a trigger, then the item will evaluate every not
time the group executes (similar to how the state works). This is the default Run-Always
evaluation state new Expression Items use.
Run-Always: The Expression Items will run before the group trigger is checked, so it always
executes at the group's rate. This allows your expression to always evaluate regardless of the
trigger in the group. Additionally, this state allows you to use the Expression Item as the trigger
for the group. We advise that you never have a Target for a Run-Always Expression item

Run Always vs.
Triggered Items

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC81/Expression+Language+and+Syntax
https://docs.inductiveautomation.com/display/DOC81/Item+Types#ItemTypes-ExpressionItemOptions
https://inductiveuniversity.com/video/expression-items/8.1
https://inductiveuniversity.com/video/run-always-vs-triggered-items/8.1

because it always runs.

Changing the Evaluation State

Toggling between the two modes can be accomplished by dragging and dropping the Expression Item to
either the table or the table. Alternatively, Run-Always Expression Items Triggered Expression Items
the evaluation state can be changed by editing the Expression Item and toggling the Run-always

 checkbox(ignore trigger)

SQL Queries and Expressions

Expression items can use and to automatically determine SQL statements Ignition's Expression language
the value of an Expression Item. This is useful in scenarios where you want to use a value from the
database as the trigger for the Transaction Group, or aggregate several other items in the group into a
single value.

Expressions and queries on an Expression Item can reference the value of other items in the group or

Tags in the system by clicking on the icon.Tag

There are several Expression functions available that exist only for Transaction Groups. You can find
them in the and sections of the function list.Store and Forward Variables f(x)

SQL Query
Expression Items

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC81/Writing+SQL+Queries
https://legacy-docs.inductiveautomation.com/display/DOC81/Expression+Language+and+Syntax
https://inductiveuniversity.com/video/sql-query-expression-items/8.1

1.

2.

3.

4.

Creating a New Item

Below is an example of creating a new item. The steps can be applied to any item type.

In the Designer, go to Project Browser, and click on .Transaction Groups
The workspace now changes to the Transaction Group workspace.

Right-click on to create a New Transaction Group, or click on a group you have previously created.Transaction Group
You will now see the workspace changes to look like:

Right-click in the white area, and choose . The options in the popups represent the different item types. Refer to New Item > New OPC Item
the on this page for more information on the various item types and their properties. Item Type Property Table

https://docs.inductiveautomation.com/display/DOC81/Item+Types#ItemTypes-ItemTypePropertyTable

3.

4. Once you configured the item, click . OK

Item Type Property Table

The following tables describes the OPC, Tag and Expression Item properties.

OPC Item Options

Property Description

General

Name The name of the OPC item in the group. There cannot be duplicate names within a group.

Data Type The data type used to read values from the PLC.

OPC Properties

OPC
Server

The Selected OPC Server. This is a dropdown list showing all the OPC Servers added in the Ignition Gateway.

OPC Item
Path

The OPC address assigned by the server. Dragging and dropping from the OPC Browser will automatically populate this field.

The following feature is new in Ignition version 8.1.5
 to check out the other new featuresClick here

As of 8.1.5 it's possible to escape curly braces {} in the item path by using additional curly braces. For example:
{{device_name}} would evaluate to {<device_name param value>}.

Source
Data Type

Data type for the OPC item.

Value Mode

Property Which property of the OPC item you want to use.

Value - Item value
Quality - Quality code from OPC Server (192 = GOOD_DATA)
Timestamp - The last time the item value changed
Name - The SQLBridge Item Name property of this Item

Note: UDT Instances used in Transaction groups only support String datatypes. Other datatypes could cause Transaction Groups
groups running in previous versions of Ignition to fault.

Mode Options for displaying values based on the Item value.

Direct Value - Item value
Hour Meter - Record the amount of time the Item value is non-zero. This accumulation will reset to zero when the item value
goes to zero. The data type should be set to integer or float when using an Hour Meter regardless of the OPC Item type.

On Zero - Use a zero value to accumulate time instead of a non-zero value
Retentive - Retain the Hour Meter value when it is not accumulating.
Units - The time units to display.

Event Meter - Record the number or times the Item value is non-zero. The data type should be set to integer when using an
Event Meter regardless of the OPC Item type.

On Zero - Use a zero value to accumulate events instead of a non-zero value

Write Target

Mode Changes the items directional read/write option.

Use group's mode - Inherit the Update Mode from the Item's Group.
OPC to DB - Only read from the OPC server and write to the database.
DB to OPC - Only read from the database and write to the OPC Server.
Bi-directional OPC wins - Read and Write to both the database and OPC Server. On group start, write OPC Server values to the
database.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.5

Bi-directional DB wins - Read and Write to both the database and OPC Server. On group start, write database values to the
OPC Server.

Target
Type

This is the selection for what the Item will write to when the group executes.

None, read-only item - Do not write this value to the database.
Database field - Write the Item value to the specified column in the database table. This list will populate with all the column
names from the Group's target table after the first time the group is run.

Target
Name

The name of the column in the database that this Item will write to when the group executes. The Target Name list will populate with
all the column names from the Group's target table if the Target Type is Database field.

Alarming The Alarming settings for the OPC items. See for a full explanation.Alarming Properties

Tag Reference Item Options

General

Name The name of the OPC item in the group. There cannot be duplicate names within a group.

Tag
Path

The path to the tag being referenced. This value is not editable except by clicking the Insert Tag button. There cannot be duplicate names
within a group.

Data
Type

The data type to write to into the database if this item is not read-only.

Value Mode

Prope
rty

Which property of the Tag you want to use.

Value - Item value
Quality - Quality code of the Tag (192 = GOOD_DATA)
Timestamp - The last time the item value changed
Name - The SQLBridge Item Name property of this Item.

Mode Options for displaying values based on the Item value.

Direct Value - Item value
Hour Meter - Record the amount of time the Item value is non-zero. This accumulation will reset to zero when the item value goes to
zero. The data type should be set to integer or float when using an Hour Meter regardless of the OPC Item type.
On Zero - Use a zero value to accumulate time instead of a non-zero value
Retentive - Retain the Hour Meter value when it is not accumulating.
Units - The time units to display.
Event Meter - Record the number or times the Item value is non-zero. The data type should be set to integer when using an Event
Meter regardless of the OPC Item type.
On Zero - Use a zero value to accumulate events instead of a non-zero value

Write Target

Mode Changes the items directional read/write option. This is only editable when the target Type is set to Database field.

Use group's mode - Inherit the Update Mode from the Item's Group.
OPC to DB - Only read from the OPC server and write to the database.
DB to OPC - Only read from the database and write to the OPC Server.
Bi-directional OPC wins - Read and Write to both the database and OPC Server. On group start, write OPC Server values to the
database.
Bi-directional DB wins - Read and Write to both the database and OPC Server. On group start, write database values to the database.

Targe
t Type

This is the selection for what the Item will write to when the group executes.

None, read-only item - Do not write this value to the database.
Database field - Write the Item value to the specified column in the database table.

Targe
t
Name

The name of the column in the database that this Item will write to when the group executes. The Target Name list will populate with all the
column names from the Group's target table if the Target Type is Database field.

Expression Item Options

https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+Alarm+Properties

General

Name The name of the OPC item in the group. There cannot be duplicate names within a group.

Value The static value of this Expression item. This will be overwritten by an Expression/SQL binding.

Data
Type

The data type values are stored as.

Value Mode

Proper
ty

Which property of the OPC item you want to use.

Value - Item value
Quality - Quality code of the expression/SQL Query (192 = GOOD_DATA)
Timestamp - The last time the item value changed.
Name - The SQLBridge Item Name property of this Item.

Mode Options for displaying values based on the Item value.

Direct Value - Item value

Hour Meter - Record the amount of time the Item value is non-zero. This accumulation will reset to zero when the item value goes to
zero. The data type should be set to integer or float when using an Hour Meter regardless of the OPC Item type.
On Zero - Use a zero value to accumulate time instead of a non-zero value
Retentive - Retain the Hour Meter value when it is not accumulating.
Units - The time units to display.

Event Meter - Record the number or times the Item value is non-zero. The data type should be set to integer when using an Event
Meter regardless of the OPC Item type.
On Zero - Use a zero value to accumulate events instead of a non-zero value

Evalua
tion
Mode

Run-always (ignore Trigger) - When selected, this causes the group to evaluate at each group interval, before the trigger state is
evaluated.

Write
Target

Target type - This is the selection for what the Item will write to when the group executes.

None, read-only item - Do not write this value to the database.
Database field - Write the Item value to the specified column in the database table.
Other Tag - Write the Expression Item's value back to an OPC item or Tag Reference.

Target
Name

The name of the column in the database that this Item will write to when the group executes. The Target Name list will populate with all
the OPC Item and Tag Reference names from this Group, or the column names from the Group's target table depending on the Target
Type selected.

Numer
ic

These are the Numeric properties for Expression Items. For a full description, see .Tag Scaling Properties

Alarmi
ng

These are the Alarming settings for the OPC items. See for a full explanation.Alarming Properties

Expre
ssion

These are the Expression/SQL Query options for Expression Items. See for a full explanation.Expression/SQL Properties

https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+Scaling+Properties
https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+Alarm+Properties
https://legacy-docs.inductiveautomation.com/display/DOC81/Scripting+Vs.+SQL+Vs.+Expressions

1.

2.

3.

Hour and Event Meters
Hour meter and refer to the option settings on Tags in Transaction Groups. Event meter Value Mode
The Value mode drives values that are used to create values that determine how long a value was true.
While the selected Value Mode for most transactions is , however, the mode Direct Hour meter
accumulates value for the duration of a condition, and the accumulates count in response Event meter
to the condition.

Hour Meter

It is common to write to a Tag during the time when a Tag's value is true. An hour meter simplifies this
effort. Hour meters can be meters that accumulate the millisecond, second, minute, hour, or day.

Hour and Event
Meters

Watch the Video

Count the Duration of a Tag Being True

From the Tag Browser, drag a boolean Tag into the area of a Transaction Group.Basic OPC/Groups Items Standard

From OPC Browser or Tag Browser, drag a memory tag or OPC tag (must be a numeric data type) into the portion Basic OPC/Groups Items
of the Transaction Group.Standard

Right-click on the boolean tag in the Transaction Group and select to edit it.Edit
The window is displayed.Edit group tag

https://inductiveuniversity.com/video/hour-and-event-meters/8.1

3.

4.
5.

6.

In the window, for , select .Edit group tag Value Mode Hour meter
In the window, for select from the dropdown menu, and in enter the name of the Edit group tag Target Type Other tag Target Name
memory tag as the target, and click .OK

In the area where the tags are located, go to the column, left-click on each tag to get the dropdown Basic OPC/Groups Items Target Name
menu, and set the following:

6.

a.

b.

7.
8.

1.
2.

For the boolean tag, select the memory tag from the dropdown which is set previously as the target tag to write the hour meter to.

For the memory Tag, select Read-only from the dropdown.

Click at the top of the page, and do a to start the group. Enabled File > Save
Make the boolean Tag true to the start the Hour meter.

Event Meter

Another common scenario is to count the number of times an event occurred. For example, where there is boolean Tag and you want to count the
number of cycles the boolean Tag has experienced.

Count in Response to a Tag being True

From OPC Browser or Tag Browser, drag a boolean Tag into the area of a Transaction Group.Basic OPC/Groups Items Standard
From OPC Browser or Tag Browser, drag a memory Tag or OPC Tag (must be a numeric data type) into the portio Basic OPC/Groups Items
n of the Transaction Group.Standard

2.

3.
4.

5.

6.

a.

Right-click on the boolean Tag in the Transaction Group and select to edit it.Edit
In the window, set the following: Edit group tag

Value Mode: Event meter
Target Type: Other Tag
Target Name: (or name of the Tag you are using)_Sim_New_Programmable_/Events

Click .OK

In the area where the Tags are located, go to the column. Left-click on each Tag to get the Basic OPC/Groups Items Target Name
dropdown menu, and set the following:

6.

a.
b.

7.
8.

1.

2.
3.

4.

5.

For the boolean Tag, select the memory Tag from the dropdown which is set previously as the target Tag to write the hour meter to.
For the memory Tag, select Read-only from the dropdown.

Click at the top of the page, and do a to start the group. Enabled File > Save All
Make the boolean Tag true to start the Event meter. You'll see the Event Tag update in the Tag Browser.

Reset an Hour or Event Meter Based on a Condition

You can set the hour or event meter based on a condition.

In the Basic OPC/Group Items section, right-click and Edit a Tag that is serving as the Hour or
Event meter.
The Edit group tag window is displayed.
In the area, select the check box.Value Mode Reset on condition
Click the icon to display the window, and select a Group Tag from the popup Tag Choose Tag
window.
Click OK.

Next to the Tag icon, choose the operator sign (for example), and enter a number. In the >
example we entered . 9

Resetting Hour and
Event Meters

Watch the Video

https://inductiveuniversity.com/video/resetting-hour-and-event-meters/8.1

5.

6. Click . The target Tag will now reset in response to the condition (after nine occurrences in OK
our example).

Next...

Trigger Options

Transaction Group Examples

Transaction Groups

There are four basic types of Transaction Groups that can be used in Ignition:

: The heart of bi-directional data storage and managementStandard
: Simple historical trendingHistorical

: Efficient large scale data storageBlock
: Interact with existing protected data systemsStored Procedure

This Section has examples for each type of group and shows the different ways that you can use them.
For a more complete understanding of how the parts of each group works, see Understanding

.Transaction Groups

On this page ...

Transaction Groups
Standard Group
Historical Group
Block Group
Configuring Transaction Group
for OPC to OPC Interaction

Standard Group

The Standard Group is the most flexible group. It is commonly used as a bi-directional sync between your PLCs and databases. In addition to this, it
can also be used to push data in either direction. This means the Standard Group can be used to store historical data, , add to/update existing tables
and create .recipe management tools

Historical Group

The Historical Group is the most straightforward and simplest to use. It will take OPC data and store it as history in a database.

Block Group

The Block Group is used to efficiently store large amounts of data in blocks or chunks of similar data in the database. This is very useful if you have
many devices with the same Tags in them.

1.
2.

3.
4.

Configuring Transaction Group for OPC to OPC Interaction

Transaction Groups are generally used to channel OPC data to a database or vice-versa. It is also possible to configure your Standard Transaction
Group to be able to get information from one OPC data point to another. This is useful in the event that you have tags coming from one PLC and you
need the tag information to be sent to another PLC on your plant floor.

Create a and from your Tag browser. Standard Transaction Group
Drag two Tags into your Transaction Group's Basic OPC/Group Items section. For this example, the Tags will be called tag1 and tag2 and
they will be coming from two different PLCs.
Set the mode on tag1 to and set its Target Name to be . Bi-directional OPC Wins tag2
Set the mode on tag2 to be and set its Target Name to . The mode on tag2 is not as important here as Bi-directional OPC Wins Read-only
it is a read-only item, but we set it to Bi-directional OPC Wins anyway.

This will make sure that every 1 second, the value from tag1 will be written to tag2.

Related Topics ...

Understanding Transaction Groups

In This Section ...

https://docs.inductiveautomation.com/display/DOC81/Types+of+Groups#TypesofGroups-StandardGroup
https://legacy-docs.inductiveautomation.com/display/DOC81/Understanding+Transaction+Groups#UnderstandingTransactionGroups-CreatingaTransactionGroup

1.

2.
3.

Block Group

The Block group is a type of Transaction Group that stores data vertically. Whereas, a Standard group
stores the information horizontally in a single row. Block groups share many of the same features as the
Standard group. They can be bidirectional, insert into a database, or simply update the database. All the
rows in a Block group are associated with a single database transaction therefore the process of writing
to the database is very efficient.

On this page ...

Create a Block Group
DB to OPC Mode with
Custom Where Clause

Next...

Block Group Type

Watch the Video

Create a Block Group

In the Project Browser, right-click on Transaction Groups and select . New Transaction Group > New Block Group

Give the group a name and click Create Group.
Drag a Tag folder into the section of the new Transaction Group.Block Items

https://www.inductiveuniversity.com/videos/block-group-type/8.1

3.

4.

5.

Select the item in the Block group, right-click and select Edit.

Change the , enter the to anything appropriate. Click . Name Target Name OK

5.

6. Configure the remainder of the group settings under the Action tab.

6.

7.
8.

Select the group, and click Enabled.
Save the project to start the group.

DB to OPC Mode with Custom Where Clause

Like the Standard Group, block groups can be configured to retrieve records from the database, writing back to an OPC address or Tag. When using a
custom WHERE clause, you can write the WHERE statement in such a way that multiple rows are returned, which would then update multiple items,
which in turn write back to to OPC addresses. We could then add a dynamic OPC value as a "lookup" that would determine which set of rows to
return.

This is a great way to retrieve multiple datapoints that are stored in a tall format on a database table, ideally when you're looking to retrieve multiple
sequential rows. For example a table with the following content, a single block item targeting the "itemValue" column, and a "lookup" Tag or OPC item
that the group will use in the WHERE clause.

Table structure

table_ndx itemValue

1 1

2 20

3 300

4 4,000

5 50,000

6 600,000

7 7,000,000

Our block item

Our Tags, including "lookup"

1.
2.
3.
4.

5.

6.

Set the for the group to "Update mode" "DB to OPC."
Set the Table action (under the "Action" tab) to "update/select."
Select the radio button."custom"
Under the text area, click the Tag icon, and select the Tag, which adds a reference to the Tag like this: {[default]Block "Where:" "lookup"
Group/lookup}
Write the rest of the our condition. In this case, we'll say we want results from our table starting a value greater than our lookup value. Using
the table specified above, we could write the following condition:

null_table_test_ndx > {[default]Block Group/lookup}

Enable the group, and the project.save

When the group is running, with an initial lookup value of 0, the group automatically grab table_ndx of 1, and write a value of 1 (from the first row) to
itemValue1, a value of 20 (from the second row) to itemValue2, and so on.

If we set the value on lookup to 3, that means the first row in the result set will be row 4, setting itemValue1 to 4000, itemValue2 to 50,000, and so on.

If you set the value of lookup to 6, then that will set the value on itemValue1 to row 7's value (7,000,000), but you'll notice the other Tags are retaining
a value, which is notable since those items don't have a corresponding value to retrieve.

Values on our Tags

Items in the group

This is expected. By default, when a Block Group is configured like this, and some items can't receive updated values as a result of the dynamic
WHERE clause not returning enough rows, the items will retain their previous latched value: that is to say, the group will not automatically clear or
reset the values on the other items. Refer to .Set NULL DB Values to Default

Next...

Recipe Group

https://legacy-docs.inductiveautomation.com/display/DOC81/Understanding+Transaction+Groups#UnderstandingTransactionGroups-AdvancedSettings

1.

2.

3.

Recipe Group

You can use Transaction Groups to create a recipe management system which will pull recipe
information from the database and push it to the PLC when requested. With this system, the Transaction
Group is what queries the database rather than writing scripts to handle it all.

Before the Transaction Group

Before we make the Transaction Group, we first need to make sure we have a table set up in our
database that holds recipes. If you already have this, then you can skip to the next step on making the
Transaction Group.

We will make a table in our database that will hold our recipes. Our recipes will be simple, containing a
name, unique id, and two setpoints, so we will need a column for each of those values.

Verify the Designer's is set to Read/Write, and open up the Comm Mode Database Query
.Browser

Execute the query below in the Database Query Browser to create the table we'll use in this
example:

CREATE TABLE recipes(
 id INT PRIMARY KEY,
 recipe_name VARCHAR(50),
 setpoint1 FLOAT,
 setpoint2 FLOAT)

Note: This query was designed for an MSSQL database. If you are connected to a different
database, the syntax on the CREATE statement may differ. Check your database's
documentation for more details.

Next we need to put some data into the table by using an statement. Execute the below insert
query to insert a new record into our recipes table:

INSERT INTO recipes (id, recipe_name, setpoint1, setpoint2)
 VALUES (1, 'Recipe 1', 10, 0)

You can rerun this query as many times as you want, incrementing the id to give you a new
unique id, changing the name, and providing different setpoints. Your table might look
something like the one below.

id recipe_name setpoint1 setpoint2

1 The First Recipe 34.7 54.1

2 The Wrong Recipe 12.8 42.3

Recipe Group

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC81/General+Designer+Interface#GeneralDesignerInterface-ToSetorChangeCommunicationMode
https://legacy-docs.inductiveautomation.com/display/DOC81/Database+Query+Browser
https://legacy-docs.inductiveautomation.com/display/DOC81/Database+Query+Browser
https://inductiveuniversity.com/video/recipe-group/8.1

3.

1.
2.

3.
4.

a.
b.

5.
6.

3 The Best Recipe 65.7 95.1

4 The Other Recipe 49.8 112.2

Create the Transaction Group

Now that we have a recipe table in the database that is populated with some records, we can create the that will load a recipe from Transaction Group
the table into our Tags. We will be using the recipes table that we put together previously, but if you already had a table, you can use that here instead.

Create a new .Standard Transaction Group
We have four columns in our database table, so we will need four Tags to use in the Transaction Group: an integer, string, and two floats for
the id, name, and setpoints respectively. Add the four Tags to the Transaction Group.

Set the Table Name to ' , the table that we created earlier.recipes'
We then need to ensure that our Tags will be receiving the proper values from the database.

Set the Target Names for each of the Tags: the string to ' , the floats to and recipe_name' 'setpoint1' 'setpoint2'
Set integer to . We don't need to set the integer to the id column, because we will not pull the the id from the database, 'Read Only'
but rather use the id as a trigger and in the where clause.

Now we can finish setting up the rest of the Transaction Group. Set the Update mode to to .DB OPC
Set the to using with the set to , and the set to the you are Table Action Update/Select Key/Value Pairs Column id Value Integer Tag
using.

6.

7.

8.

Set the Update Rate to . We want to query the values out of the database as soon as we ask for them, so we need the group to 1 second
update quickly. However, we don't want the group to actually query the database every second, so we will need to set up the trigger.
Go to the Trigger tab, and select . Trigger on the item the int Tag that is being used for the id. Specify the Execute this group on a trigger
Trigger condition as .Active on value change

8.

9.

10.

Finally, the Transaction Group and the project to get it started. The Transaction Group will now pull the recipe out of the Enable save
database where the id matches the value of the int Tag. The trigger also prevents it from running all the time, instead running only when the
int Tag value changes.
To test it out, simply change the value of id Tag to an id of one of the recipes in the recipes table.

1.

2.
3.

Update or Insert Group

You can update a row or insert a new row into the database when a key pair combination does not exist.
This eliminates the need to have a database that has every possible option considered in its original
design. Because of the setting, the group will insert a new record insert row when not present
whenever the designated ID doesn't exist. Afterwards, it will update the rows in the table that are
associated with the key/value references as shown in this example.

Update or Insert
Group

Watch the Video

Update or Insert a New Row into the Database

In the Project Browser, right-click on Transaction Groups and select .New Standard Group

Give the group a name and click .Create Group
Drag a group of Tags into the groups section.Basic OPC/Group Items

https://inductiveuniversity.com/video/update-or-insert-group/8.1

3.

4.

5.

Change one of the Tags to be read-only by selecting from the Tag's column.Read Only Target Name

In the group's Action tab, in the Table action area, select the update/select radio button and the key/value pairs radio button.

5.

6.
a.
b.
c.

7.
8.

Click the icon.Add
For the Column select the database table ID column.
For the Value column, select the read-only Tag.
Select Insert row when not present check box at the bottom of the Table action area.

Select the group, and click Enabled.
Save the project to start the group.

Next...

1.

2.

3.
4.
5.

1.
2.

Trigger Options

It is often useful to execute a group only when a certain condition is met or as a bit turns on or off.
Triggers allow Transaction Groups to run based on values changing in various ways.

Execute on Value Change

A group can execute when the group's Tags have changed, or when a particular Tag within the group
has changed. In either case, the Transaction Group will execute every time the value or values change.

In the tab, select at the very top the Trigger Only evaluate when values have changed
checkbox.
Now the group will execute if any of the Tags change.
To execute when only one Tag changes, from the dropdown, select Tags to watch for change
Custom, click on Select Tags, select the Tag from the pop-up window, and click . You can OK
select more than one Tag at a time in order to monitor more than one Tag for value changes.
From the dropdown, select the appropriate Tag to execute the Tag on a trigger.Trigger on item
Select the radio button.Active on value change

 the Project to start the Transaction Group.Save

On this page ...

Execute on Value Change
Execute while Condition Is True
Execute on a Rising Edge
Reset Trigger
Handshakes
Next...

Trigger – On Value
Change

Watch the Video

Execute while Condition Is True

Groups can execute while a condition is true resulting in the Transaction Group continuing to execute for the duration of this condition.

Create a Transaction Group, and drag a numeric or boolean Tag into the section. Basic OPC/Group Items

https://inductiveuniversity.com/video/trigger-on-value-change/8.1

2.
3.
4.
5.

1.

2.

3.

4.

From the column dropdown, select if you do not want the trigger value to be written to the database.Target Name Read Only
Go to the tab, and select the checkbox.Trigger Execute this group on a trigger
In the area, set the trigger conditions which will determine under what condition the group executes.Trigger conditions

 the Project to start the Transaction Group.Save

Execute on a Rising Edge

Groups can execute when the trigger becomes True. This is known as a and it will only execute once and will not execute again rising edge trigger
until the trigger repeats the same cycle.

Create a standard Transaction Group with any number of Tags as long as one of them is a boolean Tag that will serve at the trigger for the
group.
 Set the for the boolean Tag to by selecting read-only from its drop down in the Target Name column. You do not Write Target Read-only
need to do this if you want the trigger value to be written to the database.
Go to the tab and select the check box to . Select the boolean Tag from the drop down menu and Trigger Execute this group on a trigger
select to have the group only .execute once while the trigger is active

 the Project to start the Transaction Group.Save

Reset Trigger

Resetting a trigger after execution of a triggered Transaction Group will result in the Transaction Group writing once to the targets followed by writing
back to the trigger to reset it.

To reset the trigger after execution:

1.
2.
3.
4.

1.
2.
3.
4.
5.
6.

7.

Create a Transaction Group with a boolean Tag. The Target Name column for the trigger Tag can be read-only, though this is not mandatory.
Select the tab and select the check box.Trigger Execute this group on a trigger
Select the check box.Reset trigger after execution
Save the Project to start the Transaction Group.

Handshakes

When a group executes, it either completes successfully or an error prevents its execution. The outcome of an execution can be handled in the
handshake section of the trigger section of the Transaction Group. When a group executes successfully or fails to execute, the handshake can write a
value back to a Tag to alert the user that the group executed successfully or unsuccessfully.

To set handshake values for alerting the user:

Create a Transaction Group with a boolean Tag and a numeric Tag.
Set the boolean and the numeric Tag to read only.
Go to the tab and choose to .Trigger Execute this group on a trigger
Select the boolean Tag as the trigger In the drop down, and select the appropriate execution conditions.Trigger on item
In the bottom section, select , select the numeric Tag to write to, and choose a number that signifies success.Write handshake on success
Likewise, in the bottom section, select , select the numeric Tag to write to, and choose a number that signifies Write handshake on failure
failure.

 the Project to start the Transaction Group.Save

Next...

Understanding Transaction Groups
Transaction Group Examples

1.

2.

Transaction Group Update Modes

Transaction Groups are generally used to store OPC data into a database. Transaction Group Update
Modes give users additional flexibility as to whether data should flow from an OPC server to a database
or from a database to an OPC server. Additionally, it is possible to configure data to be synchronized
between a database and an OPC server via Bi-directional Update Modes.

All update modes do not work for all Transaction Group types. For example, Historical Transaction
Groups can only insert data to a database table and not update it. In addition, Historical Transaction
Groups also cannot write back to OPC items so Bi-directional Update Mode will not be an option for
users using the Historical Transaction Group type.

The different Update Modes:

OPC to DB - Only read from the and write to the . OPC server database
DB to - Only read from the and write to the . OPC database OPC Server
Bi-directional wins - Read and Write to both the and . On group OPC database OPC Server
start, write values to the . OPC database
Bi-directional DB wins - Read and Write to both the and . On group start, database OPC Server
write values to items. database OPC

On this page ...

OPC to DB
DB to OPC
Bi-directional OPC Wins
Bi-directional DB Wins

OPC to DB

The Update Mode allows a Transaction Group to store OPC data to a Database Ignition that it has a connection to as shown in the OPC to DB
following example.

Create a and from your Tag Browser, drag a single tag into your Transaction Group's Basic OPC/Group Items Standard Transaction Group
section. For this example, the tag is called 'tag1.'
Set the Update Mode on 'tag1' to and set its to be 'tag1.' The Target Name will correlate to the name of the column OPC to DB Target Name
in your database table where 'tag1' will be stored.

This configuration will allow for tag1's value to be stored into a database table called every 1 second to a column called 'tag1.' 'group_table'

https://legacy-docs.inductiveautomation.com/display/DOC81/Types+of+Groups#TypesofGroups-StandardGroup

2.

1.

2.
3.

We can see this working now through the . Database Query Browser

DB to OPC

DB to OPC Update Mode allows you to write data from your Database to an OPC tag. This can be done by configuring the following:

Create a and from your Tag Browser, drag a single tag into your Transaction Group's Basic OPC/Group Items Standard Transaction Group
section. For this example, the tag will be called 'tag1.'
Set the mode of the Transaction Group to and set the Mode for tag1 to . DB to OPC DB to OPC
Set the Transaction Groups Table Action to and check the option. What this will do is ensure that we do not have a new 'update/select' 'last'
value inserted to the database. What we will have instead is a single row of data in the table group_table where the value of the 'tag1' column
will control tag1's OPC value.

Testing these settings, we can see that when the value in the for column 'tag1' is 22, the value for 'tag1' is also 22. Database Query Browser
When we change the value on column 'tag1' to 29, we see tag1's value change to 29 as well.

Bi-directional OPC Wins

https://legacy-docs.inductiveautomation.com/display/DOC81/Database+Query+Browser
https://legacy-docs.inductiveautomation.com/display/DOC81/Types+of+Groups#TypesofGroups-StandardGroup
https://legacy-docs.inductiveautomation.com/display/DOC81/Database+Query+Browser

1.

2.
3.

1.

2.
3.

 Bi-directional OPC means that Ignition will Read and Write to both thewins database and OPC Server. However, on
initial group start, if the OPC and database values are different, the OPC value will win and the Transaction Group
will write OPC values to the database.

Create a and from your Tag Browser, drag a single tag into your Transaction Group's Basic OPC/Group Items Standard Transaction Group
section. For this example, the tag will be called 'tag1.'
Set the mode of the Transaction Group to and set the Mode for tag1 to 'Bi-directional OPC wins' 'Bi-directional OPC wins.'
Set the Transaction Groups Table Action to and check the option. What this will do is ensure that we do not have a new 'update/select' 'last'
value inserted to the database. What we will have instead is a single row of data in the table group_table where the value of the 'tag1' column
will control tag1's OPC value and similarly, 'tag1's OPC value will control the value of the 'tag1' column database side.

What you will have at this point is a bi-directionally controlled Transaction Group where any change to tag1's value will be reflected on the
database and any change database side for the 'tag1' column value will be reflected on your 'tag1' tag.

In the event that the OPC and database values do not match on Transaction Group start, the OPC value will win and it will be written to the
database. For instance, if Transaction Group is disabled and the 'tag1' value is 20 and the 'tag1' column value is 880, the Update Mode 'Bi-

 means the 'tag1' column value will be set to 20 when the Transaction Group starts.directional OPC wins'

Bi-directional DB Wins

Bi-directional DB wins means that Ignition will Read and Write to both the database and OPC Server. However, on initial group start, if the OPC and
database values are different, the database value will win and the Transaction Group will write database data to your OPC data points.

Create a and from your Tag Browser, drag a single tag into your Transaction Group's Basic OPC/Group Items Standard Transaction Group
section. For this example, the tag will be called 'tag1.'
Set the mode of the Transaction Group to and set the Mode for 'tag1' to 'Bi-directional DB wins' 'Bi-directional DB wins.'
Set the Transaction Groups Table Action to and check the option. What this will do is ensure that we do not have a new 'update/select' 'last'
value inserted to the database. What we will have instead is a single row of data in the table group_table where the value of the 'tag1' column
will control tag1's OPC value and similarly, tag1's OPC value will control the value of the 'tag1' column database side.

What you will have at this point is a bi-directionally controlled Transaction Group where any change to tag1's value will be reflected on the
database and any change database side for the 'tag1' column value will be reflected on your 'tag1' tag.

In the event that the OPC and database values do not match on Transaction Group start, the database value will win and it will be written to
the OPC data point. For instance, when the Transaction Group is disabled and 'tag1' value is 10, and the 'tag1' column value is 20, the
Update Mode being 'Bi-directional DB wins' means the tag1 tag value will be set to 20 when the Transaction Group starts.

https://legacy-docs.inductiveautomation.com/display/DOC81/Types+of+Groups#TypesofGroups-StandardGroup
https://legacy-docs.inductiveautomation.com/display/DOC81/Types+of+Groups#TypesofGroups-StandardGroup

3.

Related Topics ...

Understanding Transaction Groups
Types of Groups

https://docs.inductiveautomation.com/display/DOC80/Understanding+Transaction+Groups

	Tag Historian
	Configuring Tag History
	Custom Tag History Aggregates
	Tag History Providers
	DB Table Historian Provider
	Historian Simulator

	How the Tag Historian System Works

	SQL Bridge (Transaction Groups)
	Understanding Transaction Groups
	Types of Groups
	Item Types
	Hour and Event Meters
	Transaction Group Examples
	Block Group
	Recipe Group
	Update or Insert Group
	Trigger Options
	Transaction Group Update Modes

